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Abstract

Recent advances in diffusion magnetic resonance imaging (dMRI) analysis techniques have
improved our understanding of fibre-specific variations in white matter microstructure.
Increasingly, studies are adopting multi-shell dMRI acquisitions to improve the robustness of
dMRI-based inferences. However, the impact of b-value choice on the estimation of dMRI
measures such as apparent fibre density (AFD) derived from spherical deconvolution is not
known. Here, we investigate the impact of b-value sampling scheme on estimates of AFD.
First, we performed simulations to assess the correspondence between AFD and simulated
intra-axonal signal fraction across multiple b-value sampling schemes. We then studied the
impact of sampling scheme on the relationship between AFD and age in a developmental
population (n=78) aged 8-18 (mean=12.4, SD=2.9 years) using hierarchical clustering and
whole brain fixel-based analyses. Multi-shell dMRI data were collected at 3.0T using ultra-
strong gradients (300 mT/m), using 6 diffusion-weighted shells ranging from 0 — 6000
s/mm?. Simulations revealed that the correspondence between estimated AFD and
simulated intra-axonal signal fraction was improved with high b-value shells due to
increased suppression of the extra-axonal signal. These results were supported by in vivo
data, as sensitivity to developmental age-relationships was improved with increasing b-
value (b=6000 s/mm?, median R? = .34; b=4000 s/mm?, median R? =.29; b=2400 s/mm?,
median R? =.21; b=1200 s/mm?, median R? =.17) in a tract-specific fashion. Overall,
estimates of AFD and age-related microstructural development were better characterised at

high diffusion-weightings due to improved correspondence with intra-axonal properties.
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1. Introduction

Diffusion magnetic resonance imaging (dMRI; Le Bihan and Breton (1985)) offers a magnified
window into white matter by probing the tissue microstructure properties. Various dMRI modelling
and analysis techniques are available, which aim to summarise the local architecture of white matter
as a quantitative metric. However, the biological interpretations around commonly investigated
dMRI metrics rests heavily on whether the acquisition protocol can capture the relevant

microstructural attributes (Lebel and Deoni, 2018; Tournier, et al., 2011).

Traditionally, studies have acquired dMRI data with one diffusion-weighting (or b-value shell), opting
for either low b-values (e.g. b = 1000 s/mm?) for diffusion tensor imaging (DTI) analyses (Jones, et al.,
1999; Landman, et al., 2007), or moderate-to-high b-values (e.g. b > 3000 s/mm?) for probabilistic
tractography (Tournier, et al., 2013). More recently, with the advent of multi-slice accelerated
imaging (Barth, et al., 2016), the acquisition of multiple dMRI shells has become more feasible. This
has considerably improved data acquisition capabilities for sensitive populations (such as children
and clinical populations) which may not withstand long acquisition times (Kunz, et al., 2014; Silk, et
al., 2016; Somerville, et al., 2018).

Multi-shell dMRI data has been used in conjunction with various analysis approaches (Novikov, et al.,
2018; Zhang, et al., 2012) across a variety of applications (Genc, et al., 2018a; Kunz, et al., 2014;
Pines, et al., 2019). Measures derived from constrained spherical deconvolution (CSD; Dell'Acqua
and Tournier (2019)) can infer the intra-axonal signal fraction along multiple fibre pathways
(Dell'Acqua, et al., 2013; Raffelt, et al., 2012). One such measure of microstructural organisation,
termed apparent fibre density (AFD), can indicate relative differences in the white matter fibre
density per unit volume of tissue. Given that the specificity to the intra-axonal water signal is
maximised at high b-values due to higher restriction of water diffusion (Figure 1), AFD can be

sensitive to axon density at high diffusion-weightings (Raffelt, et al., 2012).

Analysis frameworks such as fixel-based analysis (FBA; Raffelt, et al. (2017)) provide a means to test
fibre-specific differences in AFD within a population. FBA offers two major advantages over
alternative dMRI analysis techniques: sensitivity to fibre properties (density and morphology), and
specificity to fibre populations within voxels (or ‘fixels’). This combination of improved sensitivity
and specificity increases the possibility of assigning group differences in fibre properties to specific
fibre populations (Dimond, et al., 2019; Gajamange, et al., 2018; Genc, et al., 2018b; Mito, et al.,
2018).

In practise, FBA is compatible with both single-shell (Dhollander, et al., 2016) and multi-shell
(Jeurissen, et al., 2014) dMRI data. An intuitive choice might be to use all available dMRI data to
compute fibre-specific AFD. However, this might not be compatible with the underlying assumptions

of AFD reflecting intra-axonal properties. In addition, sensitivity to the extra-axonal signal upon the
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inclusion of lower b-values can influence the response function choice, resulting in a potential

mismatch between the response function and the true underlying fibre properties.

Combining FBA with the very latest in MRI gradient hardware (300 mT/m) (Jones, et al., 2018), we
explore the impact of sampling scheme on AFD estimates using a rich developmental dataset
comprising multi-shell diffusion MRI data with b-values ranging from 0 — 6000 s/mm?. Firstly, we
simulate multiple fibre geometries to showcase how discrepancies in ‘true’ microstructural
configurations can influence the interpretations of AFD generated from both single-shell and multi-
shell dMRI data. We then conduct experiments to confirm the theory that AFD is more sensitive and
specific to axon density at higher b-values, demonstrated by sensitivity to detecting age-

relationships in a developmental population of children and adolescents.

b=0 b =500 b =1200 b = 2400 b = 4000 b = 6000
s/mm?

