
Predictable Properties of Fitness Landscapes Induced by Adaptational Tradeoffs

Predictable Properties of Fitness1

Landscapes Induced by Adaptational2

Tradeoffs3

Suman G. Das1*, Susana O. L. Direito2, Bartlomiej Waclaw2, Rosalind J. Allen2,4

Joachim Krug1*5

*For correspondence:
sdas3@uni-koeln.de (SGD);

jkrug@uni-koeln.de (JK)

1Institute for Biological Physics, University of Cologne, Cologne, Germany; 2School of6

Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom7

8

Abstract Fitness effects of mutations depend on environmental parameters. For example,9

mutations that increase fitness of bacteria at high antibiotic concentration often decrease fitness in10

the absence of antibiotic, exemplifying a tradeoff between adaptation to environmental extremes.11

We develop a mathematical model for fitness landscapes generated by such tradeoffs, based on12

experiments that determine the antibiotic dose-response curves of Escherichia coli strains, and13

previous observations on antibiotic resistance mutations. Our model generates a succession of14

landscapes with predictable properties as antibiotic concentration is varied. The landscape is15

nearly smooth at low and high concentrations, but the tradeoff induces a high ruggedness at16

intermediate antibiotic concentrations. Despite this high ruggedness, however, all the fitness17

maxima in the landscapes are evolutionarily accessible from the wild type. This implies that18

selection for antibiotic resistance in multiple mutational steps is relatively facile despite the19

complexity of the underlying landscape.20

21

Introduction22

Sewall Wright introduced the concept of fitness landscapes in 1932 (Wright, 1932), and for decades23

afterwards it persisted chiefly as a metaphor, due to lack of sufficient data. This has changed24

considerably in recent decades (de Visser and Krug, 2014). There are now a large number of25

experimental studies that have constructed fitness landscapes for combinatorial sets of mutations26

relevant to particular phenotypes, such as the resistance of bacteria to antibiotics (Weinreich et al.,27

2006; Marcusson et al., 2009; Schenk et al., 2013; Mira et al., 2015; Knopp and Andersson, 2018).28

Mathematical modeling of fitness landscapes has also seen a revival, motivated partly by the need29

to quantify and interpret the ruggedness of empirical fitness landscapes (Szendro et al., 2013;30

Weinreich et al., 2013; Neidhart et al., 2014; Ferretti et al., 2016; Crona et al., 2017; Hwang et al.,31

2018). Conceptual breakthroughs, such as the notion of sign epistasis (where amutation is beneficial32

in some genetic backgrounds but deleterious in others), have shed light on how ruggedness can33

constrain evolutionary trajectories (Weinreich et al., 2005; Poelwijk et al., 2007, 2011; Franke et al.,34

2011).35

Despite this progress, a limitation of current studies of fitness landscapes is that they focus36

mostly on G × G (gene-gene) interactions, and little on G × G × E (where E stands for environment)37

interactions, i.e on how changes in environment modify gene-gene interactions. A few recent38

studies have begun to address this question (Flynn et al., 2013; Taute et al., 2014; Gorter et al.,39

2018; de Vos et al., 2018). In the context of antibiotic resistance, it has been realized that the40
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fitness landscape of resistance genes depends quite strongly on antibiotic concentration (Mira41

et al., 2015; Ogbunugafor et al., 2016). This is highly relevant to the clinical problem of resistance42

evolution, since concentration of antibiotics can vary widely in a patient’s body as well as in various43

non-clinical settings (Kolpin et al., 2004; Andersson and Hughes, 2014). Controlling the evolution of44

resistance mutants thus requires an understanding of fitness landscapes as a function of antibiotic45

concentration. Empirical investigations of such scenarios are still limited, and systematic theoretical46

work on this question is also lacking.47

In the present work, we aim to develop a theory of G × G × E interactions for a specific class of48

landscapes, with particular focus on applications to antibiotic resistance. The key feature of the49

landscapes we study is that every mutation comes with a tradeoff between adaptation to the two50

extremes of an environmental parameter. For example, it has been known for some time that51

antibiotic resistance often comes with a fitness cost, such that a bacterium that can tolerate high52

drug concentrations grows slowly in drug-free conditions. While such tradeoffs are not universal,53

they certainly occur for a large number of mutations (Melnyk et al., 2015).54
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Figure 1. Schematic showing dose response
curves of a wild type and a mutant. To the left

of the intersection point A the wild type is

selected over the mutant, whereas to the right

of A the mutant is selected.

Our starting point for understanding these land-55

scapes is the knowledge of two phenotypes that are56

well studied – the drug-free growth rate (which we57

call the null-fitness) and the IC50 (the drug concen-58

tration that reduces growth rate by half), which is59

a measure of antibiotic resistance. These two phe-60

notypes correspond to the two extreme regimes of61

an environmental parameter, i.e zero and highly in-62

hibitory antibiotic concentrations. The function that63

describes the growth rate of a bacterium for antibi-64

otic concentrations between these two extremes65

is called the dose-response curve or the inhibition66

curve (Regoes et al., 2004). When tradeoffs are67

present, the dose-response curves of different mu-68

tants must intersect as the concentration is varied69

(Gullberg et al., 2011). This is schematically shown in70

Figure 1. The intersection of dose-response curves71

of the wild type and the mutant happen at point A,72

swapping the rank order between the two fitness values. The intersection point is known as the73

minimum selective concentration (MSC), and it defines the lower boundary of the mutant selection74

window (MSW) within which the resistance mutant has a selective advantage relative to the wild75

type (Khan et al., 2017; Alexander and MacLean, 2018).76

When there are several possible mutations and multiple combinatorial mutants, a large number77

of such intersections occur as the concentration of the antibiotic increases. This leads to a succes-78

sion of different fitness landscapes. Whenever the curves of two mutational neighbors (genotypes79

that differ by one mutation) intersect, there can be an alteration in the evolutionary trajectory80

towards resistance, whereby a forward (reverse) mutation now becomes more likely to fix in the81

population than the corresponding reverse (forward) mutation. These intersections change the82

ruggedness of landscapes and the accessibility of fitness maxima. In this way a rich and complex83

structure of selective constraints emerges in the MSW. To explore the evolutionary consequences84

of these constraints, we construct a theoretical model based on existing empirical studies as well85

as our own work on ciprofloxacin resistance in E. coli. Specifically, we address two fundamental86

questions: (i) How does the ruggedness of the fitness landscape vary as a function of antibiotic87

concentration? (ii) How accessible are the fitness optima as a function of antibiotic concentration?88

We find that even when the null-fitness and resistance values of the mutations combine in89

a simple, multiplicative manner, the intersections of the curves produce a highly epistatic land-90

scape at intermediate concentrations of the antibiotic. This is an example of a strong G × G × E91
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interaction, where changes in the environmental variable drastically alter the interactions between92

genes. Despite the high ruggedness at intermediate concentrations, however, the topology of93

the landscapes is systematically different from the oft-studied random landscape models, such as94

the House-of-Cards model (Kauffman and Levin, 1987; Kingman, 1978), the Kauffman NK model95

(Kauffman and Weinberger, 1989; Hwang et al., 2018) or the Rough Mt. Fuji model (Neidhart et al.,96

2014). For example, most fitness maxima have similar numbers of mutations that depend logarith-97

mically on the antibiotic concentration. Importantly, all the fitness maxima remain highly accessible98

through adaptive paths with sequentially fixing mutations. In particular, any fitness maximum99

