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Abstract Fitness effects of mutations depend on environmental parameters. For example,
mutations that increase fitness of bacteria at high antibiotic concentration often decrease fitness in
the absence of antibiotic, exemplifying a tradeoff between adaptation to environmental extremes.
We develop a mathematical model for fitness landscapes generated by such tradeoffs, based on
experiments that determine the antibiotic dose-response curves of Escherichia coli strains, and
previous observations on antibiotic resistance mutations. Our model generates a succession of
landscapes with predictable properties as antibiotic concentration is varied. The landscape is
nearly smooth at low and high concentrations, but the tradeoff induces a high ruggedness at
intermediate antibiotic concentrations. Despite this high ruggedness, however, all the fitness
maxima in the landscapes are evolutionarily accessible from the wild type. This implies that
selection for antibiotic resistance in multiple mutational steps is relatively facile despite the
complexity of the underlying landscape.

Introduction

Sewall Wright introduced the concept of fitness landscapes in 1932 (Wright, 1932), and for decades
afterwards it persisted chiefly as a metaphor, due to lack of sufficient data. This has changed
considerably in recent decades (de Visser and Krug, 2014). There are now a large number of
experimental studies that have constructed fitness landscapes for combinatorial sets of mutations
relevant to particular phenotypes, such as the resistance of bacteria to antibiotics (Weinreich et al.,
2006; Marcusson et al., 2009; Schenk et al., 2013; Mira et al., 2015; Knopp and Andersson, 2018).
Mathematical modeling of fitness landscapes has also seen a revival, motivated partly by the need
to quantify and interpret the ruggedness of empirical fitness landscapes (Szendro et al., 2013;
Weinreich et al., 2013; Neidhart et al., 2014; Ferretti et al., 2016; Crona et al., 2017, Hwang et al.,
2018). Conceptual breakthroughs, such as the notion of sign epistasis (where a mutation is beneficial
in some genetic backgrounds but deleterious in others), have shed light on how ruggedness can
constrain evolutionary trajectories (Weinreich et al., 2005; Poelwijk et al., 2007, 2011; Franke et al.,
2011).

Despite this progress, a limitation of current studies of fitness landscapes is that they focus
mostly on G x G (gene-gene) interactions, and little on G x G x E (where E stands for environment)
interactions, i.e on how changes in environment modify gene-gene interactions. A few recent
studies have begun to address this question (Flynn et al., 2013; Taute et al., 2014; Gorter et al.,
2018; de Vos et al., 2018). In the context of antibiotic resistance, it has been realized that the
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fitness landscape of resistance genes depends quite strongly on antibiotic concentration (Mira
et al., 2015; Ogbunugafor et al., 2016). This is highly relevant to the clinical problem of resistance
evolution, since concentration of antibiotics can vary widely in a patient’s body as well as in various
non-clinical settings (Kolpin et al., 2004; Andersson and Hughes, 2014). Controlling the evolution of
resistance mutants thus requires an understanding of fitness landscapes as a function of antibiotic
concentration. Empirical investigations of such scenarios are still limited, and systematic theoretical
work on this question is also lacking.

In the present work, we aim to develop a theory of G x G x E interactions for a specific class of
landscapes, with particular focus on applications to antibiotic resistance. The key feature of the
landscapes we study is that every mutation comes with a tradeoff between adaptation to the two
extremes of an environmental parameter. For example, it has been known for some time that
antibiotic resistance often comes with a fitness cost, such that a bacterium that can tolerate high
drug concentrations grows slowly in drug-free conditions. While such tradeoffs are not universal,
they certainly occur for a large number of mutations (Melnyk et al., 2015).

Our starting point for understanding these land-

1 : scapes is the knowledge of two phenotypes that are
: - mlg:type WD well studied - the drug-free growth rate (which we

, call the null-fitness) and the ICs, (the drug concen-
A tration that reduces growth rate by half), which is
: a measure of antibiotic resistance. These two phe-
5 notypes correspond to the two extreme regimes of
i WT>mumm§mutam>WT an environmental parameter, i.e zero and highly in-

null-fitness

I
92
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fitness (growth rate)
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o resistance (Icso)i hibitory antibiotic concentrations. The function that

% r 2 describes the growth rate of a bacterium for antibi-
concentration otic concentrations between these two extremes

Figure 1. Schematic showing dose response is called the dose-response curve or the inhibition
curves of a wild type and a mutant. To the left curve (Regoes et al., 2004). When tradeoffs are

of the intersection point A the wild type is
selected over the mutant, whereas to the right
of A the mutant is selected.

present, the dose-response curves of different mu-
tants must intersect as the concentration is varied
(Gullberg et al., 2011). This is schematically shown in
Figure 1. The intersection of dose-response curves
of the wild type and the mutant happen at point A,
swapping the rank order between the two fitness values. The intersection point is known as the
minimum selective concentration (MSC), and it defines the lower boundary of the mutant selection
window (MSW) within which the resistance mutant has a selective advantage relative to the wild
type (Khan et al., 2017; Alexander and MacLean, 2018).

When there are several possible mutations and multiple combinatorial mutants, a large number
of such intersections occur as the concentration of the antibiotic increases. This leads to a succes-
sion of different fitness landscapes. Whenever the curves of two mutational neighbors (genotypes
that differ by one mutation) intersect, there can be an alteration in the evolutionary trajectory
towards resistance, whereby a forward (reverse) mutation now becomes more likely to fix in the
population than the corresponding reverse (forward) mutation. These intersections change the
ruggedness of landscapes and the accessibility of fitness maxima. In this way a rich and complex
structure of selective constraints emerges in the MSW. To explore the evolutionary consequences
of these constraints, we construct a theoretical model based on existing empirical studies as well
as our own work on ciprofloxacin resistance in E. coli. Specifically, we address two fundamental
questions: (i) How does the ruggedness of the fitness landscape vary as a function of antibiotic
concentration? (ii) How accessible are the fitness optima as a function of antibiotic concentration?

We find that even when the null-fitness and resistance values of the mutations combine in
a simple, multiplicative manner, the intersections of the curves produce a highly epistatic land-
scape at intermediate concentrations of the antibiotic. This is an example of a strong G X G X E
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interaction, where changes in the environmental variable drastically alter the interactions between
genes. Despite the high ruggedness at intermediate concentrations, however, the topology of
the landscapes is systematically different from the oft-studied random landscape models, such as
the House-of-Cards model (Kauffman and Levin, 1987; Kingman, 1978), the Kauffman NK model
(Kauffman and Weinberger, 1989; Hwang et al., 2018) or the Rough Mt. Fuji model (Neidhart et al.,
2014). For example, most fitness maxima have similar numbers of mutations that depend logarith-
mically on the antibiotic concentration. Importantly, all the fitness maxima remain highly accessible
through adaptive paths with sequentially fixing mutations. In particular, any fitness maximum
(including the global maximum) is accessible from the wild type as long as the wild type is viable. As
a consequence, the evolution of high levels of antibiotic resistance by multiple mutations (Hughes
and Andersson, 2017; Wistrand-Yuen et al., 2018; Rehman et al., 2019) is much less constrained by
the tradeoff-induced epistatic interactions than might have been expected on the basis of existing
models.

