

1 Predictable Properties of Fitness

2 Landscapes Induced by Adaptational

3 Tradeoffs

4 **Suman G. Das^{1*}, Susana O. L. Direito², Bartłomiej Waclaw², Rosalind J. Allen²,**
5 **Joachim Krug^{1*}**

*For correspondence:
sdas3@uni-koeln.de (SGD);
jkrug@uni-koeln.de (JK)

6 ¹Institute for Biological Physics, University of Cologne, Cologne, Germany; ²School of
7 Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

8

9 **Abstract** Fitness effects of mutations depend on environmental parameters. For example,
10 mutations that increase fitness of bacteria at high antibiotic concentration often decrease fitness in
11 the absence of antibiotic, exemplifying a tradeoff between adaptation to environmental extremes.
12 We develop a mathematical model for fitness landscapes generated by such tradeoffs, based on
13 experiments that determine the antibiotic dose-response curves of *Escherichia coli* strains, and
14 previous observations on antibiotic resistance mutations. Our model generates a succession of
15 landscapes with predictable properties as antibiotic concentration is varied. The landscape is
16 nearly smooth at low and high concentrations, but the tradeoff induces a high ruggedness at
17 intermediate antibiotic concentrations. Despite this high ruggedness, however, all the fitness
18 maxima in the landscapes are evolutionarily accessible from the wild type. This implies that
19 selection for antibiotic resistance in multiple mutational steps is relatively facile despite the
20 complexity of the underlying landscape.

21

22 **Introduction**

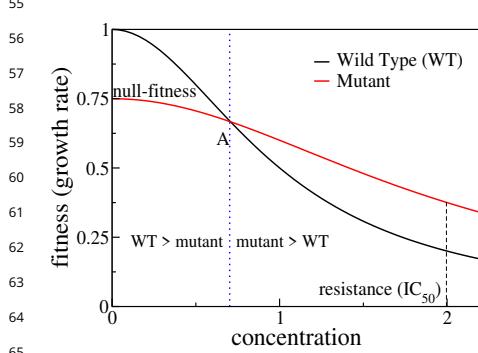
23 Sewall Wright introduced the concept of fitness landscapes in 1932 (*Wright, 1932*), and for decades
24 afterwards it persisted chiefly as a metaphor, due to lack of sufficient data. This has changed
25 considerably in recent decades (*de Visser and Krug, 2014*). There are now a large number of
26 experimental studies that have constructed fitness landscapes for combinatorial sets of mutations
27 relevant to particular phenotypes, such as the resistance of bacteria to antibiotics (*Weinreich et al., 2006; Marcusson et al., 2009; Schenk et al., 2013; Mira et al., 2015; Knopp and Andersson, 2018*).

28 Mathematical modeling of fitness landscapes has also seen a revival, motivated partly by the need
29 to quantify and interpret the ruggedness of empirical fitness landscapes (*Szendro et al., 2013; Weinreich et al., 2013; Neidhart et al., 2014; Ferretti et al., 2016; Crona et al., 2017; Hwang et al., 2018*). Conceptual breakthroughs, such as the notion of sign epistasis (where a mutation is beneficial
30 in some genetic backgrounds but deleterious in others), have shed light on how ruggedness can
31 constrain evolutionary trajectories (*Weinreich et al., 2005; Poelwijk et al., 2007, 2011; Franke et al., 2011*).

32 Despite this progress, a limitation of current studies of fitness landscapes is that they focus
33 mostly on $G \times G$ (gene-gene) interactions, and little on $G \times G \times E$ (where E stands for environment)
34 interactions, i.e. on how changes in environment modify gene-gene interactions. A few recent
35 studies have begun to address this question (*Flynn et al., 2013; Taute et al., 2014; Gorter et al., 2018; de Vos et al., 2018*). In the context of antibiotic resistance, it has been realized that the

41 fitness landscape of resistance genes depends quite strongly on antibiotic concentration (*Mira*
42 *et al.*, 2015; *Ogbunugafor et al.*, 2016). This is highly relevant to the clinical problem of resistance
43 evolution, since concentration of antibiotics can vary widely in a patient's body as well as in various
44 non-clinical settings (*Kolpin et al.*, 2004; *Andersson and Hughes*, 2014). Controlling the evolution of
45 resistance mutants thus requires an understanding of fitness landscapes as a function of antibiotic
46 concentration. Empirical investigations of such scenarios are still limited, and systematic theoretical
47 work on this question is also lacking.

48 In the present work, we aim to develop a theory of $G \times G \times E$ interactions for a specific class of
49 landscapes, with particular focus on applications to antibiotic resistance. The key feature of the
50 landscapes we study is that every mutation comes with a tradeoff between adaptation to the two
51 extremes of an environmental parameter. For example, it has been known for some time that
52 antibiotic resistance often comes with a fitness cost, such that a bacterium that can tolerate high
53 drug concentrations grows slowly in drug-free conditions. While such tradeoffs are not universal,
54 they certainly occur for a large number of mutations (*Melnyk et al.*, 2015).



66 **Figure 1.** Schematic showing dose response
67 curves of a wild type and a mutant. To the left
68 of the intersection point A the wild type is
69 selected over the mutant, whereas to the right
70 of A the mutant is selected.

71

73 swapping the rank order between the two fitness values. The intersection point is known as the
74 minimum selective concentration (MSC), and it defines the lower boundary of the mutant selection
75 window (MSW) within which the resistance mutant has a selective advantage relative to the wild
76 type (*Khan et al.*, 2017; *Alexander and MacLean*, 2018).

77 When there are several possible mutations and multiple combinatorial mutants, a large number
78 of such intersections occur as the concentration of the antibiotic increases. This leads to a suc-
79 cession of different fitness landscapes. Whenever the curves of two mutational neighbors (genotypes
80 that differ by one mutation) intersect, there can be an alteration in the evolutionary trajectory
81 towards resistance, whereby a forward (reverse) mutation now becomes more likely to fix in the
82 population than the corresponding reverse (forward) mutation. These intersections change the
83 ruggedness of landscapes and the accessibility of fitness maxima. In this way a rich and complex
84 structure of selective constraints emerges in the MSW. To explore the evolutionary consequences
85 of these constraints, we construct a theoretical model based on existing empirical studies as well
86 as our own work on ciprofloxacin resistance in *E. coli*. Specifically, we address two fundamental
87 questions: (i) How does the ruggedness of the fitness landscape vary as a function of antibiotic
88 concentration? (ii) How accessible are the fitness optima as a function of antibiotic concentration?

89 We find that even when the null-fitness and resistance values of the mutations combine in
90 a simple, multiplicative manner, the intersections of the curves produce a highly epistatic land-
91 scape at intermediate concentrations of the antibiotic. This is an example of a strong $G \times G \times E$

Our starting point for understanding these landscapes is the knowledge of two phenotypes that are well studied – the drug-free growth rate (which we call the null-fitness) and the IC_{50} (the drug concentration that reduces growth rate by half), which is a measure of antibiotic resistance. These two phenotypes correspond to the two extreme regimes of an environmental parameter, i.e zero and highly inhibitory antibiotic concentrations. The function that describes the growth rate of a bacterium for antibiotic concentrations between these two extremes is called the dose-response curve or the inhibition curve (*Regoes et al.*, 2004). When tradeoffs are present, the dose-response curves of different mutants must intersect as the concentration is varied (*Gullberg et al.*, 2011). This is schematically shown in Figure 1. The intersection of dose-response curves of the wild type and the mutant happen at point A, the minimum selective concentration (MSC), and it defines the lower boundary of the mutant selection window (MSW) within which the resistance mutant has a selective advantage relative to the wild type (*Khan et al.*, 2017; *Alexander and MacLean*, 2018).

interaction, where changes in the environmental variable drastically alter the interactions between genes. Despite the high ruggedness at intermediate concentrations, however, the topology of the landscapes is systematically different from the oft-studied random landscape models, such as the House-of-Cards model (*Kauffman and Levin, 1987; Kingman, 1978*), the Kauffman NK model (*Kauffman and Weinberger, 1989; Hwang et al., 2018*) or the Rough Mt. Fuji model (*Neidhart et al., 2014*). For example, most fitness maxima have similar numbers of mutations that depend logarithmically on the antibiotic concentration. Importantly, all the fitness maxima remain highly accessible through adaptive paths with sequentially fixing mutations. In particular, any fitness maximum (including the global maximum) is accessible from the wild type as long as the wild type is viable. As a consequence, the evolution of high levels of antibiotic resistance by multiple mutations (*Hughes and Andersson, 2017; Wistrand-Yuen et al., 2018; Rehman et al., 2019*) is much less constrained by the tradeoff-induced epistatic interactions than might have been expected on the basis of existing models.

105 Results

106 Mathematical model of tradeoff-induced fitness landscapes

107 The chief goal of this paper is to develop and explore a mathematical framework to study tradeoff-
108 induced fitness landscapes. We consider a total of L mutations, each of which increases antibiotic
109 resistance. A fitness landscape is a real-valued function defined on the set of 2^L genotypes made
110 up of all combinations of these mutations. A genotype can be represented by a binary string of
111 length L , where a 1 (0) at each position represents the presence (absence) of a specific mutation.
112 Alternatively, any genotype is uniquely identified as a subset of the L mutations (the wild type is the
113 null subset, i.e the subset with no mutations).

114 In this paper, unless mentioned otherwise, we define the fitness f as the exponential growth
115 rate of a microbial population. The fitness is a function of antibiotic concentration. This function has
116 two parameters – the growth rate at zero concentration, which we refer to as the null-fitness and
117 denote by r , and a measure of resistance such as IC_{50} which we denote by m . Each single mutation is
118 described by the pair (r_i, m_i) , where r_i and m_i are the null-fitness and resistance values respectively
119 of the i th single mutant. We further rescale our units such that for the wild type, $r = 1$ and $m = 1$. We
120 consider mutations that come with a fitness-resistance tradeoff, i.e a single mutant has an increased
121 resistance ($m_i > 1$) and a reduced null-fitness ($r_i < 1$) compared to the wild type. To proceed we
122 need to specify two things: (i) how the r and m values of the combinatorial mutants depend on
123 those of the individual mutations, (ii) how the fitness of the wild type and the mutants depend on
124 antibiotic concentration, and in particular if this dependence exhibits a pattern common to various
125 mutant strains. To address these issues we take guidance from two empirical observations.

126

127 Scaling of dose-response curves

128 **Marcusson et al. (2009)** have constructed a series of *E. coli* strains with single, double and triple
129 mutations conferring resistance to the fluoroquinolone antibiotic ciprofloxacin (CIP), which inhibits
130 DNA replication (*Drlica et al., 2009*). In their study they measured MIC (minimum inhibitory con-
131 centration) values and null-fitness but did not report dose-response curves. Some of the present
132 authors have recently shown that the dose-response curve of the wild-type *E. coli* (strain K-12
133 MG1655) in the presence of ciprofloxacin can be fitted reasonably well by a Hill function (*Ojkic et al.,
134 2019*).

