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Abstract

Whole genome comparisons based on Average Nucleotide Identities (ANI), and
the Genome-to-genome distance calculator have risen to prominence in rapidly classify-
ing taxa using whole genome sequences. Some implementations have even been pro-
posed as a new standard in species classification and have become a common technique
for papers describing newly sequenced genomes. However, attempts to apply whole ge-
nome divergence data to delineation of higher taxonomic units, and to phylogenetic in-
ference have had difficulty matching those produced by more complex phylogenetics
methods. We present a novel method for generating reliable and statistically supported
phylogenies using established ANI techniques. For the test cases to which we applied the
developed approach we obtained accurate results up to at least the family level. The de-
veloped method uses non-parametric bootstrapping to gauge reliability of inferred
groups. This method offers the opportunity make use of whole-genome comparison data
that is already being generated to quickly produce accurate phylogenies. Additionally, the

developed ANI methodology can assist classification of higher order taxonomic groups.

Keywords: Average nucleotide identity (ANI), species delineation, genome evolution,

taxonomy
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Significance Statement

The average nucleotide identity (ANI) measure and its iterations have come to
dominate in-silico species delimitation in the past decade. Yet the problem of gene con-
tent has not been fully resolved, and attempts made to do so contain two metrics which
makes interpretation difficult at times. We provide a new single based ANI metric created
from the combination of genomic content and genomic identity measures. Our results
show that this method can handle comparisons of genomes with divergent content or
identity. Additionally, the metric can be used to create distance based phylogenetic trees
that are comparable to other tree building methods, while also providing a tentative met-

ric for categorizing organisms into higher level taxonomic classifications.


https://doi.org/10.1101/2020.01.15.908137
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.15.908137; this version posted January 16, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Introduction

DNA-DNA Hybridization (DDH) holds the distinction of being the gold standard for
species delineation (1). The method is technically challenging and its results at times are
poorly reproducible across labs. Consequently, ongoing efforts attempt to supplement or
replace DDH with in silico methods by taking advantage of the ongoing revolution in ge-
nome sequencing (2—6). One of the major approaches has been the Average Nucleotide
Identity (ANI) (2).

ANI was first proposed in 2005. At the time the method used the average identity
of shared open reading frames (ORFs) instead of the whole genome (2). The authors de-
fined a species level ANI cutoff and examined large disparities in gene content among the
strains and species in their dataset. A year later, they explored this metric in greater depth
and observed that ANI was correlated with the percent of content shared, but that a sig-
nificant amount of genomic nucleotide divergence (1-2%) needed to have occurred be-
fore there were major shifts in genome content (7). In 2007, the emphasis shifted from
ORFs to the whole genome as the ANI method was adapted to directly compare to DDH
(3). This shift led to the development of programs such as the jSpecies Java application
which could perform the Goris method in a local and scalable manner (8). However, the
consideration of the varying gene content became de-emphasized with the default export-
able output from jSpecies not including any reference to shared content in comparisons.
This de-emphasis on gene content is largely irrelevant when comparing closely related
organisms due to the correlation between ANI and shared genome content. Yet this be-
comes a problem when only fractions of the genomes are shared, and can lead to spurious

ANI results.
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The problem of shared gene content was examined again in 2015 with the publi-
cation of the gANI method (6). This approach explicitly considers the shared gene con-
tent and offers two separate delimiters for a species: gANI (global ANI, which was based
off the 2005 method), as well as an “Alignment Fraction” (AF), a measure of the propor-
tion of genes shared. While gANI offers an important upgrade to the ANI paradigm it
does contain an important limitation. Namely, there is no obvious answer on how to in-
terpret a comparison between two taxa where the ANI is above the threshold and the AF
is below, or vice-versa, which is a problem given that these metrics are most often used
for species delimitation.

Here we suggest that ANI derived distance measures can also be used to recon-
struct phylogenies that reflect shared ancestry, thus providing a natural extension to
group species into genera and families. We introduce a single distance measure from
whole genome data incorporating both the ANI and AF, labeled Total Average Nucleo-
tide Identity (tANI) into the final metric. An advantage of the described method is that it
can be applied to high quality draft genomes prior to annotation and gene clustering. Ad-
ditional time is saved by using distance-based tree-building methods that are typically
faster than maximum-likelihood or Bayesian inference methods. Ignoring phylogenetic
information retained in individual gene families, this approach is not impacted by gene
transfers that create misleading phylogenetic information — a gene acquired from outside
the studied group will lower the alignment fraction, but it will not provide a signal mov-
ing the gene recipient closer to the root of the studied group. Furthermore, including the
AF in the calculation of pairwise distances incorporates point mutations and gene trans-

