

1 Iron and Lipocalin-2 Modulate Cellular Responses in the Tumor Micro-environment of

2 Pancreatic Ductal Adenocarcinoma

3 Valentina Pita-Grisanti MS^{1,2,3}, Andrew W. Dangel PhD^{1,2}, Kristyn Gumpfer PhD^{1,2}, Andrea
4 Ludwig^{1,2}, Olivia Ueltschi^{1,2}, Xiaokui Mo PhD⁴, Maciej Pietrzak PhD⁴, Amy Webb PhD⁴, Rosa
5 F. Hwang MD⁵, Madelyn Traczek^{1,2}, Niharika Badi^{1,2} MS, and Zobeida Cruz-Monserrate PhD^{1,2}

⁷ ⁸ *¹Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH*

*2 The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center,
Columbus, OH*

¹¹ ³ The Ohio State University Interdisciplinary Nutrition Program, Columbus, OH

⁴ The Ohio State University, Department of Biomedical Informatics, Columbus, OH

13 *5 Department of Surgical Oncology, University of Texas, MD Anderson Cancer Center, Houston,*
14 *TX.*

15

16 Short title: Role of Iron and Lipocalin-2 in PDAC

17 Word Count: Abstract – 148 Body – 5085

18 **Figures: 7**

Figure Supplements: 4

Supplementary files: 1

19 Corresponding Author:

20 Zobeida Cruz-Monserrate, Ph.D.

21 Department of Internal Medicine

22 Division of Gastroenterology, Hepatology and Nutrition

23 The Ohio State University Wexner Medical Center

24 2041 Wiseman Hall,

25 400 W 12th Ave Columbus, OH 43210

26 Email: zobeida.cruz-monserrate@osumc.edu

27 Phone: 614-685-8266; Fax: 614-292-5575

28

29 **Grant support:**

30 Research in this publication was supported by: The National Pancreas Foundation (ZC-M) and
31 the National Institute of Health NCI R01CA223204 (ZC-M). This work was also supported in
32 part by the Pelotonia Fellowship Program (OU), OSUCCC-Kenyon Student Summer Program
33 (AL), by grant P30 CA016058 NCI and by grant UL1TR002733 from the National Center for
34 Advancing Translational Sciences. The content is solely the responsibility of the authors and
35 does not necessarily represent the official views of the National Pancreas Foundation, the
36 National Center for Advancing Translational Sciences, the National Institutes of Health, or the
37 Pelotonia Fellowship Program.

38 Conflict of interest/disclosures: none

39 **Keywords:** Lipocalin 2, Iron, PDAC, EMT and NDRG1

40 **AUTHOR CONTRIBUTIONS:**

- 41 1. Valentina Pita MS - study concept and design; development of methodology; acquisition
42 of data; analysis and interpretation of data; drafting of initial manuscript; writing, review,
43 and/or revision of the manuscript; administrative, technical, or material support; final
44 approval of the version to be submitted;
- 45 2. Andrew W. Dangel PhD- study concept and design; development of methodology;
46 acquisition of data; analysis and interpretation of data; drafting of initial manuscript;
47 writing, review, and/or revision of the manuscript; administrative, technical, or material
48 support; final approval of the version to be submitted;
- 49 3. Kristyn Gumpper PhD – writing, review, and revision of the manuscript, final approval of
50 the version to be submitted;
- 51 4. Andrea Ludwig - development of methodology; acquisition of data, analysis and
52 interpretation of data, administrative, technical, or material support, final approval of the
53 version to be submitted;
- 54 5. Olivia Ueltschi - acquisition of data, analysis and interpretation of data, final approval of
55 the version to be submitted;
- 56 6. Xiaokui Mo PhD - acquisition of data, analysis and interpretation of data, final approval
57 of the version to be submitted;
- 58 7. Maciej Pietrzak PhD - acquisition of data, analysis and interpretation of data, final
59 approval of the version to be submitted;
- 60 8. Amy Webb PhD - acquisition of data, analysis and interpretation of data, final approval
61 of the version to be submitted;
- 62 9. Rosa F. Hwang MD - administrative, technical, or material support; final approval of the
63 version to be submitted;
- 64 10. Madelyn Traczek - development of methodology; acquisition of data, analysis and
65 interpretation of data, administrative, technical, or material support, final approval of the
66 version to be submitted;
- 67 11. Niharika Badi, MS - development of methodology; acquisition of data, analysis and
68 interpretation of data, administrative, technical, or material support, final approval of the
69 version to be submitted;
- 70 12. Zobeida Cruz-Monserrate, PhD - study concept and design; development of
71 methodology; acquisition of data; analysis and interpretation of data; drafting of initial
72 manuscript; writing, review, and/or revision of the manuscript; administrative, technical,
73 or material support; final approval of the version to be submitted; study supervision.

74
75
76

77 **Abstract**

78 Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic disease with poor outcomes.

79 Iron is known to signal cellular responses, and its levels are regulated by lipocalin-2 (LCN2)

80 expression, a PDAC pro-tumorigenic molecule. However, how iron and LCN2 function in

81 PDAC is unclear. Here we demonstrate that iron levels regulate PDAC cell proliferation,

82 invasion, expression of epithelial to mesenchymal tumor markers, and pro-inflammatory

83 cytokines. Iron chelation increased the expression of the LCN2 receptor *SLC22A17* in pancreatic

84 stellate cells and the anti-metastatic gene *NDRG1* in PDAC cells. Deletion of *Lcn2* in mouse

85 tumor cells modulated the expression of genes involved in extracellular matrix deposition and

86 cell migration. Moreover, cellular iron responses were dependent on the *Kras* mutation status of

87 cells, and *LCN2* expression levels. Deletion of *Lcn2* expression in PDAC suggests a protective

88 role against metastasis. Thus, iron modulation and LCN2 blockade could serve as potential

89 therapeutic approaches against PDAC.

90 **Introduction**

91 Pancreatic ductal adenocarcinoma (PDAC) is currently the third leading cause of cancer-
92 related deaths in the United States, mostly due to the lack of early detection methods, late
93 diagnosis, and limited treatment options (1). Poor prognosis results from late stage diagnosis,
94 low eligibility for tumor resection, increased resistance to current therapies, high cancer cell
95 proliferation rates, and elevated incidence of metastases (2-4).