135 Here we expand on this work and determine dose-response curves for a range of single- and
136 double-mutants with mutations restricted to five specific loci known to confer resistance to CIP
137 (**Marcusson et al., 2009**) (see Materials and Methods). Figure 2A shows the measured curves for
138 the wild type, the five single mutants, and eight double-mutant combinations. The genotypes are
139 represented as binary strings, where a 1 or 0 at each position denotes respectively the presence or
140 absence of a particular mutation. If we rescale the concentration c of CIP by IC_{50} of the corresponding

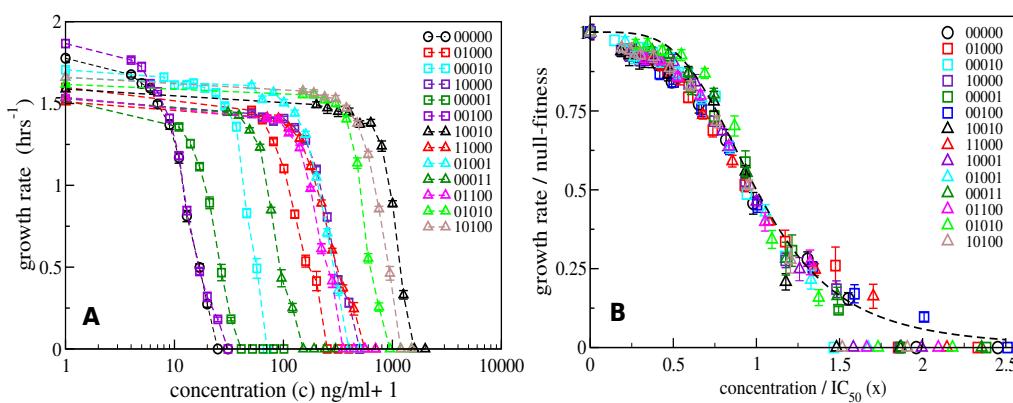


Figure 2. Dose-response curves for *E. coli* in the presence of ciprofloxacin. Each binary string corresponds to a strain, where the presence (absence) of a specific mutation in the strain is indicated by a 1(0). The five mutations in order from left to right are S83L (*gyrA*), D87N (*gyrA*), S80I (*parC*), $\Delta marR$, and $\Delta acrR$. The names of the strains are given in Table 1 in Materials and Methods. **(A)** Dose-response curves of the wild type, the five single mutants and eight double mutants. Unlike the experiments reported in *Marcusson et al. (2009)*, the mutants were grown in isolation rather than in competition with the wild type. **(B)** The same curves, but scaled with the null-fitness and IC_{50} of each individual genotype. The dashed black line is the Hill function $(1 + x^4)^{-1}$.

141 strain, $x = c/IC_{50}$, and the growth rate by the null-fitness $f(0)$, the curves collapse to a single curve
 142 that can be approximated by the Hill function $(1 + x^4)^{-1}$ (Figure 2B). The precise shape of the curve
 143 is not important for further analysis. However, the data collapse suggests that we can assume that
 144 the dose-response curve of a mutant with (relative) null-fitness r and (relative) resistance m is

$$f(c) = rw(c/m), \quad (1)$$

145 i.e. it has the same shape as the wild-type curve w except for a rescaling of the fitness and con-
 146 centration axes. Similar scaling relations have been reported previously by *Wood et al. (2014)* and
 147 *Chevreau et al. (2015)*. A good biological understanding of the conditions underlying this feature is
 148 presently lacking, but it seems intuitively plausible that the shape $w(x)$ would be robust to changes
 149 that do not qualitatively alter the basic physiology of growth and resistance.

150 Limited epistasis in r and m

151 An interesting recent finding reported by *Knopp and Andersson (2018)* is that chromosomal re-
 152 sistance mutations in *Salmonella typhimurium* mostly alter the null-fitness as well as the MIC of
 153 various antibiotics in a non-epistatic, multiplicative manner, i.e. if a particular mutation increases
 154 (decreases) the resistance (null-fitness) by a factor k_1 , and another mutation does the same with
 155 a factor k_2 , then the mutations jointly alter these phenotypes roughly by a factor of $k_1 k_2$ (with a
 156 few exceptions). We have done a similar comparison for the data on the null-fitness and MIC for
 157 *E. coli* strains in *Marcusson et al. (2009)*. We have analyzed a subset of 4 mutations for which the
 158 complete data set for all combinatorial mutants is available from *Marcusson et al. (2009)*. The data
 159 are shown in Table 1. Out of 11 multiple-mutants, only 2 show epistasis in r and 4 show epistasis
 160 in m . Moreover, in all cases where significant epistasis occurs it is negative, i.e. the effect of the
 161 multiple mutants is weaker than expected from the single mutation effects.

162 Formulation of the model

163 The above observations suggest a model where one assumes, as an approximation, that all the
 164 r and m values of individual mutations combine multiplicatively. A genotype with n mutations
 165 $(r_1, m_1), (r_2, m_2), \dots, (r_n, m_n)$ has a null-fitness r and a resistance value m given by

$$r = \prod_{i=1}^n r_i \quad \text{and} \quad m = \prod_{i=1}^n m_i. \quad (2)$$

166 Moreover, the dose-response curves of the genotypes are taken to be of the scaling form (1),
167 where the function $w(x)$ does not depend on the genotype. As indicated before, and without any
168 loss of generality, we choose units such that, for the wild type, $r = 1$ and $m = 1$. Therefore the
169 dose-response curve of the wild type is $w(x)$ with $w(0) = 1$, and choosing IC_{50} as a measure of
170 resistance we have $w(1) = \frac{1}{2}$. Henceforth, we refer to x simply as the concentration. We also recall
171 that the condition of adaptational tradeoff means that $r_i < 1$ and $m_i > 1$ for all mutations.

172 If the r_i and m_i values combine non-epistatically, and if the shape of the dose-response curve is
173 known, it is thus possible to construct the entire concentration-dependent landscape of size 2^L from
174 just $2L$ measurements (of the r_i and m_i values of the single mutants) instead of the measurement
175 of 2^L fitness values at every concentration. In practice we do not expect a complete lack of epistasis
176 among all mutations of interest, and the dose-response curve is also an approximation obtained by
177 fitting a curve through a finite set of fitness values known only with limited accuracy. However, the
178 fitness rank order of genotypes, and related topographic features such as fitness peaks, are robust
179 to a certain amount of error in fitness values (Crona et al., 2017), and our model may be used to
180 construct these to a good approximation.

181 Lastly, we require that the dose-response curves of the wild type and a mutant intersect at most
182 once, which implies that the equation $w(x) = rw\left(\frac{x}{m}\right)$ with $r > 1$ and $m < 1$ has at most one solution.
183 This then also implies that the curves of any genotype σ and a proper superset of it (i.e. a genotype
184 which contains all the mutations in σ and some more) intersect at most once. This property holds
185 for all functions that have been used to represent dose-response curves in the literature, such as
186 the Hill function, the half-Gaussian or the exponential function, as well as for all concave function
187 with negative second derivative (see Materials and Methods for details).

188 Properties of tradeoff-induced fitness landscapes

189 To understand the evolutionary implications of our model, we first describe how the fitness land-
190 scape topography changes with the environmental parameter represented by the antibiotic concen-
191 tration. Next we analyze the properties of mutational pathways leading to highly fit genotypes.

192 Intersection of curves and changing landscapes

193 We start with a simple example of $L = 2$ mutations and a Hill-shaped dose-response curve $w(x) =$
194 $\frac{1}{1+x^2}$ (Figure 3). At $x = 0$, the rank ordering is determined by the null-fitness. The wild type has
195 maximal fitness, and the double mutant is less fit than the single mutants. As x increases, the
196 fitness curves start to intersect, and each intersection switches the rank of two genotypes. In the
197 present example we find a total of six intersections and therefore seven different rank orders across
198 the full range of x . This is actually the maximum number of rank orders that can be found by
199 scanning through x for $L = 2$, see Materials and Methods. The final fitness rank order (to the right
200 of the point F in Figure 3A) is the reverse of the original rank order at $x = 0$.

201 Figure 3B depicts the concentration-dependent fitness landscape of the 2-locus system in
202 the form of fitness graphs. A fitness graph represents a fitness landscape as a directed graph,
203 where neighboring nodes are genotypes that differ by one mutation, and arrows point toward the
204 genotypes with higher fitness (de Visser et al., 2009; Crona et al., 2013). A fitness graph does not
205 uniquely specify the rank order in the landscape (Crona et al., 2017). For example, the region BE
206 has a single fitness graph, but three different rank orders in the segments BC, CD and DE.

207 Because selection drives an evolving population towards higher fitness, a fitness graph can be
208 viewed as a roadmap of possible evolutionary trajectories. In particular, a fitness peak (marked in
209 red in Figure 3B) is identified from the fitness graph as a node with only incoming arrows. Fitness
210 graphs also contain the complete information about the occurrences of sign epistasis. Sign epistasis
211 with respect to a certain mutation occurs when the mutation is beneficial in some backgrounds
212 but deleterious in others (Weinreich et al., 2005; Poelwijk et al., 2007). It is easy to read off sign
213 epistasis for a mutation from the fact that parallel arrows (i.e. arrows corresponding to the gain or
214 loss of the same mutation) in a fitness graph point in opposite directions. For example, in the graph

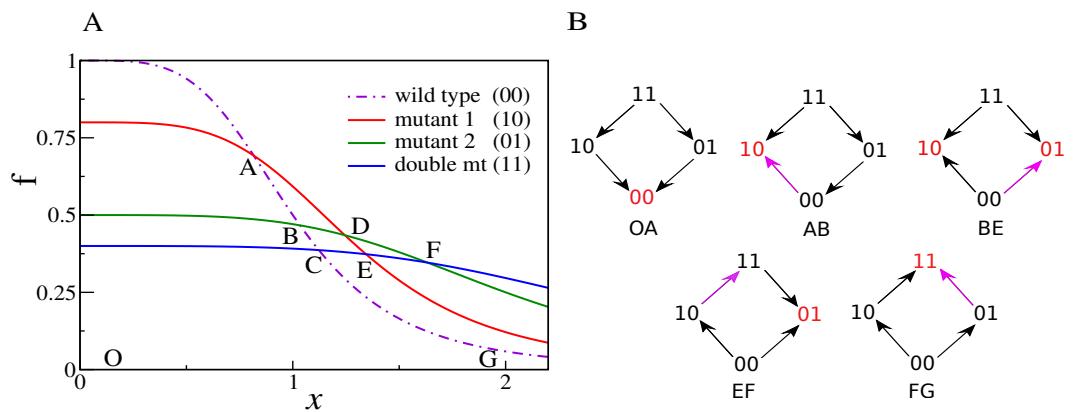


Figure 3. (A) An example of dose-response curves of four genotypes – the wild type (00), two single mutants (10 and 01), and the double mutant (11). The parameters of the two single mutants are $r_1 = 0.8$, $m_1 = 1.3$, $r_2 = 0.4$, $m_2 = 2.5$. Null-fitness and resistance combine multiplicatively, which implies that the parameters of the double mutant are $r_{12} = r_1 r_2 = 0.32$ and $m_{12} = m_1 m_2 = 3.25$. **(B)** Fitness graphs corresponding to antibiotic concentration ranges from panel A. The genotypes in red are the local fitness peaks. The purple arrows are the ones that have changed direction at the beginning of each segment. All arrows eventually switch from the downward to the upward direction.