fers as processes of genome divergence into a single distance measure. We correct pair-
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wise distances for saturation and use bootstrap re-sampling to assess reliability. The ana-
lyzed test cases illustrate that this approach reliably resolves relations within genera and

families.
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Results

Necessity of Saturation Correction and AF incorporation. ANI values and the pro-
grams that calculate them were not designed with the intent of phylogenetic reconstruc-
tion. Consequently, the basic methodology works well within the confines of species de-
lineation; however, the ANI values (or the corresponding sequence divergence) become
prone to saturation and lose information when one attempts to compare more divergent
taxa. To illustrate this, we took two of our datasets, the Rhodobacterales, and the Aer-
omonadales, (Table 1) (see Table SO1 for detailed description of the datasets) and com-
pared the ANI values calculated from JSpecies (8) to our tANI method (Fig. 1). As ge-
nome comparisons move away from the within species scale that ANI was designed for
(2) the noise in the jSpecies ANI result become considerable. In extreme cases, the jSpe-
cies ANI value for a comparison can border on the species cutoffs despite incorporating
only a small fraction of the genomes. An example of this occurs in the Aeoromonadales
dataset. Aeromonas bivalvium CECT7113T is found to have jSpecies ANI values around
94% when compared to Aeromonas media CECT4232T; however, the AF has a value of
only 0.527 (significantly below the expected species cutoff). The effects of small align-
ment fraction and no correction for saturation is further illustrated in the topology of a
distance tree inferred from uncorrected jSpecies ANI values (Fig. 2). These results from
the Aeromonadales dataset clearly demonstrate the effect of saturation on phylogenetic
reconstruction beyond the most closely related of taxa (9). Through incorporation of AF
into the pairwise distance and correcting for saturation, the tANI method ameliorates the
issues described above. Our distance values increase steadily while uncorrected jSpecies

ANI enters the early stages of saturation at ~85% identity (Fig. 1). If using jSpecies ANI
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with the MUMmer algorithm, the saturation effects appear even earlier (data not shown).
We want to emphasize that our comparison with uncorrected ANI values should not be
seen as a criticism of the original ANI methods, rather we use the comparison to illustrate
the importance of considering AF and saturation in case ANI is used to infer shared an-

cestry.

Genome Size and GC Content Do Not Create a Detectable Bias.

Since our distance measure is based on the whole genome, differences in genomic traits,
such as size and GC-content, could bias the results of the calculations and introduce arte-
facts into the final phylogeny and their support values. To test this, we developed a da-
taset using the order Frankiales (Table 1), composed primarily of the genus Frankia.
This group has high variance in genome size (~4Mb to ~11 Mb) and considerable range
of GC-contents (~60% to ~75%) which made it an ideal test case.

The tANI based distance tree for the Frankiales (Fig. 3B) set was very similar to the
MLSA-derived reference phylogeny (Fig. 3A) (see the “Accuracy of the tANI Methods
Compared to Multi-Gene Methods” section for a more detailed analysis). Mapping the
size of the genome onto the tANI phylogeny showed no pattern of clustering by genome
size (Fig. S1 A). While some groups cluster with similar sizes (e.g. the F. coriariae and
F. alni clades), they match the MLSA topology and do not consistently group with only
similar sized genomes. Mapping the GC-content onto the tANI phylogeny produced a

similar result (Fig. S1 B), with no obvious patterns of GC-content bias.

Bootstrap Confidence Sets for tANI and core genome ML analyses are similar.


https://doi.org/10.1101/2020.01.15.908137
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.15.908137; this version posted January 16, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

To provide support values for our distance-based phylogenies, our script creates a set of
non-parametric bootstrapped distance matrices (see material and methods for details).
Inter-node certainty (IC) scores were calculated to assess the statistical uncertainty of the
trees derived from non-parametric bootstrapping (in the following labeled as “support
sets”). IC scores were calculated by mapping statistical support sets against reference
trees (the tree derived from the original data without bootstrapping) as implemented in
RAXxML v8.1 (10, 11). IC represents a quantification of the level of disagreement in a
support set for a particular node in a phylogeny; a higher score indicates less disagree-
ment between topologies. The tree certainty average (TCA) value is the average of IC
values across the entire tree, representing an assessment of overall conflict between the
support set and reference phylogeny (10). The Aeromonas dataset (Table 1) was used as a
test case as it offers an expanded core phylogeny in addition to the MLSA, allowing a
comparison between different whole genome methods. Comparing support datasets
against the best tree calculated using the same method, the TCA for the Aeromonas tANI
phylogeny was 0.86, 0.87 for the expanded core genome phylogeny, and .65 for the
MLSA phylogeny. Comparing between approaches (MLSA, tANI, Mashtree) results in
positive TCAs, i.e. the trees agree with one another more than they disagree; however,
the scores are below 0.4, with the exception of tANI and core genomes based analyses for
the Aeromonas dataset, which resulted in TCAs of 0.61 (Table S2). To further compare
our bootstrap method to other approaches, we calculated the Robinson-Foulds distances
within each of the support sets from the MLSA and tANI method and analyzed the pair-

