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Abstract
In the current preregistered fMRI study, we investigated the relationship
between religiosity and behavioral and neural mechanisms of conflict pro-
cessing, as a conceptual replication of the study by Inzlicht et al. (2009).
Participants (N = 193) performed a gender-Stroop task and afterwards com-
pleted standardized measures to assess their religiosity. As expected, the task
induced cognitive conflict at the behavioral level and at a neural level this
was reflected in increased activity in the anterior cingulate cortex (ACC).
However, individual differences in religiosity were not related to performance
on the Stroop task as measured in accuracy and interference effects, nor to
neural markers of response conflict (correct responses vs. errors) or infor-
mational conflict (congruent vs. incongruent stimuli). Overall, we obtained
moderate to strong evidence in favor of the null hypotheses that religios-
ity is unrelated to cognitive conflict sensitivity. We discuss the implications
for the neuroscience of religion and emphasize the importance of designing
studies that more directly implicate religious concepts and behaviors in an
ecologically valid manner.

Keywords: Religiosity, Cognitive conflict, Functional magnetic resonance
imaging, Anterior cingulate cortex

Everywhere across the world, in all times and cultures we find people who believe in super-
natural beings. Religious beliefs seem highly successful in offering explanations for various
phenomena, ranging from how the world originated, to why one had to switch jobs and what
happens after one dies. Yet these beliefs are difficult - if not impossible - to support with
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RELIGION & COGNITIVE CONTROL 2

empirical evidence. In fact, believers are often confronted with widely supported contradict-
ing evidence, for instance evolutionary explanations of the origins of life or reductionistic
explanations of their religious experiences. And yet, despite these challenges, most religious
believers keep up their faith (Pew Research Center, 2012).

Various scholars have suggested that a mechanism of reduced conflict sensitivity, i.e.,
detecting the incongruency between two potentially conflicting sources of information, may
foster the acceptance and maintenance of religious beliefs. For example, dual-process ac-
counts of religion (Risen, 2016), the predictive processing model (van Elk & Aleman, 2017),
and the cognitive resource depletion model (Schjoedt et al., 2013) all assume that religios-
ity is associated with a reduced tendency for analytical thinking and error monitoring. A
process of reduced conflict detection (or correction) makes individuals less prone to note
information that seemingly contradicts their religious worldviews and to update their be-
liefs in the light of new information. This tendency could potentially underlie the relative
immunity of religious beliefs to criticism based on empirical observations (cf. what van
Leeuwen, 2014 calls ‘evidential invulnerability’).

Notably, the implicit assumption of most theoretical frameworks appears to be that
a mechanism of reduced conflict sensitivity makes people more receptive to being religious.
However, it could also be that being religious affects people’s sensitivity to conflicting infor-
mation; religious ‘training’ inoculates believers against contractions and violations of their
worldview. This notion parallels findings from mindfulness meditation research reporting
evidence that meditation training increases cognitive control as it teaches practitioners to
suppress irrelevant information (Moore & Malinowski, 2009; Teper & Inzlicht, 2012), with
meditation experts showing less activation in brain areas implicated in attention and cogni-
tive control (e.g., the anterior cingulate cortex; Brefczynski-Lewis, Lutz, Schaefer, Levinson,
& Davidson, 2007). However, whereas mindfulness meditation may train practitioners to
flexibly suppress irrelevant information –resulting in increased cognitive control– religious
training may particularly enhance the salience of intuitive information, while suppressing
contradicting analytical alternatives.

In line with this suggestion, several empirical studies found that increased religiosity
is related to a decreased cognitive performance, especially when a logically correct response
must override a conflicting intuitive response (e.g., in a base-rate fallacy test; Daws &
Hampshire, 2017; Good, Inzlicht, & Larson, 2015; Pennycook, Cheyne, Barr, Koehler, &
Fugelsang, 2014; Zmigrod, Rentfrow, Zmigrod, & Robbins, 2018). Other behavioral stud-
ies correlated individuals’ self-reported level of religiosity with their performance on low-
level cognitive control tasks such as the Go/No-go task or the Stroop task. These studies
present a mixed bag of evidence; some report a positive relationship (Inzlicht, McGregor,
Hirsh, & Nash, 2009), an inconsistent pattern (Inzlicht & Tullett, 2010), or no relation-
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ship (Kossowska, Szwed, Wronka, Czarnek, & Wyczesany, 2016) between religiosity and
cognitive control (in terms of accuracy and reaction times).

In addition to this behavioral research, a few neuroscientific studies have been con-
ducted on the association between religiosity and conflict sensitivity. For instance, an fMRI
study investigated brain responses in devoted religious believers who listened to interces-
sory prayer. When participants believed that the prayer was pronounced by a charismatic
religious authority, they showed a reduced activation of their frontal executive network, in-
cluding the dorsolateral prefrontal cortex (DLPC) and the ACC, which have been associated
with conflict detection (Schjoedt, Stødkilde-Jørgensen, Geertz, Lund, & Roepstorff, 2011).
Furthermore, Inzlicht et al. (2009) conducted a series of EEG studies looking at the relation
between religiosity and the error-related negativity (ERN; Inzlicht et al., 2009; Inzlicht &
Tullett, 2010). Compared to skeptics, religious believers demonstrated a smaller ERN am-
plitude in response to errors on a color-word Stroop task (Inzlicht et al., 2009). The authors
suggest that these findings reflect the palliative effects of religiosity on distress responses:
religious believers experience less distress in association with committing an error and this
is reflected in a reduced ERN amplitude. There is, however, an open-ended debate on the
functional significance of the ERN; while some researchers interpret the ERN primarily as
an affective (i.e., distress) signal, others emphasize that it mainly reflects conflict-sensitivity
(Yeung, Botvinick, & Cohen, 2004; Bush, Luu, & Posner, 2000; Hajcak, Moser, Yeung, &
Simons, 2005; Botvinick, Braver, Barch, Carter, & Cohen, 2001; Maier & Steinhauser, 2016;
Carter et al., 1998).

Relatedly, different views have been proposed on how the relation between religios-
ity and ACC conflict activity should be interpreted; whereas Inzlicht, Tullett, and Good
(2011) suggest that ACC activity in this context reflects error distress, Schjoedt and Bul-
bulia (2011) argue that the interpretation of ACC activity as reflecting purely cognitive
conflict sensitivity is more parsimonious. We believe this discussion partly hinges upon the
operationalisation of ‘conflict’. EEG studies on cognitive conflict have typically studied the
ERN as a proxy for ACC activity. The ERN is an error-related signal and reflects neural
activity associated with incorrect vs. correct responses, i.e., conflict at the level of the
behavioral response (hereafter: response conflict). In contrast, fMRI studies on cognitive
conflict typically focus on the neural activity associated with incongruent vs. congruent
stimulus trials, i.e., conflict at the level of information processing (hereafter: informational
conflict). Although there is often a correlation between response conflict1 and informational
conflict, not all incongruent trials result in errors, nor do all congruent trials by definition
result in correct responses. It is therefore important to dissociate between these two lev-

1Response conflict is here defined as the conflict between the actual and the correct response, rather than
the prepotent and the correct response.
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els of conflict and their associated neural activity (cf. Tang, Critchley, Glaser, Dolan, &
Butterworth, 2006; van Veen & Carter, 2005).

It thus remains unclear to what extent religiosity is related to a reduced sensitivity
for response conflict (e.g., responding with ‘green’ when it should have been ‘red’) or to a
reduced sensitivity for informational conflict (e.g., seeing the word ‘green’ printed in a red
font). An effect for response conflict should be reflected in a relationship between religiosity
and the strength of the error–correct Stroop contrast in the fMRI data, which would be
a direct replication of the study by Inzlicht et al. (2009) and their proposed framework
(Inzlicht et al., 2011; Proulx, Inzlicht, & Harmon-Jones, 2012). An effect for informational
conflict should be reflected in a relationship between religiosity and the strength of the
incongruent–congruent Stroop contrast in the fMRI data. Schjoedt and Bulbulia (2011),
for instance, indeed seem to interpret Inzlicht et al.’s results as religious believers’ inattention
to conflict monitoring. In everyday life, both sources of conflict detection could play a role
in the maintenance of religious beliefs, e.g., when a believer simply does not detect the
incongruency between different sources of information or when he / she fails to suppress an
intuitive but objectively incorrect answer.