Results

Mathematical model of tradeoff-induced fitness landscapes

The chief goal of this paper is to develop and explore a mathematical framework to study tradeoff-
induced fitness landscapes. We consider a total of L mutations, each of which increases antibiotic
resistance. A fitness landscape is a real-valued function defined on the set of 2! genotypes made
up of all combinations of these mutations. A genotype can be represented by a binary string of
length L, where a 1 (0) at each position represents the presence (absence) of a specific mutation.
Alternatively, any genotype is uniquely identified as a subset of the L mutations (the wild type is the
null subset, i.e the subset with no mutations).

In this paper, unless mentioned otherwise, we define the fitness f as the exponential growth
rate of a microbial population. The fitness is a function of antibiotic concentration. This function has
two parameters - the growth rate at zero concentration, which we refer to as the null-fitness and
denote by r, and a measure of resistance such as ICy, which we denote by m. Each single mutation is
described by the pair (r;, m;), where r, and m, are the null-fitness and resistance values respectively
of the ith single mutant. We further rescale our units such that for the wild type, r =1 and m = 1. We
consider mutations that come with a fitness-resistance tradeoff, i.e a single mutant has an increased
resistance (m, > 1) and a reduced null-fitness (r; < 1) compared to the wild type. To proceed we
need to specify two things: (i) how the r and m values of the combinatorial mutants depend on
those of the individual mutations, (ii) how the fitness of the wild type and the mutants depend on
antibiotic concentration, and in particular if this dependence exhibits a pattern common to various
mutant strains. To address these issues we take guidance from two empirical observations.

Scaling of dose-response curves

Marcusson et al. (2009) have constructed a series of E. coli strains with single, double and triple
mutations conferring resistance to the fluoroquinolone antibiotic ciprofloxacin (CIP), which inhibits
DNA replication (Drlica et al., 2009). In their study they measured MIC (minimum inhibitory con-
centration) values and null-fitness but did not report dose-response curves. Some of the present
authors have recently shown that the dose-response curve of the wild-type E. coli (strain K-12
MG1655) in the presence of ciprofloxacin can be fitted reasonably well by a Hill function (Ojkic et al.,
2019).

Here we expand on this work and determine dose-response curves for a range of single- and
double-mutants with mutations restricted to five specific loci known to confer resistance to CIP
(Marcusson et al., 2009) (see Materials and Methods). Figure 2A shows the measured curves for
the wild type, the five single mutants, and eight double-mutant combinations. The genotypes are
represented as binary strings, where a 1 or 0 at each position denotes respectively the presence or
absence of a particular mutation. If we rescale the concentration ¢ of CIP by ICy, of the corresponding
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Figure 2. Dose-response curves for E. coli in the presence of ciprofloxacin. Each binary string corresponds to a
strain, where the presence (absence) of a specific mutation in the strain is indicated by a 1(0). The five
mutations in order from left to right are S83L (gyrA), D87N (gyrA), S80I (parC), AmarR, and AacrR. The names of
the strains are given in Table 1 in Materials and Methods. (A) Dose-response curves of the wild type, the five
single mutants and eight double mutants. Unlike the experiments reported in Marcusson et al. (2009), the
mutants were grown in isolation rather than in competition with the wild type. (B) The same curves, but scaled
with the null-fitness and IC5, of each individual genotype. The dashed black line is the Hill function (1 + x4)_]

strain, x = ¢/ICs,, and the growth rate by the null-fitness f(0), the curves collapse to a single curve
that can be approximated by the Hill function (1 + x*)~! (Figure 2B). The precise shape of the curve
is not important for further analysis. However, the data collapse suggests that we can assume that
the dose-response curve of a mutant with (relative) null-fitness r and (relative) resistance m is

f(e) = rw(c/m), (M

i.e it has the same shape as the wild-type curve w except for a rescaling of the fitness and con-
centration axes. Similar scaling relations have been reported previously by Wood et al. (2014) and
Chevereau et al. (2015). A good biological understanding of the conditions underlying this feature is
presently lacking, but it seems intuitively plausible that the shape w(x) would be robust to changes
that do not qualitatively alter the basic physiology of growth and resistance.

Limited epistasis in r and m

An interesting recent finding reported by Knopp and Andersson (2018) is that chromosomal re-
sistance mutations in Salmonella typhimurium mostly alter the null-fitness as well as the MIC of
various antibiotics in a non-epistatic, multiplicative manner, i.e. if a particular mutation increases
(decreases) the resistance (null-fitness) by a factor k,, and another mutation does the same with
a factor k,, then the mutations jointly alter these phenotypes roughly by a factor of k,k, (with a
few exceptions). We have done a similar comparison for the data on the null-fitness and MIC for
E. coli strains in Marcusson et al. (2009). We have analyzed a subset of 4 mutations for which the
complete data set for all combinatorial mutants is available from Marcusson et al. (2009). The data
are shown in Table 1. Out of 11 multiple-mutants, only 2 show epistasis in r and 4 show epistasis
in m. Moreover, in all cases where significant epistasis occurs it is negative, i.e. the effect of the
multiple mutants is weaker than expected from the single mutation effects.

Formulation of the model

The above observations suggest a model where one assumes, as an approximation, that all the
r and m values of individual mutations combine multiplicatively. A genotype with n mutations
(ri,my), (ry,my), ..., (r,,m,) has a null-fitness r and a resistance value m given by

n n
r=||rl. and m=||m,..
i=1 i=1

@
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Moreover, the dose-response curves of the genotypes are taken to be of the scaling form (1),
where the function w(x) does not depend on the genotype. As indicated before, and without any
loss of generality, we choose units such that, for the wild type, r = 1 and m = 1. Therefore the
dose-response curve of the wild type is w(x) with w(0) = 1, and choosing ICy, as a measure of
resistance we have w(l) = % Henceforth, we refer to x simply as the concentration. We also recall
that the condition of adaptational tradeoff means that r, < 1 and m, > 1 for all mutations.

If the r, and m, values combine non-epistatically, and if the shape of the dose-response curve is
known, it is thus possible to construct the entire concentration-dependent landscape of size 2% from
just 2L measurements (of the r, and m; values of the single mutants) instead of the measurement
of 2L fitness values at every concentration. In practice we do not expect a complete lack of epistasis
among all mutations of interest, and the dose-response curve is also an approximation obtained by
fitting a curve through a finite set of fitness values known only with limited accuracy. However, the
fitness rank order of genotypes, and related topographic features such as fitness peaks, are robust
to a certain amount of error in fitness values (Crona et al., 2017), and our model may be used to
construct these to a good approximation.

Lastly, we require that the dose-response curves of the wild type and a mutant intersect at most
once, which implies that the equation w(x) = rw(ﬁ) with r > 1 and m < 1 has at most one solution.
This then also implies that the curves of any genotype ¢ and a proper superset of it (i.e. a genotype
which contains all the mutations in ¢ and some more) intersect at most once. This property holds
for all functions that have been used to represent dose-response curves in the literature, such as
the Hill function, the half-Gaussian or the exponential function, as well as for all concave function
with negative second derivate (see Materials and Methods for details).