(including the global maximum) is accessible from the wild type as long as the wild type is viable. As100

a consequence, the evolution of high levels of antibiotic resistance by multiple mutations (Hughes101

and Andersson, 2017;Wistrand-Yuen et al., 2018; Rehman et al., 2019) is much less constrained by102

the tradeoff-induced epistatic interactions than might have been expected on the basis of existing103

models.104

Results105

Mathematical model of tradeoff-induced fitness landscapes106

The chief goal of this paper is to develop and explore a mathematical framework to study tradeoff-107

induced fitness landscapes. We consider a total of Lmutations, each of which increases antibiotic108

resistance. A fitness landscape is a real-valued function defined on the set of 2L genotypes made109

up of all combinations of these mutations. A genotype can be represented by a binary string of110

length L, where a 1 (0) at each position represents the presence (absence) of a specific mutation.111

Alternatively, any genotype is uniquely identified as a subset of the Lmutations (the wild type is the112

null subset, i.e the subset with no mutations).113

In this paper, unless mentioned otherwise, we define the fitness f as the exponential growth114

rate of a microbial population. The fitness is a function of antibiotic concentration. This function has115

two parameters – the growth rate at zero concentration, which we refer to as the null-fitness and116

denote by r, and a measure of resistance such as IC50 which we denote by m. Each single mutation is117

described by the pair (ri, mi), where ri and mi are the null-fitness and resistance values respectively118

of the ith single mutant. We further rescale our units such that for the wild type, r = 1 and m = 1. We119

consider mutations that come with a fitness-resistance tradeoff, i.e a single mutant has an increased120

resistance (mi > 1) and a reduced null-fitness (ri < 1) compared to the wild type. To proceed we121

need to specify two things: (i) how the r and m values of the combinatorial mutants depend on122

those of the individual mutations, (ii) how the fitness of the wild type and the mutants depend on123

antibiotic concentration, and in particular if this dependence exhibits a pattern common to various124

mutant strains. To address these issues we take guidance from two empirical observations.125

126

Scaling of dose-response curves127

Marcusson et al. (2009) have constructed a series of E. coli strains with single, double and triple128

mutations conferring resistance to the fluoroquinolone antibiotic ciprofloxacin (CIP), which inhibits129

DNA replication (Drlica et al., 2009). In their study they measured MIC (minimum inhibitory con-130

centration) values and null-fitness but did not report dose-response curves. Some of the present131

authors have recently shown that the dose-response curve of the wild-type E. coli (strain K-12132

MG1655) in the presence of ciprofloxacin can be fitted reasonably well by a Hill function (Ojkic et al.,133

2019).134

Here we expand on this work and determine dose-response curves for a range of single- and135

double-mutants with mutations restricted to five specific loci known to confer resistance to CIP136

(Marcusson et al., 2009) (see Materials and Methods). Figure 2A shows the measured curves for137

the wild type, the five single mutants, and eight double-mutant combinations. The genotypes are138

represented as binary strings, where a 1 or 0 at each position denotes respectively the presence or139

absence of a particular mutation. If we rescale the concentration c of CIP by IC50 of the corresponding140
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Figure 2. Dose-response curves for E. coli in the presence of ciprofloxacin. Each binary string corresponds to a
strain, where the presence (absence) of a specific mutation in the strain is indicated by a 1(0). The five
mutations in order from left to right are S83L (gyrA), D87N (gyrA), S80I (parC), ΔmarR, and ΔacrR. The names of
the strains are given in Table 1 in Materials and Methods. (A) Dose-response curves of the wild type, the five
single mutants and eight double mutants. Unlike the experiments reported inMarcusson et al. (2009), the
mutants were grown in isolation rather than in competition with the wild type. (B) The same curves, but scaled
with the null-fitness and IC50 of each individual genotype. The dashed black line is the Hill function

(

1 + x4
)−1
.

strain, x = c∕IC50, and the growth rate by the null-fitness f (0), the curves collapse to a single curve141

that can be approximated by the Hill function (1 + x4)−1 (Figure 2B). The precise shape of the curve142

is not important for further analysis. However, the data collapse suggests that we can assume that143

the dose-response curve of a mutant with (relative) null-fitness r and (relative) resistance m is144

f (c) = rw(c∕m), (1)

i.e it has the same shape as the wild-type curve w except for a rescaling of the fitness and con-145

centration axes. Similar scaling relations have been reported previously byWood et al. (2014) and146

Chevereau et al. (2015). A good biological understanding of the conditions underlying this feature is147

presently lacking, but it seems intuitively plausible that the shape w(x) would be robust to changes148

that do not qualitatively alter the basic physiology of growth and resistance.149

Limited epistasis in r and m150

An interesting recent finding reported by Knopp and Andersson (2018) is that chromosomal re-151

sistance mutations in Salmonella typhimurium mostly alter the null-fitness as well as the MIC of152

various antibiotics in a non-epistatic, multiplicative manner, i.e. if a particular mutation increases153

(decreases) the resistance (null-fitness) by a factor k1, and another mutation does the same with154

a factor k2, then the mutations jointly alter these phenotypes roughly by a factor of k1k2 (with a155

few exceptions). We have done a similar comparison for the data on the null-fitness and MIC for156

E. coli strains inMarcusson et al. (2009). We have analyzed a subset of 4mutations for which the157

complete data set for all combinatorial mutants is available fromMarcusson et al. (2009). The data158

are shown in Table 1. Out of 11multiple-mutants, only 2 show epistasis in r and 4 show epistasis159

in m. Moreover, in all cases where significant epistasis occurs it is negative, i.e. the effect of the160

multiple mutants is weaker than expected from the single mutation effects.161

Formulation of the model162

The above observations suggest a model where one assumes, as an approximation, that all the163

r and m values of individual mutations combine multiplicatively. A genotype with n mutations164

(r1, m1), (r2, m2),… , (rn, mn) has a null-fitness r and a resistance value m given by165

r =
n
∏

i=1
ri and m =

n
∏

i=1
mi. (2)
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Moreover, the dose-response curves of the genotypes are taken to be of the scaling form (1),166

where the function w(x) does not depend on the genotype. As indicated before, and without any167

loss of generality, we choose units such that, for the wild type, r = 1 and m = 1. Therefore the168

dose-response curve of the wild type is w(x) with w(0) = 1, and choosing IC50 as a measure of169

resistance we have w(1) = 1
2
. Henceforth, we refer to x simply as the concentration. We also recall170

that the condition of adaptational tradeoff means that ri < 1 and mi > 1 for all mutations.171

If the ri and mi values combine non-epistatically, and if the shape of the dose-response curve is172

known, it is thus possible to construct the entire concentration-dependent landscape of size 2L from173

just 2Lmeasurements (of the ri and mi values of the single mutants) instead of the measurement174

of 2L fitness values at every concentration. In practice we do not expect a complete lack of epistasis175

among all mutations of interest, and the dose-response curve is also an approximation obtained by176

fitting a curve through a finite set of fitness values known only with limited accuracy. However, the177

fitness rank order of genotypes, and related topographic features such as fitness peaks, are robust178

to a certain amount of error in fitness values (Crona et al., 2017), and our model may be used to179

construct these to a good approximation.180

Lastly, we require that the dose-response curves of the wild type and a mutant intersect at most181

once, which implies that the equation w(x) = rw
( x
m

)

with r > 1 and m < 1 has at most one solution.182

This then also implies that the curves of any genotype � and a proper superset of it (i.e. a genotype183

which contains all the mutations in � and some more) intersect at most once. This property holds184

for all functions that have been used to represent dose-response curves in the literature, such as185

the Hill function, the half-Gaussian or the exponential function, as well as for all concave function186

with negative second derivate (see Materials and Methods for details).187

Properties of tradeoff-induced fitness landscapes188

To understand the evolutionary implications of our model, we first describe how the fitness land-189

scape topography changes with the environmental parameter represented by the antibiotic concen-190

tration. Next we analyze the properties of mutational pathways leading to highly fit genotypes.191