Taking the distinction between response conflict and informational conflict into ac-
count, here we investigated two different hypotheses regarding the relation between religios-
ity and cognitive conflict sensitivity: (1) there is a negative relationship between religiosity
and ACC activity induced by response conflict (i.e., the incorrect–correct response contrast),
and (2) there is a negative relationship between religiosity and ACC activity induced by
informational conflict (i.e., the incongruent–congruent Stroop contrast). We note that both
hypotheses are not mutually exclusive, as religiosity could be related to both mechanisms
of conflict detection.2

Although earlier studies provide preliminary evidence for the religiosity–conflict sen-
sitivity relation, we believe the present study –including a conceptual replication of the sem-
inal study by Inzlicht et al. (2009)– is important for the following reasons. First, in order to
substantiate the notion that religious believers are characterized by a general tendency for
reduced conflict sensitivity at the neural level, a significant correlation or inter-group differ-
ence should be established. So far, only two studies found evidence for an inverse relation
between religiosity and conflict-induced ACC activity (Inzlicht et al., 2009; Kossowska et
al., 2016), while one study failed to find such a relation (Good et al., 2015). Second, with
the exception of Good et al. (2015, n = 108), all experiments linking religiosity to ACC

2Based on the aforementioned theories addressing believers’ failure to notice incompatibility between
different sources of contradicting information, we would primarily expect a negative association between
religiosity and informational conflict (rather than response conflict). However, from an empirical perspective,
our study most closely resembles the design by Inzlicht et al. (2009), who measured and obtained support
for a relation between religiosity and neural markers of response conflict.
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activity included small samples and were therefore most likely underpowered (i.e., Inzlicht
et al., 2009, n = 28 [Study 1], n = 22 [Study 2]; Kossowska et al., 2016, n = 37) Third,
the hypothesized relation between religiosity and cognitive conflict is primarily based on
either behavioral or EEG data. EEG studies, however, can offer only indirect evidence for
the involvement of specific brain areas (Gazzaniga & Ivry, 2013). The use of fMRI may
complement the existing findings, as fMRI allows for a higher spatial specificity, and may
thus provide more conclusive evidence regarding the role of the ACC in the acceptance and
maintenance of religious beliefs. Finally, the current study design allowed us to dissociate
between neural effects related to response conflict (i.e., activity predicted by response ac-
curacy) and to informational conflict (i.e., activity predicted by Stroop congruency). This
may help to disentangle the ‘conflict sensitivity’ accounts of religiosity, and hence affords a
more precise theoretical interpretation of the existing data.

Hypotheses

We tested eight hypotheses, four of which were based on our research questions and four that
served as ‘outcome neutral tests’ (Chambers, Feredoes, Muthukumaraswamy, & Etchells,
2014). The four outcome neutral tests were used to validate that our task did indeed
induce cognitive conflict (reflected in accuracy and Stroop interference effects), that error
commission was reflected in ACC activity, and that informational conflict was reflected in
ACC activity. The corresponding outcome neutral hypotheses for the behavioral measures
were: (H1) participants are more accurate on congruent compared to incongruent Stroop
trials, and (H2) participants respond faster on congruent compared to incongruent Stroop
trials. Outcome neutral hypotheses for the neural measures were: (H3) errors on the Stroop
task induce more ACC activity compared to correct responses, on average across subjects,
and (H4) incongruent Stroop trials induce more ACC activity compared to congruent trials,
on average across subjects.

Conditional on establishing the effects related to hypotheses 1–4, we tested four cor-
responding hypotheses about the relation between religiosity and conflict sensitivity. For
the behavioral measures, we hypothesized that (H5) Stroop accuracy is negatively related
to religiosity, and (H6) Stroop interference (i.e., the difference in RT for incongruent vs.
congruent trials) is positively related to religiosity, indicating decreased cognitive perfor-
mance. We note that, based on the existing literature one could hypothesize both a positive
and a negative relationship between religiosity and conflict detection; on the one hand, re-
ligiosity is associated with reduced response conflict and hence smaller interference effects
(cf. Inzlicht et al., 2011). On the other hand, religiosity is associated with an increased ten-
dency for intuitive responding, which means that more effort is required to overcome these
intuitive response on incongruent Stroop trials, hence larger interference effects should be
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expected (cf. Pennycook et al., 2014). Despite these divergent theoretical predictions, most
studies have not found any association between religiosity and Stroop interference (Inzlicht
et al., 2009, Study 1; Inzlicht & Tullett, 2010; Kossowska et al., 2016), except for Study
2 by Inzlicht et al. (2009), in which a positive correlation between religiosity and Stroop
interference was reported. Here, in line with the latter finding we hypothesized a positive
relationship between religiosity and Stroop interference.

For the neural measures, we hypothesized that (H7) the size of the error–correct re-
sponse BOLD signal contrast (i.e., difference in BOLD signal between errors and correct
responses) in the ACC is negatively related to religiosity, on average across subjects (cf.
Inzlicht et al., 2009), and (H8) the size of the incongruent–congruent BOLD signal contrast
(i.e., difference in BOLD signal between the incongruent and congruent condition) in the
ACC is negatively related to religiosity, on average across subjects. All hypotheses were pre-
registered on the Open Science Framework (see https://osf.io/nspxb/registrations).
Finally, we added exploratory whole-brain analyses to explore whether religiosity is associ-
ated with conflict-induced neural activity in any other brain areas besides the ACC.

Methods

Overview

The data for this study had already been collected as part of the Population Imaging
(PIoP) project (May 2015 - April 2016), conducted at the Spinoza Center for Neuroimaging
at the University of Amsterdam (see Appendix A for a description of the project). An
overview of the data collection and analysis procedure is presented in Figure 1. All hy-
potheses were formulated independently without any knowledge of the preprocessed data,
and the analysis pipeline was developed and preregistered prior to data inspection.3 The
preregistration can be accessed on the OSF (https://osf.io/nspxb/). This folder also
contains the anonymized raw and processed data and the R scripts used to preprocess the
behavioral data and to conduct the confirmatory analyses (including all figures). The pre-
processing scripts for the fMRI analysis and the exploratory fMRI analyses can be found at
https://github.com/lukassnoek/ReligiosityFMRI. The (uncorrected) brain maps can
be found at https://neurovault.org/collections/6139/.

Participants

Participants were students who were recruited at the University of Amsterdam and received
a financial remuneration. Participants were screened for MRI contraindications before MRI

3Specifically, LS was involved in data collection and (pre)processing the MRI data and has no access to
the religiosity data. MvE and SH formulated the research questions and hypotheses without any access to
the MRI data.
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Acquisition of func-
tional T2* scans during

Gender Stroop task

Preprocessing of functional
MRI data using FSL

Administration
of religious be-

liefs questionnaire

Descriptives and regression
model construction for

Stroop accuracy and RTs

Descriptives and calcu-
lation of average scores

for religious beliefs ques-
tionnaire, plus covariates

Behavioral effect:
H1: accuracyincongr. <

accuracycongr.
H2: RTincongr. > RTcongr.

Neural effect:
H3: ACCincorr. > ACCcorr.

H4: ACCincongr. > ACCcongr.

H5: Stroop accuracy is nega-
tively related to religiosity;

H6: Stroop interference (RT)
is positively related to religiosity

H7: ACCincorr. – ACCcorr. contrast
is negatively related to religiosity;

H8: ACCincongr. – ACCcongr. contrast
is negatively related to religiosity

Data Collection Preprocessing Outcome-Neutral Criteria Confirmatory Analyses

May 2015 – April 2016 February 2019;
after preregistration

after preregistration after preregistration

Figure 1 . Overview of data acquisition and analysis. Boxes marked in grey had already
been completed prior to commencing this project. Boxed marked in black represent the
analysis steps for the present study, which were determined in the preregistation.

data acquisition. The intended number of participants was 250, but due to technical prob-
lems during part of the acquisition process, only 244 participants yielded usable MRI data.
Of those 244, data from 20 subjects were excluded due to artifacts in the MRI data due to
scanner instabilities or errors during export and/or reconstruction of the data. Additionally,
10 participants were excluded because they did not complete the task of interest (i.e., the
gender-Stroop task). These exclusions were known at the time of the preregistration.