96 PDAC progression has been associated with increased expression of pro-inflammatory
97 molecules such as lipocalin-2 (LCN2) (5). LCN2 is a secreted glycoprotein involved in the
98 innate immune response that is upregulated in many cancers including PDAC (5, 6). Our group
99 has previously shown that LCN2 expression is highly elevated in the blood of PDAC patients
100 and in PDAC tumor cells, inducing inflammation by modulating the secretion of pro-
101 inflammatory cytokines in human pancreatic stellate cells (HPSCs) in the PDAC tumor
102 microenvironment (TME) (5). Moreover, depletion of LCN2 in mice extends survival and delays
103 PDAC tumor growth (5). LCN2 chelates divalent and trivalent iron via siderophore binding that
104 controls cellular iron uptake and apoptosis (7-9), for this reason, iron modulation could be
105 essential in regulating the mechanisms by which LCN2 contributes to the tumorigenesis of
106 PDAC.

107 Cellular iron levels control metabolism, proliferation, DNA synthesis, and cell death of
108 both normal and neoplastic cells (10-14). Cancer cells increase iron uptake and expression of the
109 transferrin receptor, known to transport iron into the cells (15). Moreover, iron metabolism-
110 related pathways are used as prognostic indicators of various cancers (16-18). Increased iron
111 levels are involved in the epithelial-mesenchymal transition (EMT) of cancer cells, leading to
112 increased metastasis (10, 11, 18-26). Since PDAC cells undergo EMT, decreasing iron levels

113 could potentially inhibit EMT in PDAC (18, 23, 27-29). Iron chelators, such as deferoxamine
114 (DFO), are used to reduce iron levels and have been effective in the treatment of iron overload
115 diseases like hemochromatosis (30). In leukemia, breast, and colorectal cancers, DFO treatment
116 inhibits cell growth and promotes apoptosis (31-33). Iron also regulates the expression of genes
117 involved in metastasis. Among these, high levels of iron downregulate the expression of the N-
118 myc downstream-regulated gene1 (NDRG1). NDRG1 is known to suppress metastasis and
119 inhibit EMT in several cancers, including PDAC (34), and it is associated with the differentiation
120 state of PDAC cells, with well-differentiated cells expressing higher levels of NDRG1 (35).

121 Given the increasing evidence suggesting a link between LCN2, iron, and PDAC
122 tumorigenesis, here we investigated the effects of iron level modulation and LCN2 expression on
123 cell proliferation, invasion, and expression of various inflammatory-related cytokines on PDAC
124 cancer and stromal-derived cells. Moreover, we assessed whether LCN2 depletion from cancer
125 cells resulted in gene expression changes related to EMT and metastasis.

126 **Results**

127 **Iron levels regulate proliferation of PDAC and pancreatic stellate cells**

128 Iron is known to modulate cell proliferation (12, 13). Therefore, we tested whether
129 modulating iron levels *in vitro* by adding or chelating iron would affect the proliferation of
130 PDAC and pancreatic stellate cells. Since iron responses are known to be dependent on the *Kras*
131 mutation status of cancer cells (36) we selected to study PANC1 (mutant for Kras) and BXPC3
132 (wild-type for Kras) human PDAC cells (37). We treated human PDAC cells, mouse PDAC cells
133 (KPC) and human PSC (HPSC) cells with increasing concentrations of iron (ferrous ammonium
134 citrate, FAC). FAC treatments of 0.313 mM and 20 mM reduced proliferation of BXPC3,
135 however FAC concentrations between 0.625 mM and 10 mM at 48 and 72 hours increased

136 proliferation (**Figure 1**). In contrast, increased FAC treatments decreased the proliferation of
137 PANC-1, KPC, and HPSC cells in a dose-dependent manner for which HPSCs were more
138 sensitive to FAC (**Figure 1 and Figure 1 – figure supplement 1A**). To address whether iron
139 chelation alone inversely regulated cell proliferation, cells were treated with the iron chelator
140 DFO. At lower doses of DFO, we observed an increased trend towards proliferation for all cells
141 with maximum proliferation at 48 hours, which was statistically significant only in HPSC
142 (**Figure 1B, D, F, and Figure 1- figure supplement 1B**). In contrast, higher doses of DFO (12.5
143 μM , 25 μM , and 50 μM) resulted in decreased proliferation for all cells after 72 hours except for
144 KPC cells (**Figure 1B, D, F, and Figure 1 – figure supplement 1B**). Therefore, cell
145 proliferation is dependent on iron level modulation and suggests that iron levels could impact
146 cells proliferation in a Kras-dependent matter in PDAC.

147 **Iron levels modulate the expression of pro-inflammatory and iron-transport genes in**
148 **PDAC and pancreatic stellate cells**

149 TME-associated inflammation can mediate tumor growth (38, 39). Therefore, we tested
150 whether modulating iron levels could influence the expression of pro-inflammatory genes (*IL6*
151 and *IL1 β*), known to be regulated by the expression of LCN2, a PDAC-associated cytokine
152 involved in cellular iron uptake (5). We also measured the expression of two iron-transport
153 genes, ferritin heavy chain 1 (*FTH1*), and solute carrier family 22 member 17 (*SLC22A17*),
154 (LCN2 receptor) to verify cellular iron storage, and iron-bound LCN2 transport into the cells
155 respectively. BXPC3, PANC-1, and HPSC were treated with FAC at 150 μM (a physiologically
156 relevant dose of iron) (40) for 24 hours and showed elevated expression of *IL6*, *IL1 β* , and *FTH1*,
157 in the presence of FAC relative to control (**Figure 2**). However, *SLC22A17* expression was not
158 responsive to iron treatment in any of the cell lines tested (**Figure 2**). In addition, we treated cells

159 with 20 μ M of DFO, and showed that expression of *IL6* and *IL1 β* decreased in HPSC.
160 Expression of *IL6* was not stimulated in PANC-1 and BXPC3 while *IL1 β* increased in BXPC3
161 after iron chelation (**Figure 2B, D**). *FTH1* expression was reduced in PANC-1, while it was
162 increased in HPSCs after DFO treatment (**Figure 2F**). Moreover, *SLC22A17* expression was
163 upregulated only in HPSCs after iron chelation (**Figure 2H**), which could be the result of an
164 adaptation mechanism in response to low levels of iron in HPSCs, to preserve iron transport in
165 the TME. Thus, increased iron levels seem to promote inflammation and iron transport in PDAC
166 and HPSCs, but do not affect the expression of the LCN2 receptor. Iron chelation for the most
167 part blocked some of those effects and specifically increased iron transport molecules in HPSCs.
168 These results indicate that stromal cells of the TME respond differently to reduced iron levels
169 than cancer cells.