Intersection of curves and changing landscapes192

We start with a simple example of L = 2mutations and a Hill-shaped dose-response curve w(x) =193

1
1+x2

(Figure 3). At x = 0, the rank ordering is determined by the null-fitness. The wild type has194

maximal fitness, and the double mutant is less fit than the single mutants. As x increases, the195

fitness curves start to intersect, and each intersection switches the rank of two genotypes. In the196

present example we find a total of six intersections and therefore seven different rank orders across197

the full range of x. This is actually the maximum number of rank orders that can be found by198

scanning through x for L = 2, see Materials and Methods. The final fitness rank order (to the right199

of the point F in Figure 3A) is the reverse of the original rank order at x = 0.200

Figure 3B depicts the concentration-dependent fitness landscape of the 2-locus system in201

the form of fitness graphs. A fitness graph represents a fitness landscape as a directed graph,202

where neighboring nodes are genotypes that differ by one mutation, and arrows point toward the203

genotypes with higher fitness (de Visser et al., 2009; Crona et al., 2013). A fitness graph does not204

uniquely specify the rank order in the landscape (Crona et al., 2017). For example, the region BE205

has a single fitness graph, but three different rank orders in the segments BC, CD and DE.206

Because selection drives an evolving population towards higher fitness, a fitness graph can be207

viewed as a roadmap of possible evolutionary trajectories. In particular, a fitness peak (marked in208

red in Figure 3B) is identified from the fitness graph as a node with only incoming arrows. Fitness209

graphs also contain the complete information about the occurrences of sign epistasis. Sign epistasis210

with respect to a certain mutation occurs when the mutation is beneficial in some backgrounds211

but deleterious in others (Weinreich et al., 2005; Poelwijk et al., 2007). It is easy to read off sign212

epistasis for a mutation from the fact that parallel arrows (i.e. arrows corresponding to the gain or213

loss of the same mutation) in a fitness graph point in opposite directions. For example, in the graph214
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Figure 3. (A) An example of dose-response curves of four genotypes – the wild type (00), two single mutants (10
and 01), and the double mutant (11). The parameters of the two single mutants are r1 = 0.8, m1 = 1.3, r2 = 0.4,
m2 = 2.5. Null-fitness and resistance combine multiplicatively, which implies that the parameters of the double
mutant are r12 = r1r2 = 0.32 and m12 = m1m2 = 3.25. (B) Fitness graphs corresponding to antibiotic concentration
ranges from panel A. The genotypes in red are the local fitness peaks. The purple arrows are the ones that have

changed direction at the beginning of each segment. All arrows eventually switch from the downward to the

upward direction.

for the region AB there is sign epistasis in the first position, since the parallel arrows 00 → 10 and215

01 ← 11 point in opposite directions. Notice that in the current example, we start with a smooth216

landscape at x = 0 (as seen in the fitness graph for OA), and the number of peaks and the degree217

of sign epistasis both reach a maximum in the intermediate region BE. This fitness graph displays218

reciprocal sign epistasis, which is a necessary condition for the existence of multiple fitness peaks219

(Poelwijk et al., 2011). Beyond the point E, the landscape starts to become smooth again, with only220

one fitness maximum and a lower degree of sign epistasis. In the last region FG, the landscape is221

smooth with only one peak (the double mutant 11) and no sign epistasis.222

These qualitative properties generalize to larger landscapes. To show this, we consider a223

statistical ensemble of landscapes with Lmutations, where the parameters ri, mi of single mutations224

are independently and identically distributed according to a joint probability density P (r, m). Figure 4225

shows the result of numerical simulations of these landscapes for L = 16. The mean number of226

fitness peaks with nmutations reaches a maximum at xmax(n) where to leading order log xmax(n) ∼227

n⟨logm⟩, independent of any further details of the system, as argued in Materials and Methods.228

The asymptotic expression works well already for L = 16 (see inset of Figure 4A). Figure 4B shows229

the mean number of mutations in a fitness peak. This is well approximated by the curve n =230

log x
⟨logm⟩

, showing that the mean number of mutations in a fitness peak grows logarithmically in the231

concentration. This is consistent with what we would expect from the variation in the number of232

peaks with nmutations as shown in Figure 4A.233

As another indicator of ruggedness, we consider the number of backgrounds in which amutation234

is beneficial as a function of x. At x = 0, any mutation is deleterious in all backgrounds, whereas at235

very large x it is beneficial in all backgrounds. Therefore there is no sign epistasis in either case.236

Sign epistasis is maximized when a mutation is beneficial in exactly 1∕2 of all backgrounds. Figure 5237

shows the mean number of backgrounds nb (with n mutations each) in which the occurrence a238

mutation is beneficial, for two different values of n. The curves have a sigmoidal shape, starting from239

zero and saturating at
(L
n

)

, which is the total number of backgrounds with nmutations. The blue240

curve shows the mean total number of backgrounds (with any n) in which a mutation is beneficial,241

which has a similar shape.242

Since every mutation in every background goes from being initially deleterious to eventually ben-243

eficial, there must be some x at which every mutation is beneficial in exactly half the backgrounds.244

The inset of Figure 5 shows that for backgrounds with n mutations, the average concentration245
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Figure 4. (A) Number of fitness peaks as a function of concentration for different numbers of mutations in the
peak, n, and L = 16. The dashed green curve is the total number of fitness peaks, summed over n. The peaks
were found by numerically generating an ensemble of landscapes with individual effects distributed according

to the joint distribution (8). For this distribution, ⟨logm⟩ = 1.19645. Inset: The maximal number of peaks for a
given value of n occurs at log xmax(n) = n⟨logm⟩, and grows exponentially with L. (B)Mean number of mutations
in a fitness peak as a function of concentration x. The black circles are the mean number of mutations in the
fittest genotype. The green dashed line is

log(x)
⟨logm⟩ .

at which a mutation is beneficial in 1∕2 the backgrounds is given by log x ≃ n⟨logm⟩, which is246

the same concentration at which the largest number of fitness peaks were found in Figure 4.247
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number of mutations in the background). The blue

curve sums over nb for all values of n. The inset
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number of backgrounds with nmutations.

A derivation of this relation is given in Materi-248

als and Methods. Similarly, when summed over249

all mutation numbers n, the fraction of benefi-250

cial backgrounds reaches 1∕2 around the same251

concentration at which the total number of fit-252

ness peaks is maximal. Since the number of253

backgrounds is largest at n = L∕2 for combinato-254

rial reasons, this concentration is approximately255

given by log x ≃ L
2
⟨logm⟩.256

Accessibility of fitness peaks257

Having shown that tradeoff-induced fitness land-258

scapes display a large number of fitness peaks at259

intermediate concentrations, we now ask how260

these peaks affect the evolutionary dynamics.261

We base the discussion on the concept of evo-262

lutionary accessibility, which effectively assumes263

a regime of weak mutation and strong selection264

(Gillespie, 1984). In this regime the evolutionary265

trajectory consists of a series of fixation events of266

beneficial single-step mutations represented by267

a directed path in the fitness graph of the land-268

scape (Weinreich et al., 2005, 2006; Franke et al., 2011). We say that a genotype is accessible from269

another genotype if a directed path exists from the initial to the final genotype.270

The accessibility of peaks in a fitness landscape is determined by the rank ordering of the geno-271

types. We now show that the rank orders of tradeoff-induced fitness landscapes are constrained272

in a way that gives rise to unusually high accessibility. Consider two distinct sets of mutations273