215 for the region AB there is sign epistasis in the first position, since the parallel arrows $00 \rightarrow 10$ and
 216 $01 \leftarrow 11$ point in opposite directions. Notice that in the current example, we start with a smooth
 217 landscape at $x = 0$ (as seen in the fitness graph for OA), and the number of peaks and the degree
 218 of sign epistasis both reach a maximum in the intermediate region BE. This fitness graph displays
 219 reciprocal sign epistasis, which is a necessary condition for the existence of multiple fitness peaks
 220 (Poelwijk *et al.*, 2011). Beyond the point E, the landscape starts to become smooth again, with only
 221 one fitness maximum and a lower degree of sign epistasis. In the last region FG, the landscape is
 222 smooth with only one peak (the double mutant 11) and no sign epistasis.

223 These qualitative properties generalize to larger landscapes. To show this, we consider a
 224 statistical ensemble of landscapes with L mutations, where the parameters r_i, m_i of single mutations
 225 are independently and identically distributed according to a joint probability density $P(r, m)$. Figure 4
 226 shows the result of numerical simulations of these landscapes for $L = 16$. The mean number of
 227 fitness peaks with n mutations reaches a maximum at $x_{\max}(n)$ where to leading order $\log x_{\max}(n) \sim$
 228 $n(\log m)$, independent of any further details of the system, as argued in Materials and Methods.
 229 The asymptotic expression works well already for $L = 16$ (see inset of Figure 4A). Figure 4B shows
 230 the mean number of mutations in a fitness peak. This is well approximated by the curve $n =$
 231 $\frac{\log x}{\langle \log m \rangle}$, showing that the mean number of mutations in a fitness peak grows logarithmically in the
 232 concentration. This is consistent with what we would expect from the variation in the number of
 233 peaks with n mutations as shown in Figure 4A.

234 As another indicator of ruggedness, we consider the number of backgrounds in which a mutation
 235 is beneficial as a function of x . At $x = 0$, any mutation is deleterious in all backgrounds, whereas at
 236 very large x it is beneficial in all backgrounds. Therefore there is no sign epistasis in either case.
 237 Sign epistasis is maximized when a mutation is beneficial in exactly 1/2 of all backgrounds. Figure 5
 238 shows the mean number of backgrounds n_b (with n mutations each) in which the occurrence a
 239 mutation is beneficial, for two different values of n . The curves have a sigmoidal shape, starting from
 240 zero and saturating at $\binom{L}{n}$, which is the total number of backgrounds with n mutations. The blue
 241 curve shows the mean total number of backgrounds (with any n) in which a mutation is beneficial,
 242 which has a similar shape.

243 Since every mutation in every background goes from being initially deleterious to eventually ben-
 244 eficial, there must be some x at which every mutation is beneficial in exactly half the backgrounds.
 245 The inset of Figure 5 shows that for backgrounds with n mutations, the average concentration

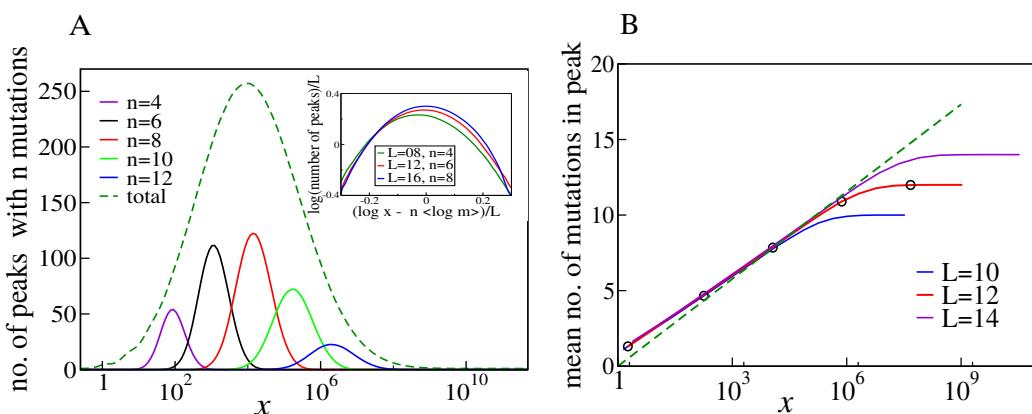


Figure 4. (A) Number of fitness peaks as a function of concentration for different numbers of mutations in the peak, n , and $L = 16$. The dashed green curve is the total number of fitness peaks, summed over n . The peaks were found by numerically generating an ensemble of landscapes with individual effects distributed according to the joint distribution (8). For this distribution, $\langle \log m \rangle = 1.19645$. Inset: The maximal number of peaks for a given value of n occurs at $\log x_{\max}(n) = n\langle \log m \rangle$, and grows exponentially with L . **(B)** Mean number of mutations in a fitness peak as a function of concentration x . The black circles are the mean number of mutations in the fittest genotype. The green dashed line is $\frac{\log(x)}{\langle \log m \rangle}$.

246 at which a mutation is beneficial in 1/2 the backgrounds is given by $\log x \simeq n(\log m)$, which is
 247 the same concentration at which the largest number of fitness peaks were found in Figure 4.

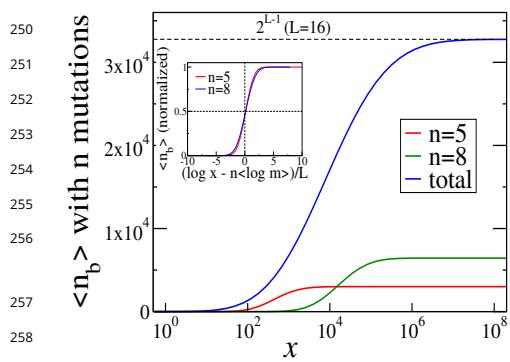


Figure 5. Numerical averages for the number of backgrounds n_b for two different values of n (the number of mutations in the background). The blue curve sums over n_b for all values of n . The inset shows the values of n_b as a fraction of the total number of backgrounds with n mutations.

269 escape (*Weinreich et al., 2005, 2006; Franke et al., 2011*). We say that a genotype is *accessible* from
 270 another genotype if a directed path exists from the initial to the final genotype.

271 The accessibility of peaks in a fitness landscape is determined by the rank ordering of the geno-
 272 types. We now show that the rank orders of tradeoff-induced fitness landscapes are constrained
 273 in a way that gives rise to unusually high accessibility. Consider two distinct sets of mutations
 274 A_i and A_j that can occur on the genetic background W , and the four genotypes W , WA_i , WA_j

A derivation of this relation is given in Materials and Methods. Similarly, when summed over all mutation numbers n , the fraction of beneficial backgrounds reaches $1/2$ around the same concentration at which the total number of fitness peaks is maximal. Since the number of backgrounds is largest at $n = L/2$ for combinatorial reasons, this concentration is approximately given by $\log x \simeq \frac{L}{2}(\log m)$.

Accessibility of fitness peaks

Having shown that tradeoff-induced fitness landscapes display a large number of fitness peaks at intermediate concentrations, we now ask how these peaks affect the evolutionary dynamics. We base the discussion on the concept of evolutionary accessibility, which effectively assumes a regime of weak mutation and strong selection (*Gillespie, 1984*). In this regime the evolutionary trajectory consists of a series of fixation events of beneficial single-step mutations represented by a directed path in the fitness graph of the land-

275 and WA_iA_j , where a concatenation of symbols represents the genotype which contains all the
276 mutations referred to by the symbols. The **ordering condition** (derived in Materials and Methods)
277 says that whenever W is the fittest among these four genotypes, WA_iA_j must be the least fit, and
278 whenever WA_iA_j is the fittest, W must be the least fit. For the case of two single mutations this
279 situation is illustrated by the fitness graphs in Figure 3B, where the background genotype $W = 00$ is
280 the fittest in the first segment 0A and the genotype $WA_iA_j = 11$ is the fittest in the last segment
281 FG. The ordering condition has the immediate consequence that the fittest genotype is *always*
282 accessible from the background genotype W . If the fittest genotype is one of the single mutants
283 (segments AB, BE and EF), then it is of course accessible. If it is the double mutant WA_iA_j (segment
284 FG), then the background genotype must be the least fit genotype (from the ordering condition),
285 and therefore WA_i and WA_j should be fitter than W . Then WA_iA_j is accessible from the wild type
286 through the path $W \rightarrow WA_i \rightarrow WA_iA_j$ and the path $W \rightarrow WA_j \rightarrow WA_iA_j$.

287 To fully exploit the consequences of the ordering property we need to introduce some notation.
288 Let σ be a genotype with n mutations. We define a *subset* of σ as a genotype with l mutations, $l \leq n$,
289 which are all contained in σ as well. Likewise, a *superset* of σ is a genotype with l mutations, $l \geq n$,
290 that contains all the mutations in σ . With this, the ordering condition can be seen to imply that
291 the superset of a fitness peak is accessible from its own supersets. For example, if W is the fittest
292 genotype, then WA_i is a superset of it, and because of the ordering condition, WA_i must be fitter
293 than its superset WA_iA_j , and therefore accessible from it. Similarly, it is easy to show that the
294 subset of a fitness peak is accessible from its own subsets. This property can be generalized and
295 constitutes our main result on accessibility of fitness peaks.

296 **Accessibility property:** *Any genotype Σ that is a superset of a local fitness peak σ is accessible from
297 all the superset genotypes of Σ . Similarly, any genotype Σ' that is a subset of a local fitness peak σ is
298 accessible from all the subset genotypes of Σ' .*

299 The proof is given in Materials and Methods. Three particularly important consequences are

- 300 • Any fitness peak is accessible from all its subset and superset genotypes.
- 301 • **Any fitness peak is accessible from the wild type.** This is because the wild type is a subset
302 of every genotype.
- 303 • For the same reason, when the wild type is a fitness peak, it is accessible from every genotype,
304 and is therefore also the only fitness peak in the landscape. The same holds for the all-mutant,
305 which is a superset of every genotype.