wise distances using principal coordinate analysis (PCoA) (Fig. 4). The PCoA plot shows
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that the statistical support sets for both of the datasets co-localize with one another; indi-

cating that the support sets from the different methods represent similar tree space.

Accuracy of the tANI Methods Compared to Multi-Gene Methods.

For the Aeromonas test dataset, differences between the extended core phylogeny and the
tANI derived phylogeny are the placements of Aeromonas veronii AMC34 and the A. al-
losaccharophila clade (Fig. 5). Aeromonas veronii AMC34 is still placed within the ex-
tended A. veronii, sobria and allosaccharophila clade using the tANI method, but tANI
disagrees on the specific location, and places AMC34 at the base of the veronii group,
instead of base of the entire clade. This placement at the base of the veronii group shifts
the A. allosaccharophila and A. sobria strains to a more basal position in this clade.
However, AMC34’s placement is poorly supported in the tANI based analysis. Deeper
clades within the tANI phylogeny match those of the extended core phylogeny, and are
highly supported.

The phylogenies produced by the extended core MLSA and tANI for the
Frankiales dataset also had few differences (Fig. 3). Principle of the these was the diver-
gence of clades 2 and 3 since tANI and MLSA disagree over whether clade 2 or clade 3
split off first. There is further disagreement on the placement of individual taxa primarily
within clade 2 (see the placement of Frankia sp. Discariae BCU110501, Frankia sp.
Cglsl, and Frankia sp. EAN1pec). However, aside from these minor disagreements with-
in the clades, and differing levels of confidence (see bootstrap support, especially within

clade 5), these two methods largely reproduce the same phylogeny.
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Comparing different methods for the Rhodobacterales dataset yielded more com-
plex results (Fig. S2). Both the tANI and the core genome MLSA phylogenies have low
levels of support for the internal branches of most of the phylogeny, and disagree on the
placement of the genera Ruegeria, Loktanella, Roseobacter, and the several other single-
tons. The tANI and MLSA trees also disagree on the placement of Loktanella, with the
tANI grouping it as one small paraphyletic clade and several smaller monophyletic
clades, whereas the MLSA method groups Loktanella into one large paraphyletic group
and one small monphyletic group. tANI and MLSA trees both agree on keeping the Cau-
lobacterales a monophyletic clade, and keep the Leisingera genus together, both with
high support. Within Leisingera there is minor disagreement on the placement of the in-
dividual strains, but they are largely kept in the same branching pattern. The Ruegeria
groupings are also kept intact across the two trees. Further comparison of the tANI meth-
od on the Rhodobacterales dataset against other methods (see Mashtree section below)
implies the large amount of internal disagreement is implicit to the dataset, and will re-
quire more detailed analysis to untangle.

Additional visual confirmation for the results described above is provided by the split

graphs created for each of the datasets (see supplemental figures 3.,4,5 and 6).

Comparison of tANI Method with Mashtree.
Genome-based phylogenies have been in the literature for some time. As such, it is ap-
propriate to compare our methodology with other available whole-genome methods and

assess our methodologies strengths and weaknesses. To this end we compare our method
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to Mashtree (https://github.com/Iskatz/mashtree), which is an extension of the Mash
kmer-calculation (12)(Ondov et al., 2016).

For the Aeromonas dataset, Mashtree had only minor disagreements with our method
(Fig. S7 A). For example, MashTree moved the placement of A. media, and shuffled
members within the A. salmonicida and A. aquatica groups. This pattern generally re-
peats itself in the Rhodobacterales dataset (Fig. S7 B). Mashtree also kept Leisingera,
Rhodobacter and the major Ruegeria clade together in a similar fashion to the tANI phy-
logeny. Additionally, the MashTree phylogeny generally agrees with the branching pat-
terns the tANI phylogeny proposes, while deviating at nodes of low support in the tANI
and MSLA based phylogenies. However, Mashtree did separate Loktanella into a number
of monophyletic clades. Comparing the Mashtree topology with support sets from tANI,
MLSA, and core genome analyses gave results similar to the other TCA values compar-

ing between methods (Table S02).