170 **Iron treatment promotes EMT and cancer cell invasion of human PDAC cell lines in a
171 Kras-dependent matter.**

172 Iron promotes changes in EMT which is known to precede invasion (10). Therefore, to
173 understand whether iron levels modulate the EMT phenotype of PDAC cells, we examined cell
174 morphology and expression of EMT markers as a result of iron treatment. Increased iron induced
175 a mesenchymal morphology in BXPC3 that was not observed in PANC-1 cells (**Figure 3A**). To
176 confirm the morphological changes observed, classical EMT markers, *ZEB1*, *SNAI1*, and *TWIST*
177 transcription factors, and the epithelial marker E-cadherin (*CDH1*) were measured after 48 hours
178 of 20mM FAC treatment (**Figure 3B, C**). In BXPC3 cells, expression levels of all the EMT gene
179 markers were elevated after FAC treatments, while *CDH1* (an epithelial marker) expression was
180 decreased, as expected for cells undergoing EMT. *TWIST* had the largest increased in gene
181 expression after FAC treatment (5.5-fold increase) compared to control in BXPC3 cells. In

182 PANC1 cells FAC did not induced expression of EMT markers, but it resulted in a 2.7-fold
183 decrease in expression of *CDH1*. Moreover, iron chelation decreased the expression of EMT
184 markers (*ZEB1*, *SNAI1* and *TWIST*) in both BXPC3 and PANC-1 (**Figure 3 - figure supplement**
185 **1A, B**). Interestingly, DFO also decreased *CDH1* expression in PANC-1. These data suggest that
186 iron chelation could inhibit iron-dependent EMT of cancer cells and might be dependent on the
187 Kras mutations status of cells. To further assess how the iron-dependent EMT modulation
188 regulates the invasive potential of BXPC3 and PANC-1, we measured invasion via transwell
189 assay with a BME coated membrane. We showed that iron treatments significantly increased the
190 invasion of BXPC3 cells at both 150 μ M and 20mM FAC. However, invasion was significantly
191 increased only in PANC-1 cells after 150 μ M FAC and not 20mM FAC (**Figure 3D, E**). These
192 correlates with the increased expression of EMT markers observed in BXPC3 cells at 20mM
193 FAC.

194 **Iron regulates *NDRG1* expression which is inversely correlated with *LCN2* expression in**
195 **PDAC.**

196 Iron is known to downregulate the expression of the iron related metastasis suppressor,
197 N-myc downstream regulated gene 1 (*NDRG1*), and this downregulation is associated with
198 increased proliferation and invasion of PDAC (34, 41, 42). Therefore, we measured the
199 expression of *NDRG1* after treating BXPC3 and PANC-1 cells with 150 μ M and 20mM FAC.
200 We showed that *NDRG1* expression decreases 33-fold in BXPC3 and 22-fold in PANC-1 cells
201 after FAC treatment (**Figure 4A**). *NDRG1* expression was considerably higher in BXPC3
202 compared to PANC-1 cells not treated with FAC. Moreover, iron chelation induced the
203 expression of *NDRG1* in both BXPC3 and PANC-1 cells (**Figure 4B**). Our data suggests that
204 iron chelation could decrease iron-induced metastasis via EMT and *NDRG1* regulation.

205 *NDRG1* expression is involved in cell line differentiation, with well differentiated PDAC
206 cells expressing higher levels of *NDRG1* and poorly differentiated PDAC cells expressing lower
207 levels or no *NDRG1* mRNA (35). Moreover, *NDRG1* expression was found to be negatively
208 regulated by *LCN2* in cholangiocarcinoma cells (43). Therefore, we assessed the expression of
209 *LCN2* and *NDRG1* in multiple human PDAC cell lines and a HPSC cell line compared to a
210 normal human pancreatic ductal epithelial cell line (HPDE). We showed that in general there
211 was an inverse relationship between *NDRG1* expression and *LCN2* expression, except for
212 PANC-1 and MIAPACA2, where both *NDRG1* and *LCN2* expression were low (**Figure 4C and**
213 **4E**). Since these genes are involved in iron regulation, we also assessed the expression of the
214 iron transport gene *FTH1* and showed that all cell lines had significantly lower expression levels
215 than HPDE. (**Figure 3 - figure supplement 1C**). To validate our findings in another model, we
216 examined *Ndrg1* and *Lcn2* expression levels in the pancreatic tissue of a genetically engineered
217 mouse model of diet-induced PDAC (KRAS^{G12D}/CRE) (5, 44). We showed that *Lcn2* expression
218 was increased and *Ndrg1* expression was decreased in KRAS^{G12D}/CRE mice, compared to the
219 CRE control mice (**Figure 4D-4F**).

220 **Lcn2 depletion elevates *Ndrg1* expression, which is regulated in an iron-dependent manner.**

221 To further understand the role of *LCN2* expression and iron levels in modulating *NDRG1*
222 expression in PDAC, we generated a KPC cell line with a biallelic *Lcn2* deletion. Several *Lcn2*^{-/-}
223 (KO) clones were isolated and characterized by a series of genomic PCR assays, and two of
224 those *Lcn2* KO clones were used in this study (**Figure 5 – figure supplement 1**). Quantitative
225 RT-PCR was performed to verify that no transcripts of *Lcn2* were present (**Figure 5 and Figure**
226 **5 – figure supplement 2A**).