Ai and Aj that can occur on the genetic background W , and the four genotypes W , W Ai, W Aj274

7 of 21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2020. ; https://doi.org/10.1101/2020.01.15.908574doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.15.908574
http://creativecommons.org/licenses/by/4.0/


Predictable Properties of Fitness Landscapes Induced by Adaptational Tradeoffs

and WAiAj , where a concatenation of symbols represents the genotype which contains all the275

mutations referred to by the symbols. The ordering condition (derived in Materials and Methods)276

says that wheneverW is the fittest among these four genotypes,WAiAj must be the least fit, and277

wheneverWAiAj is the fittest, W must be the least fit. For the case of two single mutations this278

situation is illustrated by the fitness graphs in Figure 3B, where the background genotypeW = 00 is279

the fittest in the first segment 0A and the genotypeWAiAj = 11 is the fittest in the last segment280

FG. The ordering condition has the immediate consequence that the fittest genotype is always281

accessible from the background genotypeW . If the fittest genotype is one of the single mutants282

(segments AB, BE and EF), then it is of course accessible. If it is the double mutantWAiAj (segment283

FG), then the background genotype must be the least fit genotype (from the ordering condition),284

and thereforeWAi andWAj should be fitter thanW . ThenWAiAj is accessible from the wild type285

through the pathW → WAi → WAiAj and the pathW → WAj → WAiAj .286

To fully exploit the consequences of the ordering property we need to introduce some notation.287

Let � be a genotype with nmutations. We define a subset of � as a genotype with l mutations, l ≤ n,288

which are all contained in � as well. Likewise, a superset of � is a genotype with lmutations, l ≥ n,289

that contains all the mutations in �. With this, the ordering condition can be seen to imply that290

the superset of a fitness peak is accessible from its own supersets. For example, ifW is the fittest291

genotype, thenWAi is a superset of it, and because of the ordering condition,WAi must be fitter292

than its superset WAiAj , and therefore accessible from it. Similarly, it is easy to show that the293

subset of a fitness peak is accessible from its own subsets. This property can be generalized and294

constitutes our main result on accessibility of fitness peaks.295

Accessibility property: Any genotype Σ that is a superset of a local fitness peak � is accessible from296

all the superset genotypes of Σ. Similarly, any genotype Σ′ that is a subset of a local fitness peak � is297

accessible from all the subset genotypes of Σ′.298

The proof is given in Materials and Methods. Three particularly important consequences are299

• Any fitness peak is accessible from all its subset and superset genotypes.300

• Any fitness peak is accessible from the wild type. This is because the wild type is a subset301

of every genotype.302

• For the same reason, when the wild type is a fitness peak, it is accessible from every genotype,303

and is therefore also the only fitness peak in the landscape. The same holds for the all-mutant,304

which is a superset of every genotype.305

These properties are illustrated by the fitness graph in Figure 6. We assume that the landscape has306

(at least) two peaks at the genotypes 1001 (marked in red) and 0111 (marked in blue). The colored307

arrows point towards mutational neighbors with higher fitness and are enforced by the accessibility308

property. The edges without arrowheads are not constrained by the accessibility property and the309

corresponding arrows (which are not shown in the figure) could point in either direction.310

Consider the genotype 0111 (marked in blue). It is accessible from all its subsets, namely 0000,311

0010, 0010, 0001, 0110, 0101 and 0011, following the upward pointing blue arrows. These subsets312

are in turn accessible from their subsets. For example, 0011 is accessible from all its subsets –313

0000, 0010, and 0001. The fitness peak is also accessible from its superset 1111. The same property314

holds for the other fitness peak. The subsets or supersets may access the fitness peaks using other315

(unmarked) paths as well, which would include one or more of the undirected lines in conjunction316

with some of the arrows. Moreover, other genotypes, which are neither supersets nor subsets, may317

also access these fitness peaks through paths that incorporate some of the undirected edges.318

A fitness peak together with its subset and superset genotypes defines a sub-landscape with319

remarkable properties. It is a smooth landscape with only one peak which is accessible from any320

genotype via all direct paths, i.e paths where the number of mutations monotonically increases321

or decreases. For example, the fitness peak 1001 is accessible from the all-mutant 1111 by the two322

direct paths – 1111 → 1101 → 1001 and 1111 → 1011 → 1001. Likewise, the peak 0111 is accessible323

from its subset 0001 via the paths 0001 → 0101 → 0111 and 0001 → 0011 → 0111. In general, a peak324
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with nmutations is accessible from a subset genotype with mmutations by (n−m)! direct paths, and325

from a superset genotype with mmutations by (m − n)! direct paths. This gives a lower bound on326

the total number of paths by which a fitness peak is accessible from a subset or superset genotype.327

 

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 01111011

1111

0000

Figure 6. A fitness graph of a landscape with L = 4
mutations, illustrating the accessibility property. There

are two fitness peaks, 1001 (red) and 0111 (blue). The

fitness peaks are accessible from all their subset and

superset genotypes following the paths marked by the

arrows.

Importantly, the accessibility property formu-328

lated above holds under more general condi-329

tions than stipulated in the model. We show330

in Materials and Methods that it holds when-331

ever the null fitness and resistance values332

of the mutations, r and m, do not show pos-333

itive epistasis. This is a weaker requirement334

than our original assumption of a strict lack335

of epistasis in these two phenotypes. In this336

context it should be noted that the rank or-337

derings forbidden by the ordering condition338

all show positive epistasis for the fitness val-339

ues, whereas all the allowed orderings can be340

constructed without positive epistasis. There-341

fore, any landscape where positive epistasis342

in the fitness is absent will also display the343

accessibility property. However, whereas the344

lack of positive epistasis is a sufficient con-345

dition, it is not necessary. In particular, our346

model does allow for cases of positive epista-347

sis in the fitness values.348

Reachability of the fittest and the most349

resistant genotype350

The preceding analyses have shown that within the mutant selection window, where mutants with351

higher fitness than the wild type exist, every fitness peak is accessible from the wild type. This352

includes in particular the fittest genotype at a given concentration. However, in general there will353

be many peaks in the fitness landscape, and it is not guaranteed that evolution will reach the fittest354

genotype. One can ask for the probability that the fittest genotype is actually accessed under the355

evolutionary dynamics, which we call its reachability. We assume that the dynamics is in the strong356

selection weak mutation (SSWM) regime, and the population is large enough such that the fixation357

probability of a mutant with selection coefficient s is 1 − e−2s for s > 0, and 0 for s ≤ 0 (Gillespie,358

1984). In our setting the selection coefficient is s = f1
f0
− 1, where f1 is the growth rate of a mutant359

appearing in a population of cells with growth rate f0.360

Figure 7 shows the numerically obtained reachability for L = 10, averaged over the distribution361

P (r, m) given in Eq. (8). The reachability of the highest peak is 1 at very low and very high concentra-362

tions, since there is only peak, the wild type or the all-mutant, at these extremes. The reachability is363

lower at intermediate concentrations, where there are multiple peaks, all of which are accessible364

from the wild type. The dashed blue line is the mean of the reciprocal of the total number of fitness365

peaks, and is therefore the mean reachability of fitness peaks. The reachability of the highest366

peak follows the qualitative behavior of the mean reachability, but remains higher than the mean367

reachability everywhere. The green curve is the reachability of the most resistant genotype, i.e the368

all-mutant. It is extremely low at low and moderate concentrations and grows steeply and saturates369

quickly at a very large concentration. The all-mutant genotype is less-than-average reachable370

everywhere except at very high concentration, when it is the only fitness peak and accessible from371

every other genotype.372
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Figure 7. Reachability of fittest genotype and most
resistant genotype. The same model as in the previous

subsection has been used, with L = 10. Inset shows
the mean number of fitness peaks as a function of

concentration. Dotted horizontal lines show

comparisons to the HoC model and an NK model with

the same number of mutations. These models were

implemented using an exponential distribution of

fitness values.