This Novel Extension of ANI Matches Older Methodologies. Since tANI is based off a
species delimitation intended measure, we wanted to see if it maintained this original
purpose while also being able to produce phylogenies. To determine the species cutoff
based on a single genome-to-genome distance calculation we used a receiver operating
characteristic curve (ROC) analysis. Working on the union of the Aeromonas and
Rhodobacterales datasets, the ROC estimates a distance cutoff of 0.315, at a specificity of
99.984 and sensitivity of 99.200 against the accepted nomenclature (Fig. 6A). Examina-
tion of the ROC:s for the constituent datasets reveals that the two genera are not equally

easy to classify (Fig. 6B, 6C). However, when taxa in the Rhodobacterales set are reclas-
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sified along the lines suggested in the MLSA phylogeny (see supplemental table 3), the
genera curve improves in sensitivity from 80% to 99% while maintaining the same speci-

ficity (Fig. 6D).

Novel tANI Method Offers the Ability to Delimit Deeper Taxonomic Ranks.

One added benefit from our use of broader taxonomic samplings in some of our datasets
is the opportunity to test our distance measure against ANI and GGDC species cutoffs.
When the distances for every pair-wise comparison from the Aeromonadales and the
Rhodobacterales sets were plotted, and filtered for taxa suspected of misclassification
(see supplemental figure 8 for a version using NCBI classifications), a series of recog-
nizable peaks for each taxonomic rank were observed (Fig. 7). The ROCs were used to
provide statistical evidence for these observations. At the genus level, the Aeromonadales
(Fig. 8) and Rhodobacterales sets (Fig. 8B) have similar distance cutoffs (3.3 and 3.4,
respectively) and varied but generally high specificities (96.7% and 83.3%) and sensitivi-
ties (98.0% and 99.1%). At the family level, the combined datasets returned a cutoff of
4.57 and maintained specificity of 90.7% and sensitivity of 86.5% (Fig. 8C). At the order
level, the combined datasets fell off to 4.42 cutoff, 94.2% specificity and 71.44% sensi-
tivity, suggesting the method could not discriminate at this taxonomic rank (Fig. 8D). It

should be noted, that these values are likely to be highly dataset specific.

Misclassified Taxa.
A number of taxa in our datasets appear to be misclassified under incorrect genera, fami-

ly, order, and species labels (Table S3). These taxa fall into groups for which phylogenet-
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ic analyses support their misclassification. The ROC determined cutoffs also supported
that these taxa are outside of their assigned group. These taxa were reclassified into nov-
el groups along their phylogenetic lines for the purpose of our taxonomic rank cut-off
analyses (Table S4). Our tANI metric cutoff agreed with these decisions, and when redo-
ing the ROC analyses with these changes improved the sensitivities and specificities of
those cutoffs. There are three specific higher order classifications to which this applies:
Loktanella, Ruegeria, and Succinivibrionaceae. Additionally, several species level classi-

fications may need to be revised, specifically those mentioned in Table S3.
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Discussion

Success of tree-building.

The tANI method has demonstrated the capacity to match more sophisticated techniques.
tANI trees consistently showed comparable levels of conflict to reference phylogenies
and matched the level of confidence displayed by other methods such as MLSA when
examining the datasets used within this paper. The tANI methodology performed well at
the species, genus, family, and order levels; the relationships observed in the reference
trees held true in the our tANI trees. Furthermore, TCA tests have shown that our boot-
strapping methodology shares a significant portion of the uncertainty that other support
methods provide (Fig. 4). These phylogenies, and associated tests have provided evidence
to demonstrate the suitability for using ANI to infer phylogenies to at least the order level
and likely into higher ranks. The implemented bootstrap support values provide a means
to assess if genomes that are too divergent are included in an analysis.

tANI is not overwhelmed by biases.

The core of this work is predicated on the assumption that the genome as a whole con-
veys a significant amount of relevant information about the history of the organism. This
assumption is broadly comparable to those made in using genomic content information to
infer phylogeny and is subject to many of the same critiques (13). There are two primary
issues to consider.