306 These properties are illustrated by the fitness graph in Figure 6. We assume that the landscape has
307 (at least) two peaks at the genotypes 1001 (marked in red) and 0111 (marked in blue). The colored
308 arrows point towards mutational neighbors with higher fitness and are enforced by the accessibility
309 property. The edges without arrowheads are not constrained by the accessibility property and the
310 corresponding arrows (which are not shown in the figure) could point in either direction.

311 Consider the genotype 0111 (marked in blue). It is accessible from all its subsets, namely 0000,
312 0010, 0010, 0001, 0110, 0101 and 0011, following the upward pointing blue arrows. These subsets
313 are in turn accessible from their subsets. For example, 0011 is accessible from all its subsets –
314 0000, 0010, and 0001. The fitness peak is also accessible from its superset 1111. The same property
315 holds for the other fitness peak. The subsets or supersets may access the fitness peaks using other
316 (unmarked) paths as well, which would include one or more of the undirected lines in conjunction
317 with some of the arrows. Moreover, other genotypes, which are neither supersets nor subsets, may
318 also access these fitness peaks through paths that incorporate some of the undirected edges.

319 A fitness peak together with its subset and superset genotypes defines a sub-landscape with
320 remarkable properties. It is a smooth landscape with only one peak which is accessible from any
321 genotype via all direct paths, i.e paths where the number of mutations monotonically increases
322 or decreases. For example, the fitness peak 1001 is accessible from the all-mutant 1111 by the two
323 direct paths – 1111 → 1101 → 1001 and 1111 → 1011 → 1001. Likewise, the peak 0111 is accessible
324 from its subset 0001 via the paths 0001 → 0101 → 0111 and 0001 → 0011 → 0111. In general, a peak

325 with n mutations is accessible from a subset genotype with m mutations by $(n - m)!$ direct paths, and
 326 from a superset genotype with m mutations by $(m - n)!$ direct paths. This gives a lower bound on
 327 the total number of paths by which a fitness peak is accessible from a subset or superset genotype.

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

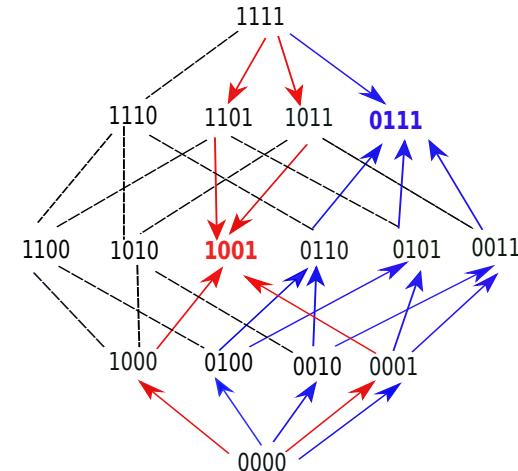


Figure 6. A fitness graph of a landscape with $L = 4$ mutations, illustrating the accessibility property. There are two fitness peaks, 1001 (red) and 0111 (blue). The fitness peaks are accessible from all their subset and superset genotypes following the paths marked by the arrows.

Importantly, the accessibility property formulated above holds under more general conditions than stipulated in the model. We show in Materials and Methods that it holds whenever the null fitness and resistance values of the mutations, r and m , do not show *positive* epistasis. This is a weaker requirement than our original assumption of a strict lack of epistasis in these two phenotypes. In this context it should be noted that the rank orderings forbidden by the ordering condition all show positive epistasis for the fitness values, whereas all the allowed orderings can be constructed without positive epistasis. Therefore, any landscape where positive epistasis in the fitness is absent will also display the accessibility property. However, whereas the lack of positive epistasis is a sufficient condition, it is not necessary. In particular, our model does allow for cases of positive epistasis in the fitness values.

Reachability of the fittest and the most resistant genotype

The preceding analyses have shown that within the mutant selection window, where mutants with higher fitness than the wild type exist, every fitness peak is accessible from the wild type. This includes in particular the fittest genotype at a given concentration. However, in general there will be many peaks in the fitness landscape, and it is not guaranteed that evolution will reach the fittest genotype. One can ask for the probability that the fittest genotype is actually accessed under the evolutionary dynamics, which we call its reachability. We assume that the dynamics is in the strong selection weak mutation (SSWM) regime, and the population is large enough such that the fixation probability of a mutant with selection coefficient s is $1 - e^{-2s}$ for $s > 0$, and 0 for $s \leq 0$ (Gillespie, 1984). In our setting the selection coefficient is $s = \frac{f_1}{f_0} - 1$, where f_1 is the growth rate of a mutant appearing in a population of cells with growth rate f_0 .

Figure 7 shows the numerically obtained reachability for $L = 10$, averaged over the distribution $P(r, m)$ given in Eq. (8). The reachability of the highest peak is 1 at very low and very high concentrations, since there is only peak, the wild type or the all-mutant, at these extremes. The reachability is lower at intermediate concentrations, where there are multiple peaks, all of which are accessible from the wild type. The dashed blue line is the mean of the reciprocal of the total number of fitness peaks, and is therefore the mean reachability of fitness peaks. The reachability of the highest peak follows the qualitative behavior of the mean reachability, but remains higher than the mean reachability everywhere. The green curve is the reachability of the most resistant genotype, i.e the all-mutant. It is extremely low at low and moderate concentrations and grows steeply and saturates quickly at a very large concentration. The all-mutant genotype is less-than-average reachable everywhere except at very high concentration, when it is the only fitness peak and accessible from every other genotype.

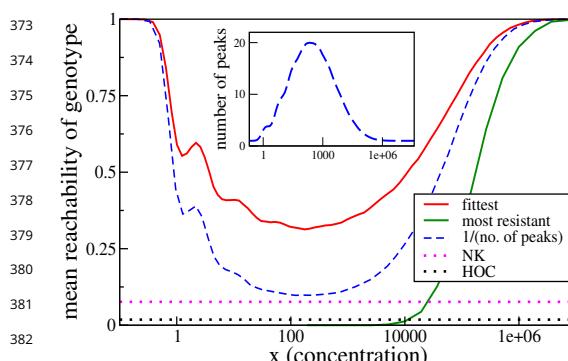


Figure 7. Reachability of fittest genotype and most resistant genotype. The same model as in the previous subsection has been used, with $L = 10$. Inset shows the mean number of fitness peaks as a function of concentration. Dotted horizontal lines show comparisons to the HoC model and an NK model with the same number of mutations. These models were implemented using an exponential distribution of fitness values.

the usual definition of the model, the fitness of a genotype is the sum over the contributions of each of the 10 mutations, and the contribution of each mutation depends only the state of the block to which it belongs. The fitness contribution of each mutation for any state of the block is an independent random number. The mean number of fitness maxima here is $\simeq 28.44$ (*Perelson and Macken, 1995; Schmiegelt and Krug, 2014*), which is comparable to the maximum mean number in the tradeoff-induced landscapes (see inset of Figure 7). Nonetheless, the reachability of the fittest peak (dotted pink line) is found to be nearly 4 times smaller than the lowest reachability in our landscape. We found that in a fraction of about 0.64 of the landscapes, the fittest maximum is not reached in any of 32000 dynamical runs, indicating the absence of an accessible path in most of these cases (*Schmiegelt and Krug, 2014; Hwang et al., 2018*). In contrast, an evolutionary path always exists to any fitness peak in the tradeoff-induced landscapes, as we saw in the previous subsection. This endows the tradeoff-induced landscapes with the unusual property of being highly rugged and at the same time having a much higher evolutionary reachability of the global fitness maximum compared to other models with similar ruggedness.

Discussion

Fitness landscapes depend on the environment, and gene-gene-interactions can be modified by the environment. Systematic studies of such $G \times G \times E$ interactions are rare, but they are clearly of relevance to scenarios such as the evolution of antibiotic resistance, where the antibiotic concentration can vary substantially in space and time. In this paper we have explored the structure of such landscapes in the presence of tradeoffs between fitness and resistance. We summarize the main findings of our work.

- We have shown experimental evidence that the dose-response curves of various mutant strains of *E. coli* to the antibiotic ciprofloxacin have the same shape, except for a rescaling of the fitness and concentration values. If this shape is known, the fitness of a strain can be estimated at any antibiotic concentration simply by measuring its null-fitness and IC_{50} (or MIC). This makes it possible to construct empirical fitness landscapes at any antibiotic concentration from a limited set of data.
- Under the assumptions of our model the degree of epistasis, particularly sign epistasis, is

We have compared the reachability to two other widely studied landscape models. One is the House-of-Cards (HoC) model (*Kauffman and Levin, 1987; Kingman, 1978*), where each genotype is independently assigned a fitness value drawn from a continuous distribution. The reachability is found to be around 0.018, an order of magnitude smaller than the lowest reachability seen in the tradeoff-induced landscape. The mean number of fitness maxima in the HoC landscape is $\frac{2^L}{L+1}$, which in this case is approximately 93.1, much higher than the maximum mean number of peaks in the tradeoff-induced landscape (inset of Figure 7). We would therefore naturally expect a smaller fraction of adaptive walks to terminate at the fittest peak. A more illuminating comparison is with the NK model (*Kauffman and Weinberger, 1989; Hwang et al., 2018*). Here, once again, $L = 10$, and the mutations are divided into two blocks of 5 mutations each. As per

422 low for zero and high antibiotic concentrations, but it is nevertheless high in the intermediate
423 concentration regime. The number of local fitness peaks scales exponentially in the number
424 of mutations at these concentrations. Epistasis is often discussed as a property intrinsic
425 to mutations and their genetic backgrounds, with limited consideration of environmental
426 parameters. But in the landscapes studied here, the environmental parameter is of paramount
427 importance, since changes in it can dramatically alter gene-gene interactions.

- 428 • The expected number of mutations at a fitness peak increases logarithmically with the antibiotic
429 concentration. This implies that, at a given concentration, the highly fit genotypes that
430 make up the fitness peaks carry an *optimal number of mutations* that arises from the tradeoff
431 between fitness cost and resistance.
- 432 • Despite the high ruggedness, the landscape displays strong non-random patterns. A rank
433 ordering condition between sets of mutations holds at all concentrations. A remarkable and
434 unexpected consequence of this is that any fitness peak is evolutionarily accessible from the
435 wild type. This is contrary to the common intuition about highly rugged landscapes, where
436 one expects any genotype to have access to only a fraction of the fitness peaks and adaptive
437 walks to terminate after a small number of steps.
- 438 • It is well known from experimental studies of antimicrobial resistance evolution that highly
439 resistant genotypes often require multiple mutations which can be acquired along different
440 evolutionary trajectories. Epistatic interactions constrain these trajectories and are generally
441 expected to impede the evolution of high resistance. We find that strong and complex epistatic
442 interactions inevitably arise in the mutant selection window, but at the same time the evolution
443 of the most resistant genotype (the identity of which changes with concentration) remains
444 facile and can occur along many different pathways.