227 Mouse PDAC cells (KPC-parental clone, *Lcn2*-KO clone 1 and *Lcn2*-KO-clone 2) were
228 treated with similar FAC concentrations as the human PDAC cells shown in (**Figure 1**) and KPC
229 cells prior to single cell cloning (**Figure 1 – figure supplement 2A**) to evaluate and compare
230 cell proliferation. Results showed that FAC decreases proliferation in a dose-dependent manner
231 for all KPC cell lines and at 72 hours, all KPC cell lines showed a decreased in proliferation
232 similar to that observed for PANC-1 and HPSC in **Figure 1** (**Figure 5 – figure supplement 2**).

233 To investigate whether the lack of *Lcn2* expression modulates the levels of *Ndrg1*
234 expression in cancer cells treated with iron, KPC-parental cells, *Lcn2*-KO clone 1 and *Lcn2*-KO
235 clone 2 were treated with various concentrations of FAC and changes in *Ndrg1* gene expression
236 were examined (**Figure 5A**). We showed that *Ndrg1* expression was elevated 2.5 to 3.3-fold in
237 the untreated *Lcn2*-KO clones relative to the parental clone KPC cell line. However, FAC
238 treatments decreased the expression of *Ndrg1* in the *Lcn2*-KO clones and not the *Lcn2*^{+/+} KPC
239 parental clone. Both *Lcn2*-KO clones showed a decrease in *Ndrg1* expression as the FAC
240 concentration increased to 150 μ M, but a reversal of this trend is observed at 1500 μ M FAC for
241 both KO clones (**Figure 5**). The absence of *Lcn2* in mouse PDAC cells elevated the expression
242 of *Ndrg1*, which was regulated by iron levels. To further understand this relationship, we
243 measured *Lcn2* expression in the KPC-parental clone cells and found an overall increased in
244 *Lcn2* expression at increasing doses of FAC (**Figure 5**). These data suggest that iron levels
245 regulate expression of *Lcn2* in cancer cells.

246 To verify iron influx into the cells, the expression of *Fth1* was quantified. *Fth1*
247 expression was overall increased with increasing iron concentrations in all cells regardless of
248 *Lcn2* expression (**Figure 5E**). These results indicate that iron was being taken by the cells and
249 stored even in the absence of *Lcn2* expression.

250 To assess whether iron chelation had the inverse effects of iron treatments on KPC cells
251 with or without *Lcn2* expression, we treated the cell lines with a range of DFO concentrations
252 and measured the expression of *Ndrg1*. In the KPC-parental cells, increasing concentrations of
253 DFO increased *Ndrg1* expression (**Figure 5B**). However, the *Lcn2*-KO clones exhibited an
254 overall decrease in *Ndrg1* expression. Furthermore, we measured *Lcn2* and *Fth1* expression after
255 DFO treatments and showed that DFO increased *Lcn2* expression at high concentrations in the
256 KPC-parental cell line (**Figure 5D**) and decreased *Fth1* expression overall in all KPC cell lines
257 regardless of *Lcn2* expression (**Figure 5F**). These results further depict the complexity of iron
258 regulation and its association with other factors in PDAC. A plausible explanation for these
259 results is that in a low iron environment, KPC cells decrease the expression of the iron storage
260 gene *Fth1* because iron needs to be released from storage to be utilized by the cell, while
261 increasing *Lcn2* expression in order to scavenge for iron and compensate for the lack of iron
262 available in the cell.

263 **Lcn2 depletion regulates the expression of genes involved in extracellular matrix deposition
264 and cell migration pathways**

265 To further understand other pathways that are regulated by the lack of *Lcn2* expression in
266 PDAC cells, we performed RNA sequencing analysis of the KPC parental and *Lcn2*-KO clone
267 cell lines. A heat map of the hierachal clustering of genes in KPC parental and *Lcn2*-KO clones
268 shows that the clustering of genes differed greatly between the KPC parental and the *Lcn2*-KO
269 clones, while the clustering of genes between both *Lcn2*-KO clones were similar to each other
270 (**Figure 6A**).

271 Gene Ontology (GO) analyses were performed to identify the processes in which
272 differentially expressed genes of these cell lines were involved. These results showed that *Lcn2*

273 deletion differentially modulates ECM related mechanisms, cell migration, cell adhesion, blood
274 vessel development, and connective tissue development, among others (**Figure 6B, C, D**), when
275 compared to the KPC parental clone cell line expressing *Lcn2*. These are all characteristics
276 involved in cancer development and progression, where LCN2 plays an important role (45, 46).

277 Furthermore, Gene Set Enrichment Analyses (GSEA) were used to identify classes of
278 genes or proteins over-represented in the *Lcn2*-KO clones and to understand possible
279 associations to cancer phenotypes. We found genes involved in the biological function of cell
280 adhesion to be significantly over-represented in the KPC *Lcn2*-KO clone 1 (**Figure 7 A**) and
281 clone 2 (**Figure 7 B**) cell lines, compared to the KPC parental clone. Genes involved in
282 proteinaceous extracellular matrix processes and the integrin pathway were also found
283 significantly over-represented in the KPC *Lcn2*-KO clone 1 (**Figure 7 C, E**) and clone 2 (**Figure**
284 **7 D, F**) cell line compared to KPC parental. Therefore, *Lcn2* deletion modulates a large number
285 of genes involved in extracellular matrix deposition and cell migration pathways.

286 **DISCUSSION**

287 Since iron is essential for cell growth, DNA synthesis, and apoptosis, tumor cells tend to
288 have elevated iron requirements relative to normal somatic cells due to their increased
289 proliferation rates (47). In this study, the human PDAC cell line BXPC3, increased proliferation
290 in response to changes in iron concentration compared to PANC-1 cells (**Figure 1**). BXPC3 cells
291 express an un-mutated *KRAS* gene while PANC-1 express a mutant *KRAS*^{G12D} (37, 48, 49),
292 possibly accounting for the differences observed in these cell lines. These effects are slightly
293 reversed when iron is chelated with DFO. Interestingly, in PDAC patients in which Kras is not
294 mutated, iron concentrations are significantly higher (50). This suggests that Kras mutation status
295 could be involved in iron homeostasis in the same way that the TP53 mutation, another common

296 mutation in PDAC patients, was found to regulate cellular iron transport and storage (51).
297 Moreover, triapine, an iron chelator and an inhibitor of the M2 subunit of the ribonucleotide
298 reductase, has been used to improve radiation therapy outcomes in PDAC patients (52). In
299 addition, iron chelation has also been effective in reducing tumor growth alone or in combination
300 with other treatments in vitro and in PDAC xenograft models (53-56).