Figure 1: Spherical harmonics (zero order) maps derived from a representative participant (age 8
years). Visually, increasing b-value from 0 — 6000 s/mm? leads to greater specificity to the signal

attributed to the intra-axonal space.

2. Methods
2.1. Simulations

Single fibre populations were simulated with the intra- and extra-axonal spaces represented by
axially symmetric tensors; the second and third eigenvalues were set to zero for the intra-axonal
tensor and equal but non-zero for the extra-axonal tensor (Jespersen, et al., 2007; Kroenke, et al.,
2004). The intra-axonal and extra-axonal parallel diffusivities were set to 1.9 um?/ms, and 42
different combinations were simulated with intra-axonal signal fraction f =
[0.2,0.3,0.4,0.5,0.6,0.7,0.8] and extra-axonal perpendicular diffusivity D, , =
[0.2,0.4,0.6,0.8,1,1.2] ,umz/ms. 100 Rician noise generalisations were computed with three
different signal-to-noise ratio (SNR) values on the b=0 signal (SNR = 50; 35; and 20). The response
function, which should reflect the properties of a single fibre population (Tax, et al., 2014), was set
to have f = 0.3 and D, ; = 0.8 um?/ms informed by values estimated from the group-wise
response function used in this study. These values are in the range of previously reported estimates

of white matter in vivo (Fieremans, et al., 2011; Novikov, et al., 2018).
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2.2. Participants

We scanned a sample of typically developing children aged 8-18 years recruited as part of the Cardiff
University Brain Research Imaging Centre (CUBRIC) Kids study (Genc, et al., 2019; Raven, et al.,
2019). This study was approved by the School of Psychology ethics committee at Cardiff University.
Participants and their parents/guardians were recruited via public outreach events. Written
informed consent was provided by the primary caregiver of each child participating in the study, and
adolescents aged 16-18 years additionally provided written consent. Children were excluded from
the study if they had non-removable metal implants, and if they reported history of a major head
injury or epilepsy. All procedures were completed in accordance with the Declaration of

Helsinki.

A total of 78 children between the ages of 8 — 18 years (Mean = 12.4, SD = 2.9 years) were included

in the current study (45 female).

2.3. Diffusion magnetic resonance imaging

Image acquisition and pre-processing

Diffusion Magnetic Resonance Imaging (dMRI) data were acquired on a 3.0T Siemens Connectom
system with ultra-strong (300 mT/m) gradients. Multi-shell dMRI data were collected using the
following parameters: TE/TR = 59/3000 ms; voxel size = 2x2x2 mm; b-values = 0 (14 volumes,
interleaved), 500 (30 directions), 1200 (30 directions), 2400 (60 directions), 4000 (60 directions), and
6000 (60 directions) s/mm?. The larger number of volumes across the higher diffusion weightings
were to compensate for lower SNR and to capture the higher angular resolution present at higher b-
values (Tournier, et al., 2013). Diffusion MRI data were acquired using electrostatic repulsion
generalised across multiple shells (Caruyer, et al., 2013). Data were acquired in an anterior-posterior
(AP) phase-encoding direction, with one additional PA volume. The total acquisition time (across

four acquisition blocks) was 16 minutes and 14 seconds.

Pre-processing of dMRI data involved steps largely in line with recommended steps for standard 3.0T
systems, interfacing various tools such as FSL (Smith, et al., 2004), MRtrix3 (Tournier, et al., 2019),
and ANTS (Avants, et al., 2011). These steps included: denoising (Veraart, et al., 2016), slicewise
outlier detection (SOLID; Sairanen, et al. (2018)), and correction for drift (Vos, et al., 2017); motion,
eddy, and susceptibility-induced distortions (Andersson, et al., 2003; Andersson and Sotiropoulos,
2016); Gibbs ringing artefact (Kellner, et al., 2016); bias field (Tustison, et al., 2010); and gradient
non-linearities (Glasser, et al., 2013; Rudrapatna, et al., 2018). Root mean squared (RMS)
displacement from eddy (Andersson and Sotiropoulos, 2016) was used as a summary measure of
global head motion. Estimates of SNR were performed by taking the signal in the white matter and
dividing this by the signal outside of the brain (for each b=0 image). SNR estimates in the in vivo data
were: mean = 48.02, SD = 7.46.
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Image processing and analysis

To compare multiple sampling schemes, pre-processed dMRI data were further processed and
analysed separately for each sampling scheme in a common population-template space, using a
recommended framework (Raffelt, et al., 2017). Firstly, data were intensity normalised and spatially
upsampled to 1.3 mm? isotropic voxel size to increase anatomical contrast and improve tractography
(Dyrby, et al., 2014). For single-shell (ss) single-tissue constrained spherical deconvolution (CSD), a
fibre orientation distribution (FOD; Tournier, et al. (2007)) was estimated in each voxel with maximal
spherical harmonics order Imq = 8 for shells with high angular resolution (b=2400, 4000, 6000 — 60
directions each) and /max = 6 for shells with lower angular resolution (b=1200 — 30 directions). Multi-
shell (ms) multi-tissue CSD was performed using a separate framework (Dhollander, et al., 2016;
Jeurissen, et al., 2014). Following FOD estimation, we derived a population template using all
diffusion volumes (ms.i), and subsequently registered subject-specific and sampling-scheme-specific
FOD maps to this template (Figure S1). We then computed an apparent fibre density (AFD) map
containing fibre-specific AFD along each fixel for each subject (Raffelt, et al., 2017).