445 All of these conclusions follow from three basic assumptions that are readily generalizable
446 beyond the context of antimicrobial resistance evolution: the existence of tradeoffs between two
447 *marginal phenotypes* that govern the adaptation at extreme values of an environmental parameter;
448 the scaling property of the shape of the tradeoff function; and the condition of limited epistasis
449 for the marginal phenotypes. How generally these assumptions are valid is a matter of empirical
450 investigation. We have shown that they hold for certain cases, and the interesting evolutionary
451 implications of our results indicate that more empirical research in this direction will be useful.

452 In the case of antimicrobial resistance, there can be fitness compensatory mutations (*Durão et al., 2018; Levin et al., 2000*) that do not exhibit any adaptational tradeoffs. These mutations
453 are generally found in a population in the later stages of the evolution of antibiotic resistance,
454 which implies that they emerge in a genetic background of mutations with adaptational tradeoffs.
455 An understanding of tradeoff-induced landscapes is therefore a prerequisite for predicting the
456 emergence of compensatory mutations.

457 In the formulation of our model we have assumed for convenience that the marginal phenotypes
458 combine multiplicatively, but this assumption is in fact not necessary. As shown in Materials and
459 Methods, our key results on accessibility only require the absence of positive epistasis. These
460 results therefore hold without exception for the combinatorially complete data set in Table 1, where
461 epistasis is either absent or negative. More generally, our analysis remains valid in the presence
462 of the commonly observed pattern of diminishing returns epistasis among beneficial mutations
463 (*Chou et al., 2011; Schoustra et al., 2016; Wünsche et al., 2017*). In addition, we expect our results
464 to hold approximately when there is a small degree of epistasis (positive or negative) in r and m , but
465 we do not explore that question quantitatively in this paper.

466 We conclude with some possible directions for future work. Our model provides a principled
467 framework for predicting how microbial fitness landscapes vary across different antibiotic concen-
468 trations. This could be exploited to describe situations where the antibiotic concentration varies on
469 a time scale comparable to the evolution of resistance, either due to the degradation of the drug or
470 by an externally imposed treatment protocol (*Marrec and Bitbol, 2018*). From the broader perspec-

472 tive of evolutionary systems with adaptational tradeoffs mediated by an environmental parameter,
473 our study makes the important conceptual point that it is impossible to have non-epistatic fitness
474 landscapes for all environments. Using the terminology of **Gorter et al. (2016)**, the tradeoffs enforce
475 reranking $G \times E$ interactions which in turn, as we have shown, induce sign-epistatic $G \times G$ interactions
476 at intermediate values of the environmental parameter. Notably, this general conclusion does not
477 depend on the scaling property of the tradeoff function. It would nevertheless be of great interest
478 to identify instances of scaling for other types of adaptational tradeoffs, in which case the detailed
479 predictions of our model could be applied as well.

480 Acknowledgements

481 We thank Douglas Huseby and Diarmaid Hughes for providing us with the *E. coli* strains of **Marcusson**
482 **et al. (2009)**, and Tobias Bollenbach, Michael Brockhurst and Kristina Crona for useful comments.
483 The work of SGD and JK was supported by DFG within CRC 1310 *Predictability in Evolution*, and
484 JK acknowledges the kind hospitality of the Scottish Universities Physics Alliance and the Higgs
485 Center for Theoretical Physics during the completion of the project. SOLD and RJA acknowledge the
486 support of the ERC Consolidator Grant 682237 EVOSTRU.

487 Materials and Methods

488 Experiments

489 Bacterial strains

490 We used strains from Marcusson et al. (2009) (courtesy of Douglas Huseby and Diarmaid Hughes).
491 The strains are isogenic derivatives of MG1655, a K12 strain of the bacterium *E. coli*, with specific
492 point mutations or gene deletions in five different loci: *gyrA:S83L*, *gyrA:D87N*, *parC:S80I*, $\Delta marR$, and
493 $\Delta acrR$. There are 32 possible combinations of these alleles, but we only used the wild type, single
494 mutants (5 strains) and double mutants (8 strains of 10 possible combinations): LM179 (00000),
495 LM378 (10000), LM534 (01000), LM792 (00100), LM202 (00010), LM351 (00001), LM625 (11000),
496 LM862 (10100), LM421 (10010), LM647 (10001), LM1124 (01100), LM538 (01010), LM592 (01001),
497 LM367 (00011). A binary sequence after the strain's name represents the presence/absence of a
498 particular mutated allele (order as in the above list of genetic alterations).

499 Growth media and antibiotics

500 LB growth medium was prepared according to Miller's formulation (10g tryptone, 5g yeast extract,
501 10g NaCl per litre). The pH was adjusted to 7.2 with NaOH, and autoclaved at 121°C for 20 min.
502 Ciprofloxacin (CIP) solutions were prepared from a frozen stock (10mg/ml ciprofloxacin hydrochloride,
503 pharmaceutical grade, AppliChem, Darmstadt, in sterile, ultra-pure water) by diluting into LB
504 to achieve the desired concentrations.

505 Dose-response curves

506 We incubated bacteria in 96-well clear flat bottom micro-plates (Corning Costar) inside a plate reader
507 (BMG LABTECH FLUOstar Optima with a stacker) starting from two different initial cell densities (half
508 a plate for each), and measured the optical density (OD) of each culture every 2-5 min to obtain
509 growth curves. Plates were prepared automatically using a BMG LABTECH CLARIOstar plate reader
510 equipped with two injectors connected to a bottle containing LB and a bottle with a solution of CIP
511 in LB. The injectors were programmed to create different concentrations of CIP in each column of
512 the 96 well plate. The injected volumes of the CIP solution were 0, 20, 25, 31, 39, 49, 62, 78, 98,
513 124, 155, 195 μ l, and an appropriate volume of LB was added to bring the total volume to 195 μ l
514 per well. Since different strains had MICs spanning almost two decades of CIP concentrations, we
515 used a different maximum concentration of the CIP solution for each strain (approximately 1.5 - 2
516 times the expected MIC). Bacteria were diluted from a thawed frozen stock 10^3 and 10^4 times in PBS
517 (phosphate buffered saline buffer), and 5 μ l of the suspension was added to each well (10^3 dilution

518 to rows A-D, 10^4 dilution to rows E-H). We used one strain per plate and up to 4 plates per strain
 519 (typically 1-2). After adding the suspension of bacteria to each well, the plates were immediately
 520 sealed with a transparent film to prevent evaporation, and put into a stacker (37°C , no shaking),
 521 from which they would be periodically fed into the FLUOstar Optima plate reader (37°C , orbital
 522 shaking at 200rpm for 10s prior to OD measurement). We then used the time shift methods to
 523 obtain exponential growth rates for each strain and different concentrations of CIP, see *Ojkic et al.*
 524 (2019) for further details.

525 **Mathematical Methods**

526 **Rank orders and fitness graphs**

527 The total number of possible rank rank orders with L mutations is $2^L!$, which is 24 for $L = 2$. Not all
 528 these rank orders, however, can be realized as one scans through x . Since any two curves intersect
 529 at most once, the maximum number of distinct rank orders that can be reached is the rank order at
 530 $x = 0$ plus the total number of possible intersections, which is $\binom{2^L}{2} = 2^{L-1}(2^L - 1)$. Thus the upper
 531 bound on the number of rank orders found by scanning through x is $2^{L-1}(2^L - 1) + 1$, which is smaller
 532 than $2^L!$ for $L \geq 2$.

533 It is also instructive to determine the number of fitness graphs that can be found by varying x for
 534 a system with L mutations. This can be computed as follows: At $x = 0$ every mutation is deleterious,
 535 and every mutational neighbor with one less mutation is fitter; but due to the tradeoff condition, at
 536 sufficiently large x every mutation is beneficial and any mutational neighbor with one less mutation
 537 is less fit. In order for this reversal of fitness order to happen, the dose-response curves of any two
 538 mutational neighbors must intersect at some x . Therefore, the number of fitness graphs generated
 539 is equal to the number of distinct pairs of mutational neighbors, which is $2^{L-1}L$, and the number of
 540 distinct fitness graphs encountered is $2^{L-1}L + 1$. For $L = 2$, this number is 5, as seen in the example
 541 in the main text.

542 **Condition for two dose-response curves to intersect at most once**

543 Consider two DR curves characterized by (r, m) and (r', m') , where $r < r'$ and $m > m'$. We need to
 544 show that for the commonly observed cases, the curves $rw(\frac{x}{m})$ and $r'w(\frac{x}{m'})$ intersect at most once.
 545 First, notice that it is sufficient to prove this for the case $r' = 1, m' = 1$, because any rescaling of the
 546 x and w axes does not alter the number or ordering of intersection points. Therefore we require
 547 $r < 1$ and $m > 1$.

548 Let us consider the case where the dose-response curve is of the form of a Hill function, i.e.
 549 $w(x) = \frac{1}{1+xa}$, with $a > 0$. The intersection of curves happens at the solution of $w(x) = rw(\frac{x}{m})$, which
 550 we denote by $x^*(r, m)$. In this case the solution is given by

$$x^*(r, m) = \left(\frac{1-r}{r - \frac{1}{m^a}} \right)^{\frac{1}{a}}$$

551 which is positive and unique if $rm^a > 1$; otherwise no solution with $x^* > 0$ exists. It is similarly easy
 552 to show that at most one intersection point exists for exponentials, stretched exponentials, and
 553 half-Gaussians.

554 The property also holds for any concave dose-response curve with $w''(x) < 0$. We prove this as
 555 follows. Any intersection point x^* is the solution of

$$F(x^*) = r$$

556 where $F(x) \equiv \frac{w(x)}{w(\frac{x}{m})}$. We will show that $F(x)$ is monotonic and therefore the above equation has at
 557 most one solution. We have

$$F'(x) = \frac{w'(x)w(\frac{x}{M}) - \frac{1}{M}w(x)w'(\frac{x}{M})}{w(\frac{x}{M})^2},$$

558 and $F'(x)$ has the same sign as the numerator $\mathcal{N}(x) = w'(x)w(\frac{x}{M}) - \frac{1}{M}w(x)w'(\frac{x}{M})$. Since $w(x)$ is a
 559 decreasing function and $m > 1$, $w(\frac{x}{m}) > w(x) > \frac{1}{m}w(x)$. When $w''(x) < 0$, we also have $w'(x) < w'(\frac{x}{M})$.
 560 Since $w'(x) < 0$, this implies $|w'(x)| > |w'(\frac{x}{m})|$, and $\mathcal{N}(x) < 0$. Therefore $F(x)$ is monotonically
 561 decreasing.