Properties of tradeoff-induced fitness landscapes

To understand the evolutionary implications of our model, we first describe how the fitness land-
scape topography changes with the environmental parameter represented by the antibiotic concen-
tration. Next we analyze the properties of mutational pathways leading to highly fit genotypes.

Intersection of curves and changing landscapes

We start with a simple example of L = 2 mutations and a Hill-shaped dose-response curve w(x) =
ﬁ (Figure 3). At x = 0, the rank ordering is determined by the null-fitness. The wild type has
maximal fitness, and the double mutant is less fit than the single mutants. As x increases, the
fitness curves start to intersect, and each intersection switches the rank of two genotypes. In the
present example we find a total of six intersections and therefore seven different rank orders across
the full range of x. This is actually the maximum number of rank orders that can be found by
scanning through x for L = 2, see Materials and Methods. The final fitness rank order (to the right
of the point F in Figure 3A) is the reverse of the original rank order at x = 0.

Figure 3B depicts the concentration-dependent fitness landscape of the 2-locus system in
the form of fitness graphs. A fitness graph represents a fitness landscape as a directed graph,
where neighboring nodes are genotypes that differ by one mutation, and arrows point toward the
genotypes with higher fitness (de Visser et al., 2009; Crona et al., 2013). A fitness graph does not
uniquely specify the rank order in the landscape (Crona et al., 2017). For example, the region BE
has a single fitness graph, but three different rank orders in the segments BC, CD and DE.

Because selection drives an evolving population towards higher fitness, a fitness graph can be
viewed as a roadmap of possible evolutionary trajectories. In particular, a fitness peak (marked in
red in Figure 3B) is identified from the fitness graph as a node with only incoming arrows. Fitness
graphs also contain the complete information about the occurrences of sign epistasis. Sign epistasis
with respect to a certain mutation occurs when the mutation is beneficial in some backgrounds
but deleterious in others (Weinreich et al., 2005; Poelwijk et al., 2007). It is easy to read off sign
epistasis for a mutation from the fact that parallel arrows (i.e. arrows corresponding to the gain or
loss of the same mutation) in a fitness graph point in opposite directions. For example, in the graph
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Figure 3. (A) An example of dose-response curves of four genotypes - the wild type (00), two single mutants (10
and 01), and the double mutant (11). The parameters of the two single mutants are r; = 0.8, m; = 1.3, r, = 0.4,
m, = 2.5. Null-fitness and resistance combine multiplicatively, which implies that the parameters of the double
mutant are ry, = r;r, = 0.32 and m, = m;m, = 3.25. (B) Fitness graphs corresponding to antibiotic concentration
ranges from panel A. The genotypes in red are the local fitness peaks. The purple arrows are the ones that have
changed direction at the beginning of each segment. All arrows eventually switch from the downward to the
upward direction.

for the region AB there is sign epistasis in the first position, since the parallel arrows 00 — 10 and
01 « 11 point in opposite directions. Notice that in the current example, we start with a smooth
landscape at x = 0 (as seen in the fitness graph for OA), and the number of peaks and the degree
of sign epistasis both reach a maximum in the intermediate region BE. This fitness graph displays
reciprocal sign epistasis, which is a necessary condition for the existence of multiple fitness peaks
(Poelwijk et al., 2011). Beyond the point E, the landscape starts to become smooth again, with only
one fitness maximum and a lower degree of sign epistasis. In the last region FG, the landscape is
smooth with only one peak (the double mutant 11) and no sign epistasis.

These qualitative properties generalize to larger landscapes. To show this, we consider a
statistical ensemble of landscapes with L mutations, where the parameters r,, m; of single mutations
are independently and identically distributed according to a joint probability density P(r, m). Figure 4
shows the result of numerical simulations of these landscapes for L = 16. The mean number of
fitness peaks with n mutations reaches a maximum at x,,,.(n) where to leading order log x,,,,(n) ~
n({log m), independent of any further details of the system, as argued in Materials and Methods.
The asymptotic expression works well already for L = 16 (see inset of Figure 4A). Figure 4B shows
the mean number of mutations in a fitness peak. This is well approximated by the curve n =
<11;’g; showing that the mean number of mutations in a fitness peak grows logarithmically in the
concentration. This is consistent with what we would expect from the variation in the number of
peaks with n mutations as shown in Figure 4A.

As another indicator of ruggedness, we consider the number of backgrounds in which a mutation
is beneficial as a function of x. At x = 0, any mutation is deleterious in all backgrounds, whereas at
very large x it is beneficial in all backgrounds. Therefore there is no sign epistasis in either case.
Sign epistasis is maximized when a mutation is beneficial in exactly 1/2 of all backgrounds. Figure 5
shows the mean number of backgrounds n, (with » mutations each) in which the occurrence a
mutation is beneficial, for two different values of n. The curves have a sigmoidal shape, starting from
zero and saturating at (j) which is the total number of backgrounds with » mutations. The blue
curve shows the mean total number of backgrounds (with any ) in which a mutation is beneficial,
which has a similar shape.

Since every mutation in every background goes from being initially deleterious to eventually ben-
eficial, there must be some x at which every mutation is beneficial in exactly half the backgrounds.
The inset of Figure 5 shows that for backgrounds with » mutations, the average concentration
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Figure 4. (A) Number of fitness peaks as a function of concentration for different numbers of mutations in the
peak, n, and L = 16. The dashed green curve is the total number of fitness peaks, summed over n. The peaks
were found by numerically generating an ensemble of landscapes with individual effects distributed according
to the joint distribution (8). For this distribution, (log m) = 1.19645. Inset: The maximal number of peaks for a
given value of n occurs at log x,,,(n) = n{log m), and grows exponentially with L. (B) Mean number of mutations
in a fitness peak as a function of concentration x. The black circles are the mean number of mutations in the

fittest genotype. The green dashed line is <ll"g(")>

at which a mutation is beneficial in 1/2 the backgrounds is given by logx ~ n{logm), which is
the same concentration at which the largest number of fitness peaks were found in Figure 4.
A derivation of this relation is given in Materi-
als and Methods. Similarly, when summed over

2] 2" (L=16) all mutation numbers n, the fraction of benefi-
.g 3X104§ — — cial backgrounds reaches 1/2 around the same
g gu_ =8 concentration at which the total number of fit-
g s / | ness peaks is maximal. Since the number of
: s 2 e oz st ) backgrounds is largest at n = L/2 for combinato-
= rial reasons, this concentration is approximately
/3\ 1x10°F ] given by log x ~ %(log m).
O
5 ole : i - J Acgessibility of fitness pegks .
10 10 ¥ 10 10 10 Having shown that tradeoff-induced fitness land-
scapes display a large number of fitness peaks at
Figure 5. Numerical averages for the number of intermediate concentrations, we now ask how
backgrounds n,, for two different values of » (the these peaks affect the evolutionary dynamics.

number of mutations in the background). The blue We base the discussion on the concept of evo-
curve sums over n,, for all values of n. The inset

shows the values of n, as a fraction of the total lutionary accessibility, which effectively assumes
number of backgrounds with » mutations. a regime of weak mutation and strong selection
(Gillespie, 1984). In this regime the evolutionary
trajectory consists of a series of fixation events of
beneficial single-step mutations represented by
a directed path in the fitness graph of the land-
scape (Weinreich et al., 2005, 2006; Franke et al., 2011). We say that a genotype is accessible from
another genotype if a directed path exists from the initial to the final genotype.