301 Considering the interaction of iron with the pro-inflammatory cytokine LCN2, we sought
302 to understand whether iron contributed to the inflammatory responses observed in PDAC. Here
303 we showed that iron induced inflammation by increasing the expression of *IL6* and *IL1 β* in both
304 PDAC cancer and pancreatic stellate cells. However, the expression of the LCN2 receptor
305 *SLC22A17* remained unchanged (**Figure 2 A, C, G**). In breast cancer, iron contributes to
306 chemoresistance by increasing IL6 production in tumor associated macrophages (57).
307 Chemoresistance is one of the most common features in PDAC in part due to the dense stromal
308 environment (58). For this reason, additional studies should investigate whether iron modulation
309 could be used in combination with current therapies to decrease chemoresistance in PDAC.

310 Iron concentrations are associated with EMT in tumors cells (10, 11). The crucial steps of
311 EMT leading to metastasis are characterized by a decrease in intercellular adhesion of the tumor
312 cells, a loss of epithelial morphology, and increased invasion, a hallmark of mesenchymal
313 morphology (27, 59). At the molecular and transcriptional level, EMT is characterized by
314 promoting the degradation of basement membranes and ECM, leading to invasion and metastasis
315 (46). Here we showed that excess iron in the media of BXPC3 cells increased the expression of
316 EMT-associated markers and cell invasion more than PANC-1 cells (**Figure 3**), while iron
317 chelation decreased mesenchymal markers expression in both cell lines (**Figure 3 - figure**
318 **supplement 1A, B**). Differences in the Kras mutation status between BXPC3 and PANC-1 cell

319 lines could be mediating the invasive phenotype and proliferation that results from iron in PDAC
320 (35, 37, 48). Previous reports suggest that *Ras* expression can modulate cellular processes such
321 as cell survival in ovarian cancer (36) and other factors in PDAC (50, 60). Iron chelation has
322 been effective at suppressing EMT in lung, prostate, colon and esophageal cancer (20-23).
323 However, a study in mice showed that while EMT induces chemoresistance in PDAC, EMT is
324 not needed to develop an invasive and metastatic phenotype (61). Contributing to the *Kras*
325 expression difference among the cell lines, we found higher *LCN2* expression in BXPC3 cells
326 compared to the mutant *KRAS* PANC-1 cells (**Figure 4C**), which might support the differences
327 in iron responses and iron-dependent EMT initiation between the lines. Future studies aimed at
328 understanding whether *LCN2* expression is associated with *Kras* mutations in PDAC are
329 necessary to determine whether *LCN2* and iron targeted therapy will benefit PDAC patients.

330 Besides inducing EMT, iron also regulates expression of the metastatic suppressor
331 *NDRG1* (21, 23, 34). *NDRG1* expression can be regulated by other effectors including N-myc,
332 acetylation of histones, hypoxia, and intracellular calcium levels (21, 34, 41, 42, 62, 63). *NDRG1*
333 is responsible for the suppression of glycolytic metabolism in PDAC, a metabolic pathway
334 utilized by many cancers for growth (60). In our study, we found that increased levels of iron
335 downregulated the expression of *NDRG1*, while iron chelation upregulated *NDRG1* expression in
336 PDAC cancer cells. Moreover, baseline expression of *NDRG1* was lower in the PANC-1 cell line
337 compared to the BXPC3 cell line (**Figure 4A, B**). Similar results were observed in the mouse
338 pancreatic cancer cell line, where the induction of oncogenic *Kras*^{G12D} mutation decreased
339 significantly the protein levels of *NDRG1* (60). Since *NDRG1* expression is already reduced in
340 the mutant *Kras* compared to wild type *Kras* cell line, the further decrease in *NDRG1* expression
341 caused by iron might not have the same impact on promoting EMT. Although *Kras* mutations

342 and elevated expression of LCN2 are common in PDAC, our data suggests that knowing the
343 mutation status of Kras and LCN2 levels in patients could help inform whether iron modulation
344 and LCN2 blockade could serve as a novel treatment approach.

345 Intracellular iron is regulated by the expression of FTH1, which functions as an iron
346 storage protein and controls intracellular iron release (64). Here we showed that FTH1
347 expression is lower in PDAC cell lines compared to a normal human pancreatic ductal epithelial
348 cell line (**Figure 3 - figure supplement 1**). These data suggest that there is an increase of free
349 iron and possible reduction in iron storage due to the high demand for iron by PDAC cells. *FTH1*
350 expression is also downregulated in HPSC, potentially for the same reason. Lower amounts of
351 intracellular FTH1 result in higher concentrations of free iron, contributing to elevated reactive
352 oxygen species production, another essential factor in EMT (26). In human breast and lung
353 cancer cell lines, inhibition of *FTH1* expression promoted migration, decreased adhesion, and
354 displayed a fibroblastoid morphology that lead to EMT (19). These findings support the
355 observation that increased extracellular and intracellular iron, as well as reduced intracellular
356 FTH1, results in EMT.

357 To further understand how LCN2 expression in cancer cells modulated iron responses,
358 LCN2 expression was deleted via CRISPR. RNA sequencing was used to identify other
359 processes regulated by *Lcn2* expression in PDAC. We showed that *Lcn2* deletion is associated
360 with differentially expressed genes involved in extracellular matrix related pathways and
361 processes vital to cancer progression, such as cell migration, cell motility, and collagen binding
362 (**Figure 6 B, C, D**). These results validate and build upon our prior work supporting the finding
363 that stromal cells treated with LCN2 increase inflammation in the TME of PDAC and that lack
364 of *Lcn2* expression in mice delays PDAC tumor formation and increases survival (5). In

365 particular, the processes of cell adhesion, proteinaceous extracellular matrix, and integrin
366 pathway were strongly over-represented in the tumor cells that lack *Lcn2* expression (**Figure 7**).
367 Cell adhesion is associated with an epithelial phenotype and it is known to be reduced during
368 EMT and metastasis (27). Moreover, the proteinaceous extracellular matrix and integrin
369 pathways are tightly associated with the organization of the extracellular matrix in cancer
370 progression (65).