In order to estimate AFD along various commonly investigated white matter fibre pathways, white
matter tract segmentation was performed. We applied the automated TractSeg technique
(Wasserthal, et al., 2018; Wasserthal, et al., 2019) in population template space, as this technique
provides a balance between manual dissection and atlas-based tracking approaches. Of the existing
library of 72 tracts, we chose to delineate 38 commonly investigated fibre pathways bilaterally for
the left (L) and right (R) hemisphere (Figure S2). This included: AF: arcuate fasciculus; ATR: anterior
thalamic radiation; CA: anterior commissure; CC: corpus callosum [1=rostrum, 2=genu, 3=rostral
body, 4=anterior midbody, 5=posterior midbody; 6=isthmus, 7=splenium]; CG = cingulum; CST:
corticospinal tract; FX: fornix; ICP: inferior cerebellar peduncle; IFOF: inferior fronto-occipital
fasciculus; ILF: inferior longitudinal fasciculus; MCP: middle cerebellar peduncle; MLF: middle
longitudinal fasciculus; OR: optic radiation; superior longitudinal fasciculus: SLF [I, II, IIl]; and UF:
uncinate fasciculus. Each tractography map was converted to a fixel map to segment fixels
corresponding to streamlines, and AFD was computed within each tract-specific fixel map for further

statistical analysis.

2.4. Statistical analyses

Impact of b-value sampling scheme

Statistical analyses were performed within R (v3.4.3) and visualisations were carried out in RStudio
(v1.2.1335). The coefficient of determination (R?) was computed to summarise the proportion of
variance explained by age for each sampling-scheme in each tract. Linear models were computed,
whereby AFD in each tract was entered as the dependent variable, age was entered as the

independent variable, and sex and RMS displacement were set as nuisance variables. To compare
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sampling schemes in terms of their relationship with age, the difference in R* was bootstrapped with

10,000 samples to compute 95% bias corrected accelerated (BCa) confidence intervals.

Hierarchical clustering was performed to discern clusters of sensitivity to age-relationships across
various combinations of b-value sampling schemes and white matter tracts. These results were
visualised as a heatmap with hierarchical clustering using the ‘gplots’ package (Warnes, et al., 2015)
using Euclidean distance and complete agglomeration for clustering. To account for family-wise
error (FWE) we made use of a strict Bonferroni correction by adjusting our p-value threshold by the
152 comparisons (38 tracts x 4 sampling schemes). As a result, our statistical significance was
defined as p < 3.3e-4.

Whole-brain fixel-based analysis

Separate statistical analyses were performed for each single-shell sampling scheme (b = 1200; 2400;
4000; and 6000 s/mm?) using connectivity-based fixel enhancement (CFE), which provides a
permutation-based, family-wise error (FWE) corrected p-value for every individual fixel in the
template image (Raffelt, et al., 2015). For each sampling scheme, we tested the relationship
between AFD and age, covarying for sex. For these whole-brain analyses, statistical significance was
defined as prwe < .05. Statistically significant fixels were converted into binary fixel maps, and an
intersection mask was computed to quantify the proportion of overlapping fixels between sampling

schemes.

3. Results

3.1. Simulations

The results of the simulations for AFD across various fibre geometries and sampling schemes is
summarised in Figure 2. Compared to the highest single shell acquisition (ssso00), we observe a
statistically significant three-way interaction between D, |, f, and sampling-scheme for ssi200: B [95%
Cl] =.80 [.44, 1.2]; sS2400: B [95% ClI] = .55 [.19, .91]; and msai: B [95% Cl] = .83 [.47, 1.2]. These
observed differences are visually reflected by a greater dependency of AFD and f on simulated D, ;

as a result of the discrepancy with the response function.

When considering the full multi-shell acquisition (ms.i) there are multiple degenerate scenarios
whereby different combinations of fand D, ; could result in the same AFD, compared with high b-
value shells (i.e. sSa000 O SSeo00). From the simulated scenarios for example, if AFD (ms,i) = 1.2, it can
be seen that there are at least six combinations of fand D, | resulting in this value (Figure 2).
Whereas a change in AFD computed from the highest b-value shell could more directly reflect a
change in the underlying f, reducing the potentially confounding effect of discrepancies with the
response function. The addition of noise had negligible effects on these relationships (Figure S3),

however, the estimated AFD appeared to be more variable with decreasing SNR (greater noise).
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Figure 2: AFD for simulated fibre geometries across five sampling schemes (b-value, s/mm?).
Variations to simulated intra-axonal signal fraction and perpendicular diffusivity of the extra-axonal

space (D, ;) were tested to compare AFD across multiple fibre geometries.

3.2. Invivo data
3.2.1. Impact of b-value sampling scheme

In order to assess the impact of b-value sampling-schemes on tract-specific age relationships, we
visualise our data as a heatmap (Figure 3; S4). The coefficient of determination (R2) derived from the

linear model for each tract is organised into hierarchical clusters with branching dendrograms.