The accessibility of peaks in a fitness landscape is determined by the rank ordering of the geno-
types. We now show that the rank orders of tradeoff-induced fitness landscapes are constrained
in a way that gives rise to unusually high accessibility. Consider two distinct sets of mutations
A; and A; that can occur on the genetic background W, and the four genotypes W, W A,, W A,
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and W A, A;, where a concatenation of symbols represents the genotype which contains all the
mutations referred to by the symbols. The ordering condition (derived in Materials and Methods)
says that whenever W is the fittest among these four genotypes, W 4,4; must be the least fit, and
whenever W A, A, is the fittest, W must be the least fit. For the case of two single mutations this
situation is illustrated by the fitness graphs in Figure 3B, where the background genotype W =00 is
the fittest in the first segment OA and the genotype WA, A; = 11 is the fittest in the last segment
FG. The ordering condition has the immediate consequence that the fittest genotype is always
accessible from the background genotype W. If the fittest genotype is one of the single mutants
(segments AB, BE and EF), then it is of course accessible. If it is the double mutant W 4,4, (segment
FG), then the background genotype must be the least fit genotype (from the ordering condition),
and therefore W A, and W A, should be fitter than W. Then W A, A, is accessible from the wild type
through the path W — WA, - WA, A, andthepath W — WA, - WAA,.

To fully exploit the consequences of the ordering property we need to introduce some notation.
Let ¢ be a genotype with n mutations. We define a subset of ¢ as a genotype with / mutations, I < n,
which are all contained in ¢ as well. Likewise, a superset of ¢ is a genotype with / mutations, [ > n,
that contains all the mutations in 6. With this, the ordering condition can be seen to imply that
the superset of a fitness peak is accessible from its own supersets. For example, if W is the fittest
genotype, then W 4, is a superset of it, and because of the ordering condition, W A, must be fitter
than its superset WA, 4;, and therefore accessible from it. Similarly, it is easy to show that the
subset of a fitness peak is accessible from its own subsets. This property can be generalized and
constitutes our main result on accessibility of fitness peaks.

Accessibility property: Any genotype X that is a superset of a local fitness peak o is accessible from
all the superset genotypes of X. Similarly, any genotype ¥’ that is a subset of a local fitness peak o is
accessible from all the subset genotypes of ¥'.

The proof is given in Materials and Methods. Three particularly important consequences are

+ Any fitness peak is accessible from all its subset and superset genotypes.

+ Any fitness peak is accessible from the wild type. This is because the wild type is a subset
of every genotype.

+ For the same reason, when the wild type is a fitness peak, it is accessible from every genotype,
and is therefore also the only fitness peak in the landscape. The same holds for the all-mutant,
which is a superset of every genotype.

These properties are illustrated by the fitness graph in Figure 6. We assume that the landscape has
(at least) two peaks at the genotypes 1001 (marked in red) and 0111 (marked in blue). The colored
arrows point towards mutational neighbors with higher fitness and are enforced by the accessibility
property. The edges without arrowheads are not constrained by the accessibility property and the
corresponding arrows (which are not shown in the figure) could point in either direction.

Consider the genotype 0111 (marked in blue). It is accessible from all its subsets, namely 0000,
0010, 0010, 0001, 0110, 0101 and 0011, following the upward pointing blue arrows. These subsets
are in turn accessible from their subsets. For example, 0011 is accessible from all its subsets -
0000, 0010, and 0001. The fitness peak is also accessible from its superset 1111. The same property
holds for the other fitness peak. The subsets or supersets may access the fitness peaks using other
(unmarked) paths as well, which would include one or more of the undirected lines in conjunction
with some of the arrows. Moreover, other genotypes, which are neither supersets nor subsets, may
also access these fitness peaks through paths that incorporate some of the undirected edges.

A fitness peak together with its subset and superset genotypes defines a sub-landscape with
remarkable properties. It is a smooth landscape with only one peak which is accessible from any
genotype via all direct paths, i.e paths where the number of mutations monotonically increases
or decreases. For example, the fitness peak 1001 is accessible from the all-mutant 1111 by the two
direct paths - 1111 — 1101 — 1001 and 1111 — 1011 — 1001. Likewise, the peak 0111 is accessible
from its subset 0001 via the paths 0001 — 0101 — 0111 and 0001 — 0011 — 0111. In general, a peak
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with » mutations is accessible from a subset genotype with m mutations by (n — m)! direct paths, and
from a superset genotype with m mutations by (m — n)! direct paths. This gives a lower bound on
the total number of paths by which a fitness peak is accessible from a subset or superset genotype.

Importantly, the accessibility property formu-

1111 lated above holds under more general condi-

e tions than stipulated in the model. We show

/// in Materials and Methods that it holds when-
1110 1101 1011 0111 ever the null fitness and resistance values

of the mutations, r and m, do not show pos-
itive epistasis. This is a weaker requirement
7 » N \ than our original assumption of a strict lack
1100 101 1001 0110 0101 0011 of epistasis in these two phenotypes. In this
context it should be noted that the rank or-
derings forbidden by the ordering condition
\‘1000 \0100 \‘0010 0001 all show positive epistasis for the fitness val-
ues, whereas all the allowed orderings can be

\ /4//(' constructed without positive epistasis. There-
0000 fore, any landscape where positive epistasis
in the fitness is absent will also display the
accessibility property. However, whereas the
lack of positive epistasis is a sufficient con-

Figure 6. A fitness graph of a landscape with L =4
mutations, illustrating the accessibility property. There
are two fitness peaks, 1001 (red) and 0111 (blue). The

fitness peaks are accessible from all their subset and dition, it is not necessary. In particular, our
superset genotypes following the paths marked by the model does allow for cases of positive epista-
arrows. sis in the fitness values.

Reachability of the fittest and the most
resistant genotype

The preceding analyses have shown that within the mutant selection window, where mutants with
higher fitness than the wild type exist, every fitness peak is accessible from the wild type. This
includes in particular the fittest genotype at a given concentration. However, in general there will
be many peaks in the fitness landscape, and it is not guaranteed that evolution will reach the fittest
genotype. One can ask for the probability that the fittest genotype is actually accessed under the
evolutionary dynamics, which we call its reachability. We assume that the dynamics is in the strong
selection weak mutation (SSWM) regime, and the population is large enough such that the fixation
probability of a mutant with selection coefficient s is 1 — e for s > 0, and 0 for s < 0 (Gillespie,
1984). In our setting the selection coefficientis s = % — 1, where f, is the growth rate of a mutant
appearing in a population of cells with growth rate f,.