371 Overall, in our study we demonstrated that iron promotes inflammation, invasion, and
372 EMT on PDAC cell lines partially by modulating NDRG1 expression. Iron responses were
373 strongly associated with LCN2 expression, which contributes to the formation and function of
374 the TME. Finally, our data suggests that iron chelation can potentially decrease invasion and
375 metastasis in PDAC, especially if combined with an LCN2 blockade. Additional studies are
376 needed to assess the therapeutic potential of LCN2 blockade and iron modulation on PDAC
377 progression and metastasis, and its correlation with *Kras* mutations status. Our study also
378 suggests that *Kras* mutations may play a role in how cancer cells respond to iron in PDAC.
379 Therefore, knowing the mutation status of *KRAS* in PDAC would help determine whether a
380 patient could benefit from iron chelation therapy and LCN2 blockade in conjunction with current
381 treatment standards of care.

382 **Materials and Methods**

383 **Cell culture and cell lines**

384 Cell lines were cultured at 37°C with 5% CO₂ in DMEM supplemented with 4.5 g/l
385 glucose, L-glutamine and 10% FBS. All cell lines tested negative for the presence of
386 mycoplasma using MycoAlert kit (Lonza, Hayward, CA), which we test monthly. BXPC3,

387 PANC-1, HPAC, CAPAN2, MIAPACA2, CAPAN1, and MPANC96 were obtained from the
388 American Type Culture Collection (ATCC). HPDE (non-malignant, human pancreatic ductal
389 epithelial) cells (66, 67) were obtained from Dr. Tsao (Ontario Cancer Institute, Toronto, ON,
390 Canada). Mouse PDAC cells were derived from a pancreatic tumor of a *LSL-KRas*^{G12D}, *LSL-*
391 *Trp53*^{-/-}, *PDX-1-CRE*, (KPC) genetically engineered mouse, as described in (5, 68). The KPC
392 cell line was subcloned to derive a single clone for CRISPR cloning. HPSC were acquired from a
393 resected human PDAC sample as described in (5).

394 **CRISPR plasmids, guide RNA constructs and oligonucleotides**

395 The PX459V2.0 plasmid (pSpCas9(BB)-2A-Puro) (Addgene, Watertown, MA) was used
396 to ligate the appropriate single guide RNA sequences 5' of the trans-activating CRISPR RNA
397 (tracrRNA) scaffold to create a gRNA/tracrRNA that will direct the Cas9 nuclease to the
398 appropriate site for cleavage (69). Cloning of single guide RNA sequences, transfection of
399 plasmids into cells, and selection of biallelic, *Lcn2*-deleted clones are modified from previously
400 described protocols (70). PX459V2.0 plasmid contains the *cas9* ORF, the tracrRNA scaffold
401 ORF, a cloning site (BbsI) for ligation of a specific guide RNA at the 5' end of the tracrRNA
402 scaffold ORF, and a puromycin resistance gene for selection of cells that were transfected with
403 PX459V2.0. Transfection of PX459V2.0 was performed using Lipofectamine 3000 (Invitrogen)
404 under manufacturer's guidelines. Guide RNA sequences are located in intron 2 (gRNA-1), intron
405 5 (gRNA-2), and the 3' UTR (gRNA-3) of the mouse *Lcn2* gene (six exons total) (**Figure 5 –**
406 **figure supplement 1**). Paired guide RNAs, gRNA-1/gRNA-2 and gRNA-1/gRNA-3, generated
407 deletions from exons 3 through 5 and exons 3 through 6, respectively, thus creating two
408 distinguishable types of genomic deletions. Biallelic *Lcn2*-deleted single cell-derived clones
409 were identified using genomic PCR and oligonucleotides 5' to gRNA-1 genomic location, and 3'

410 to gRNA-2 and gRNA-3 genomic locations to detect deletions in the *Lcn2* locus (**Figure 5 –**
411 **figure supplement 1**). Biallelic *Lcn2*-deleted clones were further verified using oligonucleotides
412 internal to the deleted region (**Figure 5 – figure supplement 1**).

413 Guide RNA oligonucleotide pairs for ligation into PX459V2.0 and Genomic PCR
414 oligonucleotides are displayed in **Supplementary file 1**.

415 **Iron treatments**

416 For iron and DFO treatments, plated cells were washed with PBS three times and serum
417 starved 24 hours prior to the treatments. Treatments with iron were performed with Ferric
418 Ammonium Citrate (FAC) (Sigma-Aldrich, St. Louis, MO), in concentrations ranging from 0-
419 20mM FAC added to the serum-free media (SFM) (only DMEM) for 24-72 hours depending on
420 the experiment. Iron chelation was performed with DFO (Sigma-Aldrich, St. Louis, MO) in
421 concentrations ranging from 0-50 μ M added to SFM for 24-72 hours depending on the
422 experiment.

423 **Cell proliferation**

424 CellTiter 96 AQueous One Solution Cell Proliferation Assay MTS 3-(4,5-
425 dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) was used
426 according to the manufacturer's protocol (Promega, Madison, WI) to assess proliferation of cells
427 cultured in 96-well plates.

428 **Cell invasion**

429 Invasion assays were performed according to the manufacturer's protocol with some
430 modifications. Briefly, the upper surface of transwell membranes (24-well plates, 6.5mm Insert,

431 8.0um PET membrane; (Trevigen) was coated with Basemen Membrane Extract (BME),
432 composed of laminin I, collagen IV, entactin and heparin sulfate proteoglycan. The coated
433 transwells were incubated at 37⁰ C, 24 hours before the assay. The following day, SFM or 10%
434 FBS DMEM was added to the bottom chambers. The cells were centrifuged and resuspended in
435 0.25 mg BSA/PBS twice, and 50,000 cells were added to the upper transwell membrane
436 chambers. The cells were left to invade overnight into either SFM or 10% FBS DMEM, at 37⁰ C.
437 The next day, the cells that migrated to the bottom were washed and stained with Calcein-
438 AM/cell dissociation solution and incubated for 1 hour. Cell numbers were read at 485 nm
439 excitation and 520 nm emission wavelengths using the Synergy HT multimode micro-plate
440 reader (BioTek, Winooski, VT).