We entered the analysis phase with data from N = 214 participants. Out of these
214, eight participants were excluded –as preregistered– because they did not complete
the religiosity questionnaire or lacked data on the covariates of interest (age, gender, and
intelligence). We additionally preregistered to exclude participants whose accuracy was
lower than 65%, because this indicates performance at chance level. This means that
participants who responded correctly on fewer than 63 out of the 96 trials were excluded.
Furthermore, participants who did not respond within the response interval on more than
20% of the Stroop trials were also excluded. As the minimum response interval of 4500ms
is assumed to be sufficient for timely responses, missed responses on more than 20% of
the trials were taken to indicate that participants did not understand or perform the task
adequately. These criteria led to the exclusion of 14 participants, yielding a total sample size
of 193. In addition, for the fMRI analyses, there were 21 participants who did not make any
mistake during the task, preventing us from calculating the ‘incorrect–correct’ contrast.4

As such, the confirmatory ROI and whole-brain analyses of this contrast were based on
data from 172 participants. All other analyses were done on a total of N = 193 participants

4Of the 21 excluded participants, 19 made no errors and 2 participants made 1 error, but no reliable
signal could be extracted for this error trial.
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with complete data. The final sample consisted of 109 (56.5%) women and 84 (43.5%) men.
The average age of the participants was 22.2 years (SD = 1.9; range = 18− 26).

The study was approved by the local ethics committee at the Psychology Department
of the University of Amsterdam (Project #2015-EXT-4366) and all participants were treated
in accordance with the Declaration of Helsinki.

Sample Size Justification. The sample size was determined based on the target
of the overall project minus exclusions due to artifacts in the data, incomplete data, or
preregistered quality criteria. As there were no existing fMRI studies on the relation between
religiosity and cognitive conflict processing –only EEG studies– we could not perform a
power analysis. However, we note that a sample of N ≈ 200 is substantially large for an
fMRI study (Szucs & Ioannidis, 2017)5 and exceeds the recommended minimum sample size
of N = 100 for correlational (neuroimaging) research (Dubois & Adolphs, 2016; Schönbrodt
& Perugini, 2013).

Procedure

The study ran from May 2015 until April 2016. On each testing day, two participants were
tested, which took approximately 4 hours and included an extensive behavioral test battery
(approximately 2.5 hours) and an MRI session (approximately 1.5 hours). The order of
behavioral and MRI sessions were counterbalanced across participants.

Study Design

The study involved a mixed design with Stroop congruency as the within-subjects variable
and religiosity as the between-subjects continuous individual differences variable. The main
part of the study qualified as an observational study; we investigated the correlation be-
tween performance on the Stroop task and religiosity, and between BOLD-fMRI activity
and religiosity, without manipulating any variables except for trial congruency (congruent
vs. incongruent Stroop trials). The fMRI task involved a rapid event-related design; a
hypothesized BOLD response was modelled following the presentation of facial stimuli in
the congruent or incongruent condition, as well as following correct and incorrect responses.

Stroop Task

We used a face-gender variant of the Stroop task (adapted from Egner, Ely, & Grinband,
2010), often referred to as the ‘gender-Stroop’ task, in which pictures of faces from either
gender are paired with the corresponding (i.e., congruent) or opposite (i.e., incongruent)

5This meta-analysis reports a median sample size of approximately 22 for fMRI studies.
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gender label (see below for details on the task and example pictures of the stimuli). The face-
gender variant of the Stroop task (Egner & Hirsch, 2005) has been shown to induce signifi-
cant behavioral conflict and neural ACC activation (Egner, Etkin, Gale, & Hirsch, 2008).6

Each trial consisted of a photographic stimulus depicting either a male or female face, with
the gender label ‘MAN’ or ‘WOMAN’ superimposed in red, resulting in gender-congruent
and gender-incongruent stimuli The Stroop condition –congruent vs. incongruent– thus
formed the within-subjects manipulated variable.

The stimuli set consisted of a total of 12 female and 12 male faces, with the labels
‘man’, ‘sir’,‘woman’, and ‘lady’, both in lower- and uppercase added to the pictures (e.g.,
‘sir’ and ‘SIR’).7 All combinations appeared exactly one time, resulting in 96 unique trials
(48 congruent and 48 incongruent). Participants were always instructed to respond to the
gender of the pictured face, ignoring the distractor word.

The stimuli were presented for 500ms with a variable inter-trial interval ranging be-
tween 4000-6000ms, in steps of 500ms. Participants could respond from the beginning of
the stimulus presentation until the end of the inter-trial interval (i.e., minimum response
interval was 4500, maximum response interval was 6500), using their left and right index
finger. If no button was pressed during this interval, the trial was recorded as a ‘miss’.
Stimuli were presented using Presentation (Neurobehavioral Systems, www.neurobs.com),
and displayed on a back-projection screen that was viewed by the subjects via a mirror
attached to the head coil.

Religiosity Measures

Our religiosity measure consisted of 7 items that were based on religiosity questions in-
cluded in the World Values Survey (WVS; World Values Survey, 2010), covering religious
identification, beliefs, values, and behaviors (institutionalized such as church attendance
and private such as prayer). Besides having high face-validity, these measures have been
validated in other studies (Lindeman, Svedholm-Hakkinen, & Lipsanen, 2015; Norenzayan,
Gervais, & Trzesniewski, 2012; Stavrova, 2015) and the items have been used in previous
studies (Maij et al., 2017; van Elk & Snoek, 2019). The items were evaluated on a 5-point
Likert scale ranging from 1 = not at all to 5 = very much; see Table 1 for the exact items.
Ratings on the seven religiosity items were tallied to create an average religiosity score per
participant. For the analyses, these average scores were standardized. As anticipated in the
preregistration, the distribution of the religiosity data was indeed positively-skewed, since

6The face Stroop task - instead of the regular word-color variant - was chosen because it offers optimal
opportunities for dissociating between perceptual processing of target and distractor dimensions, as process-
ing of the distractor faces can straightforwardly be linked to activation patterns in the fusiform face area
(FFA; Egner & Hirsch, 2005). In the current study, however, we were mainly interested in the cognitive
conflict aspect rather than perceptual processing, and therefore solely focused on activation in the ACC.

7The Dutch labels were ‘man’, ‘heer’,‘vrouw’, and ‘dame’, respectively.
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Table 1
Items of the religiosity scale
1. To what extent do you consider yourself to be religious?
2. To what extent do you believe in God or a supernatural being?
3. To what extent do you believe in life after death?
4. My faith is important to me.
5. My faith affects my thinking and practice in daily life.
6. I pray daily.
7. I visit a church or religious meeting on a weekly basis.
Note. All items were measured on a 5-point scale ranging from 1 = not at all to 5 = very much.

our sample consisted of highly-secularized students. Although non-normality may reduce
statistical power (Poldrack, Mumford, & Nichols, 2011), it does not pose a problem for
our analysis, since Bayesian linear regression models –like general(ized) linear models in
general– do not assume normality of predictors (solely of model residuals).

Additional Variables

Gender, age, and intelligence were included as covariates in the analyses of the main hy-
potheses. Intelligence was indexed by the sum score on the (short-form) Raven matrices
test (Raven, 2000). The rationale for including these measures as covariates in our analysis
was to control for the potential confound that any religiosity effect may be driven by other
individual differences that are known to be associated with religiosity; females are typically
more religious than males (Miller & Hoffmann, 1995), older people tend to be more reli-
gious than younger people (Argue, Johnson, & White, 1999), and people scoring high on
intelligence are on average less religious (Zuckerman, Silberman, & Hall, 2013). Age and
intelligence scores were standardized in the analyses.