Single-shell single-tissue FBA

We observe two main clusters of single-shell b-value sampling-schemes: the first including low and
moderate diffusion-weightings (b = 1200; 2400 s/mm?); and the second including high diffusion-
weightings (b = 4000; 6000 s/mm?). Secondly, two tract-specific hierarchical clusters are observed,
represented by branching dendrograms (Figure 3: clusters 1 and 2a,b). Sensitivity to age
relationships was improved at high diffusion-weightings (Table 1), whereby AFD exhibited a
significantly stronger relationship with age at ssgo00 compared with: ssae00 (6/38 tracts); ss2a00 (25/38
tracts); and ss1200 (27/38 tracts).
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Figure 3: Dendrogram heatmap highlighting clusters of tracts which differentially describe age-
related differences in apparent fibre density (AFD) across various single-shell b-value sampling
schemes. Heatmap colour intensity reflects range of R? values derived from a linear model including
age, sex, and RMS displacement. Significant age-effects (prwe < .05) are annotated with an asterisk

(*). A depiction of several fibre pathways in one cluster is presented on the right.
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Table 1: Variance in AFD explained by age for each single-shell sampling scheme across tracts.

tracts R2 R? Difference [95% Cl]

SS6000  SS4000  SS2400  SS1200 S$S6000 > SS4000 SS6000 > $S2400 $S6000 > SS1200
AF L .50 49 .39 .35 .01 [-.11, .06] 12 [-.01, .18] .15 [.07, .23]
R 46 43 37 .33 .02 [-.08, .09] .08 [-.03, .13] 13 [.03, .21]
ATR L .53 .50 43 A2 .03 [-.15, .11] 11 [-.05, .20] A1 [.02, .27]
R A48 A2 .38 .36 .06 [-.01, .13] .10 [.01,.21] 12 [-.05, .21]
CA .06 .03 .03 A1 .04 [-.01, .12] .03 [-.06, .12] -.05 [-.17,.13]
CcC full A4 .39 .32 31 .04 [-.07,.10] 12 [.03,.20] 13 [-.04, .21]
1 .05 .02 .02 .05 .03 [-.04, .13] .03 [-.04, .17] .01 [-.12,.14]
2 A5 43 .38 .38 .03 [-.13,.10] .07 [-.07,.17] .07 [-.04,.19]
3 A48 46 43 A2 .02 [-.03, .07] .05 [.01, .14] .06 [-.03,.14]
4 .35 31 24 .25 .04 [-.02,.08] A1 [.05,.21] .10 [-.03,.17]
5 .22 .16 A1 .06 .06 [.02,.10] 12 [.06, .19] .16 [.07, .23]
6 34 .29 21 .14 .04 [-.02,.08] 13 [.07,.20] .19 [.10, .31]
7 31 .29 .22 .18 .02 [-.04, .08] .09 [.04, .15] 13 [.05, .20]
CG L .38 27 .18 .10 11 [-.03, .23] .20 [.06, .34] .28 [.11, .41]
R 21 .20 A1 .06 .01 [-.14, .10] .10 [-.02, .20] .16 [.05, .29]
CST L .34 27 .19 .16 .07 [-.01, .15] .15 [.06, .21] .18 [.05, .27]
R .29 .28 .20 .15 .01 [-.08, .09] .09 [-.01, .17] 14 [.05, .26]
FX L .06 .03 .01 .01 .02 [-.04, .10] .04 [-.02,.12] .05 [-.01, .16]
R .05 .02 .01 .01 .03 [-.04, .10] .05 [-.04, .16] .03 [-.12,.18]
ICP L 21 .18 A1 .04 .03 [-.01, .14] A1 [.02,.23] 17 [.02, .31]
R A1 A1 .07 .08 -01 [-.07,.07] .03 [-.07, .14] .03 [-.10, .16]
IFOF L A4 .40 .34 .29 .03 [-.02,.13] .10 [.01, .18] .15 [.09, .26]
R 46 A2 .40 .33 .04 [-.02,.12] .06 [-.01, .14] 12 [.02, .22]
ILF L .39 .34 27 .22 .05 [-.02, .16] 13 [.05,.22] .18 [.10, .27]
R .35 .26 24 21 .09 [.01,.19] .10 [.04, .24] 14 [.05, .25]
MCP .07 .06 .05 .08 .01 [-.03, .05] .02 [-.07,.10] -.02 [-.13,.15]
MLF L 43 .39 .30 .26 .04 [.01,.09] 13 [.06, .17] 17 [.10, .24]
R .39 .34 .28 .20 .05 [-.04, .09] A1 [.02,.18] .19 [.07, .25]
OR L .36 .30 .25 .18 .05 [.01, .13] A1 [.05,.21] 17 [.10, .28]
R .28 .25 .19 13 .03 [-.04, .10] .09 [.02,.17] .15 [.05, .30]
SLF_III L A7 A4 .33 .30 .04 [.01, .08] 14 [.08, .19] .18 [.11, .26]
R A1 .38 31 .28 .04 [-.09, .10] .10 [.01, .18] A3 [.01, .24]
SLF_II L A1 .40 .32 .29 .01 [-.04, .06] .09 [.02,.14] 12 [.06, .20]
R 31 .29 21 17 .02 [-.05, .05] .10 [.04, .15] 13 [.07, .22]
SLF_| L .29 24 .19 .15 .05 [.01, .11] .10 [.05, .15] 14 [.05, .22]
R .22 .20 .15 .08 .02 [-.03, .06] .07 [.02,.13] 14 [.06, .24]
UF L 27 .23 A1 .10 .04 [-.05, .16] .16 [.07,.27] .16 [.03, .28]
R 17 .09 .04 .04 .08 [-.01, .21] 13 [.03, .26] 13 [.02, .32]