441 **DNA isolation and genomic PCR**

442 DNA from KPC cultured cells, for the selection of CRISPR-derived biallelic *Lcn2*
443 deletion clones, was isolated using the DNeasy Blood & Tissue kit (Qiagen, Venlo,
444 Netherlands). Genomic PCR was performed using 30 ng of genomic DNA for the detection and
445 verification of the biallelic deletion within the mouse *Lcn2* gene.

446 **RNA isolation and quantitative RT-PCR**

447 RNA isolation from cultured cells or mouse pancreatic tissue was performed using
448 TRIzol reagent (Life Technologies, Carlsbad, CA) following the manufacturer's protocol.
449 Reverse transcription to generate cDNA from total RNA was performed using the Verso cDNA
450 synthesis kit (ThermoFisher Scientific, Waltham, MA). Quantitative PCR using TaqMan primers
451 (**Supplementary file 1**) (ThermoFisher Scientific, Waltham, MA) was employed to determine
452 gene expression levels compared to control and normalized to either 18S or GAPDH.

453 **Imaging**

454 Bright-field microscopy images of BXPC3, PANC-1 and HPSC cell lines were taken
455 with an Olympus IX51 microscope DP74 digital camera.

456 **Genetically engineered transgenic mice and treatments**

457 *KRas*^{G12D} mice obtained from the Mouse Models of Human Cancer Consortium
458 Repository (NIH Bethesda, MD) (71) were bred with the Ela-CreERT (CRE) mice as previously
459 described (72) to generate the *KRas*^{G12D}/CRE mice. At 40 days old, mice were administered
460 tamoxifen orally for 3 consecutive days and were fed a high fat diet for 6 weeks (Test Diet DIO
461 58Y1 van Heek Series; Lab Supply, Fort Worth, TX), in which 60% of energy was derived from
462 fat. Pancreatic tissue was collected after the intervention and RNA was extracted.

463 **RNA profiling**

464 The RNA expression was analyzed by RNAseq. The RNA library was generated using
465 the NEB Next Ultra II Directional RNA kit. The sequencing approach was polyA-selection
466 (mRNA-seq). The input amount was 200 ng total RNA as determined by
467 ThermoFisher/LifeTechnology Qubit RNA assay. Each library was sequenced to a depth of 17 –
468 20 million passed filter clusters (or 34 – 40 million passed filter reads) using the Illumina HiSeq
469 4000 sequencer paired – end 150bp approach. The data discussed in this publication have been
470 deposited in NCBI's Gene Expression Omnibus (73) and are accessible through GEO Series
471 accession number GSE143463
472 (<https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE143463>).

473 **RNAseq data processing and analysis**

474 Sequencing reads were aligned to mouse reference genome GRCm38 with hisat2 (74).

475 Gene expression was quantified with featureCounts software (75) for genes annotated by

476 ensembl Mus_musculus.GRCm38.83, counting the primary alignment in the case of

477 multimapped reads. Genes were included if at least half of the samples had an expression of 2

478 CPM. Raw counts were normalized by voom and differential expression was performed with

479 limma (76).

480 For the heatmap, we selected genes with $\log FC > 1$ or <-1 and with $FDR < 0.05$ in either

481 KPC parental clone vs KPC *Lcn2*-KO clone 1 or KPC parental clone vs KPC *Lcn2*-KO clone 2.

482 Using ComplexHeatmap in R, we plotted scaled voom normalized expression values (77). To

483 identify gene sets enriched in pairwise comparisons of sample groups, we performed Gene Set

484 Enrichment Analysis (GSEA) (78, 79). For the analysis, we used voom-normalized expression

485 data. Mouse gene sets were downloaded from Gene Set Knowledgebase GSKB (80) for Gene

486 ontology (GO), pathway, and transcription factors.

487 **Statistics**

488 Statistical analyses were carried out using the Prism 5 software program (GraphPad

489 Software San Diego, CA). Data are presented as the mean \pm standard error of the mean. A t-test

490 or one-way analysis of variance (ANOVA) was performed to analyze the data for two groups

491 and multiple comparisons respectively. Multiple comparisons were corrected with the Dunnett's

492 test. Levels of significance are indicated as follows: * = $P \leq 0.05$, ** = $P \leq 0.01$, *** = $P \leq$

493 0.001, **** = $P \leq 0.0001$. Non-parametric analyses were conducted when data were not

494 normally distributed. A minimum of three replicates were performed for all in-vitro studies.

495

496 **Acknowledgements:** We thank The Ohio State University Genomics Shared Resource (GRS)
497 for the RNA sequencing library generation which is funded by NCI Cancer Center Support Grant
498 P30 CA016058.

499

500 **FIGURE LEGENDS**

501 **Figure 1. Iron and DFO treatments regulate cell proliferation in the TME. (A), BXPC3, (C),**
502 PANC-1 and (E). HPSC were treated with, 0.313 mM, 0.625 mM, 1.25 mM, 2.5 mM, 5 mM, 10
503 mM, and 20 mM, FAC. (B) BXPC3, (D) PANC-1 and (F) HPSC were treated with 0.781 μ M,
504 1.563 μ M, 3.125 μ M, 6.25 μ M, 12.5 μ M, 25 μ M, and 50 μ M DFO. Cell proliferation was
505 measured using MTS following exposure to FAC or DFO over a range of 72 hours. Results were
506 normalized to 0 hours, represented by a horizontal dashed line. Significance was assessed by
507 one-way ANOVA comparison test. Bars represent mean \pm SEM. * $p\leq 0.05$, ** $p\leq 0.01$, *** $p\leq 0.001$
508 **** $p\leq 0.0001$. Sample size ranged from 3 to 12 replicates, each group. Black bars represent
509 non-treated cells.

510

511 **Figure 1 – figure supplement 1.** Iron and DFO treatments regulate cell proliferation and
512 viability in the TME. (A) Mouse PDAC cell line KPC treated with same concentration of FAC as
513 Figure 1A. (B) Mouse PDAC cell line KPC treated with same concentration of DFO as Figure
514 1B. Significance was assessed by one-way ANOVA. Bars represent mean \pm SEM. * $p\leq 0.05$,
515 ** $p\leq 0.01$, *** $p\leq 0.001$ **** $p\leq 0.0001$. n=3-6 per group.