We have compared the reachability to two373

other widely studied landscape models. One374

is the House-of-Cards (HoC) model (Kauffman375

and Levin, 1987; Kingman, 1978), where each376

genotype is independently assigned a fitness377

value drawn from a continuous distribution.378

The reachability is found to be around 0.018,379

an order of magnitude smaller than the low-380

est reachability seen in the tradeoff-induced381

landscape. The mean number of fitness max-382

ima in the HoC landscape is
2L

L+1
, which in this383

case is approximately 93.1, much higher than384

the maximum mean number of peaks in the385

tradeoff-induced landscape (inset of Figure 7).386

We would therefore naturally expect a smaller387

fraction of adaptive walks to terminate at the388

fittest peak. A more illuminating comparison389

is with the NK model (Kauffman and Wein-390

berger, 1989; Hwang et al., 2018). Here, once391

again, L = 10, and the mutations are divided392

into two blocks of 5 mutations each. As per393

the usual definition of the model, the fitness of a genotype is the sum over the contributions of394

each of the 10 mutations, and the contribution of each mutation depends only the state of the395

block to which it belongs. The fitness contribution of each mutation for any state of the block is an396

independent random number. The mean number of fitness maxima here is ≃ 28.44 (Perelson and397

Macken, 1995; Schmiegelt and Krug, 2014), which is comparable to the maximum mean number398

in the tradeoff-induced landscapes (see inset of Figure 7). Nonetheless, the reachability of the399

fittest peak (dotted pink line) is found to be nearly 4 times smaller than the lowest reachability in400

our landscape. We found that in a fraction of about 0.64 of the landscapes, the fittest maximum is401

not reached in any of 32000 dynamical runs, indicating the absence of an accessible path in most402

of these cases (Schmiegelt and Krug, 2014; Hwang et al., 2018). In contrast, an evolutionary path403

always exists to any fitness peak in the tradeoff-induced landscapes, as we saw in the previous404

subsection. This endows the tradeoff-induced landscapes with the unusual property of being highly405

rugged and at the same time having a much higher evolutionary reachability of the global fitness406

maximum compared to other models with similar ruggedness.407

Discussion408

Fitness landscapes depend on the environment, and gene-gene-interactions can be modified409

by the environment. Systematic studies of such G × G × E interactions are rare, but they are410

clearly of relevance to scenarios such as the evolution of antibiotic resistance, where the antibiotic411

concentration can vary substantially in space and time. In this paper we have explored the structure412

of such landscapes in the presence of tradeoffs between fitness and resistance. We summarize the413

main findings of our work.414

• We have shown experimental evidence that the dose-response curves of various mutant415

strains of E. coli to the antibiotic ciprofloxacin have the same shape, except for a rescaling416

of the fitness and concentration values. If this shape is known, the fitness of a strain can be417

estimated at any antibiotic concentration simply by measuring its null-fitness and IC50 (or MIC).418

This makes it possible to construct empirical fitness landscapes at any antibiotic concentration419

from a limited set of data.420

• Under the assumptions of our model the degree of epistasis, particularly sign epistasis, is421
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low for zero and high antibiotic concentrations, but it is nevertheless high in the intermediate422

concentration regime. The number of local fitness peaks scales exponentially in the number423

of mutations at these concentrations. Epistasis is often discussed as a property intrinsic424

to mutations and their genetic backgrounds, with limited consideration of environmental425

parameters. But in the landscapes studied here, the environmental parameter is of paramount426

importance, since changes in it can dramatically alter gene-gene interactions.427

• The expected number of mutations at a fitness peak increases logarithmically with the antibi-428

otic concentration. This implies that, at a given concentration, the highly fit genotypes that429

make up the fitness peaks carry an optimal number of mutations that arises from the tradeoff430

between fitness cost and resistance.431

• Despite the high ruggedness, the landscape displays strong non-random patterns. A rank432

ordering condition between sets of mutations holds at all concentrations. A remarkable and433

unexpected consequence of this is that any fitness peak is evolutionarily accessible from the434

wild type. This is contrary to the common intuition about highly rugged landscapes, where435

one expects any genotype to have access to only a fraction of the fitness peaks and adaptive436

walks to terminate after a small number of steps.437

• It is well known from experimental studies of antimicrobial resistance evolution that highly438

resistant genotypes often require multiple mutations which can be acquired along different439

evolutionary trajectories. Epistatic interactions constrain these trajectories and are generally440

expected to impede the evolution of high resistance. We find that strong and complex epistatic441

interactions inevitably arise in themutant selection window, but at the same time the evolution442

of the most resistant genotype (the identity of which changes with concentration) remains443

facile and can occur along many different pathways.444

All of these conclusions follow from three basic assumptions that are readily generalizable445

beyond the context of antimicrobial resistance evolution: the existence of tradeoffs between two446

marginal phenotypes that govern the adaptation at extreme values of an environmental parameter;447

the scaling property of the shape of the tradeoff function; and the condition of limited epistasis448

for the marginal phenotypes. How generally these assumptions are valid is a matter of empirical449

investigation. We have shown that they hold for certain cases, and the interesting evolutionary450

implications of our results indicate that more empirical research in this direction will be useful.451

In the case of antimicrobial resistance, there can be fitness compensatory mutations (Durão452

et al., 2018; Levin et al., 2000) that do not exhibit any adaptational tradeoffs. These mutations453

are generally found in a population in the later stages of the evolution of antibiotic resistance,454

which implies that they emerge in a genetic background of mutations with adaptational tradeoffs.455

An understanding of tradeoff-induced landscapes is therefore a prerequisite for predicting the456

emergence of compensatory mutations.457

In the formulation of our model we have assumed for convenience that themarginal phenotypes458

combine multiplicatively, but this assumption is in fact not necessary. As shown in Materials and459

Methods, our key results on accessibility only require the absence of positive epistasis. These460

results therefore hold without exception for the combinatorially complete data set in Table 1, where461

epistasis is either absent or negative. More generally, our analysis remains valid in the presence462

of the commonly observed pattern of diminishing returns epistasis among beneficial mutations463

(Chou et al., 2011; Schoustra et al., 2016;Wünsche et al., 2017). In addition, we expect our results464

to hold approximately when there is a small degree of epistasis (positive or negative) in r and m, but465

we do not explore that question quantitatively in this paper.466

We conclude with some possible directions for future work. Our model provides a principled467

framework for predicting how microbial fitness landscapes vary across different antibiotic concen-468

trations. This could be exploited to describe situations where the antibiotic concentration varies on469

a time scale comparable to the evolution of resistance, either due to the degradation of the drug or470

by an externally imposed treatment protocol (Marrec and Bitbol, 2018). From the broader perspec-471
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tive of evolutionary systems with adaptational tradeoffs mediated by an environmental parameter,472

our study makes the important conceptual point that it is impossible to have non-epistatic fitness473

landscapes for all environments. Using the terminology of Gorter et al. (2016), the tradeoffs enforce474

reranking G×E interactions which in turn, as we have shown, induce sign-epistatic G×G interactions475

at intermediate values of the environmental parameter. Notably, this general conclusion does not476

depend on the scaling property of the tradeoff function. It would nevertheless be of great interest477

to identify instances of scaling for other types of adaptational tradeoffs, in which case the detailed478

predictions of our model could be applied as well.479
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Materials and Methods487