562 Proof of the accessibility property

563 To derive the ordering condition, let us start with the simplest case of two single mutations A_i , A_j
 564 occurring on the wild type background. There are correspondingly four different genotypes W ,
 565 WA_i , WA_j , WA_iA_j , which are listed in decreasing order of fitness at $x = 0$. Let the intersection of
 566 the DR curves of two genotypes σ_1 and σ_2 occur at $x = X_{\sigma_1, \sigma_2}$. Then X_{W, WA_j} is given by the solution
 567 $x^*(r_j, m_j)$ of

$$w(x) = r_j w(\frac{x}{m_j}),$$

568 and X_{WA_i, WA_iA_j} is given by the solution of

$$r_i w(\frac{x}{m_i}) = r_j r_i w(\frac{x}{m_i m_j}).$$

569 This last equation can be re-written as

$$w(x') = r_j w(\frac{x'}{m_j}),$$

570 where $x' = \frac{x}{m_i}$. Comparing this with the first equation above, we have

$$X_{WA_i, WA_iA_j} = m_i X_{W, WA_j} > X_{W, WA_j}. \quad (3)$$

571 This equation tells us that whenever the double mutant is fitter than one of the single mutants, the
 572 wild type must be less fit than the *other* single mutant. Consequently, when the double mutant is
 573 fitter than both the single mutants, the WT must be less fit than both the single mutants. In other
 574 words, the number of single mutants fitter than the wild type cannot be less than the number of
 575 single mutants less fit than the double mutant. This is the ordering condition given in the main text.
 576 Any ordering that violates this condition is a *forbidden ordering*. For greater clarity, we list all the
 577 possible forbidden orderings (up to interchange of indices i and j).

$$\begin{aligned} W &> WA_i > WA_iA_j > WA_j \\ W &> WA_iA_j > WA_i > WA_j \\ WA_iA_j &> W > WA_i > WA_j \\ WA_iA_j &> WA_i > W > WA_j \end{aligned} \quad (4)$$

578 Although we showed this for two single mutations in the wild type background, the same arguments
 579 hold for any two sets of mutations in any background, since the succession of orderings is
 580 independent of the rescalings of the fitness and concentration axes. To put it more precisely, W , A_i
 581 and A_j are any three non-overlapping sets of mutations, where A_i and A_j are non-empty sets.

582 Next we use this to prove the accessibility property. Let σ have n mutations. It is sufficient to
 583 prove that (i) any superset of σ with m or fewer mutations is accessible from all its own supersets
 584 with m or fewer mutations, for all $m \geq n$ (the statement follows from the case $m = L$); and that (ii)
 585 any subset of σ with m' or more mutations is accessible from any of its own subsets with m' or more
 586 mutations, for all $m' \leq n$ (the statement corresponds to $m' = 0$). We prove this by induction.

587 Firstly, we notice that the case $m = n$ is trivial, since σ is of accessible from itself. For the case of
 588 supersets, our base case is $m = n + 1$, and the assertion above holds because σ is a local fitness peak,
 589 and therefore accessible from all its supersets with $n + 1$ mutations, which are of course accessible
 590 from themselves.

591 Now we prove the induction step. Assume that all supersets of σ that have m or fewer mutations
 592 (where $m \geq n$) are accessible from all their supersets with m or fewer mutations. Consider a superset

593 Σ of σ with m mutations, and denote it by $\Sigma = \sigma A$, where A is the set of mutations in Σ not present
 594 in σ . By assumption, σ is accessible from Σ . In the following, we use the notation $\sigma_1 > \sigma_2$ to indicate
 595 that a genotype σ_1 is fitter than a genotype σ_2 (we use the " $<$ " and " $=$ " signs in a similar way).
 596 Therefore, we have $\sigma > \Sigma = \sigma A$.

597 Now consider any superset of Σ with $m + 1$ mutations, where the additional mutation not
 598 contained in Σ is denoted B . Then this superset can be denoted by $\Sigma B = \sigma AB$. We must have
 599 $\sigma > \sigma B$ since σ is a local fitness peak. We now have the relation $\sigma > \sigma A, \sigma B$. Therefore we must have
 600 $\sigma AB < \sigma A, \sigma B$, for otherwise we violate the ordering condition. Now since $\Sigma B = \sigma AB < \sigma A = \Sigma$, Σ
 601 must be accessible from ΣB , proving that any superset with m mutations is accessible from any of
 602 its supersets with $m + 1$ mutations. This completes the proof of the induction step.

603 The proof for the case of subsets is essentially the same, utilizing the symmetry between the
 604 wild type and the double mutant in the ordering condition.

605 The accessibility property follows entirely from the ordering condition, and hence any landscape
 606 that obeys the ordering condition will obey the theorem. The ordering condition follows from
 607 $X_{W,WA_i} < X_{WA_j,WA_iA_j}$, as obtained in (3). However, this same inequality obtains under more general
 608 conditions. To see this, let us define the null-fitness of the double mutant WA_iA_j as r_{ij} , and the
 609 resistance of the double mutant as m_{ij} . The dose-response curves of W and WA_j intersect at
 610 $X_{W,WA_j} = x^*(r_j, m_j)$, whereas the curves for WA_i and WA_iA_j intersect at

$$X_{WA_i,WA_iA_j} = m_i x^* \left(\frac{r_{ij}}{r_i}, \frac{m_{ij}}{m_i} \right).$$

611 Now it is easy to show that $x^*(r, m)$ is a decreasing function of both r and m . Therefore $X_{WA_i,WA_iA_j} >$
 612 X_{W,WA_j} holds if $r_{ij} \leq r_i r_j$ and $m_{ij} \leq m_i m_j$.

613 Number of local fitness peaks

614 When dealing with complex fitness landscapes with parameters that can vary across species and
 615 environments, a useful strategy is to model the fitness effects as random variables that are chosen
 616 from a probability distribution (Kauffman and Levin, 1987; Szendro et al., 2013; Hwang et al., 2018).
 617 In the limit of large system size L , many properties emerge that are independent of the details of
 618 the system. In practice, even relatively small system sizes are often approximated well by results
 619 obtained in the asymptotic limit.

620 The mean number of peaks with n mutations in the tradeoff-induced landscapes is

$$K_n(x) = \binom{L}{n} Q_n(x),$$

621 where $\binom{L}{n}$ is the total number of genotypes with n mutations, and $Q_n(x)$ is the probability that
 622 a genotype with n mutations is a fitness maximum at antibiotic concentration x . Then the total
 623 number of peaks at x is $\sum_n K_n(x)$. Let the resistance of a genotype σ be $M = \prod_{i=1}^n m_i$, and likewise its
 624 null-fitness be $R = \prod_{i=1}^n r_i$. The genotype σ is a local fitness maximum if it is fitter than all its subsets
 625 with $n - 1$ mutations and all its supersets with $n + 1$ mutations.

626 To find the concentration at which the curves of σ and its neighboring genotypes intersect, we
 627 start with the simplest case of the dose-response curves of the wild type and a single mutant (r, m) .
 628 These curves intersect at the solution $x^*(r, m)$ of $w(x) = rw\left(\frac{x}{m}\right)$, which is a decreasing function of
 629 r and m . The wild type is fitter than the single mutant when $x > x^*(r, m)$. Now the intersection of
 630 the DR curves of a genotype σ with n mutations and a subset with $n - 1$ mutations that lacks the
 631 mutation (r_i, m_i) occurs at the solution of

$$w\left(\frac{x}{\left(\frac{M}{m_i}\right)}\right) = r_i w\left(\frac{x}{\left(\frac{M}{m_i}\right)m_i}\right)$$

632 which is read off as $\frac{M}{m_i} x^*(r_i, m_i)$. Likewise, the intersection of the DR curves of σ and a superset with
 633 $n + 1$ mutations that contains the additional mutation (r_j, m_j) occurs at $M x^*(r_j, m_j)$. Therefore σ is a

634 fitness maximum if

$$\frac{x^*(r_i, m_i)}{m_i} < \frac{x}{M} < x^*(r_j, m_j) \quad (5)$$

635 for all i and j with $1 \leq i < n$ and $n < j \leq L$. Alternatively,

$$\log m_i - \log x^*(r_i, m_i) > \log M - \log x > -\log x^*(r_j, m_j). \quad (6)$$

636 Let us consider the regime where $L, n \gg 1$. Then $\log M \sim n\langle \log m \rangle$; if $\log x$ is smaller than $O(n)$,
 637 it is clear that the second inequality is almost certainly satisfied whereas the probability of the
 638 first inequality is vanishingly small. Both the probabilities are finite if $\log x \sim n\langle \log m \rangle$. Thus the
 639 probability of σ being a fitness peak is maximized when $\log x = \log(M) + \eta$, where $\eta \sim O(1)$ and
 640 depends on the details of the distribution $P(r, m)$. Thus the mean number of fitness peaks with n
 641 mutations is maximal at $x_{\max}(n)$ where to leading order $\log x_{\max}(n) \sim n\langle \log m \rangle$, independent of any
 642 further details of the system.

643 The total number of genotypes with n mutations is $\binom{L}{n}$, and $\log \binom{L}{n} \simeq LH(\rho)$, where $\rho = \frac{n}{L}$, and

$$H(\rho) = -[\rho \log \rho + (1 - \rho) \log(1 - \rho)]. \quad (7)$$

644 The mean number of fitness maxima can be found by multiplying this with Q_n . One may expect Q_n
 645 to be exponentially small in L , since a total of L inequalities (as indicated in (6)) need to be satisfied.
 646 However, this is complicated by the fact that the probabilities of the inequalities being satisfied are
 647 not independent. The correlations between the inequalities would depend on the distribution of
 648 $P(r, m)$ and the dose-response curve. If the correlations are sufficiently weak, one might still expect
 649 to find an exponential scaling in large L . To leading order $\binom{L}{n}$ is itself exponential in L , and if the
 650 probability that a genotype is a fitness peak is exponentially small in L , we expect the mean number
 651 of peaks K_n to be exponential in L as well. This is supported by the scaling shown in the inset of
 652 Figure 4A.