First, in light of potentially rampant horizontal gene transfer (HGT), how much of a cell’s
genome will reflect a history of cell divisions rather than a composite of signals from the
organism’s recombination partners? Fortunately, in many instances HGT and shared an-

cestry reinforce one another (14, 15). How much this applies to deeper taxonomic ranks,
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however, is, unfortunately, not certain. It is possible that the flows of gene-sharing that
unite and divide such close relatives as Escherichia and Salmonella may not behave in
the same way with more distant relationships. For deep divergences a genome-based ap-
proach may fail because of highways of gene sharing (16); however, regarding the evolu-
tion within orders, gene transfer can be considered as one process contributing to the
gradual divergence of genomes (14) and contributes to tANI based distances. This gradu-
al divergence is reflected in a smaller alignment fraction in case of transfers that add a
new gene to the recipient genome, and in decreased nucleotide identity in case the trans-
fer results in replacement of a homologous. Our analyses of the Frankiales genomes (Fig.
S1) show that even in case of large differences in genome size due to deletion, duplica-
tion, and gene transfer the tANI based genome distances capture the same phylogenetic
signal that is retained in genes that are present in all the analyzed genomes.

In general, the tANI based approaches for within-order phylogenies compare well with
those obtained through genome core and MLSA analyses. The extent to which the noted
differences reflect lower resolution and certainty for the tANI based distances in between
genera comparisons, or the stronger impact of gene transfer events on sequence-based
methods remains to be determined. Different combinations of core genes can strongly
support contradicting phylogenies (17), suggesting that phylogenies from concatenated

aligned sequences should not automatically be considered more reliable.

Misclassified taxa.
Results from our methods on the Rhodobacterales dataset show that there is a clear sepa-

ration of the Loktanella and Ruegeria genera into multiple separate clades; however, Lok-
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tanella is significantly more fragmented (Fig. S2). The conclusion that these classifica-
tions should be re-described is supported by results from previous literature on Ruegeria.
While some studies supported a monophyletic clade (18, 19), these studies lack many of
the strains and taxa currently available, and the consistent non-monophyletic nature ob-
served in our study has been duplicated in other recent studies with similar species sam-
pling (9, 20). Loktanella may also require a revisit, as previous literature would suggest
that our results (Fig. S2) are more reflective of the actual phylogeny. Newer studies of
the genus and the larger groups to which they belong have included higher taxon sam-
pling in their phylogenetic analyses, which provide support for this non-monphyletic in-
terpretation of the genus (9, 20).

The Aeromonadales dataset suggests that the higher order classification of Succinivibri-
onaceae within the order may also be up for reconsideration (Fig. 2). Members of the
family Succinivibrionaceae are extremely distant from the rest of the Aeromonadales or-
der, with distance values reaching saturation. These values are so large that they com-
monly dwarfed the distance values calculated between other members of Aeromonadales
and the distant members of Gammaproteobacteria and Enterobacteriaceae. The individu-
al Succinivibrionaceae may be grouping together as the result of long branch attraction,
though it is difficult to assess the family in higher detail, as there are few sequences pub-
licly available. In addition, the original classification of Aeromonadales did not include
the family Succinivibrionaceae (21) and no further analyses were reported that confirmed
they should be included. This classification was seemingly the result of one 16S study
(22) and no further phylogenetic analyses appears to back this claim.

Deeper taxonomic ranks.
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In the same sense that ANI and GGDC have been used to delimit species (and in the case
of GGDC strains), we examined if tANI distances could provide a first indication to dis-
criminate between genus, family and order relationships. Clearly, grouping in higher
taxonomic levels should be based on phylogenetic analyses; however, distance values can
provide a first indication, especially in cases of poor taxon sampling. While our test sets
are not exhaustive, the results were promising. Using an optimal cut-off level (as deter-
mined using criteria determined by Youden 1950) genus assignments were achieved at a
rate of ~10% false positives and false negatives at ~1%. At family level, the false posi-
tives remained roughly unchanged, but the false negatives increased to ~14%. As with
previous iterations of ANI, different groups will require specific considerations outside of
a one cutoff fits all mold, as is evident given slight variances in optimal cutoffs for the

different datasets.

Conclusion

We have identified a valuable extension to the comparative analysis of whole-
genome data that are being routinely generated by researchers. The ability to produce vi-
able and statistically supported phylogenies in this manner offers the possibility for re-
searchers to save time on what would otherwise be more complex and time-consuming
phylogenomic techniques. For within family analyses, the phylogenies generated via the
tANI method are robust and match the confidence and accuracy of current popular tech-
niques and other whole-genome metrics. The discrimination power of the tANI method
falls off when different families from the same order are includes. Furthermore, the pos-

sibility that the tANI method can provide preliminary evidence to help differentiate deep-
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er taxonomic relationships offers the potential that it may be able to assist or provide evi-
dence in favor of classification schemes going forward. Finally, many researchers are al-
ready producing information that is key to the described methodology, and can be easily

transitioned for use in the tANI method. The tANI distance-based method and sequence-
based methods (MLSA and core gene concatenations) have different sensitivity towards