Figure 7 shows the numerically obtained reachability for L = 10, averaged over the distribution
P(r,m) given in Eq. (8). The reachability of the highest peak is 1 at very low and very high concentra-
tions, since there is only peak, the wild type or the all-mutant, at these extremes. The reachability is
lower at intermediate concentrations, where there are multiple peaks, all of which are accessible
from the wild type. The dashed blue line is the mean of the reciprocal of the total number of fitness
peaks, and is therefore the mean reachability of fitness peaks. The reachability of the highest
peak follows the qualitative behavior of the mean reachability, but remains higher than the mean
reachability everywhere. The green curve is the reachability of the most resistant genotype, i.e the
all-mutant. It is extremely low at low and moderate concentrations and grows steeply and saturates
quickly at a very large concentration. The all-mutant genotype is less-than-average reachable
everywhere except at very high concentration, when it is the only fitness peak and accessible from
every other genotype.
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We have compared the reachability to two

?gfof //ﬁ\\ other widely studied landscape models. One

0.75F o 1o // \\ is the House-of-Cards (HoC) model (Kauffman
% L” L N and Levin, 1987; Kingman, 1978), where each
=0 —

1 1000 le+06

genotype is independently assigned a fitness
value drawn from a continuous distribution.
The reachability is found to be around 0.018,

— fittest
—— most resistant

mean reachability of genotype
t f=]
T

025k ‘\\ // - 11\1/2104 of peaks) .
AN .7 |--+ HOC an order of magnitude smaller than the low-
------------ -\7-—-“-7-'-'-’-’---;;/ R RREEES est reachability seen in the tradeoff-induced
obeees e s TS ST (andscape, The mean number e

X (concentration) ima in the HoC landscape is =, which in this

case is approximately 93.1, much higher than
the maximum mean number of peaks in the
tradeoff-induced landscape (inset of Figure 7).
We would therefore naturally expect a smaller
fraction of adaptive walks to terminate at the
fittest peak. A more illuminating comparison
is with the NK model (Kauffman and Wein-
berger, 1989; Hwang et al., 2018). Here, once
again, L = 10, and the mutations are divided
into two blocks of 5 mutations each. As per
the usual definition of the model, the fitness of a genotype is the sum over the contributions of
each of the 10 mutations, and the contribution of each mutation depends only the state of the
block to which it belongs. The fitness contribution of each mutation for any state of the block is an
independent random number. The mean number of fitness maxima here is ~ 28.44 (Perelson and
Macken, 1995; Schmiegelt and Krug, 2014), which is comparable to the maximum mean number
in the tradeoff-induced landscapes (see inset of Figure 7). Nonetheless, the reachability of the
fittest peak (dotted pink line) is found to be nearly 4 times smaller than the lowest reachability in
our landscape. We found that in a fraction of about 0.64 of the landscapes, the fittest maximum is
not reached in any of 32000 dynamical runs, indicating the absence of an accessible path in most
of these cases (Schmiegelt and Krug, 2014; Hwang et al., 2018). In contrast, an evolutionary path
always exists to any fitness peak in the tradeoff-induced landscapes, as we saw in the previous
subsection. This endows the tradeoff-induced landscapes with the unusual property of being highly
rugged and at the same time having a much higher evolutionary reachability of the global fitness
maximum compared to other models with similar ruggedness.

Figure 7. Reachability of fittest genotype and most
resistant genotype. The same model as in the previous
subsection has been used, with L = 10. Inset shows
the mean number of fitness peaks as a function of
concentration. Dotted horizontal lines show
comparisons to the HoC model and an NK model with
the same number of mutations. These models were
implemented using an exponential distribution of
fitness values.

Discussion

Fitness landscapes depend on the environment, and gene-gene-interactions can be modified
by the environment. Systematic studies of such G x G x E interactions are rare, but they are
clearly of relevance to scenarios such as the evolution of antibiotic resistance, where the antibiotic
concentration can vary substantially in space and time. In this paper we have explored the structure
of such landscapes in the presence of tradeoffs between fitness and resistance. We summarize the
main findings of our work.

+ We have shown experimental evidence that the dose-response curves of various mutant
strains of E. coli to the antibiotic ciprofloxacin have the same shape, except for a rescaling
of the fitness and concentration values. If this shape is known, the fitness of a strain can be
estimated at any antibiotic concentration simply by measuring its null-fitness and ICy, (or MIC).
This makes it possible to construct empirical fitness landscapes at any antibiotic concentration
from a limited set of data.

+ Under the assumptions of our model the degree of epistasis, particularly sign epistasis, is
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low for zero and high antibiotic concentrations, but it is nevertheless high in the intermediate
concentration regime. The number of local fitness peaks scales exponentially in the number
of mutations at these concentrations. Epistasis is often discussed as a property intrinsic
to mutations and their genetic backgrounds, with limited consideration of environmental
parameters. Butin the landscapes studied here, the environmental parameter is of paramount
importance, since changes in it can dramatically alter gene-gene interactions.

The expected number of mutations at a fitness peak increases logarithmically with the antibi-
otic concentration. This implies that, at a given concentration, the highly fit genotypes that
make up the fitness peaks carry an optimal number of mutations that arises from the tradeoff
between fitness cost and resistance.

Despite the high ruggedness, the landscape displays strong non-random patterns. A rank
ordering condition between sets of mutations holds at all concentrations. A remarkable and
unexpected consequence of this is that any fitness peak is evolutionarily accessible from the
wild type. This is contrary to the common intuition about highly rugged landscapes, where
one expects any genotype to have access to only a fraction of the fitness peaks and adaptive
walks to terminate after a small number of steps.

It is well known from experimental studies of antimicrobial resistance evolution that highly
resistant genotypes often require multiple mutations which can be acquired along different
evolutionary trajectories. Epistatic interactions constrain these trajectories and are generally
expected to impede the evolution of high resistance. We find that strong and complex epistatic
interactions inevitably arise in the mutant selection window, but at the same time the evolution
of the most resistant genotype (the identity of which changes with concentration) remains
facile and can occur along many different pathways.

All of these conclusions follow from three basic assumptions that are readily generalizable
beyond the context of antimicrobial resistance evolution: the existence of tradeoffs between two
marginal phenotypes that govern the adaptation at extreme values of an environmental parameter;
the scaling property of the shape of the tradeoff function; and the condition of limited epistasis
for the marginal phenotypes. How generally these assumptions are valid is a matter of empirical
investigation. We have shown that they hold for certain cases, and the interesting evolutionary
implications of our results indicate that more empirical research in this direction will be useful.

In the case of antimicrobial resistance, there can be fithess compensatory mutations (Durdo
et al., 2018; Levin et al., 2000) that do not exhibit any adaptational tradeoffs. These mutations
are generally found in a population in the later stages of the evolution of antibiotic resistance,
which implies that they emerge in a genetic background of mutations with adaptational tradeoffs.
An understanding of tradeoff-induced landscapes is therefore a prerequisite for predicting the
emergence of compensatory mutations.

In the formulation of our model we have assumed for convenience that the marginal phenotypes
combine multiplicatively, but this assumption is in fact not necessary. As shown in Materials and
Methods, our key results on accessibility only require the absence of positive epistasis. These
results therefore hold without exception for the combinatorially complete data set in Table 1, where
epistasis is either absent or negative. More generally, our analysis remains valid in the presence
of the commonly observed pattern of diminishing returns epistasis among beneficial mutations
(Chou et al., 2011; Schoustra et al., 2016; Wiinsche et al., 2017). In addition, we expect our results
to hold approximately when there is a small degree of epistasis (positive or negative) in r and m, but
we do not explore that question quantitatively in this paper.