653 For the simulation results shown in the main text we chose a joint distribution of the form

$$P(r, m) = P(r)P(m|r) = 6r(1 - r)\left(m - \frac{1}{\sqrt{r}}\right)e^{-\left(m - \frac{1}{\sqrt{r}}\right)}. \quad (8)$$

654 The conditional distribution $P(m|r)$ is a shifted gamma distribution. The shift ensures that the curves
 655 of a background genotype and a mutant intersect.

656 Sign epistasis in the limit of large L and n

657 Sign epistasis with respect to a certain mutation occurs when the mutation is beneficial in one
 658 background but deleterious in another. To understand sign epistasis, we ask for the number of
 659 backgrounds n_b in which a mutation is beneficial at concentration x . If one considers only those
 660 backgrounds that have n mutations, then n_b would depend both on n and x .

661 In a statistical ensemble of landscapes, one may compute the probability P_b that a mutation
 662 is beneficial in a background with n mutations, and of course $\langle n_b \rangle = P_b \binom{L}{n}$. In the limit of large L
 663 and n , P_b exhibits some universal properties to leading order. When $\log x > n\langle \log m \rangle$, we are in the
 664 regime of high concentration relative to n , and we expect a mutation to be beneficial. We find that
 665 to leading order $P_b(\rho, x) = 1$, with corrections that are exponentially small in n . When $\log x < n\langle \log m \rangle$,
 666 we are at concentrations that are too low to prefer additional mutations, and P_b is exponentially
 667 small in n . When $\log x = n\langle \log m \rangle$, we are at the threshold concentration where a new mutation
 668 becomes beneficial. Here we find that $P_b \simeq \frac{1}{2}$. For large L we therefore expect a steep transition
 669 from 0 to 1 as the concentration crosses the threshold value (see inset of Figure ??).
 670 Consider a mutation (r, m) in a background with n mutations $(r_1, m_1), (r_2, m_2) \dots (r_n, m_n)$. The mutation
 671 is beneficial in this background if

$$m_1 m_2 \dots m_n x^*(r, m) < x \quad (9)$$

672 Taking logarithms, we have

$$-\log x^*(r, m) > \sum_{i=1}^n \log m_i - \log x. \quad (10)$$

673 Define $\xi = \frac{\log x}{L}$ and $\rho = \frac{n}{L}$, and $z = -\log x^*(r, m)$. Then the above inequality becomes

$$\frac{z}{n} > \frac{1}{n} \sum_{i=1}^n \log m_i - \frac{\xi}{\rho} \quad (11)$$

674 Let the distribution of z be $P(z)$, and let $C_z(z) = \int_z^\infty P_z(x) dx$. Define the random variable $\omega =$
 675 $\frac{1}{n} \sum_{i=1}^n (\log m_i - \frac{\xi}{\rho})$, and denote its distribution $P(\omega)$. Then the probability that a mutation is beneficial
 676 in a background with n mutations is

$$P_b(\rho, \xi) = \int_{-\infty}^\infty P(\omega) C_z(n\omega) d\omega \quad (12)$$

(13)

677 The mean number of backgrounds with n mutations in which a mutation is beneficial is $n_b(\rho, \xi) =$
 678 $P_b(\rho, \xi) \binom{L}{n}$. Note that $\langle \omega \rangle = \langle \mu \rangle - \frac{\xi}{\rho}$ where $\mu = \log m$. When $n \gg 1$, $C_z(n\omega) \simeq 1$ for $\omega < 0$ and $C_z(n\omega) \simeq 0$
 679 for $\omega > 0$, with a sharp transition from 1 to 0 that happens within a region of width $\sim O(1/n)$ of the
 680 origin. Also for large n , $P(\omega)$ is sharply peaked around $\langle \omega \rangle$ over a region of width $O(1/\sqrt{n})$.

681 When $\langle \omega \rangle < 0$, $C_z(n\omega) \simeq 1$ over this entire region, as observed before. Thus to leading order,
 682 $P_b(\rho, \xi) = 1$. The mean number of backgrounds in which a mutation is beneficial is $n_b(\rho, \xi) =$
 683 $P_b(\rho, \xi) \binom{L}{\rho L}$.

$$n_b(\rho, \xi) \simeq \sqrt{\frac{2\pi}{L}} \frac{1}{\sqrt{\rho(1-\rho)}} e^{LH(\rho)} \quad (14)$$

684 where $H(\rho)$ is defined in (7). Therefore

$$\log n_b \simeq LH(\rho) \quad (15)$$

685 to leading order.

686 When $\langle \omega \rangle > 0$, the dominant contribution to the integral in (12) comes from $\omega \leq 0$, since $C_z(n\omega)$
 687 quickly drops from 1 to zero for $\omega > 0$. Further, since $C_z(\omega) \simeq 1$ for $\omega < 0$ (except for a region of width
 688 $O(1/n)$ around $\omega = 0$, as observed before), we can approximate $\log P_b(\rho, \xi)$ simply by the probability
 689 that $\omega < 0$. Then

$$\log P_b(\rho, \xi) \simeq -nI\left(-\frac{\xi}{\rho}\right)$$

690 where I is the large deviation function of $-\mu$, and

$$\log n_b(\rho, \xi) \simeq L \left[H(\rho) - \rho I\left(-\frac{\xi}{\rho}\right) \right].$$

691 This implies that n_b is reduced by a factor that is exponentially small in L compared to (15)), and
 692 therefore the fraction of backgrounds in which a mutation is beneficial is very small.

693 Finally, when $\langle \omega \rangle = 0$, i.e $\xi = \frac{n}{L} \langle \mu \rangle$, $P(\omega)$ is centered at the origin and decays over a width $O(1/\sqrt{n})$.
 694 For $\omega > 0$, $C_z(n\omega)$ is 0 except over a much smaller width $O(1/n)$ to the right of the origin, whereas
 695 for $\omega \leq 0$, it is 1 except for a small region of width $O(1/n)$ left of the origin. Thus the dominant
 696 contribution to the integral in (12) comes from $\omega \leq 0$, and as before, P_b can be approximated by the
 697 probability $\omega \leq 0$. Due to the central limit theorem, $P(\omega)$ is approximately Gaussian and therefore
 698 symmetric around $\omega = 0$, and therefore $P_b \simeq \frac{1}{2}$. Consequently, we should have

$$n_b(\rho, \xi) \simeq \frac{1}{2} \sqrt{\frac{2\pi}{L}} \frac{1}{\sqrt{\rho(1-\rho)}} e^{LH(\rho)},$$

699 which is $\frac{1}{2}$ times the total number of backgrounds given by (14). This proves that the concentration
 700 where the mutation is beneficial in half of the backgrounds is given by $\langle \omega \rangle = 0$ or $\log x = n \langle \log m \rangle$ for
 701 large L and n .

702 **Epistasis in null-fitness and MIC for *E. coli* in the presence of ciprofloxacin**

703 Primary data shown in Table 1 were obtained from *Marcusson et al. (2009)*. In the third and
704 fifth columns, the errors in the $\log(x)$ are calculated as $\frac{|\Delta x|}{x}$, where $|\Delta x|$ are the standard error as
705 calculated from the standard deviations reported in the paper. The errors in columns four and
706 six were estimated as $\sum_i \frac{|\Delta x_i|}{x_i}$ where the sum is over the mutations present in the combinatorial
707 mutants. The detectable cases of epistasis are marked in blue. Negative epistasis is found in all
708 these cases. Also, all the cases with epistasis correspond to two or more mutations that affect the
709 same chemical pathways.

Strain	String	log null-fitness	Non-epistatic	log MIC	Non-epistatic
MG1655	00000	0.00 ($\pm .004$)	NA	0.00 ($\pm .35$)	NA
LM378	10000	0.01 ($\pm .016$)	NA	3.17 ($\pm .70$)	NA
LM534	01000	-0.01 ($\pm .018$)	NA	2.75 ($\pm .70$)	NA
LM202	00010	-0.19 ($\pm .020$)	NA	0.69 ($\pm .70$)	NA
LM351	00001	-0.094 ($\pm .014$)	NA	1.08 ($\pm .70$)	NA
LM625	11000	-0.030 ($\pm .011$)	0.0 ($\pm .038$)	3.17 ($\pm .70$)	5.92 (± 1.1)
LM421	10010	-0.15 ($\pm .019$)	-0.18 ($\pm .040$)	4.13 ($\pm .70$)	3.56 (± 1.1)
LM647	10001	-0.051 ($\pm .013$)	-0.084 ($\pm .034$)	3.44 ($\pm .70$)	4.65 (± 1.1)
LM538	01010	-0.19 ($\pm .020$)	-0.20 ($\pm .042$)	4.13 ($\pm .70$)	3.46 (± 1.1)
LM592	01001	-0.083 ($\pm .015$)	-0.10 ($\pm .036$)	3.16 ($\pm .70$)	3.83 (± 1.1)
LM367	00011	-0.20 ($\pm .026$)	-0.28 ($\pm .038$)	2.06 ($\pm .70$)	1.77 (± 1.1)
LM695	11010	-0.24 ($\pm .017$)	-0.19 ($\pm .058$)	3.85 ($\pm .70$)	6.61 (± 1.1)
LM691	11001	-0.073 ($\pm .013$)	-0.094 ($\pm .052$)	3.85 ($\pm .70$)	7.00 (± 1.4)
LM709	10011	-0.24 ($\pm .027$)	-0.274 ($\pm .054$)	4.54 ($\pm .70$)	4.94 (± 1.4)
LM595	01011	-0.51 ($\pm .051$)	-0.294 ($\pm .056$)	4.54 ($\pm .70$)	4.52 (± 1.4)
LM701	11011	-0.42 ($\pm .037$)	-0.284 ($\pm .072$)	4.83 ($\pm .70$)	7.69 (± 1.8)

Table 1. The names of the strains and values of null-fitness (in competition assays with the wild type) in the third column and MIC (of ciprofloxacin) in the fifth column are obtained from *Marcusson et al. (2009)*. The binary strings represent the same genotypes as given in the caption of Figure 2. The values in parentheses are error estimates. The fourth and sixth columns are respectively the null-fitness and MIC values expected in the absence of epistasis. NA denotes the cases where this is not applicable.

710 References

711 Alexander, H. K. and MacLean, C. (2018). Stochastic bacterial population dynamics prevent the emergence of
712 antibiotic resistance within the mutant selection window. *bioRxiv*, page 458547.

713 Andersson, D. I. and Hughes, D. (2014). Microbiological effects of sublethal levels of antibiotics. *Nature Reviews
714 Microbiology*, 12:465–478.

715 Chevereau, G., Dravecká, M., Batur, T., Guvenek, A., Ayhan, D. H., Toprak, E., and Bollenbach, T. (2015). Quantifying
716 the determinants of evolutionary dynamics leading to drug resistance. *PLOS Biology*, 13:e1002299.