artifacts created through gene transfer from outside the group under analysis. We recom-
mend inclusion of tANI based phylogenies as one of the tools to infer within family rela-

tionships.
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Methods

Genomes used. The genomes used in this study are either draft whole genome assem-
blies or complete assemblies available via NCBI (Reference, Table S1). Selection initial-
ly centered on two groups for which previous phylogenetic and phylogenomic work had
been done by this group. The first, the Aeromonas dataset, encompasses the 56 Aer-
omonas genomes used in Colston et al. (2014) and represents a genus level taxonomic
unit. The second, the Rhodobacterales dataset, encompasses those used in Collins et al.
(2015) and Gromek et al. (2016) plus additions to investigate the cases of Loktanella and
Ruegeria (9, 23). This set corresponds closely to a family level taxonomic unit (exempt-
ing the genera: Phenylobacterium, Parvularcula, Maricaulis, Hyphomonas, Hirschia,
Caulobacter, Brevundimonas, and Asticcacaulis, which are used as outgroups to root the
phylogeny). A third set, aimed at encompassing a broader phylogenetic and taxonomic
range was created by adding all publically available non-Aeromonas Aeromonadales ge-
nomes to a subset of the Aeromonas dataset along with taxa outside the order including
members of the Enterobacteriales. All together this group is called the referred to simply
as the Aeromonadales dataset. As the name implies, this set corresponds to an order level
unit. Finally, the available genomes from the order Frankiales were formed into another
dataset (of the same name) with the intention to test the robustness of the tANI method to

heterogeneous genome sizes and GC-contents.

Reference Phylogenies.
Comparison reference phylogenies were obtained or generated for each dataset. For Aer-

omonas, the MLSA and expanded core phylogenies were obtained from Colston et al.
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(2014) (5). A reference for the Rhodobacterales dataset was generated by replicating the
method described in Collins et al. (2015) (9), but with added Loktanella and Ruegeria
genomes from NCBI. The Aeromonadales was calculated following the MLSA method-
ology described in Colston et al. (2014) for the included genomes (5).

The Frankiales reference required the de novo creation of an MLSA scheme in the ab-
sence of thorough examples in the literature. Twenty-four single-copy housekeeping
genes were selected to form the alignment (Table S5). Nucleotide sequences for each
gene were retrieved via BLAST from Frankia casuarinae (Accession: NC_007777.1)
(reference for BLAST). BLASTn (v2.6.0) (24) was executed with the gene sequences as
the query and the genomes as the target sequence. The coding sequences corresponding
to highest scoring hits (using e-values) for each gene in a singular genome were aligned
and concatenated. This was repeated for every genome, generating the multi-locus se-
quence alignment (MLSA) file. IQTree (v1.5.5) was executed with the MLSA file and
built the phylogenetic tree with 1000 ultrafast-bootstraps (25-28). [QTree’s model finder
arrived at the SCHNOS empirical codon model with empirical codon frequencies (+F) and

Free Rate (29) model of rate heterogeneity with nine categories (+R5).

ANI and AF Calculation. ANI is calculated in a similar methodology to that described
by Varghese et al. (2015) such that ANI is not simply the sum of best hit identities over
the total number of genes, but is instead described by the formula: ANI=),(ID%*Length
of Alignment)/(}; (Length of the shorter fragment). Alignment fraction is described as:
AF=Y(Length of the shorter fragment)/(Length of the Query Genome). The ID%, Length

of the Alignment, and Length of the shorter fragment terms refer to the individual blast
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hits from genome-genome comparisons (see below). Our methodology differs from Var-
ghese et al. (2015) in two respects. First, we do not limit our search to open reading
frames but rather use the full scaffold/contig set of an organism. Second, we fracture the
genomes into 1,020 nucleotide fragments in line with previous iterations of ANI calcula-
tion (2, 8). The fragments from the query genome were each compared to the reference
genome via BLAST+ (v2.7.1). Results were filtered based on coverage and percent iden-
tity values and only the top bidirectional best hit was retained per segment. Filtered re-
sults were used to calculate the ANI and AF as defined earlier. The distance (abbreviated
Total Average Nucleotide Identity, or tANI) was calculated by using the formula: tANI =
-log(AF*ANI). The natural log added to this calculation ensures that higher distance val-

ues correlate with genomes that have a lower ANI or AF (i.e. more dissimilar).