Experiments488

Bacterial strains489

We used strains from Marcusson et al. (2009) (courtesy of Douglas Huseby and Diarmaid Hughes).490

The strains are isogenic derivatives of MG1655, a K12 strain of the bacterium E. coli, with specific491

point mutations or gene deletions in five different loci: gyrA:S83L, gyrA:D87N, parC:S80I, ΔmarR, and492

ΔacrR. There are 32 possible combinations of these alleles, but we only used the wild type, single493

mutants (5 strains) and double mutants (8 strains of 10 possible combinations): LM179 (00000),494

LM378 (10000), LM534 (01000), LM792 (00100), LM202 (00010), LM351 (00001), LM625 (11000),495

LM862 (10100), LM421 (10010), LM647 (10001), LM1124 (01100), LM538 (01010), LM592 (01001),496

LM367 (00011). A binary sequence after the strain’s name represents the presence/absence of a497

particular mutated allele (order as in the above list of genetic alterations).498

Growth media and antibiotics499

LB growth medium was prepared according to Miller’s formulation (10g tryptone, 5g yeast extract,500

10g NaCl per litre). The pH was adjusted to 7.2 with NaOH,and autoclaved at 121°C for 20 min.501

Ciprofloxacin (CIP) solutions were prepared from a frozen stock (10mg/ml ciprofloxacin hydrochlo-502

ride, pharmaceutical grade, AppliChem, Darmstadt, in sterile, ultra-pure water) by diluting into LB503

to achieve the desired concentrations.504

Dose-response curves505

We incubated bacteria in 96-well clear flat bottommicro-plates (Corning Costar) inside a plate reader506

(BMG LABTECH FLUOstar Optima with a stacker) starting from two different initial cell densities (half507

a plate for each), and measured the optical density (OD) of each culture every 2-5 min to obtain508

growth curves. Plates were prepared automatically using a BMG LABTECH CLARIOstar plate reader509

equipped with two injectors connected to a bottle containing LB and a bottle with a solution of CIP510

in LB. The injectors were programmed to create different concentrations of CIP in each column of511

the 96 well plate. The injected volumes of the CIP solution were 0, 20, 25, 31, 39, 49, 62, 78, 98,512

124, 155, 195 �l, and an appropriate volume of LB was added to bring the total volume to 195 �l513

per well. Since different strains had MICs spanning almost two decades of CIP concentrations, we514

used a different maximum concentration of the CIP solution for each strain (approximately 1.5 - 2515

times the expected MIC). Bacteria were diluted from a thawed frozen stock 103 and 104 times in PBS516

(phosphate buffered saline buffer), and 5�l of the suspension was added to each well (103 dilution517
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to rows A-D, 104 dilution to rows E-H). We used one strain per plate and up to 4 plates per strain518

(typically 1-2). After adding the suspension of bacteria to each well, the plates were immediately519

sealed with a transparent film to prevent evaporation, and put into a stacker (37°C, no shaking),520

from which they would be periodically fed into the FLUOstar Optima plate reader (37°C, orbital521

shaking at 200rpm for 10s prior to OD measurement). We then used the time shift methods to522

obtain exponential growth rates for each strain and different concentrations of CIP, see Ojkic et al.523

(2019) for further details.524

Mathematical Methods525

Rank orders and fitness graphs526

The total number of possible rank rank orders with Lmutations is 2L!, which is 24 for L = 2. Not all527

these rank orders, however, can be realized as one scans through x. Since any two curves intersect528

at most once, the maximum number of distinct rank orders that can be reached is the rank order at529

x = 0 plus the total number of possible intersections, which is
(2L

2

)

= 2L−1(2L − 1). Thus the upper530

bound on the number of rank orders found by scanning through x is 2L−1(2L−1)+1, which is smaller531

than 2L! for L ≥ 2.532

It is also instructive to determine the number of fitness graphs that can be found by varying x for533

a system with Lmutations. This can be computed as follows: At x = 0 every mutation is deleterious,534

and every mutational neighbor with one less mutation is fitter; but due to the tradeoff condition, at535

sufficiently large x every mutation is beneficial and any mutational neighbor with one less mutation536

is less fit. In order for this reversal of fitness order to happen, the dose-response curves of any two537

mutational neighbors must intersect at some x. Therefore, the number of fitness graphs generated538

is equal to the number of distinct pairs of mutational neighbors, which is 2L−1L, and the number of539

distinct fitness graphs encountered is 2L−1L + 1 . For L = 2, this number is 5, as seen in the example540

in the main text.541

Condition for two dose-response curves to intersect at most once542

Consider two DR curves characterized by (r, m) and (r′, m′), where r < r′ and m > m′. We need to543

show that for the commonly observed cases, the curves rw( x
m
) and r′w( x

m′
) intersect at most once.544

First, notice that it is sufficient to prove this for the case r′ = 1, m′ = 1, because any rescaling of the545

x and w axes does not alter the number or ordering of intersection points. Therefore we require546

r < 1 and m > 1.547

Let us consider the case where the dose-response curve is of the form of a Hill function, i.e548

w(x) = 1
1+xa
, with a > 0. The intersection of curves happens at the solution of w(x) = rw( x

m
), which549

we denote by x∗(r, m). In this case the solution is given by550

x∗(r, m) =

(

1 − r
r − 1

ma

)
1
a

which is positive and unique if rma > 1; otherwise no solution with x∗ > 0 exists. It is similarly easy551

to show that at most one intersection point exists for exponentials, stretched exponentials, and552

half-Gaussians.553

The property also holds for any concave dose-response curve with w′′(x) < 0. We prove this as554

follows. Any intersection point x∗ is the solution of555

F (x∗) = r

where F (x) ≡ w(x)
w( xm )
. We will show that F (x) is monotonic and therefore the above equation has at556

most one solution. We have557

F ′(x) =
w′(x)w( x

M
) − 1

M
w(x)w′( x

M
)

w( x
M
)2

,
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and F ′(x) has the same sign as the numerator  (x) = w′(x)w( x
M
) − 1

M
w(x)w′( x

M
). Since w(x) is a558

decreasing function and m > 1, w( x
m
) > w(x) > 1

m
w(x). When w′′(x) < 0, we also have w′(x) < w′( x

M
).559

Since w′(x) < 0, this implies |w′(x)| > |w′( x
m
)|, and  (x) < 0. Therefore F (x) is monotonically560

decreasing.561

Proof of the accessibility property562

To derive the ordering condition, let us start with the simplest case of two single mutations Ai, Aj563

occurring on the wild type background. There are correspondingly four different genotypes W ,564

WAi,WAj ,WAiAj , which are listed in decreasing order of fitness at x = 0. Let the intersection of565

the DR curves of two genotypes �1 and �2 occur at x = X�1 ,�2 . Then XW ,W Aj is given by the solution566

x∗(rj , mj) of567

w(x) = rjw(
x
mj
),

and XWAi ,W AiAj is given by the solution of568

riw(
x
mi
) = rirjw(

x
mimj

).