Note: R? represents the multiple coefficient of determination computed using a linear model for each tract,

with age, sex and motion as predictors. Difference indicates difference between R? coefficients. Square

brackets show 95% bias corrected accelerated (BCa) confidence intervals computed with 10,000 bootstrapped

samples. Bold=differences in R where 0 was not captured by the confidence intervals. Abbreviations: AF:

arcuate fasciculus; ATR: anterior thalamic radiation; CA: anterior commissure; CC: corpus callosum [1=rostrum,
2=genu, 3=rostral body, 4=anterior midbody, 5=posterior midbody; 6=isthmus, 7=splenium]; CG = cingulum;
CST: corticospinal tract; FX: fornix; ICP: inferior cerebellar peduncle; IFOF: inferior fronto-occipital fasciculus;
ILF: inferior longitudinal fasciculus; MCP: middle cerebellar peduncle; MLF: middle longitudinal fasciculus; OR:
optic radiation; superior longitudinal fasciculus: SLF [I, II, Il1]; UF: uncinate fasciculus.
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Figure 4: The relationship between AFD and age across four regions including: the right anterior
thalamic radiation (ATR_right), inferior longitudinal fasciculus (ILF_right), corticospinal tract
(CST_left), and superior longitudinal fasciculus | (SLF_I_right). Each region is representative of
individual tract clusters where a progressive increase in the coefficient of determination (R?) is
observed when moving from low to high diffusion-weightings. Sampling schemes whereby AFD was
significantly associated with age are coloured in purple (prwe< .05).
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The first tract cluster is composed of a sub-cluster of regions where a high proportion of age-related
variance is described across all diffusion weightings (median R? = .40). The first sub-cluster (Figure 3:
cluster 1) includes several association tracts (left MLF, bilateral IFOF, left SLF Il, bilateral SLF Ill,
bilateral ATR, bilateral AF) and commissural tracts (corpus callosum: full extent, genu, rostral body).
Significant age-relationships are observed for all of the sampling schemes (b = 1200; 2400; 4000;
6000 s/mm?), with an increase in the estimated R? when going to higher diffusion weightings (Figure
4). The proportion of variance explained for the high diffusion-weightings (b = 4000 and 6000
s/mm?) ranged from 38% to 53% (Table 2). Despite the consistent sensitivity to age-related
development in this tract cluster, a greater b-value dependence on these relationships was observed
when moving from high to low b-values, particularly for association tracts such as bilateral SLF Ill,
left SLF I, left IFOF and left MLF.

The second tract cluster is composed of a sub-cluster (Figure 3: 2a) of association tracts (left SLF_|,
right SLF_II, bilateral ILF, right MLF, left CG, bilateral OR), projection tracts (bilateral CST), and
commissural tracts (corpus callosum: anterior midbody, isthmus). In this sub-cluster, significant age-
relationships are predominantly observed at high diffusion-weightings where the proportion of
variance ranged from 24% to 39%, compared with at low-to-moderate diffusion-weightings (10% to
28%). The second sub-cluster (Figure 3: 2b) includes cerebellar tracts (MCP, bilateral ICP), rostrum of
the corpus callosum, bilateral fornix, right SLF_I and bilateral UF. This represented a sub-cluster of
tracts which captured little-to-no variation across development across moderate-low b-values (1% to
15%).

Multi-shell multi-tissue FBA

Consistent with the single-shell single-tissue results, sensitivity to age relationships was improved at
high diffusion-weightings (Table S1). We observed two main clusters of multi-shell b-value sampling
schemes; the first including multiple combinations of low, moderate, and high b-value sampling
schemes, and the second including various combinations of high b-value sampling schemes (Figure
S5). In addition, we observed two main tract-clusters consistent with the single-tissue results: the
first including various left-lateralised association tracts and corpus callosum projections; and the
second including predominantly cerebellar tracts, projection tracts (CST) and association tracts
(including right SLF_II, SLF_I, ILF, CG, and OR). Overall, we observed a general reduction in the
proportion of detectable age-related variance when adding multiple shells for AFD estimation across

various tracts.

3.2.2. Whole brain fixel-based analysis

In order to evaluate the sensitivity of FBA to age-related microstructural development across
sampling-schemes, we performed four separate statistical analyses. For each single-shell sampling
scheme (b = 1200; 2400; 4000; and 6000 s/mm?) we tested the relationship between age and AFD
using the CFE method (Raffelt, et al., 2015).
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FBA revealed a significantly positive relationship between AFD and age across all b-values (prwe <
.05). No significant age effects were observed in the opposite direction (prwe > .05). We observed a
general decrease in the number of significant fixels (nsg) when moving from high to low b-values
(SSe000: Nsig = 13,382; SSag00: Nsig = 10,070; SS2400: Nsig = 7,283, SS1200: Nsig = 5,506). In terms of anatomical
overlap between results, 58% of significant fixels overlapped between sseso00 and ssagoo, 43% of
significant fixels overlapped between sseo00 and ss2400; and 20% of significant fixels overlapped
between ssgo00 and ssi1200. Visualisations of significant and overlapping fixels across diffusion-
weightings are depicted in Figure 5. The core regions overlapping across all sampling schemes
include the body and splenium of the corpus callosum, left IFOF, left ATR, left SLF, and right CST.

b = 6000 s/mm? b = 4000 s/mm? b = 2400 s/mm? b =1200 s/mm?
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Figure 5: Fixel-based analysis results. Top row displays tracts traversing fixels which are significantly
increasing in AFD with age for each b-value sampling scheme (prwe < .05). The second (sSso00 VS SSaooo;
SSe000 VS SS2400) and third (ssac00 VS SS2400) rows display maps of the tracts traversing overlapping fixels

between separate FBA results. Results are shown on a representative sagittal slice.
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4. Discussion

In this study we demonstrate a b-value dependence on estimates of apparent fibre density. Our
results highlight that AFD more prominently reflects age-related white matter development at high

b-values.