Since the proposed study was part of a larger project, a number of extra tasks and
questionnaires were administered to the participants (see Appendix A for a description).
These measures were not included in the present study.

fMRI Data Acquisition

Subjects were tested using a Philips Achieva 3T MRI scanner and a 32-channel SENSE
headcoil. A survey scan was made for spatial planning of the subsequent scans. After
the survey scan, five functional (T2*-weighted BOLD-fMRI) scans (corresponding to five
different tasks, including the gender-Stroop task; see Appendix A for an overview of the
other tasks), one structural (T1-weighted) scan, and one diffusion-weighted (DWI) scan were
acquired. The DWI scan will not be described further, as it is not relevant to the current
study. The Stroop task was done during the second scan of the session (not including the
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survey scan).
The structural T1-weighted scan was acquired using 3D fast field echo (TR: 82 ms,

TE: 38 ms, flip angle: 8°, FOV: 240×18 mm, 220 slices acquired using single-shot ascending
slice order and a voxel size of 1.0 × 1.0 × 1.0 mm). The functional T2*-weighted gradient
echo sequences (single shot, echo planar imaging) were run. The following parameters were
used for the MRI sequence during the gender-Stroop task: TR=2000 ms, TE=27.63 ms,
flip angle: 76.1°, FOV: 240× 240 mm, in-plane resolution 64× 64, 37 slices (with ascending
slice acquisition), slice thickness 3 mm, slice gap 0.3 mm, voxel size 3×3×3 mm), covering
the entire brain. During the Stroop task, 245 volumes were acquired.

Preprocessing

Preprocessing was performed using fmriprep version 1.0.15 (Esteban et al., 2019, 2018), a
Nipype (Gorgolewski et al., 2011, 2017) based tool. fmriprep was run using the package’s
Docker interface. Each T1w (T1-weighted) volume was corrected for INU (intensity non-
uniformity) using N4BiasFieldCorrection v2.1.0 (Tustison et al., 2010) and skull-stripped
using antsBrainExtraction.sh v2.1.0 (using the OASIS template). Brain surfaces were
reconstructed using recon-all from FreeSurfer v6.0.1 (Dale, Fischl, & Sereno, 1999), and
the brain mask estimated previously was refined with a custom variation of the method to
reconcile ANTs-derived and FreeSurfer-derived segmentations of the cortical gray-matter
of Mindboggle (Klein et al., 2017). Spatial normalization to the ICBM 152 Nonlinear
Asymmetrical template version 2009c (Fonov, Evans, McKinstry, Almli, & Collins, 2009)
was performed through nonlinear registration with the antsRegistration tool of ANTs
v2.1.0 (Avants, Epstein, Grossman, & Gee, 2008), using brain-extracted versions of both
T1w volume and template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-
matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using fast

(Zhang, Brady, & Smith, 2001; FSL v5.0.9).
Functional data was motion corrected using mcflirt (Jenkinson, Bannister, Brady,

& Smith, 2002; FSL v5.0.9). ‘Fieldmap-less’ distortion correction was performed by co-
registering the functional image to the same-subject T1w image with intensity inverted
(Wang et al., 2017; Huntenburg, 2014) constrained with an average fieldmap template
(Treiber et al., 2016), implemented with antsRegistration (ANTs). This was followed
by co-registration to the corresponding T1w using boundary-based registration (Greve &
Fischl, 2009) with 9 degrees of freedom, using bbregister (FreeSurfer v6.0.1). Motion
correcting transformations, field distortion correcting warp, BOLD-to-T1w transformation
and T1w-to-template (MNI) warp were concatenated and applied in a single step using
antsApplyTransforms (ANTs v2.1.0) using Lanczos interpolation. Functional data was
smoothed with a 5 mm FWHM Gaussian kernel. Many internal operations of fmriprep
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use Nilearn (Abraham et al., 2014), principally within the BOLD-processing workflow. For
more details of the pipeline see http://fmriprep.readthedocs.io.

Quality Control. After preprocessing, the MRIQC package (Esteban et al., 2017)
was used to generate visual reports of the data and results of several intermediate prepro-
cessing steps. These reports were visually checked for image artifacts, such as ghosting,
excessive motion, and reconstruction errors. Participants displaying such issues were ex-
cluded from further analysis.

fMRI First-Level Model. The fMRI timeseries were modelled using a first level
(i.e., subject-specific) GLM, using the implementation provided by the nistats Python
package (https://nistats.github.io; Abraham et al., 2014; version rel0.0.1b). The GLM
included four predictors modelling elements of the task: incongruent trials, congruent trials,
correct trials, and incorrect trials. If a participant did not make any mistakes, the ‘incorrect
trials’ predictor was left out. The predictors were convolved with a canonical hemodynamic
response function (HRF; Glover, 1999). Onsets for the (in)congruent trial predictors were
defined at the onset of the image and had a fixed duration of 0.5 seconds. Onsets for the
(in)correct trial predictors were defined at the onset of the response. Additionally, six motion
regressors (reflecting the translation and rotation parameters in three dimensions) were
included as covariates. GLMs were fit with AR1 autocorrelation correction. After fitting
the GLMs, the following contrasts were computed: ‘incorrect–correct’ and ‘incongruent–
congruent’. The parameters –beta parameters– and associated variance terms from these
contrasts were used in subsequent confirmatory ROI analyses and exploratory whole-brain
analyses.8

fMRI Group-Level Model (exploratory). In addition to the confirmatory ana-
lyses, we also performed an exploratory whole-brain analysis of the effect of religiosity on
fMRI activity associated with response conflict (i.e,. H7) and informational conflict (i.e.,
H8). Similar to the confirmatory analyses, in addition to religiosity, the variables age,
gender, and intelligence were added as covariates to the model. In the group-level model
and in accordance with the ‘summary statistics approach’, the first-level ‘incorrect–correct’
and ‘incongruent–congruent’ contrast estimates represent the dependent variables, while
religiosity, age, gender, and intelligence represent the independent variables. For the par-
ticipants who did not make any error, we could not compute the ‘incorrect-correct’ contrast

8We note that the current design was suboptimal in estimating the effect of informational conflict (but not
response conflict) in the fMRI data. Due to insufficient ‘jittering’ of the interstimulus interval, the first-level
predictors for congruent and incongruent trails were strongly negatively corrected (r̄ = −0.9). While this
does not bias our results (the generalized least squares estimator we used is still unbiased), it does increase
the variance of our first-level results, which in turn reduces the power of finding a correlation of religiosity
with the first-level effect of informational conflict (operationalized by the ‘incongruent-congruent’ contrast).
This issue only applies to the ‘incongruent-congruent’ contrast, not the ‘incorrect-correct’ contrast (as these
predictors are much less correlated with each other, r̄ = −0.2).
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and they were thus excluded from the group-analysis of the ‘incorrect-correct’ contrast.
We used the FSL tool randomise (Winkler, Ridgway, Webster, Smith, & Nichols,

2014) in combination with threshold-free cluster enhancement (Smith & Nichols,
2009) to perform a non-parametric group-analysis of the effect of religiosity. We ran 10, 000
permutations. Specifically, we tested for a non-directional (two-tailed) effect of religios-
ity variable (controlled for the other covariates). In addition, as ‘outcome neutral tests’,
we computed the average of the first-level contrasts (‘intercept-only’ model) for both the
‘incorrect-correct’ and ‘incongruent-congruent’ first-level contrasts. We corrected for multi-
ple comparisons using the distribution of the ‘maximum statistic’ under the null-hypothesis
(i.e., the default in randomise) with a voxel-level α value of 0.025 (i.e., α = 0.05 but cor-
rected for two-sided tests; Chen et al., 2018). We plotted the significant voxels showing
either a negative or positive effect of religiosity on a standard MNI152 brain.