This last equation can be re-written as569

w(x′) = rjw(
x′

mj
),

where x′ = x
mi
. Comparing this with the first equation above, we have570

XWAi ,W AiAj = miXW ,W Aj > XW ,W Aj . (3)

This equation tells us that whenever the double mutant is fitter than one of the single mutants, the571

wild type must be less fit than the other single mutant. Consequently, when the double mutant is572

fitter than both the single mutants, the WT must be less fit than both the single mutants. In other573

words, the number of single mutants fitter than the wild type cannot be less than the number of574

single mutants less fit than the double mutant. This is the ordering condition given in the main text.575

Any ordering that violates this condition is a forbidden ordering. For greater clarity, we list all the576

possible forbidden orderings (up to interchange of indices i and j).577

W > WAi > WAiAj > WAj

W > WAiAj > WAi > WAj

WAiAj > W > WAi > WAj

WAiAj > WAi > W > WAj (4)

Although we showed this for two single mutations in the wild type background, the same argu-578

ments hold for any two sets of mutations in any background, since the succession of orderings is579

independent of the rescalings of the fitness and concentration axes. To put it more precisely,W , Ai580

and Aj are any three non-overlapping sets of mutations, where Ai and Aj are non-empty sets.581

Next we use this to prove the accessibility property. Let � have nmutations. It is sufficient to582

prove that (i) any superset of � with m or fewer mutations is accessible from all its own supersets583

with m or fewer mutations, for all m ≥ n (the statement follows from the case m = L); and that (ii)584

any subset of � with m′ or more mutations is accessible from any of its own subsets with m′ or more585

mutations, for all m′ ≤ n (the statement corresponds to m′ = 0). We prove this by induction.586

Firstly, we notice that the case m = n is trivial, since � is of accessible from itself. For the case of587

supersets, our base case is m = n+1, and the assertion above holds because � is a local fitness peak,588

and therefore accessible from all its supersets with n + 1mutations, which are of course accessible589

from themselves.590

Now we prove the induction step. Assume that all supersets of � that have m or fewer mutations591

(where m ≥ n) are accessible from all their supersets with m or fewer mutations. Consider a superset592
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Σ of � with mmutations, and denote it by Σ = �A, where A is the set of mutations in Σ not present593

in �. By assumption, � is accessible from Σ. In the following, we use the notation �1 > �2 to indicate594

that a genotype �1 is fitter than a genotype �2 (we use the “<” and “=” signs in a similar way).595

Therefore, we have � > Σ = �A.596

Now consider any superset of Σ with m + 1 mutations, where the additional mutation not597

contained in Σ is denoted B. Then this superset can be denoted by ΣB = �AB. We must have598

� > �B since � is a local fitness peak. We now have the relation � > �A, �B. Therefore we must have599

�AB < �A, �B, for otherwise we violate the ordering condition. Now since ΣB = �AB < �A = Σ, Σ600

must be accessible from ΣB, proving that any superset with mmutations is accessible from any of601

its supersets with m + 1mutations. This completes the proof of the induction step.602

The proof for the case of subsets is essentially the same, utilizing the symmetry between the603

wild type and the double mutant in the ordering condition.604

The accessibility property follows entirely from the ordering condition, and hence any landscape605

that obeys the ordering condition will obey the theorem. The ordering condition follows from606

XW ,W Ai < XWAj ,W AiAj , as obtained in (3). However, this same inequality obtains under more general607

conditions. To see this, let us define the null-fitness of the double mutant WAiAj as rij , and the608

resistance of the double mutant as mij . The dose-response curves of W and WAj intersect at609

XW ,W Aj = x
∗(rj , mj), whereas the curves forWAi andWAiAj intersect at610

XWAi ,W AiAj = mix
∗(
rij
ri
,
mij
mi

)

.

Now it is easy to show that x∗(r, m) is a decreasing function of both r and m. Therefore XWAi ,W AiAj >611

XW ,W Aj holds if rij ≤ rirj and mij ≤ mimj .612

Number of local fitness peaks613

When dealing with complex fitness landscapes with parameters that can vary across species and614

environments, a useful strategy is to model the fitness effects as random variables that are chosen615

from a probability distribution (Kauffman and Levin, 1987; Szendro et al., 2013; Hwang et al., 2018).616

In the limit of large system size L, many properties emerge that are independent of the details of617

the system. In practice, even relatively small system sizes are often approximated well by results618

obtained in the asymptotic limit.619

The mean number of peaks with nmutations in the tradeoff-induced landscapes is620

Kn(x) =
(

L
n

)

Qn(x),

where
(L
n

)

is the total number of genotypes with n mutations, and Qn(x) is the probability that621

a genotype with n mutations is a fitness maximum at antibiotic concentration x. Then the total622

number of peaks at x is
∑

nKn(x). Let the resistance of a genotype � beM =
∏n

i=1 mi, and likewise its623

null-fitness be R =
∏n

i=1 ri. The genotype � is a local fitness maximum if it is fitter than all its subsets624

with n − 1mutations and all its supersets with n + 1mutations.625

To find the concentration at which the curves of � and its neighboring genotypes intersect, we626

start with the simplest case of the dose-response curves of the wild type and a single mutant (r, m).627

These curves intersect at the solution x∗(r, m) of w(x) = rw
( x
m

)

, which is a decreasing function of628

r and m. The wild type is fitter than the single mutant when x > x∗(r, m). Now the intersection of629

the DR curves of a genotype � with nmutations and a subset with n − 1mutations that lacks the630

mutation (ri, mi) occurs at the solution of631

w
( x
(M
mi
)

)

= riw
( x
(M
mi
)mi

)

which is read off as
M
mi
x∗(ri, mi). Likewise, the intersection of the DR curves of � and a superset with632

n + 1mutations that contains the additional mutation (rj , mj) occurs atMx∗(rj , mj). Therefore � is a633
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fitness maximum if634

x∗(ri, mi)
mi

< x
M

< x∗(rj , mj) (5)

for all i and j with 1 ≤ i < n and n < j ≤ L. Alternatively,635

logmi − log x∗(ri, mi) > logM − log x > − log x∗(rj , mj). (6)

Let us consider the regime where L, n ≫ 1. Then logM ∼ n⟨logm⟩; if log x is smaller than O(n),636

it is clear that the second inequality is almost certainly satisfied whereas the probability of the637

first inequality is vanishingly small. Both the probabilities are finite if log x ∼ n⟨logm⟩. Thus the638

probability of � being a fitness peak is maximized when log x = log(M) + �, where � ∼ O(1) and639

depends on the details of the distribution P (r, m). Thus the mean number of fitness peaks with n640

mutations is maximal at xmax(n) where to leading order log xmax(n) ∼ n⟨logm⟩, independent of any641

further details of the system.642

The total number of genotypes with nmutations is
(L
n

)

, and log
(L
n

)

≃ LH(�), where � = n
L
, and643

H(�) = −
[

� log � + (1 − �) log(1 − �)
]

. (7)

The mean number of fitness maxima can be found by multiplying this with Qn. One may expect Qn644

to be exponentially small in L, since a total of L inequalities (as indicated in (6)) need to be satisfied.645

However, this is complicated by the fact that the probabilities of the inequalities being satisfied are646

not independent. The correlations between the inequalities would depend on the distribution of647

P (r, m) and the dose-response curve. If the correlations are sufficiently weak, one might still expect648

to find an exponential scaling in large L. To leading order
(L
n

)

is itself exponential in L, and if the649

probability that a genotype is a fitness peak is exponentially small in L, we expect the mean number650

of peaks Kn to be exponential in L as well. This is supported by the scaling shown in the inset of651

Figure 4A.652

For the simulation results shown in the main text we chose a joint distribution of the form653

P (r, m) = P (r)P (m|r) = 6r(1 − r)
(

m − 1
√

r

)

e
−
(

m− 1
√

r

)

. (8)