Bootstrap Replicates. After genomes were split into 1,020 nucleotide segments, individ-
ual segments were chosen randomly with replacement from the pool of all of said ge-
nomes segments and used to create a new dataset. This new dataset was then compared
against all other using the tANI methodology to create a bootstrapped distance matrix.
These matrices were then used to infer their own trees. Those trees was then mapped onto

the best tree to provide node support.

Coverage and Percent Identity Cutoffs. The original percent identity and coverage cut-
off values were chosen based on those laid down by Varghese et al. (6). Cutoff values
were tested within the Aeromonas dataset. Average distance within the clade was meas-

ured over a range of cutoff values (Fig. S9) and multiple potential cutoffs were tested
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against the jSpecies ANI standard cutoffs of 70% identity and 70% length. We tested var-
ious cutoff values’ ability to construct phylogenetic trees compared to more conventional

methods and concluded that 70-at-70 still produced the most accurate trees.

Phylogenies from Distances. Tree-building from distance matrices was accomplished
using the R packages Ape and Phangorn (30, 31). The balanced minimum evolution algo-
rithm as implemented in the FastME function of APE was used to generate phylogenies
for each distance matrix (32). Parameters used were: nni = TRUE, spr= TRUE, tbr =
TRUE. A “best tree” was calculated from the point estimate values (original DDH esti-
mations in isDDH; the initial calculated distance matrix in tANI) and a collection of
bootstrap topologies from the resampled matrices. Support values were mapped onto the
best tree using the function plotBS in Phangorn (31).

Split graphs were constructed from the distance matrices using Splitstree4 (33). Graphs
were built using a NeighborNet distance transformation, ordinary least squares variance,

and a lambda fraction of 1.

Bootstrap evaluation. Tree certainty scores were calculated using the IC/TC score calcu-
lation algorithm implemented in RAXML v8 (10, 11). Tree distances were calculated us-

ing the R package Ape (32) and the treedist function of Phangorn (31).

Residual Operating Characteristic Curve Analysis. A residual operating characteristic
(ROC) curve was used to determine the optimal species cutoff for a single genome-to-

genome distance calculation. Genomes from the sets of Aeromonadales and Rhodobac-
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terales listed in the genome table were compiled and matrices of both the distance and
raw jSpecies ANI were compiled from the set. The jSpecies ANI values were used to de-
limit species from the genomes selected. Each comparison was assigned a 1 if the com-
parison met the species cutoff, and a 0 if it did not according to jSpecies cutoffs (8). This
list of 1’s and O’s represents the true state.

True states and distance values were then compiled into a two-column data set. The R
package pROC (35) allowed us to create a curve from the data and then determine the
best cutoff values for the given set of data such that true negatives and true positives

based on the cutoff value were maximized using methodology previously described (36).
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Fig. 1. tANI distance value as a function of uncorrected jSpecies ANI value. This plot
comprises individual genome-genome comparisons from both the Aeromonadales and
Rhodobacterales datasets; resulting in a dataset of 6195 comparisons. This “tornado” con-
figuration illustrates how jSpecies ANI begins to enter saturation by approximately 87%.

This saturation is a function of declining AF values and sequence saturation.
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illustrate their placement as a single clade.
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Fig. 3. Phylogenies of the Frankiales dataset using two different methodologies. (A) The

tANI derived phylogeny (left) compared against (B) the MLSA phylogeny (left). See

Materials and Methods for details on the methods used phylogenetic reconstruction.
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Fig. 4. PCoA plot of the distance between trees from bootstrap samples calculated from
the Aeromonas core genome, and tANI methods. The sample from the tANI method are
colored in orange (Whole Genome ANI) and the Aeromonas core genome bootstraps are
in blue (mBio MLSA). The support sets overlap in every cluster, suggesting that the two

methods capture similar topologies.
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Fig. 5. Comparison of 4eromonas phylogenies reconstructed using different methodolo-

gies. (A) The Extended Core Phylogeny, inferred using Approximate Maximum-

likelihood (Colston et al., 2014), and (B) the tANI methodology, inferred using Fast Min-

imum Evolution. Keys for node support apply to the tree directly to the right of the key.