ROI Definition

For this study’s confirmatory ROI analyses, we used a preregistered ROI based on a conjunc-
tion of a functional ROI, derived from fMRI activity preferentially associated with ‘error’
(for H3 and H7) or ‘conflict’ (for H4 and H8) extracted using Neurosynth (Yarkoni, Pol-
drack, Nichols, Van Essen, & Wager, 2011), and an anatomical ROI based on the anatomical
coordinates of the ACC, taken from the Harvard-Oxford cortical atlas (Craddock, James,
Holtzheimer, Hu, & Mayberg, 2012). The reasons for using a mask based on both a func-
tional and anatomical ROI are twofold. First, the anatomical ROI of the ACC in the
Harvard-Oxford atlas (and many others) consists of several putatively functionally different
subregions (Vogt, 2005; Holroyd et al., 2004; Gasquoine, 2013). A functional ROI based on
the Neurosynth database would resolve this issue of functional ambiguity within a single
(anatomical) ROI; however, the Neurosynth maps for ‘error’ and ‘conflict’ contain more
brain areas than just the ACC (such as the bilateral insula). Therefore, by using the con-
junction between the functional ROIs based on Neurosynth and the anatomical ROI of the
ACC, we restrict our analyses to a single anatomical region that is most likely to be func-
tionally relevant for the psychological constructs of interest, i.e., response conflict (“error”)
and informational conflict (“conflict”). We realize that due to the ambiguity of the term
‘conflict’ (which may refer to informational conflict or response conflict), the Neurosynth
map for ‘conflict’ will likely also be based on studies involving response conflict. Although
not ideal, we believe that this method is the most appropriate way to define our ROI.

Specifically, for our functional ROI, we used the Neurosynth Python package to
conduct separate meta-analyses of the terms “error*” and “conflict*”, with a frequency
threshold of 0.0019. We used the ‘association test map’ from the meta-analysis output

9These maps were generated on February 26th, 2019.
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(FDR-thresholded for multiple comparisons at p < 0.01), which reflects voxels which are
preferentially associated with the term ‘error’ and ‘conflict’, rather than other psychological
constructs. For our anatomical ROI, we used the ‘anterior cingulate cortex’ region within
the Harvard-Oxford cortical atlas. We will define the ACC within this probabilistic atlas
as the set of voxels with a nonzero probability of belonging to the ACC. Our final ROI is
based on the logical conjunction of these two ROIs (see Figure 2). For the confirmatory
ROI analyses, we averaged the GLM parameters (β̂, ‘beta-values’) and associated variance
parameters (var[β̂]) separately for the ‘incorrect–correct’ (H3 and H7) and ‘incongruent–
congruent’ (for H4 and H8) first-level contrasts for each participant. These ROI-average
parameters were subsequently analyzed in a hierarchical Bayesian regression model (see
Statistical Models section for details).

Figure 2 . ROIs used for our confirmatory ROI analyses of the effect of religiosity on response
conflict and informational conflict.

Statistical Models

We applied hierarchical Bayesian models for all hypotheses to accommodate the hierarchical
structure of the behavioral and fMRI data, with trials nested within participants. We
constructed hierarchical Bayesian models with varying intercepts and varying slopes using
the R package brms (Bürkner, 2017), which relies on the programming language Stan

(Carpenter et al., 2017). This package incorporates bridgesampling (Gronau, Singmann,
& Wagenmakers, 2017) for hypothesis testing by means of Bayes factors (BF) and posterior
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probabilities. The general form of our multilevel regression models is:

yij ∼ N (β0 + β0j + (β1 + β1j)xij , σ
2) (1)

where yij is the outcome per trial per participant, and xij the corresponding value of the
predictor. The subscript i is for the individual trials (i = 1...ntrials) and the subscript j is
for the participants (j = 1...N).

Prior Specification. We note that the most relevant parameter for making infer-
ences in our specified models is the β1, i.e., the beta-weight for the (standardized) predictors
of interest (e.g., Stroop condition, religiosity). As this parameter is used in the critical tests
for our hypotheses, it is important to set appropriate priors particularly for this param-
eter. We chose β1 ∼ N (0, 1) for the (standardized) predictors. This prior is listed as a
recommended ‘generic weakly informative prior’ in the Stan manual (Betancourt, Vehtari,
& Gelman, 2015), and has been used in this context before (e.g., Gelman, Lee, & Guo,
2015).

On the remaining parameters we used weakly-informative priors, whereby the priors
for the regression weights (β’s) are derived from a normal distribution, and the priors on
the scale parameters from a half-Cauchy distribution (C+; Gelman, 2006): β0 ∼ N (0, 10)
for the fixed intercept; β0j ∼ N (0, τ2

0 ) for the varying part of the intercept per participant;
β1j ∼ N (0, τ2

1 ) for the varying part of the predictor effect per participant; τ ∼ C+(0, 2) for
the participant-level variance. Finally, we used the default LKJ-correlation prior to model
the covariance matrices in hierarchical models (Lewandowski, Kurowicka, & Joe, 2009).
That is, we used Ωk ∼ LKJ(ζ), with Ωk being the correlation matrix and ζ set to 1.

Interpretation of Evidence. Hypothesis testing was done by means of Bayes
factors that evaluate the extent to which the data is likely under the alternative hypothesis
(e.g., H1–H8) versus the corresponding null hypothesis H0. The Bayes factor (BF) reflects
the change from prior hypothesis or model probabilities to posterior hypothesis or model
probabilities and as such quantifies the evidence that the data provide for H1 versus H0,
reflected by:

p(M1 | data)
p(M0 | data)︸ ︷︷ ︸

posterior odds

= p(M1)
p(M0)︸ ︷︷ ︸

prior odds

× p(data |M1)
p(data |M0)︸ ︷︷ ︸

Bayes factor

(2)

where M1–M8 and M0 represent the models specified for H1–H8 and H0, respectively.
The Bayes factor BF10 then represents the ratio of the marginal likelihoods of the observed
data underM1 andM0:

BF10 = p(data |M1)
p(data |M0) (3)
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As our hypotheses are directed, we computed order-restricted Bayes factors, i.e., BF+0 in
case of an expected positive effect. Note that the subscripts on Bayes factor to refer to the
hypotheses being compared, with the first and second subscript referring to the one-sided
hypothesis of interest and the null hypothesis, respectively. BF+0 is used in case of a hy-
pothesized positive effect for the reference group or a positive relation between variables;
BF−0 is used for a negative effect for the reference group or a negative relation between
variables. As Bayes factors are fundamentally ratios that are transitive in nature, we can
easily compute an order restricted Bayes factor; by (1) using the BF for the unrestricted
model versus the null model, and (2) comparing the unrestricted model to an order restric-
tion, we can then (3) use the resulting BFs to evaluate the order restriction versus the null
model (Morey, 2015).

By default, prior model odds were assumed to be equal for both models that are
compared against each other. As the evidence is quantified on a continuous scale, we also
present the results as such. Nevertheless, we included a verbal summary of the results by
means of the interpretation categories for Bayes factors proposed by Lee and Wagenmakers
(2013, p. 105), based on the original labels specified by Jeffreys (1939). In addition to Bayes
factors, we present the posterior model probabilities that are derived from the generated
posterior samples.

For all outcome neutral tests we preregistered that a Bayes factor of at least 10 –the
minimum value for strong evidence– was required to meet the criteria.

We declare that all models that are described below were constructed before the data
were inspected. Additionally, all analyses were run as preregistered. Any deviations are
explicitly mentioned in the manuscript.

Results – Outcome Neutral Tests

Behavioral Stroop Effect – Accuracy

A hierarchical logistic regression model with varying intercepts for the participants and
a varying slope for the effect of Stroop congruency was constructed to model response
accuracy. In order to validate the presence of a congruency effect on accuracy, i.e., a Stroop
effect, we compared the model for H0 containing only the varying intercept, to the model
for H− containing the varying intercept and the negative effect of congruency. H− thus
indicates that the incongruent condition decreases the probability of responding correctly
on the Stroop task, relative to the congruent condition.

Results revealed a Bayes factor of 8.43× 1011 in favor of the alternative model (M−)
relative to the null model (M0). That is, BF−0 = 8.43 × 1011, indicating that the data
are about 1011 times more likely under the model assuming lower accuracy for incongruent
Stroop trials than for congruent Stroop trials. In order words, the data provide strong
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evidence for the Stroop effect indexed by accuracy (H1). See Table 2 for a summary of the
results of all four outcome neutral tests.

Behavioral Stroop Effect – Response Times

We used a similar hierarchical regression model with varying intercepts for the participants
and a varying slope for the effect of Stroop condition to model reaction times. Note that
only correct trials are included in the RT analysis. To account for the typical positive skew
in RT data, we modelled reaction times as an ex-Gaussian distribution, i.e., a mixture of a
Gaussian and an exponential distribution, which has been shown to fit empirical RT data
well (Balota & Spieler, 1999; Balota & Yap, 2011; Whelan, 2008). This distribution is
incorporated in the brms package, and thus only needed to be specified. Here we expected
RTs to be longer for incongruent vs. congruent trials, hence the Bayes factor BF+0 was
calculated for ratio between the marginal likelihoods of the observed data under H+ versus
H0. Again, we expected a Bayes factor of at least 10.