The conditional distribution P (m|r) is a shifted gamma distribution. The shift ensures that the curves654

of a background genotype and a mutant intersect.655

Sign epistasis in the limit of large L and n656

Sign epistasis with respect to a certain mutation occurs when the mutation is beneficial in one657

background but deleterious in another. To understand sign epistasis, we ask for the number of658

backgrounds nb in which a mutation is beneficial at concentration x. If one considers only those659

backgrounds that have nmutations, then nb would depend both on n and x.660

In a statistical ensemble of landscapes, one may compute the probability Pb that a mutation661

is beneficial in a background with nmutations, and of course ⟨nb⟩ = Pb
(L
n

)

. In the limit of large L662

and n, Pb exhibits some universal properties to leading order. When log x > n⟨logm⟩, we are in the663

regime of high concentration relative to n, and we expect a mutation to be beneficial. We find that664

to leading order Pb(�, x) = 1, with corrections that are exponentially small in n. When log x < n⟨logm⟩,665

we are at concentrations that are too low to prefer additional mutations, and Pb is exponentially666

small in n. When log x = n⟨logm⟩, we are at the threshold concentration where a new mutation667

becomes beneficial. Here we find that Pb ≃
1
2
. For large L we therefore expect a steep transition668

from 0 to 1 as the concentration crosses the threshold value (see inset of Figure ??).669

Consider a mutation (r, m) in a background with nmutations (r1, m1), (r2, m2)… (rn, mn). The mutation670

is beneficial in this background if671

m1m2…mnx
∗(r, m) < x (9)

Taking logarithms, we have672

− log x∗(r, m) >
n
∑

i=1
logmi − log x. (10)
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Define � = log x
L
and � = n

L
, and z = − log x∗(r, m). Then the above inequality becomes673

z
n
> 1
n

n
∑

i=1
logmi −

�
�
. (11)

Let the distribution of z be P (z), and let Cz(z) = ∫ ∞
z Pz(x) dx. Define the random variable ! =674

1
n

∑n
i=1(logmi −

�
�
), and denote its distribution P (!). Then the probability that a mutation is beneficial675

in a background with nmutations is676

Pb(�, �) = ∫

∞

−∞
P (!) Cz(n!) d! (12)

(13)

The mean number of backgrounds with nmutations in which a mutation is beneficial is nb(�, �) =677

Pb(�, �)
(L
n

)

. Note that ⟨!⟩ = ⟨�⟩− �
�
where � = logm. When n ≫ 1, Cz(n !) ≃ 1 for ! < 0 and Cz(n !) ≃ 0678

for ! > 0, with a sharp transition from 1 to 0 that happens within a region of width ∼ O(1∕n) of the679

origin. Also for large n, P (!) is sharply peaked around ⟨!⟩ over a region of width O(1∕
√

n).680

When ⟨!⟩ < 0, Cz(n!) ≃ 1 over this entire region, as observed before. Thus to leading order,681

Pb(�, �) = 1. The mean number of backgrounds in which a mutation is beneficial is nb(�, �) =682

Pb(�, �)
( L
�L

)

.683

nb(�, �) ≃
√

2�
L

1
√

�(1 − �)
eLH(�) (14)

whereH(�) is defined in (7). Therefore684

log nb ≃ LH(�) (15)

to leading order.685

When ⟨!⟩ > 0, the dominant contribution to the integral in (12) comes from ! ≤ 0, since Cz(n!)686

quickly drops from 1 to zero for ! > 0. Further, since Cz(!) ≃ 1 for ! < 0 (except for a region of width687

O(1∕n) around ! = 0, as observed before), we can approximate logPb(�, �) simply by the probability688

that ! < 0. Then689

logPb(�, �) ≃ −nI
(

−
�
�
)

where I is the large deviation function of −�, and690

log nb(�, �) ≃ L
[

H(�) − �I
(

−
�
�
)

]

.

This implies that nb is reduced by a factor that is exponentially small in L compared to (15)), and691

therefore the fraction of backgrounds in which a mutation is beneficial is very small.692

Finally, when ⟨!⟩ = 0, i.e � = n
L
⟨�⟩, P (!) is centered at the origin and decays over a width O(1∕

√

n).693

For ! > 0, Cz(n!) is 0 except over a much smaller width O(1∕n) to the right of the origin, whereas694

for ! ≤ 0, it is 1 except for a small region of width O(1∕n) left of the origin. Thus the dominant695

contribution to the integral in (12) comes from ! ≤ 0, and as before, Pb can be approximated by the696

probability ! ≤ 0. Due to the central limit theorem, P (!) is approximately Gaussian and therefore697

symmetric around ! = 0, and therefore Pb ≃
1
2
. Consequently, we should have698

nb(�, �) ≃
1
2

√

2�
L

1
√

�(1 − �)
eLH(�),

which is
1
2
times the total number of backgrounds given by (14). This proves that the concentration699

where the mutation is beneficial in half of the backgrounds is given by ⟨!⟩ = 0 or log x = n⟨logm⟩ for700

large L and n.701
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Epistasis in null-fitness and MIC for E. coli in the presence of ciprofloxacin702

Primary data shown in Table 1 were obtained from Marcusson et al. (2009). In the third and703

fifth columns, the errors in the log(x) are calculated as |Δx|
x
, where |Δx| are the standard error as704

calculated from the standard deviations reported in the paper. The errors in columns four and705

six were estimated as
∑

i
|Δxi|
xi
where the sum is over the mutations present in the combinatorial706

mutants. The detectable cases of epistasis are marked in blue. Negative epistasis is found in all707

these cases. Also, all the cases with epistasis correspond to two or more mutations that affect the708

same chemical pathways.709

Strain String log null-fitness Non-epistatic log MIC Non-epistatic

MG1655 00000 0.00 (± .004) NA 0.00 (± .35) NA

LM378 10000 0.01 (± .016) NA 3.17 (± .70) NA

LM534 01000 -0.01 (± .018) NA 2.75 (± .70) NA

LM202 00010 -0.19 (± .020) NA 0.69 (± .70) NA

LM351 00001 -0.094 (± .014) NA 1.08 (± .70) NA

LM625 11000 -0.030 (± .011) 0.0 (± .038) 3.17 (± .70) 5.92 (± 1.1)

LM421 10010 -0.15 (± .019) -0.18 (±.040) 4.13 (± .70) 3.56 (± 1.1)

LM647 10001 -0.051 (± .013) -0.084 (± .034) 3.44 (± .70) 4.65 (± 1.1)

LM538 01010 -0.19 (± .020) -0.20 (± .042) 4.13 (± .70) 3.46 (± 1.1)

LM592 01001 -0.083 (± .015) -0.10 (± .036) 3.16 (± .70) 3.83 (± 1.1)

LM367 00011 -0.20 (± .026) -0.28 (± .038) 2.06 (± .70) 1.77 (± 1.1)

LM695 11010 -0.24 (± .017) -0.19 (± .058) 3.85 (±. 70) 6.61 (± 1.1)

LM691 11001 -0.073 (± .013) -0.094 (± .052) 3.85 (±. 70) 7.00 (± 1.4)

LM709 10011 -0.24 ( ± .027) -0.274 (± .054) 4.54 (±. 70) 4.94 (± 1.4)

LM595 01011 -0.51 (± .051) -0.294 (± .056) 4.54 (±. 70) 4.52 (± 1.4)

LM701 11011 -0.42 (± .037) -0.284 (±.072) 4.83 (±. 70) 7.69 (± 1.8)

Table 1. The names of the strains and values of null-fitness (in competition assays with the wild type) in the
third column and MIC (of ciprofloxacin) in the fifth column are obtained fromMarcusson et al. (2009). The
binary strings represent the same genotypes as given in the caption of Figure 2. The values in parentheses are

error estimates. The fourth and sixth columns are respectively the null-fitness and MIC values expected in the

absence of epistasis. NA denotes the cases where this is not applicable.
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