Arrows point to the location of Aeromonas veronii AMC35.
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Fig. 6. Response Operator Curves reporting the sensitivity and specificity of the tANI at
discriminating species relationships. Plots show (A) the union of the Aeromonas and
Rhodobacterales datasets against accepted nomenclature (specificity of 99.98%, and sen-
sitivity of 99.20%), (B) the Aeromonas dataset (specificity of 96.68%, and sensitivity of
97.97%), (C) the Rhodobacterales dataset (specificity of 83.78%, and sensitivity of
80.09%), (D) the Rhodobacterales dataset after reclassifying taxa (specificity of 83.31%,

and sensitivity of 99.13%).
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tary figure S3
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Fig. 8. Response operator curves reporting the sensitivity and specificity of the ANI-
distance at discriminating deeper taxonomic relationships for (A) the AeroOG dataset at
the genus level, (B) the Roseo dataset, also at the genus level. Specificities (96.7% and
83.3%) and sensitivities (98.0% and 99.1%) are varied but generally high. Panel C shows
our combined datasets at the family level. The family relationships maintain an ability to
discriminate between classifications at rate close to the genus data (90.7% specificity and
sensitivity of 86.5%). Panel D displays the combined data at order level. While order lev-
el specificity was high (94.2%) its sensitivity was only 71.4%, suggesting the method is

breaking down and losing the ability to discriminate.
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Tables

Table 1. Abridged Dataset Descriptions

Dataset” Composition' Remarks
Chosen as these genomes
already had MLSA and

Drawn from Colston, core genome phylogenetic
Aeromonas Fullmer et al. 2014. Only trees constructed, allowing

has Aeromonas genomes. for us to more easily
compare out method to
these.

Composed of several
Aeromonas genomes, the With genomes from two

remaining available separate orders, this dataset

Aeromonadales outside of provides opportunity to
Aeromonadales .

the Aeromonas, and explore outer limits of the

several Enterobacterales method in regards to

which served as an taxonomic range.

outgroup.

Consists of Chosen for familiarity and

Rhodobacterales genomes for previously made
Rhodobacterales ~ with a leaning towards the MLSA for a subset of the

genera Leisingera, taxa which provided an

Loktanella, and Ruegeria. easy route for expansion.

Selected for the variety of
Consists of a selection of genome sizes and GC
Frankiales publicly available content present within the
Frankiales genomes. Order, allowing us to
check for biases.

"Based on dominant taxa in the dataset YA more comprehensive
breakdown of the dataset is available in supplemental materials.
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Supplemental Material

Fig. S1 Phylogenies of the Frankiales dataset built from the tANI methodology and color
coded to investigate potential biases of the method. (A) plots the length of the genome on
each tip, and (B) plots the GC content of the genome on the tip. Neither A or B shows

biased patterns.

Fig. S2 Comparison of phylogenies reconstructed from the Rhodobacterales dataset. (A)
The multi-gene phylogeny from Collins et al., (2015), and (B) the tANI distance based
phylogeny. Both sides use bootstrapped node support on a scale from 100-0 indicated by

the key.

Fig. S3 Splits graph diagram for the Rhodobacterales dataset built using Splitstree4. The
tANI method served provided the distance matrix used to build the graph. The graph re-

veals the part of this dataset that deviates from a tree-like description.

Fig. S4 Splits graph diagram for the Frankiales dataset built using Splitstree4. The tANI
method served provided the distance matrix used to build the graph. The graph supports
splitting the Frankiales into 5 major groups, and one outgroup (Cryptosporangium, Spor-

ichthya, Jatrophihabitans, etc).

Fig. S5 Splits graph diagram for the Aeromonas dataset built using Splitstree4. The tANI

method served provided the distance matrix used to build the graph. The graph backs
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previous understanding that the Aeromonas group partake in a large amount of horizontal

gene-transfer.

Fig. S6 Splits graph diagram for the Aeromonadales dataset built using Splitstree4. The
tANI method served provided the distance matrix used to build the graph. The graph fur-
ther backs the notion that the Aeromonadacea likely need to be revised, as the Suc-

cinivibrionaceae place further from the Aeromonas than those of the Enterobacteria.

Fig. S7 Phylogenies derived from another whole-genome method, MashTree (37). (A) is
constructed from the Aeromonas dataset, and (B) is built from the Rhodobacterales da-

taset.

Fig. S8 Histograms of tANI values for taxonomic rank comparisons in our datasets using
the uncorrected taxonomy as derived from NCBI. Compare Fig. 7 for a similar histogram

using the data after correction for misclassified taxa.

Fig. S9 Plot of the average distance of genome-genome tANI calculations within the
Aeromonas dataset using varied percent identity and coverage cutoffs. This provided con-
text to which regions of the plot would be best while building phylogenies. Specifically
those cutoffs at which the distance was not saturated as a result of including low quality

information (10-60), and not inflating as a result of filtering too much information (80+).

Table S1 Full dataset description.


https://doi.org/10.1101/2020.01.15.908137
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.15.908137; this version posted January 16, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Table S2 Average IC values
Table S3 Changes for species level cutoff comparison
Table S4 Suggested reclassification

Table S5 Frankiales MLSA genes
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