We obtained a Bayes factor of 3.53×1067 in favor ofM+, that is BF+0 = 3.53×1067.
In other words, we collected strong evidence for the Stroop interference effect on reaction
times (H2).

Neural Processing – Response Conflict

The hierarchical nature of the fMRI data –being derived from multiple trials– was al-
ready taken into account in the calculation of the ‘incorrect–correct’ contrast and the
‘incongruent–congruent’ contrast in FSL: we exported the beta-values for each contrast
per participant, as well as the variance for the contrasts, i.e., β̂ and var[β̂]. The inclusion
of the variance parameter in the Bayesian models is important, because it allows one to
retain the uncertainty associated with the activation level contrast, which is typically lost
or ignored when extracting fMRI data for ROI-analyses.10 In order to test H3 that the
average contrast of ACC activation – the average ‘intercept’ or β̂ – was substantially dif-
ferent from 0, we used the function hypothesis which allows for directed hypothesis test
of the specified parameters.11 β̂ is calculated as (β̂incorr. − β̂corr.), therefore the hypothesis
states that β̂ is larger than 0 (i.e., increased ACC activity for errors compared to correct
responses). Here we calculated the Bayes factor for H+ stating that β̂ > 0.

We note that analyses that took the ‘incorrect–correct’ fMRI contrast as the depen-
dent variable (H3 and H7) include data from 172 participants rather than 193, since some

10The possibility to include the variance of the observations in the regression model formula was added
for the purpose of meta-analyses (Vuorre, 2016). However, it also serves the current purpose very well.

11The term intercept may be somewhat confusing here. Since the outcome variable is the contrast between
the incongruent and congruent condition (i.e., the difference), we only include the intercept in this model,
and hence look at the effect of the parameter ‘intercept’.
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Table 2
Results Outcome Neutral Tests.

Hypothesis Bayes factor Posterior Estimated
Probability Coefficient

H1: accuracyincongr. <
accuracycongr.

1011 1 −0.64 [−0.85,−0.46]

H2: RTincongr. > RTcongr. 1067 1 0.03 [0.02, 0.03]
H3: ACCincorr. > ACCcorr. ∞* 1 3.26 [2.89, 3.64]
H4: ACCincongr. > ACCcongr. 157.7 0.99 0.15 [0.03, 0.26]

Note. *Estimated to approach “infinity” as all posterior samples were in accordance
with the order-restricted hypothesis. Bayes factors are the order-restricted Bayes factors
for the alternative hypothesis of interest; BF−0 for H1 and BF+0 for H2–H4. Posterior
probabilities are the posterior model probabilities of the alternative model versus the
null model. Coefficients are the medians of the posterior distributions for the parame-
ter of interest (i.e., Stroop condition or response accuracy) with 95% credible intervals
in square brackets.

participants made no errors on the Stroop task.
The results showed evidence for the alternative hypothesis to approach “infinity”,

that is BF+0 = ∞. Note that this Bayes factor was estimated by testing the proportion
of posterior samples that satisfy the hypothesis that the intercept > 0. When all posterior
samples are in accordance with the hypothesis, a Bayes factor of “infinity” can be obtained.
In this case that means that the Bayes factor is at least 60, 000 since the model included
60, 000 samples. In other words, the neural data provide strong evidence that the ACC is
sensitive to response accuracy on the Stroop task.

Neural Processing – Informational Conflict

A similar procedure was used to testH4, this time with the ACC activity contrast for Stroop
congruency instead of response outcomes. That is, a hierarchical regression model with a
varying intercept for the participants was constructed. The Bayes factor was calculated for
the hypothesis that β̂ is larger than 0, since we expected β̂incongr. to be larger than β̂congr.,
resulting in a positive contrast. Again, a Bayes factor of at least 10 was required to pass
the outcome neutral criterion test.

A Bayes factor of 157.7 in favor of the alternative hypothesis was obtained (i.e.,
BF+0 = 157.7), indicating that the data provide strong evidence that the ACC is sensitive
to informational conflict on the Stroop task.

The results of these four analyses indicate that all prespecified outcome neutral criteria
were met.

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.16.899021doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.16.899021
http://creativecommons.org/licenses/by/4.0/


RELIGION & COGNITIVE CONTROL 19

Results – Main Preregistered Analyses

Behavioral Stroop Effect and Religiosity – Accuracy

In order to test H5 whether self-reported religiosity of individuals is related to their per-
formance on a conflict-inducing Stroop task, an extended Bayesian hierarchical logistic
regression model was constructed, by adding religiosity as second-level predictor. Specifi-
cally, the model for H0 included varying intercepts and varying slopes for Stroop condition
(as before) per participant, plus the participant-level variables gender, age, and intelligence
(i.e., the covariates). The model for the alternative hypothesis was identical plus the inclu-
sion of religiosity as an additional participant-level predictor. Notably, an interaction term
for religiosity × congruency was also included, as the effect of religiosity might be specific
for performance in the conflict condition (i.e., the incongruent Stroop condition). As we
expected a negative relation between religiosity and performance on the gender-Stroop task,
we restricted the coefficient for religiosity to be negative in calculating the Bayes factor,
i.e., we performed a one-sided test.12 The ratio of marginal likelihoods for the data under
H− versus H0, i.e., the Bayes factor, were calculated to determine the evidence for the
predictive value of religiosity in explaining Stroop performance.

A Bayes factor of 0.022 was obtained (i.e., BF−0 = 0.022, BF0− = 44.8), indicating
that the data provided more support for the null model than for the religiosity model. This
result qualifies as strong evidence that religiosity is not negatively related to accuracy on
the Stroop task. The posterior medians and the 95% credible interval for the coefficients
of religiosity (−0.08 [−0.25, 0.09]) and of religiosity × Stroop condition (0.10 [−0.04, 0.24])
indicate that neither religiosity, nor the interaction between religiosity and Stroop condition
was related to performance on the Stroop task (see also Figure 3a). The results of all main
hypotheses are also summarized in Table 3. The parameters in the regression models for
the four main analyses are displayed in the Appendix.

Behavioral Stroop Effect and Religiosity – Response Times

We constructed a similar model with RT as the dependent variable; the model for H0 was
a hierarchical ex-Gaussian regression model for RT with varying intercepts and a varying
slope for Stroop condition – including participant gender, age, and intelligence as covariates.
For H+, the model was identical with the added religiosity predictor and the religiosity ×
congruency interaction term. Again, we hypothesized that religiosity would be negatively
related to Stroop performance, hence we expected a positive effect of religiosity on Stroop
response times.

12The coefficient for the interaction term was not order-restricted.
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Figure 3 . The marginal effect of religiosity on Stroop accuracy and response time, dis-
played per Stroop condition. The line with the blue 95% credible interval band indicates
performance on congruent Stroop trials, the line with the red 95% credible interval band
indicates performance on incongruent Stroop trials.

A Bayes factor of 3.93×10−5 was obtained (i.e., BF+0 = 3.93×10−5, BF0+ = 25461).
Similar to the accuracy analysis, this indicates that the data do not provide support for the
hypothesis that religiosity is related to longer response times on the Stroop task. Rather, we
obtained strong evidence for the null hypothesis. The posterior medians for the coefficients
of religiosity (0.01 [−0.01, 0.02]) and of religiosity × Stroop condition (0.00 [−0.00, 0.01])
corroborate that there was no main effect of religiosity on response times, nor was there an
interaction of religiosity × Stroop condition on response times (see also Figure 3b).

Neural Processing and Religiosity – Response Conflict

A Bayesian linear regression was performed in order to test H7 whether self-reported reli-
giosity is related to the ACC sensitivity to incorrect vs. correct responses on the Stroop
task. The beta-values for the BOLD contrast in our specified ROI served as the dependent
variable, i.e., the extracted β̂’s. Again, the variance of the individual beta-values was in-
cluded to take the uncertainty of the contrast estimation into account. Religiosity served as
the predictor of interest and gender, age, and intelligence were added as covariates. That
is, we compared the model including the contrast-intercept and the covariates (H0) to the
model additionally including the religiosity predictor. Based on the findings by Inzlicht et
al. (2009), we expected a negative relation between religiosity and ACC activity induced by
response conflict.