We conclude with some possible directions for future work. Our model provides a principled
framework for predicting how microbial fitness landscapes vary across different antibiotic concen-
trations. This could be exploited to describe situations where the antibiotic concentration varies on
a time scale comparable to the evolution of resistance, either due to the degradation of the drug or
by an externally imposed treatment protocol (Marrec and Bitbol, 2018). From the broader perspec-
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tive of evolutionary systems with adaptational tradeoffs mediated by an environmental parameter,
our study makes the important conceptual point that it is impossible to have non-epistatic fitness
landscapes for all environments. Using the terminology of Gorter et al. (2016), the tradeoffs enforce
reranking G x E interactions which in turn, as we have shown, induce sign-epistatic Gx G interactions
at intermediate values of the environmental parameter. Notably, this general conclusion does not
depend on the scaling property of the tradeoff function. It would nevertheless be of great interest
to identify instances of scaling for other types of adaptational tradeoffs, in which case the detailed
predictions of our model could be applied as well.
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Materials and Methods

Experiments

Bacterial strains

We used strains from Marcusson et al. (2009) (courtesy of Douglas Huseby and Diarmaid Hughes).
The strains are isogenic derivatives of MG1655, a K12 strain of the bacterium E. coli, with specific
point mutations or gene deletions in five different loci: gyrA:S83L, gyrA:D87N, parC:580/, AmarR, and
AacrR. There are 32 possible combinations of these alleles, but we only used the wild type, single
mutants (5 strains) and double mutants (8 strains of 10 possible combinations): LM179 (00000),
LM378 (10000), LM534 (01000), LM792 (00100), LM202 (00010), LM351 (00001), LM625 (11000),
LM862 (10100), LM421 (10010), LM647 (10001), LM1124 (01100), LM538 (01010), LM592 (01001),
LM367 (00011). A binary sequence after the strain’s name represents the presence/absence of a
particular mutated allele (order as in the above list of genetic alterations).

Growth media and antibiotics

LB growth medium was prepared according to Miller's formulation (10g tryptone, 5g yeast extract,
10g NaCl per litre). The pH was adjusted to 7.2 with NaOH,and autoclaved at 121°C for 20 min.
Ciprofloxacin (CIP) solutions were prepared from a frozen stock (10mg/ml ciprofloxacin hydrochlo-
ride, pharmaceutical grade, AppliChem, Darmstadt, in sterile, ultra-pure water) by diluting into LB
to achieve the desired concentrations.

Dose-response curves

We incubated bacteria in 96-well clear flat bottom micro-plates (Corning Costar) inside a plate reader
(BMG LABTECH FLUOstar Optima with a stacker) starting from two different initial cell densities (half
a plate for each), and measured the optical density (OD) of each culture every 2-5 min to obtain
growth curves. Plates were prepared automatically using a BMG LABTECH CLARIOstar plate reader
equipped with two injectors connected to a bottle containing LB and a bottle with a solution of CIP
in LB. The injectors were programmed to create different concentrations of CIP in each column of
the 96 well plate. The injected volumes of the CIP solution were 0, 20, 25, 31, 39, 49, 62, 78, 98,
124,155, 195 ul, and an appropriate volume of LB was added to bring the total volume to 195 ul
per well. Since different strains had MICs spanning almost two decades of CIP concentrations, we
used a different maximum concentration of the CIP solution for each strain (approximately 1.5 - 2
times the expected MIC). Bacteria were diluted from a thawed frozen stock 10° and 10* times in PBS
(phosphate buffered saline buffer), and 5ul of the suspension was added to each well (10* dilution
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to rows A-D, 10* dilution to rows E-H). We used one strain per plate and up to 4 plates per strain
(typically 1-2). After adding the suspension of bacteria to each well, the plates were immediately
sealed with a transparent film to prevent evaporation, and put into a stacker (37°C, no shaking),
from which they would be periodically fed into the FLUOstar Optima plate reader (37°C, orbital
shaking at 200rpm for 10s prior to OD measurement). We then used the time shift methods to
obtain exponential growth rates for each strain and different concentrations of CIP, see Ojkic et al.
(2079) for further details.

Mathematical Methods
Rank orders and fitness graphs
The total number of possible rank rank orders with L mutations is 2%!, which is 24 for L = 2. Not all
these rank orders, however, can be realized as one scans through x. Since any two curves intersect
at most once, the maximum number of distinct rank orders that can be reached is the rank order at
x = 0 plus the total number of possible intersections, which is (2;) =2L-12L — 1). Thus the upper
bound on the number of rank orders found by scanning through x is 2:-'(2f — 1)+ 1, which is smaller
than 2%! for L > 2.

Itis also instructive to determine the number of fitness graphs that can be found by varying x for
a system with L mutations. This can be computed as follows: At x = 0 every mutation is deleterious,
and every mutational neighbor with one less mutation is fitter; but due to the tradeoff condition, at
sufficiently large x every mutation is beneficial and any mutational neighbor with one less mutation
is less fit. In order for this reversal of fitness order to happen, the dose-response curves of any two
mutational neighbors must intersect at some x. Therefore, the number of fitness graphs generated
is equal to the number of distinct pairs of mutational neighbors, which is 2:-! L, and the number of
distinct fitness graphs encountered is 2:-' L + 1. For L = 2, this number is 5, as seen in the example
in the main text.

Condition for two dose-response curves to intersect at most once
Consider two DR curves characterized by (r,m) and (+',m’), where r < ¥ and m > m’. We need to
show that for the commonly observed cases, the curves rw(i) and r’w(%) intersect at most once.
First, notice that it is sufficient to prove this for the case / = 1,m’ = 1, because any rescaling of the
x and w axes does not alter the number or ordering of intersection points. Therefore we require
r<landm>1.

Let us consider the case where the dose-response curve is of the form of a Hill function, i.e
w(x) = —, with a > 0. The intersection of curves happens at the solution of w(x) = rw( ), which
we denote by x*(r, m). In this case the solution is given by

1
x*(r,m) = l_f
= e

which is positive and unique if rm* > 1; otherwise no solution with x* > 0 exists. It is similarly easy
to show that at most one intersection point exists for exponentials, stretched exponentials, and
half-Gaussians.

The property also holds for any concave dose-response curve with w”(x) < 0. We prove this as
follows. Any intersection point x* is the solution of

F(x)=r
where F(x) = “’("> . We will show that F(x) is monotonic and therefore the above equation has at
most one solutlon. We have

oo = W (w(3;) = 37w (37)

w(=)’
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and F’(x) has the same sign as the numerator N'(x) = w’(x)w(%) - ﬁw(x)w/(%). Since w(x) is a
decreasing function and m > 1, w(ﬁ) > w(x) > iw(x). When w'(x) < 0, we also have w'(x) < w’(ﬁ).
Since w'(x) < 0, this implies |w/(x)| > |w’(2)|, and NM(x) < 0. Therefore F(x) is monotonically
decreasing.