717 Chou, H.-H., Chiu, H.-C., Delaney, N. F., Segrè, D., and Marx, C. J. (2011). Diminishing returns epistasis among
718 beneficial mutations decelerates adaptation. *Science*, 332:1190–1192.

719 Crona, K., Gavryushkin, A., Greene, D., and Beerenwinkel, N. (2017). Inferring genetic interactions from compara-
720 tive fitness data. *eLife*, 6:e28629.

721 Crona, K., Greene, D., and Barlow, M. (2013). The peaks and geometry of fitness landscapes. *Journal of Theoretical
722 Biology*, 318:1–10.

723 de Visser, J. A. G. M. and Krug, J. (2014). Empirical fitness landscapes and the predictability of evolution. *Nature
724 Reviews Genetics*, 15(7):480.

725 de Visser, J. A. G. M., Park, S.-C., and Krug, J. (2009). Exploring the effect of sex on empirical fitness landscapes. *American
726 Naturalist*, 174:S15–S30.

727 de Vos, M. G. J., Schoustra, S. E., and de Visser, J. A. G. M. (2018). Ecology dictates evolution? About the
728 importance of genetic and ecological constraints in adaptation. *Europhysics Letters*, 122:58002.

729 Drlica, K., Hiasa, H., Kerns, R., Malik, M., Mustaev, A., and Zhao, X. (2009). Quinolones: action and resistance
730 updated. *Current topics in medicinal chemistry*, 9(11):981–998.

731 Durão, P., Balbontín, R., and Gordo, I. (2018). Evolutionary mechanisms shaping the maintenance of antibiotic
732 resistance. *Trends in microbiology*, 26(8):677–691.

733 Ferretti, L., Schmiegeit, B., Weinreich, D., Yamauchi, A., Kobayashi, Y., Tajima, F., and Achaz, G. (2016). Measuring
734 epistasis in fitness landscapes: the correlation of fitness effects of mutations. *Journal of theoretical biology*,
735 396:132–143.

736 Flynn, K. M., Cooper, T. F., Moore, F. B.-G., and Cooper, V. S. (2013). The environment affects epistatic interactions
737 to alter the topology of an empirical fitness landscape. *PLoS Genetics*, 9:e1003426.

738 Franke, J., Klözer, A., de Visser, J. A. G. M., and Krug, J. (2011). Evolutionary accessibility of mutational pathways.
739 *PLoS Computational Biology*, 7(8):e1002134.

740 Gillespie, J. H. (1984). Molecular evolution over the mutational landscape. *Evolution*, 38:1116–1129.

741 Gorter, F. A., Aarts, M. G. M., Zwaan, B. J., and de Visser, J. A. G. M. (2016). Dynamics of adaptation in experimental
742 yeast populations exposed to gradual and abrupt change in heavy metal concentration. *American Naturalist*,
743 187:110–119.

744 Gorter, F. A., Aarts, M. G. M., Zwaan, B. J., and de Visser, J. A. G. M. (2018). Local fitness landscapes predict yeast
745 evolutionary dynamics in directionally changing environments. *Genetics*, 208:307–322.

746 Gullberg, E., Cao, S., Berg, O. G., Ilbäck, C., Sandegren, L., Hughes, D., and Andersson, D. I. (2011). Selection of
747 resistant bacteria at very low antibiotic concentrations. *PLoS pathogens*, 7(7):e1002158.

748 Hughes, D. and Andersson, D. I. (2017). Evolutionary trajectories to antibiotic resistance. *Annual Review of
749 Microbiology*, 71:579–596.

750 Hwang, S., Schmiegeit, B., Ferretti, L., and Krug, J. (2018). Universality classes of interaction structures for NK
751 fitness landscapes. *Journal of Statistical Physics*, 172:226–278.

752 Kauffman, S. and Levin, S. (1987). Towards a general theory of adaptive walks on rugged landscapes. *Journal of
753 theoretical Biology*, 128(1):11–45.

754 Kauffman, S. A. and Weinberger, E. D. (1989). The nk model of rugged fitness landscapes and its application to
755 maturation of the immune response. *Journal of theoretical biology*, 141(2):211–245.

756 Khan, S., Beattie, T. K., and Knapp, C. W. (2017). The use of minimum selectable concentrations (mscs) for
757 determining the selection of antimicrobial resistant bacteria. *Ecotoxicology*, 26(2):283–292.

758 Kingman, J. F. (1978). A simple model for the balance between selection and mutation. *Journal of Applied
759 Probability*, 15(1):1–12.

760 Knopp, M. and Andersson, D. I. (2018). Predictable phenotypes of antibiotic resistance mutations. *mBio*,
761 9(3):e00770–18.

762 Kolpin, D. W., Skopec, M., Meyer, M. T., Furlong, E. T., and Zaugg, S. D. (2004). Urban contribution of pharmaceuti-
763 cals and other organic wastewater contaminants to streams during differing flow conditions. *Science of the
764 Total Environment*, 328(1-3):119–130.

765 Levin, B. R., Perrot, V., and Walker, N. (2000). Compensatory mutations, antibiotic resistance and the population
766 genetics of adaptive evolution in bacteria. *Genetics*, 154(3):985–997.

767 Marcusson, L. L., Frimodt-Møller, N., and Hughes, D. (2009). Interplay in the selection of fluoroquinolone
768 resistance and bacterial fitness. *PLoS pathogens*, 5(8):e1000541.

769 Marrec, L. and Bitbol, A.-F. (2018). Quantifying the impact of a periodic presence of antimicrobial on resistance
770 evolution in a homogeneous microbial population of fixed size. *Journal of Theoretical Biology*, 457:190–198.

771 Melnyk, A. H., Wong, A., and Kassen, R. (2015). The fitness costs of antibiotic resistance mutations. *Evolutionary
772 applications*, 8(3):273–283.

773 Mira, P. M., Meza, J. C., Nandipati, A., and Barlow, M. (2015). Adaptive landscapes of resistance genes change as
774 antibiotic concentrations change. *Molecular biology and evolution*, 32(10):2707–2715.

775 Neidhart, J., Szendro, I. G., and Krug, J. (2014). Adaptation in tunably rugged fitness landscapes: the rough mount
776 fuji model. *Genetics*, 198(2):699–721.

777 Ogbunugafor, C. B., Wylie, C. S., Diakite, I., Weinreich, D. M., and Hartl, D. L. (2016). Adaptive landscape by
778 environment interactions dictate evolutionary dynamics in models of drug resistance. *PLoS computational
779 biology*, 12(1):e1004710.

780 Ojkic, N., Lilja, E., Direito, S., Dawson, A., Allen, R. J., and Waclaw, B. (2019). A roadblock-and-kill model explains
781 the action of the dna-targeting antibiotic ciprofloxacin. *bioRxiv*, page 791145.

782 Perelson, A. S. and Macken, C. A. (1995). Protein evolution on partially correlated landscapes. *Proceedings of the
783 National Academy of Sciences*, 92(21):9657–9661.

784 Poelwijk, F. J., Kiviet, D. J., Weinreich, D. M., and Tans, S. J. (2007). Empirical fitness landscapes reveal accessible
785 evolutionary paths. *Nature*, 445(7126):383.

786 Poelwijk, F. J., Tănase-Nicola, S., Kiviet, D. J., and Tans, S. J. (2011). Reciprocal sign epistasis is a necessary
787 condition for multi-peaked fitness landscapes. *Journal of theoretical biology*, 272(1):141–144.

788 Regoes, R. R., Wiuff, C., Zappala, R. M., Garner, K. N., Baquero, F., and Levin, B. R. (2004). Pharmacodynamic
789 functions: a multiparameter approach to the design of antibiotic treatment regimens. *Antimicrobial agents
790 and chemotherapy*, 48(10):3670–3676.

791 Rehman, A., Patrick, W. M., and Lamont, I. L. (2019). Mechanisms of ciprofloxacin resistance in *Pseudomonas
792 aeruginosa*: new approaches to an old problem. *Journal of Medical Microbiology*, 68:1–10.

793 Schenk, M. F., Szendro, I. G., Salverda, M. L. M., Krug, J., and de Visser, J. A. G. M. (2013). Patterns of epistasis
794 between beneficial mutations in an antibiotic resistance gene. *Molecular biology and evolution*, 30(8):1779–
795 1787.

796 Schmiegelt, B. and Krug, J. (2014). Evolutionary accessibility of modular fitness landscapes. *Journal of Statistical
797 Physics*, 154(1-2):334–355.

798 Schoustra, S., Hwang, S., Krug, J., and de Visser, J. A. G. M. (2016). Diminishing-returns epistasis among random
799 beneficial mutations in a multicellular fungus. *Proc. Roy. Soc. B*, 283:20161376.

800 Szendro, I. G., Schenk, M. F., Franke, J., Krug, J., and de Visser, J. A. G. M. (2013). Quantitative analyses of empirical
801 fitness landscapes. *Journal of Statistical Mechanics: Theory and Experiment*, 2013(01):P01005.

802 Taute, K. M., Gude, S., Nghe, P., and Tans, S. J. (2014). Evolutionary constraints in variable environments, from
803 proteins to networks. *Trends in Genetics*, 30:192–198.

804 Weinreich, D. M., Delaney, N. F., DePristo, M. A., and Hartl, D. L. (2006). Darwinian evolution can follow only very
805 few mutational paths to fitter proteins. *Science*, 312:111–114.

806 Weinreich, D. M., Lan, Y., Wylie, C. S., and Heckendorn, R. B. (2013). Should evolutionary geneticists worry about
807 higher-order epistasis? *Current opinion in genetics & development*, 23(6):700–707.

808 Weinreich, D. M., Watson, R. A., and Chao, L. (2005). Perspective: sign epistasis and genetic constraint on
809 evolutionary trajectories. *Evolution*, 59(6):1165–1174.

810 Wistrand-Yuen, E., Knopp, M., Hjort, K., Koskineni, S., Berg, O. G., and Andersson, D. I. (2018). Evolution of
811 high-level resistance during low-level antibiotic exposure. *Nature communications*, 9(1):1599.

812 Wood, K. B., Wood, K. C., Nishida, S., and Cluzel, P. (2014). Uncovering scaling laws to infer multidrug response of
813 resistant microbes and cancer cells. *Cell Reports*, 6:1073–1084.

814 Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding and selection in evolution. *Proc. 6th Int. Cong.
815 Genet.*, 1:356–366.

816 Wünsche, A., Dinh, D. M., Satterwhite, R. S., Arenas, C. D., Stoebel, D. M., and Cooper, T. F. (2017). Diminishing-
817 returns epistasis decreases adaptability along an evolutionary trajectory. *Nature Ecology & Evolution*, 1:0061.