4.1. Simulations

The simulations for multiple sampling schemes revealed an improved correspondence between
estimated AFD and the underlying intra-axonal fibre properties when using high b-value shells (b =
4000 or b = 6000 s/mm?). When moving to lower b-values, or including the complete set of multi-
shell data, we observed a larger dependency of AFD on extra-axonal perpendicular diffusivity. This
could suggest that any changes in the true underlying fibre density could be camouflaged by
concomitant changes in perpendicular diffusivity, whereby a simultaneous reduction of the intra-

axonal volume fraction and D, ; could result in the AFD remaining the same.

AFD is hypothesised to be proportional to the intra-axonal signal fraction of a fibre population
(Raffelt, et al., 2012). With increasing b-value, the intra- and extra-axonal signal is differentially
attenuated, leading to greater signal contribution from the intra-axonal space (Tournier, et al.,
2013). Therefore, an increase in AFD can suggest alterations to axonal properties, such as axon
count, packing density, and diameter (Raffelt, et al., 2017). However, our results suggest that AFD is
dependent on the extra-axonal signal when including lower b-values, as the mismatch between

estimated AFD and simulated intra-axonal signal fraction across varying D,, | is exaggerated.

As such, a change in AFD estimated at high diffusion-weightings (in this case b = 4000 or 6000
s/mm?) could more directly reflect a change in the underlying axon density compared with lower b-
value shells or multi-shell acquisitions, reducing the potential confounding effect of discrepancies

with the response function.

4.2. Invivo data

When considering in vivo developmental data, the dependence of b-value on estimates of AFD was
reflected by improved sensitivity to age relationships. Several association tracts consistently
described age-related differences in AFD across moderate to high diffusion-weightings, including the
left MLF, bilateral IFOF, left SLF Il, bilateral SLF Ill, bilateral ATR, bilateral AF, and anterior segments
of the corpus callosum. These regions, particularly the corpus callosum, arcuate and superior
longitudinal fasciculus, appear to be sensitive to age-related differences in microstructure regardless
of dMRI acquisition scheme or analysis technique (Genc, et al., 2018b; Ladouceur, et al., 2012; Lebel
and Beaulieu, 2011; Sawiak, et al., 2018). Our results suggest that this sensitivity to developmental
effects is significantly improved with increasing b-value, particularly for the SLF and posterior

segments of the corpus callosum.
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A group of left-lateralised association tracts (e.g. left CG, MLF, OR, SLF_IIl, SLF_I, IFOF) better
described age-related variance in AFD when comparing the highest b-value (b=6000 s/mm?) with
high to moderate b-values (b = 4000 or 2400 s/mm?). Left-lateralisation of language has been well
documented (Catani, et al., 2005) and related to microstructure (Lebel and Beaulieu, 2009). The
microstructure of lateralised association tracts is likely linked with the ongoing development of
complex cognitive processes throughout childhood and adolescence (Blakemore and Choudhury,
2006; Jung and Haier, 2007). Our results suggest that lateralised association tracts linked with
language and cognitive development are better characterised at high b-values. This is likely due to
improved sensitivity and specificity to axonal microstructure in the branching endpoints of these
tracts integrating such higher order functions across fronto-parietal, fronto-occipital, and occipito-
temporal pathways. Future work should focus on investigating subject-specific branching endpoints

of these tracts, to assess individual variation in microstructure.

One key observation was that a higher proportion of age-related variance was observed in the
single-tissue analyses compared with the multi-tissue analyses. A decrease in discriminative power
of age-related development was observed across a number of multi-shell configurations, more
heavily weighted towards those which included low-to-moderate b-values. It is possible that single-
shell analyses at higher b-values may better isolate the true effect of changing intra-axonal
properties, and not clutter it with mismatches of the response function and/or other effects in the
extra-axonal space. Future work comparing the current approach with emerging methods such as
single-shell three-tissue CSD (Aerts, et al., 2019; Dhollander, et al., 2019) and simultaneous voxel-
wise estimation of the response function and fibre orientations (Jespersen, et al., 2007) are

warranted to explore this further.

The results of the whole-brain FBA revealed a b-value dependence on age-related differences in
AFD. Notably, more widespread associations with age were observed at high diffusion-weightings,
implicating a number of regions which were not found using other sampling-schemes. This b-value
dependence suggests that whilst some core regions such as the body and splenium of the corpus
callosum are clearly exhibiting strong age-related development across all sampling schemes, a
degree of anatomical sensitivity and specificity is lost at lower diffusion-weightings. This is not to say
that studies performing FBA with low-to-moderate b-values will completely lose sensitivity to age-
related effects or clinical group differences. However, in conditions with subtle differences in
underlying neurobiology or microstructure, going to higher b-values may improve the

characterisation of AFD and thus improve the detectability of clinically relevant group differences.

Overall, AFD derived from high b-values (b = 4000 or 6000 s/mm?) best modelled age-relationships
for the majority of white matter tracts tested. These results, combined with the simulations, suggest
that axonal properties (such as axon density) dominate age-related variance in AFD at high b-values,
whereas extra-axonal signal contamination at decreasing diffusion-weightings incrementally

suppress this effect.
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4.3. Implications

Our results bear implications for fixel-based analysis applications using retrospectively collected
dMRI data which may not be optimal for the estimation of AFD. The biological interpretation of
group differences in AFD should be tailored to the acquisition scheme used. Relative differences in
AFD at high b-values could relate to the true underlying axon density; at moderate b-values could
relate to overall white matter fibre density; and at low b-values could relate to white matter fibre

density including potential extra-axonal signal contamination.