Proof of the accessibility property
To derive the ordering condition, let us start with the simplest case of two single mutations A;, A;
occurring on the wild type background. There are correspondingly four different genotypes W,
WA, WA; WAA, which are listed in decreasing order of fitness at x = 0. Let the intersection of
the DR curves of two genotypes o, and o, occur atx = X, . Then Xy wa, is given by the solution
x*(r;,m;) of

w(x) = r,w(i),

m;

and Xy a.waa, 1S glven by the solution of

).

r,.w(—x ) = rruw(
m;
This last equation can be re-written as

W) = ryw(>-),
J

where x’ = mi Comparing this with the first equation above, we have

Xwawan, =miXwwa > Xwwa, (€)

This equation tells us that whenever the double mutant is fitter than one of the single mutants, the
wild type must be less fit than the other single mutant. Consequently, when the double mutant is
fitter than both the single mutants, the WT must be less fit than both the single mutants. In other
words, the number of single mutants fitter than the wild type cannot be less than the number of
single mutants less fit than the double mutant. This is the ordering condition given in the main text.
Any ordering that violates this condition is a forbidden ordering. For greater clarity, we list all the
possible forbidden orderings (up to interchange of indices i and j).

W >WA >WAA > WA,
W >WAA>WA > WA,
WAA>W >WA > WA,
WAA>WA>W > WA, @

Although we showed this for two single mutations in the wild type background, the same argu-
ments hold for any two sets of mutations in any background, since the succession of orderings is
independent of the rescalings of the fitness and concentration axes. To put it more precisely, W, A,
and 4, are any three non-overlapping sets of mutations, where 4, and A; are non-empty sets.

Next we use this to prove the accessibility property. Let ¢ have n mutations. It is sufficient to
prove that (i) any superset of ¢ with m or fewer mutations is accessible from all its own supersets
with m or fewer mutations, for all m > n (the statement follows from the case m = L); and that (ii)
any subset of ¢ with m’ or more mutations is accessible from any of its own subsets with m’ or more
mutations, for all m’ < n (the statement corresponds to m’ = 0). We prove this by induction.

Firstly, we notice that the case m = n is trivial, since ¢ is of accessible from itself. For the case of
supersets, our base case is m = n+1, and the assertion above holds because ¢ is a local fitness peak,
and therefore accessible from all its supersets with n + 1 mutations, which are of course accessible
from themselves.

Now we prove the induction step. Assume that all supersets of ¢ that have m or fewer mutations
(where m > n) are accessible from all their supersets with m or fewer mutations. Consider a superset
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¥ of ¢ with m mutations, and denote it by ¥ = 6 4, where A is the set of mutations in £ not present
in 6. By assumption, ¢ is accessible from X. In the following, we use the notation ¢, > 5, to indicate
that a genotype o, is fitter than a genotype o, (we use the “<” and “=" signs in a similar way).
Therefore, we have ¢ > £ = ¢ A.

Now consider any superset of £ with m + 1 mutations, where the additional mutation not
contained in X is denoted B. Then this superset can be denoted by £B = 6 AB. We must have
6 > o B since o is a local fitness peak. We now have the relation ¢ > 6 A, 6 B. Therefore we must have
cAB < 6 A,oB, for otherwise we violate the ordering condition. Now since £B=6AB <cA =%, X
must be accessible from =B, proving that any superset with m mutations is accessible from any of
its supersets with m + 1 mutations. This completes the proof of the induction step.

The proof for the case of subsets is essentially the same, utilizing the symmetry between the
wild type and the double mutant in the ordering condition.

The accessibility property follows entirely from the ordering condition, and hence any landscape
that obeys the ordering condition will obey the theorem. The ordering condition follows from
Xy wa, < Xwa,waa, 8 obtained in (3). However, this same inequality obtains under more general
conditions. To see this, let us define the null-fitness of the double mutant WAA;asr,, and the
resistance of the double mutant as m,;. The dose-response curves of W and W 4, intersect at
Xy wa, = x"(rjm)), whereas the curves for W A, and W A, A; intersect at

"

Y 2
X =mXx (— —)
WA WAA; ’ .

i i) ! r,oom;

Now it is easy to show that x*(r, m) is a decreasing function of both r and m. Therefore Xy aowaa; >
Xy wa, holdsif r,; <rry and m;; <mm,.

Number of local fitness peaks

When dealing with complex fitness landscapes with parameters that can vary across species and
environments, a useful strategy is to model the fitness effects as random variables that are chosen
from a probability distribution (Kauffman and Levin, 1987; Szendro et al., 2013; Hwang et al., 2018).
In the limit of large system size L, many properties emerge that are independent of the details of
the system. In practice, even relatively small system sizes are often approximated well by results
obtained in the asymptotic limit.

The mean number of peaks with n mutations in the tradeoff-induced landscapes is

K,(x) = <]I;>Q,,(X),

where (5) is the total number of genotypes with » mutations, and Q,(x) is the probability that
a genotype with n mutations is a fitness maximum at antibiotic concentration x. Then the total
number of peaks at x is 3, K, (x). Let the resistance of a genotype o be M = []_, m,, and likewise its
null-fitness be R =TJ_, r,. The genotype o is a local fitness maximum if it is fitter than all its subsets
with n — 1 mutations and all its supersets with n + 1 mutations.

To find the concentration at which the curves of ¢ and its neighboring genotypes intersect, we
start with the simplest case of the dose-response curves of the wild type and a single mutant (r, m).
These curves intersect at the solution x*(r, m) of w(x) = rw(i) which is a decreasing function of
r and m. The wild type is fitter than the single mutant when x > x*(r,m). Now the intersection of
the DR curves of a genotype ¢ with n mutations and a subset with n — 1 mutations that lacks the
mutation (r,, m;) occurs at the solution of

() =relizy,)

which is read off as —x*(r,,m ). Likewise, the intersection of the DR curves of ¢ and a superset with
n+ 1 mutations that contains the additional mutation (r;,m;) occurs at Mx*(r;, m;). Therefore s is a
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fitness maximum if
x*(r;, m;)
m;

foralliand jwith1 <i<nandn<j< L. Alternatively,

< % < x*(r;,m;) (5)

logm; —log x*(r;,m;) > log M —log x > —log x*(r;, m,). (6)

Let us consider the regime where L,n > 1. Then log M ~ n{logm); if logx is smaller than O(n),
it is clear that the second inequality is almost certainly satisfied whereas the probability of the
first inequality is vanishingly small. Both the probabilities are finite if logx ~ n{(logm). Thus the
probability of ¢ being a fitness peak is maximized when log x = log(M) + 5, where n ~ O(1) and
depends on the details of the distribution P(r, m). Thus the mean number of fitness peaks with n
mutations is maximal at x,,,,(n) where to leading order log x,,,,(n) ~ n{logm), independent of any
further details of the system.
The total number of genotypes with » mutations is (j) and log (j) ~ LH(p), where p = %+, and

H(p) = —[plogp+ (1 — p)log(l — p)|. )

The mean number of fitness maxima can be found by multiplying this with Q,. One may expect Q,
to be exponentially small in L, since a total of L inequalities (as indicated in (6)) need to be satisfied.
However, this is complicated by the fact that the probabilities of the inequalities being satisfied are
not independent. The correlations between the inequalities would depend on the distribution of
P(r,m) and the dose-response curve. If the correlations are sufficiently weak, one might still expect
to find an exponential scaling in large L. To leading order (f) is itself exponential in L, and if the
probability that a genotype is a fitness peak is exponentially small in L, we expect the mean number
of peaks K, to be exponential in L as well. This is supported by the scaling shown in the inset of
Figure 4A.
For the simulation results shown in the main text we chose a joint distribution of the form

(L
P(r,m) = P(r)P(m|r) = 6r(1 — r)(m — L)e ( \ﬁ). (8)
r
The conditional distribution P(m|r) is a shifted gamma distribution. The shift ensures that the curves
of a background genotype and a mutant intersect.