The results showed more evidence for the null model than for the model including
religiosity as a predictor: BF−0 = 0.286 (i.e., BF0− = 3.49). This Bayes factor is interpreted
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(b) Religiosity and ACC sensitivity to
informational conflict

Figure 4 . The relation between religiosity on the BOLD signal contrast for incorrect vs.
correct responses on the Stroop task (left panel) and on the BOLD signal contrast for
incongruent vs. congruent trials in the Stroop task (right panel). The plots display raw
individual data points and Bayesian estimated linear effect of religiosity on the conflict-
induced BOLD contrasts with 95% credible interval bands.

as moderate evidence against the hypothesis that religiosity is associated with reduced ACC
sensitivity to response conflict in the Stroop task (i.e., the ‘incorrect–correct’ contrast). The
posterior median and credible interval for the religiosity predictor were −0.09 [−0.44, 0.26].
The scatterplot in Figure 4a illustrates the (absence of an) association between religiosity
and sensitivity of the ACC to response conflict.

Neural Processing and Religiosity – Informational Conflict

The same model comparison was performed with regard to the stimulus congruency contrast
(i.e., H8). Here, we used the β̂’s of the incongruent–congruent BOLD contrast as the
dependent variable. Again, we expected ACC activity to be negatively related to religiosity,
while taking into account the effects of gender, age, and intelligence.

A Bayes factor of 0.046 (BF−0 = 0.046, BF0− = 21.9) was obtained, indicating
that the data provide strong evidence against the hypothesis that religiosity is related to
reduced ACC sensitivity to informational conflict in the Stroop task (i.e., the ‘incongruent–
congruent’ contrast). The posterior median and credible interval for the religiosity predictor
were 0.03 [−0.09, 0.15]. The scatterplot in Figure 4b illustrates the (absence of an) associa-
tion between religiosity and sensitivity of the ACC to informational conflict.
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Table 3
Results Main Analyses.

Hypothesis Bayes factor Posterior Estimated
Probability Coefficient

H5: Religiosity ↑ – Stroop
performance (accuracy) ↓

0.022 (44.82) 0.012 −0.08 [−0.25, 0.09]

H6: Religiosity ↑ – Stroop
response times ↑

10−5 (25461) 0.000 0.01 [−0.01, 0.02]

H7: Religiosity ↑ – ACC activity
(response conflict) ↓

0.286 (3.49) 0.172 −0.09 [−0.44, 0.26]

H8: Religiosity ↑ – ACC activity
(informational conflict) ↓

0.046 (21.87) 0.064 0.03 [−0.09, 0.15]

Note. Bayes factors are the order-restricted Bayes factors for the alternative hypothesis of
interest; BF−0 for H5, H7, and H8 and BF+0 for H6. Evidence for the null hypothesis is
given between brackets. Posterior probabilities are the posterior model probabilities of the
alternative model versus the null model. Coefficients are the medians of the posterior distri-
butions for the parameter of interest (i.e., religiosity) with 95% credible intervals in square
brackets.

Results – Exploratory Whole-Brain Analyses

In addition to the confirmatory ROI analyses, we conducted an exploratory (non-
parametric) whole-brain analysis of the effect of religiosity on both response conflict and
informational conflict. In addition, we ran an ‘intercept-only’ model (estimating the average
effect of response and informational conflict) as an outcome neutral test. All whole-brain
t-value maps and associated ‘1-p-value’ maps can be viewed at and downloaded from Neu-
rovault (https://identifiers.org/neurovault.collection:6139).

Outcome Neutral Tests

In Figure 5, we visualized the whole-brain results (as t-values) of the ‘intercept-only’ model
for both the response conflict data (i.e., using the ‘incorrect–correct’ contrast; Figure 5A)
and the informational conflict data (i.e., using the ‘incongruent–congruent’ contrast; Figure
5B).

Both whole-brain maps show widespread effects in areas known to be involved in error
monitoring and cognitive conflict (such as the ACC and insula). Note that the effects (i.e.,
t-values) are much larger in the response conflict analysis, presumably due to the relatively
high variance in the first-level analysis stage due to high predictor correlation.
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Figure 5 . Brain maps with t-values corresponding to the outcome neutral (‘intercept-only’)
test for both the (A) response conflict analysis and (B) informational conflict analysis. The
brain maps were masked using p-values computed using FSL’s randomize with threshold-free
cluster enhancement, which we thresholded at p < 0.05.

Neural Processing and Religiosity – Response Conflict

After multiple comparison correction, no voxels were significantly associated with religiosity
in the response conflict analysis.

Neural Processing and Religiosity – Informational Conflict

Similar to the response conflict analysis, no voxels were significantly associated with reli-
giosity after multiple comparison correction in the informational conflict analysis.

Discussion

In the current preregistered study we investigated whether religiosity is associated with a
reduced sensitivity to cognitive conflict as measured through behavioral performance on
the Stroop task and neural activation in the anterior cingulate cortex (ACC). The data
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from the outcome neutral tests provided strong evidence that the gender-Stroop task in-
duced cognitive conflict at the behavioral level (H1 and H2) and that this was reflected
in increased ACC activity. The neuroimaging data showed that the ACC was responsive
to both response conflict (incorrect vs. correct responses; H3) and informational conflict
(incongruent vs. congruent trials; H4). However, individual differences in religiosity were
not related to performance on the Stroop task as measured in accuracy (H5) and response
times (H6). We also did not observe the hypothesized relation between religiosity and neu-
ral activation related to response conflict (H7) or informational conflict (H8). Overall, we
obtained moderate to strong evidence in favor of the null hypotheses according to which
religiosity is unrelated to sensitivity to cognitive conflict. Exploratory whole-brain analyses
similarly showed that conflict-induced neural activity was not associated with religiosity.

These results cast doubt on the theoretical claim that religiosity is related to a re-
duced process of conflict sensitivity. Although this idea is central to various theories about
religious beliefs (e.g., van Elk & Aleman, 2017; Inzlicht & Tullett, 2010; Schjoedt et al.,
2013), our study shows that religious believers are not characterized by a general tendency of
attenuated conflict sensitivity. An important motivation for conducting the current study
was to address and overcome the limitations of previous studies in the field. We did so
by increasing statistical power (i.e., we used a large sample) and by minimizing degrees of
freedom (i.e., we preregistered all hypotheses, methods, and analyses and a priori specified
a region of interest (ROI) for the fMRI analysis). Moreover, we curtailed the possibility of
(unconscious) biases, as we separated the preprocessing of the fMRI data from the statis-
tical analysis and only combined the fMRI data with the critical variable of interest (i.e.,
religiosity) in the final analysis steps.

Our null findings are perhaps not surprising in light of the recently voiced concerns
about the replicability and reliability of neuroscientific findings, often related to problems
of insufficiently powered studies (Button et al., 2013; Cremers, Wager, & Yarkoni, 2017;
Szucs & Ioannidis, 2017) and general challenges in studying individual differences using
neuroimaging (Dubois & Adolphs, 2016). For instance, Boekel et al. (2015) attempted to
replicate 17 findings relating behavior to brain structures and found convincing evidence for
only one out of the 17 included effects. Similarly, van Elk and Snoek (2019) recently failed
to find support for the hypothesized relation between religiosity and grey matter volume in
several brain areas that were identified in the literature as being associated with religiosity.