Although we have demonstrated a clear b-value dependence on developmental patterns of AFD, it is
important to note that the in vivo results at high diffusion-weightings are specific to the ultra-strong
gradient system used here, resulting in a higher SNR compared with what could be a achieved on a
standard MR system. Promisingly, our simulation results suggest that the effect of b-value and
discrepancy with the response function dominates the effect of noise (Figure S3), even at a lower
SNR which closely matched our in vivo data (SNR=50). Therefore, we expect that our observations at
high b-values may be reproducible on a standard 3.0T system. As strong gradient systems become
increasingly available, the practicalities of acquiring such high quality dMRI data at higher b-values is
becoming less cumbersome (Chamberland, et al., 2018; McKinnon and Jensen, 2019; Moss, et al.,
2019).

Whilst in this study we have used a developmental population of children and adolescents as an
exemplar of a b-value dependence on estimates of AFD, these findings can be applied more broadly

and bear implications for a range of group studies (e.g. clinical groups or ageing adults).

4.4. Limitations and future directions

One limitation of the current study is that we have no ground truth on the development of axonal
density over childhood and adolescence. Therefore, our interpretations of improved intra-axonal
signal sensitivity rests on age-relationships investigated here, which has also been used previously
(Maximov, et al., 2019; Pines, et al., 2019). Whilst we have attempted to understand how AFD can
vary across multiple simulated fibre geometries, we do not know how the underlying fibre
properties (such as axon diameter) vary with age. Despite this consideration, a recent study of
histological validation suggests that AFD is a reliable marker of axonal density in the presence of
axonal degeneration (Rojas-Vitea, et al., 2019). This is a promising indicator of the neurobiological
properties proportional to AFD. Future work should adopt multi-dimensional approaches to extract
meaningful components (Chamberland, et al., 2019), enhance data quality (Alexander, et al., 2017)

and harmonise existing data (Maximov, et al., 2019; Tax, et al., 2019).

Geng, S. et. al. Impact of b-value on estimates of apparent fibre density 16
bioRxiv Jan 2020


https://doi.org/10.1101/2020.01.15.905802
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.15.905802; this version posted January 15, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

5. Conclusion

We summarise our findings with three main conclusions: (1) the correspondence between apparent
fibre density and simulated intra-axonal signal fraction is improved with high b-value shells; and (2)
AFD better reflects age-related differences in axonal microstructure with increasing b-value (b =
4000 or 6000 s/mm?) over childhood and adolescence. Together, our results suggest that axonal

properties dominate the variance in AFD at high b-values.
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9. Supplementary material
9.1. Supplementary information

All of the children included in the study were typically developing. None of the children reported a
previous clinical diagnosis of ADHD or learning disabilities (based on parent report). Out of the
children included, we only collected handedness information for 59/78 participants (76%). Of these
children, 11 were left-handed (18%) and 48 were right-handed (62%).

9.2. Supplementary figures
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Figure S1: Example of pre-processing and analysis outputs for a representative participant aged 8, 13
and 18 years old. A) Raw dMRI data; B) pre-processed dMRI data; C) fibre orientation distributions
(FODs) pre- and post-registration to the population-based template.
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Figure S2: Representative images of tract bundles extracted for statistical analysis, generated using
TractSeg. The left view of the tract is presented in each case. Tracts are coloured by the direction of
streamlines (red: left-right; green: anterior-posterior; blue: inferior-superior).
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Figure S3: AFD for simulated fibre geometries across five sampling schemes with noise. Variations to
simulated intra-axonal signal fraction and perpendicular diffusivity of the extra-axonal space (D, , )
were tested to compare AFD across multiple fibre geometries. Simulations were performed with
noise (SNR=50; 35; and 25) with 100 Rician noise generalisations (error bars denote mean + 2SD).
Sampling schemes reflect the chosen b-values, in s/mm?. With lower SNR (greater noise), the
estimated AFD was more variable indicated by a larger spread of values, particularly at smaller intra-
axonal signal fractions.
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Figure S4: Dendrogram heatmap highlighting clusters of tracts which differentially describe age-
related differences in apparent fibre density (AFD) across various single-shell b-value sampling
schemes. Heatmap colour intensity reflects range of R? values derived from a linear model including
age and sex. Significant age-effects (prwe < .05) are annotated with an asterisk (*). A depiction of
several fibre pathways in one cluster is presented on the right.
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Figure S5: Dendrogram heatmap highlighting clusters of tracts which differentially describe age-
related differences in apparent fibre density (AFD) across various multi-shell b-value sampling
schemes. Heatmap colour intensity reflects range of R? values derived from a linear model including
age and sex. Note: datasets with two diffusion weightings (including the b=0) were processed using
the multi-shell multi-tissue FBA framework, thus resulting in separate but comparable results to the
single-shell single-tissue FBA (presented in Figure 3).