Sign epistasis in the limit of large L and n
Sign epistasis with respect to a certain mutation occurs when the mutation is beneficial in one
background but deleterious in another. To understand sign epistasis, we ask for the number of
backgrounds n, in which a mutation is beneficial at concentration x. If one considers only those
backgrounds that have n mutations, then n, would depend both on n and x.

In a statistical ensemble of landscapes, one may compute the probability P, that a mutation
is beneficial in a background with » mutations, and of course (n,) = Pb(’;). In the limit of large L
and n, P, exhibits some universal properties to leading order. When log x > n{log m), we are in the
regime of high concentration relative to n, and we expect a mutation to be beneficial. We find that
to leading order P,(p, x) = 1, with corrections that are exponentially small in n. When log x < n{logm),
we are at concentrations that are too low to prefer additional mutations, and P, is exponentially
small in n. When logx = n(log m), we are at the threshold concentration where a new mutation
becomes beneficial. Here we find that P, ~ % For large L we therefore expect a steep transition
from 0 to 1 as the concentration crosses the threshold value (see inset of Figure ??).
Consider a mutation (r, m) in a background with » mutations (r,, m,), (r,,m,) ... (r,, m,). The mutation
is beneficial in this background if

mymy ... m,x*(r,m) < x 9)

Taking logarithms, we have

—log x*(r,m) > Z log m; — log x. (10)

i=1
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Let the distribution of z be P(z), and let C,(z) = fz°° P,(x) dx. Define the random variable w =
% Z:’zl(log m; — f), and denote its distribution P(w). Then the probability that a mutation is beneficial
in a background with » mutations is

P(p, &) = / P(w) C,(nw) dew (12)
(13)

The mean number of backgrounds with n mutations in which a mutation is beneficial is n,(p, &) =
Py(p, .»:)(5). Note that (w) = (1) — where u=1logm. Whenn>1,C,(nw) =~ 1forw < 0and C,(n w) ~
for w > 0, with a sharp transmon from 1 to 0 that happens within a region of width ~ O(1/n) of the
origin. Also for large n, P(w) is sharply peaked around (w) over a region of width O(1/+/n).

When (@) < 0, C,(nw) ~ 1 over this entire region, as observed before. Thus to leading order,
P,(p,&) = 1. The mean number of backgrounds in which a mutation is beneficial is n,(p,&) =

P0.)())-
2 1
ny(p,&) = || - ———=e"""" (14)
' L \/p(T=p)

where H(p) is defined in (7). Therefore
logn, ~ LH(p) (15)

to leading order.

When (@) > 0, the dominant contribution to the integral in (12) comes from » < 0, since C,(nw)
quickly drops from 1 to zero for @ > 0. Further, since C,(w) ~ 1 for w < 0 (except for a region of width
O(1/n) around w = 0, as observed before), we can approximate log P,(p, &) simply by the probability
that w < 0. Then

log Py(p.) = = (= <)

where I is the large deviation function of —u, and
logn,(p, &) ~ L[H(p) —pl(- %)]

This implies that n, is reduced by a factor that is exponentially small in L compared to (15)), and
therefore the fraction of backgrounds in which a mutation is beneficial is very small.

Finally, when (w) =0, i.e ¢ = %(;4), P(w) is centered at the origin and decays over a width 0(1/\/2).
For w > 0, C,(nw) is 0 except over a much smaller width O(1/n) to the right of the origin, whereas
for w < 0, itis 1 except for a small region of width O(1/n) left of the origin. Thus the dominant
contribution to the integral in (12) comes from w < 0, and as before, P, can be approximated by the
probability @ < 0. Due to the central limit theorem, P(w) is approximately Gaussian and therefore
symmetric around @ = 0, and therefore P, ~ % Consequently, we should have

~ l 2_7[ 1 LH(p)
ny(p, &) ~ 2\/ 7 —me ,

which is % times the total number of backgrounds given by (14). This proves that the concentration
where the mutation is beneficial in half of the backgrounds is given by (w) = 0 or log x = n{log m) for
large L and n.
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Epistasis in null-fitness and MIC for E. coli in the presence of ciprofloxacin

Primary data shown in Table 1 were obtained from Marcusson et al. (2009). In the third and
fifth columns, the errors in the log(x) are calculated as % where |Ax| are the standard error as
calculated from the standard deviations reported in the paper. The errors in columns four and
six were estimated as ), 'A"' where the sum is over the mutations present in the combinatorial
mutants. The detectable cases of epistasis are marked in blue. Negative epistasis is found in all
these cases. Also, all the cases with epistasis correspond to two or more mutations that affect the
same chemical pathways.

Strain String log null-fitness Non-epistatic log MIC Non-epistatic
MG1655 00000 0.00 (+.004) NA 0.00 (£ .35) NA
LM378 10000 0.01 (+.016) NA 3.17 (£ .70) NA
LM534 01000 -0.01 (£ .018) NA 2.75 (% .70) NA
LM202 00010 -0.19 ( .020) NA 0.69 (+.70) NA
LM351 00001 -0.094 (£ .014) NA 1.08 (+.70) NA
LM625 11000 -0.030 (£.011) 0.0 (+.038) 3.17 (£ .70) 592 (£1.1)
LM421 10010 -0.15 (£ .019) -0.18 (£.040) 4.13 (£ .70) 3.56 (£ 1.1)
LMe47 10001 -0.051 (+.013) -0.084 (+.034) 3.44 (£ .70) 4.65 (£ 1.1)
LM538 01010 -0.19 (+ .020) -0.20 (+.042) 4.13 (£.70) 3.46 (£ 1.1)
LM592 01001 -0.083 (+.015) -0.10 ( .036) 3.16 (£ .70) 3.83(£1.1)
LM367 00011 -0.20 (+.026) -0.28 (+.038) 2.06 (+.70) 1.77 (£ 1.1)
LM695 11010 -0.24 (£ .017) -0.19 ( .058) 3.85 (+. 70) 6.61 (£ 1.1)
LM691 11001 -0.073 (+.013) -0.094 (+ .052) 3.85 (+. 70) 7.00 (£ 1.4)
LM709 10011 -0.24 (+.027) -0.274 (+ .054) 4.54 (. 70) 4.94 (£ 1.4)
LM595 01011 -0.51 (+.051) -0.294 (+ .056) 4.54 (. 70) 4.52 (£ 1.4)
LM701 11011 -0.42 (£ .037) -0.284 (+.072) 4.83 (. 70) 7.69 (£ 1.8)

Table 1. The names of the strains and values of null-fitness (in competition assays with the wild type) in the
third column and MIC (of ciprofloxacin) in the fifth column are obtained from Marcusson et al. (2009). The
binary strings represent the same genotypes as given in the caption of Figure 2. The values in parentheses are
error estimates. The fourth and sixth columns are respectively the null-fitness and MIC values expected in the
absence of epistasis. NA denotes the cases where this is not applicable.
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