We also did not find behavioral evidence for impaired nor for enhanced Stroop perfor-
mance among religious believers. This might reflect that religiosity is unrelated to low-level
cognitive control processes. At the same time, the null finding may also reflect the paradox
that highly robust experimental effects –such as the Stroop effect– are often difficult to relate
to reliable individual differences, irrespective of the specific individual difference construct of
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interest (Hedge, Powell, & Sumner, 2018; Rouder, Kumar, & Haaf, 2019). That is, because
these effects are very robust and automatic (“everybody Stroops”), the between-subjects
variability is by definition relatively small. For correlational designs, this ‘problem’ of small
between-subjects variability is further complicated by the presence of measurement error.
Rouder et al. (2019) demonstrated that the ratio of true variability (i.e., true differences
between individuals) to trial noise (i.e., measurement error) is 1 : 7. This unfavorable ratio
renders the mission to uncover individual differences in cognitive tasks difficult, if not even
impossible. Hierarchical models could mitigate these problems, as these models minimize
the effect of trial noise by pulling the trial-level estimates toward the individual’s mean
effect (known as hierarchical shrinkage). In the current study, we did apply hierarchical
modeling for the response time models, as well as the neural ACC models (incorporated in
the first-level fMRI models in FSL and by adding the variance parameter of the beta’s in
the statistical models). Nevertheless, as acknowledged by Rouder et al. (2019), character-
izing the degree of measurement error does not imply that the real underlying individual
differences can be recovered. This casts doubt on the feasibility to detect true individual
variation in cognitive control tasks, and hence to uncover associations with other measures.
For example, Hedge et al. (2018) reported correlations of Stroop performance with other
measures of cognitive control (e.g., Flanker task, Go/No-go task) ranging from −.14 to .14,
none of which were significant. If we cannot even establish correlations between two tasks
designed to measure exactly the same underlying phenomenon (i.e., cognitive control), the
quest for reliable correlations between Stroop performance and more distant constructs such
as religiosity seems all the more futile.

Although we obtained moderate to strong evidence for all null hypotheses related to
religiosity and cognitive conflict, the current study does not imply that we should reject
the notion of reduced conflict sensitivity as a defining characteristic of religious beliefs all
together. It could well be that the relationship between religiosity and conflict sensitivity
is restricted to specific instances or contexts and hinges strongly on the specific measures
and operationalizations that are used. For example, in the study by Good et al. (2015)
participants read a sermon about different qualities of God and then performed a Go/No-Go
task with alcohol-related stimuli for which responses should be inhibited. As all participants
refrained form alcohol consumption in their daily lives based on religious grounds, errors
on the Go/No-Go task were seen as ‘religious’ errors, exposing participants’ ostensible pro-
alcohol tendencies. The results showed that emphasizing the loving and forgiving nature of
God reduced the ERN amplitude in response to religious errors, while emphasizing divine
punishment did not affect the ERN compared to a control condition. In other words, it could
well be that when participants first contemplate on the comforting nature of their religious
beliefs, this may reduce conflict-related ACC activity as induced by a task that includes

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.16.899021doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.16.899021
http://creativecommons.org/licenses/by/4.0/


RELIGION & COGNITIVE CONTROL 26

religion-relevant items and responses. Such a task has much higher ecological validity than
the Stroop task that we employed in the current study following the work by Inzlicht et
al. (2009). Similarly, the observed reduction of activity in religious believers’ DLPC and
ACC while listening to a charismatic religious authority (Schjoedt & Bulbulia, 2011), may
specifically depend on the religious content of the speech (and may disappear when the same
religious authority would talk about public transport or gardening). It is thus important
to do justice to the subjective nature of religious practices and experiences, when studying
these topics. This resonates with concerns about the lack of ecological validity in many
neuroscience studies on religion (e.g., Schjoedt & van Elk, in press): while studies such
as the present one offer high experimental control, the measures do not capture the ‘true
stuff’ that most psychologists and neuroscientists of religion are interested in, namely lived
religious beliefs and experiences.

We see two broad future directions for the field. First, the development of new and
sophisticated techniques in neuroscience could allow for interesting new hypotheses and
measures. For instance, the use of multi-voxel pattern analysis (MVPA) may provide insight
into the representational nature of religious concepts endorsed by believers; a question could
be whether the neural representations of religious agents such as ‘God’, ‘angels’, or ‘Satan’
are more similar to real people such as ‘Napoleon’ and ‘Donald Trump’ or to imaginary
agents such as ‘Santa Claus’ and ‘Superman’ (cf. Leshinskaya, Contreras, Caramazza, &
Mitchell, 2017).

Novel methods for assessing brain connectivity also allow for the investigation of new
questions. (e.g., Huntenburg, Bazin, & Margulies, 2018; Margulies et al., 2016) One could
assess for instance the relationship between religiosity and the integration of information
from sensory cortical areas and the default mode network (DMN), a network that is im-
plicated in abstract, high-level thinking. A hypothesis could be that religious believers
are more likely to show a dissociation between the DMN and primary sensory areas. This
could be studied in a correlational resting-state design, or alternatively, one could assess
believers’ brain connectivity while engaging in contemplation of their (religious) beliefs
or actions. For instance, intense personal prayer may be associated with a decoupling of
internal self-referential processing in the DMN and perceptual processing in the sensory
cortices specifically during the prayer experience, similar to what was found for shamanic
trance-experiences (Hove et al., 2015).

Second, and relatedly, we believe there is much promise in future endeavours that
focus on the application of paradigms and tasks that have higher ecological validity and
more closely implicate religious concepts, as in the examples given above. Such an approach
can hopefully do more justice to the multifaceted nature of religious beliefs and practices
and can pave the way for a truly better understanding of the mechanisms and processes
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involved in religiosity.
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Appendix A
Population Imaging of Psychology project

The data for this study was collected as part of the Population Imaging of Psychology project
(PIoP), which was conducted at the Spinoza Center for Neuroimaging at the University of
Amsterdam. The aim of the PIoP was to offer researchers the opportunity to collect brain-
imaging data from a large sample of participants (intended N = 250), in association with
their individual difference measure of interest. The data was collected between May 2015
and April 2016.

Standard measurements that were collected for each participant included a structural
T1 MRI scan, task-free resting state fMRI (6 minutes), a diffusion tensor imaging (DTI)
scan, and different functional localizer scans that were collected using EPI sequences, includ-
ing the Gender Stroop task, an emotional matching task (Hariri, Bookheimer, & Mazziotta,
2000), a working memory task (Pessoa, Gutierrez, Bandettini, & Ungerleider, 2002), and
the anticipation of positively vs. negatively valenced stimuli (Oosterwijk, 2017). In ad-
dition, demographic variables were recorded (gender, age, socio-economic status) for each
participant, as well as two personality questionnaires, the NEO-FFI (Costa & McCrae,
1992) and the SCID (First, Gibbon, Spitzer, & Benjamin, 1997), and an intelligence test
(Raven’s matrices; Raven, 2000). Finally, measures on religiosity and religious experiences
were included (see Methods for details on the religiosity scale that was used in the present
study).

Additional Religiosity Items

1. To what extent do you consider yourself to be spiritual?
2. To what extent do you believe in paranormal phenomena (e.g., astrology or telepathy)?
3. To what extent are your parents religious?
4. To what extent do your parents frequently visit a church or religious meeting?
5. Do your parents have a religious lifestyle (e.g., don’t go shopping on Sunday, pray before
dinner)?
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Appendix B
Coefficient Plots

Intelligence

Age

Gender (male)

Trial Type x Religiosity

Religiosity

Trial Type (incongruent)

-0.5 0.0

(a) Stroop accuracy model (H5)

sigma

Intelligence

Age

Gender (male)

Trial Type x Religiosity

Religiosity

Trial Type (incongruent)

-0.02 0.00 0.02 0.04 0.06

(b) Stroop response time model (H6)

sigma

Intelligence

Age

Gender (male)

Religiosity

Intercept

0 1 2 3 4

(c) Response conflict ACC model (H7)

sigma

Intelligence

Age

Gender (male)

Religiosity

Intercept

-0.2 0.0 0.2 0.4

(d) Informational conflict ACC model (H8)

Figure B1 . Coefficients of the fixed effects on Stroop accuracy (top left panel), Stroop
response times (top right panel), response conflict ACC activity (bottom left panel), and
informational conflict ACC activity (bottom right panel), derived from the Bayesian re-
gression models. For each predictor, points represent the median estimates, thick lines the
80% credible interval and thin lines the 95% credible interval. Note that predictors in the
accuracy model are on a linear scale and should be transformed by the inverse logit link to
reflect probabilities. In the accuracy and response time models, the intercepts are omitted
to enhance visibility of the predictors.
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