9.3. Supplementary tables
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Table S1: Variance in AFD explained by age for a set of multi-shell sampling schemes across tracts.

tracts R2 R2 Difference [95% Cl]

MSall MSeooo  MS4000  MS2400  MS1200 MSe000 > MSa000 MSe000 > MS2400 MSe000 > MS1200

AF L .32 .35 .29 .09 .08 .16 [.01, .16] .27 [.14, .36] .27 [.03, .51]
R .29 .36 .23 A1 .08 .21 [.07,.21] .25 [.14, .38] .28 [-.06, .41]

ATR L .29 37 24 .07 .02 .25 [.07,.25] .30 [.24, .44] .36 [.10, .51]
R .39 .38 .25 .14 .07 .24 [.08, .24] .24 [.13,.34] .32 [.14, .52]

CA .02 .05 .01 .02 .10 .14 [-.06, .14] .04 [-.08, .12] -.04 [-.23,.11]
CcC full .01 31 .19 .07 .02 .21 [.08, .21] .25 [.16, .35] .30 [.14, .50]
1 17 .01 .02 .06 .19 .03 [-.20, .03] -06 [-.15,.05] -.19 [-.36, .01]

2 27 27 17 .07 .03 .19 [.03,.19] .21 [.10, .33] .24 [.09, .45]

3 17 37 .25 17 .04 .19 [.06, .19] .20 [.12,.28] .33 [.19, .57]

4 12 .28 17 .06 .01 .19 [.06, .19] .22 [.13,.35] .27 [.14, .45]

5 .19 .18 .08 .03 .02 17 [.05, .17] .15 [.07,.30] .17 [-.08, .36]

6 A1 .25 17 .06 .02 .15 [.04, .15] .19 [.09, .29] .23 [.07, .43]

7 .20 13 12 .03 .01 .15 [-.04, .15] .09 [.02,.20] 12 [-.08, .26]

CG L .25 .30 .14 .05 .05 .27 [.08, .27] .25 [.14, .45] .25 [-.10, .46]
R .18 .19 .07 .02 13 .21 [.02,.21] .17 [-.01, .33] .06 [-.25, .28]

CST L .14 27 14 .05 .02 .20 [.08, .20] .22 [.10, .36] .25 [-.03, .39]
R 17 .28 .18 .08 .02 .15 [.05, .15] .19 [.11, .30] .26 [.01, .43]

FX L .06 .07 .05 .03 .01 .08 [-.03, .08] .05 [-.02,.11] .06 [-.06, .15]
R .04 .04 .02 .01 .02 .07 [-.03, .07] .03 [-.03, .11] .02 [-.08, .15]

ICP L .02 A1 A1 .01 13 11 [-.12,.11] 11 [.01, .33] -.02 [-.23, .25]
R .03 .06 .05 .03 .15 .09 [-.07, .09] .03 [-.08, .18] -.09 [-.26, .12]

IFOF L .20 .30 .22 .05 .02 .16 [.02,.16] .25 [.14, .35] .28 [.15, .44]
R .25 .32 .23 .10 .02 .18 [.04, .18] .23 [.13, .36] .30 [.08, .57]

ILF L .23 24 .20 .04 .01 .14 [-.04, .14] .20 [.10, .35] .23 [.03, .46]
R 21 .18 13 .05 .01 .13 [-.04, .13] .13 [.05, .25] .18 [-.01, .37]
MCP .05 .05 .07 .05 21 .04 [-.10, .04] .00 [-.14, .13] -.16 [-.46, -.03]
MLF L 31 31 .26 A1 .04 .14 [.01, .14] .20 [.11,.29] .27 [.13, .46]
R 27 .33 .22 .10 .04 .20 [.06, .20] .24 [.13,.33] .30 [.07, .47]

OR L .20 21 .14 .04 .04 .17 [.01, .17] .18 [.02, .26] .17 [-.09, .36]
R .10 .07 .07 .01 .02 .10 [-.03, .10] .06 [-.03, .16] .05 [-.06, .27]

SLF_III L .22 .28 .20 .06 .09 17 [.02,.17] .22 [.13,.32] .19 [-.07, .44]
R .26 .35 .20 12 .19 .24 [.10, .24] .23 [.12,.37] .16 [-.18, .34]

SLF_II L .23 .33 .23 13 .04 .14 [.06, .14] .20 [.14, .27] .29 [.11, .46]
R 13 17 A1 .06 .14 .14 [.03, .14] 11 [.01, .25] .03 [-.19, .25]

SLF_| L .23 .29 .16 A1 .09 .21 [.08, .21] .18 [.08, .29] .21 [-.04, .41]
R .18 .19 12 .09 A1 .15 [.01, .15] 11 [-.01, .22] .08 [-.15, .40]

UF L .09 .06 .09 .01 .05 .07 [-.11, .07] .06 [-.08, .19] .01 [-.26, .17]
R .16 .06 .08 .02 .06 .04 [-.14, .04] .04 [-.04, .24] .01 [-.19, .24]

Note: R? represents the multiple coefficient of determination computed using a linear model for each tract,
with age and sex as predictors. Difference indicates difference between R? coefficients. Square brackets show
95% bias corrected accelerated (BCa) confidence intervals computed with 10,000 bootstrapped samples.
Bold=differences in R where 0 was not captured by the confidence intervals. Abbreviations: AF: arcuate
fasciculus; ATR: anterior thalamic radiation; CA: anterior commissure; CC: corpus callosum [1=rostrum,
2=genu, 3=rostral body, 4=anterior midbody, 5=posterior midbody; 6=isthmus, 7=splenium]; CG = cingulum;
CST: corticospinal tract; FX: fornix; ICP: inferior cerebellar peduncle; IFOF: inferior fronto-occipital fasciculus;
ILF: inferior longitudinal fasciculus; MCP: middle cerebellar peduncle; MLF: middle longitudinal fasciculus; OR:
optic radiation; superior longitudinal fasciculus: SLF [I, II, Il1]; UF: uncinate fasciculus.
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