516

517 **Figure 2. Iron and DFO levels modulate the expression of pro-inflammatory cytokines and**
518 **iron-transport genes in the TME.** Gene expression levels for (A) *IL6*; (C) *IL1 β* ; (E) *FTH1* and

519 (G) *SLC22A17* in BXPC3, PANC-1, and HPSC with and without iron treatment. Results are
520 relative to 0 μ M FAC (-), (+) denotes 150 μ M FAC, maintained for 24 hours. Gene expression
521 levels for (B) *IL6*; (D) *IL1 β* ; (F) *FTH1* and (H) *SLC22A17* in BXPC3, PANC-1 and HPSC with
522 and without DFO treatment relative to 0 μ M DFO (-), (+) denotes 20 μ M DFO, maintained for
523 24 hours. Unpaired t-test was used to compare the groups. Bars represent mean \pm SEM. *p \leq 0.05,
524 **p \leq 0.01, ***p \leq 0.001 ****p \leq 0.0001. n=3 replicates.

525

526 **Figure 3. Increased iron levels upregulate genes involved in EMT and promotes an invasive**
527 **phenotype in BXPC3.** (A) Phase contrast images of BXPC3, PANC-1 and HPSC treated for 48
528 hours with 150 μ M FAC or 20 mM FAC, compared to non-treated control. (B) Gene expression
529 levels for *ZEB1*, *SNAI1*, *TWIST*, and *CDH1* in BXPC3 (B) and PANC-1 (C) relative to 0 mM
530 FAC (-) treatment and 20 mM FAC (+). Treatments were maintained for 48 hours. Invasion
531 assays for BXPC3 (D) and PANC-1 (E) with 150 μ M FAC or 20 mM FAC treatments. Fold
532 change relative to media no FBS for each treatment. Significance was assessed by unpaired t-
533 test. Bars represent mean \pm SEM, results are normalized to non-treated cells in SFM. *p \leq 0.05,
534 **p \leq 0.01, ***p \leq 0.001 ****p \leq 0.0001. n=3 replicates for B and C, n=3-5 independent
535 experiments for D and E.

536

537 **Figure 3 - figure supplement 1.** Gene expression levels for *ZEB1*, *SNAI1*, *TWIST*, and *CDH1* in
538 BXPC3 (A) and PANC-1 (B) relative to 0 mM DFO (-) treatment, (+) denotes 20 μ M DFO.
539 Treatments were maintained for 48 hours. n \geq 3. (C) *FTH1* expression levels in the same cell lines
540 as denoted in (Figure 4.A). Significance was assessed by one-way ANOVA. Bars represent mean
541 \pm SEM. *p \leq 0.05, **p \leq 0.01, ***p \leq 0.001, ****p \leq 0.0001. n=3 replicates per group.

542 **Figure 4. Iron treatment decreases expression of anti-metastatic marker NDRG1 in PDAC**
543 **and NDRG1 is inversely correlated with LCN2 expression.** (A) *NDRG1* expression levels in
544 BXPC3 and PANC-1 under 150 μ M FAC or 20 mM FAC treatments, relative to 0 mM FAC.
545 One-way ANOVA test used to determine significance. (B) *NDRG1* expression levels in BXPC3
546 and PANC-1 under 20 μ M DFO treatment, relative to 0 mM DFO. Unpaired t-test was used to
547 determine significance. n=3-6 replicates (C) *LCN2*, and (D) *Lcn2* expression levels in a normal
548 human pancreatic ductal epithelial cell line (HPDE), various human PDAC cell lines, and HPSC,
549 relative to HPDE expression. (E) *NDRG1*, and (F) *Ndrg1* expression levels in mouse pancreatic
550 tissue isolated from mice CRE and Kras^{G12D}/CRE relative to expression in CRE control. n=3
551 replicates. One-way ANOVA test was used to determine significance in B and D; and unpaired t-
552 test in C and E. Bars represent mean \pm SEM. *p \leq 0.05, **p \leq 0.01, ***p \leq 0.001 ****p \leq 0.0001.

553
554 **Figure 5. Lcn2 depletion elevates Ndrg1 expression, which is regulated in an iron-
555 dependent manner.** (A) *Ndrg1* expression in the *Lcn2*-KO clones after 24 hours of 0 μ M, 25
556 μ M, 50 μ M, 150 μ M, and 1500 μ M FAC. (B) *Ndrg1* expression in mKPC controls and *Lcn2*-KO
557 clones after DFO treatments of 0 μ M, 1 μ M, 10 μ M, 50 μ M, and 100 μ M for 24 hours. (C) *Lcn2*
558 expression in mKPC controls and *Lcn2*-KOs after same FAC treatments as Figure 5A. (D) *Lcn21*
559 expression in mKPC controls and *Lcn2*-KOs after the same DFO treatments as Figure 5B. (E),
560 *Fth1* expression in mKPC controls and *Lcn2*-KO clones after same FAC treatments as Figure
561 5A. (F) *Fth1* expression in mKPC controls and *Lcn2*-KO clones after the same DFO treatments
562 as Figure 5B. n=3 replicates, Kruskal Wallis test was used to determine significance. Bars
563 represent mean \pm SEM. *p \leq 0.05, **p \leq 0.01, ***p \leq 0.001 ****p \leq 0.0001.

564

565 **Figure 5 – figure supplement 1.** Mouse *Lcn2* gene – gRNA placement and PCR detection of
566 deleted regions via CRISPR.

567

568 **Figure 5 – figure supplement 2.** Two distinct clones of a CRISPR-derived biallelic *Lcn2*
569 deletion in KPC. (A) Gene expression levels for *Lcn2* in KPC parental clone, *Lcn2*-KO clone 1
570 and KPC *Lcn2*-KO clone 2 relative to KPC parental clone. (B) Iron treatments affect cell
571 proliferation and viability in KPC parental clone. (C) *Lcn2*-KO clone 1, and (D) *Lcn2*-KO clone
572 2. Cells were treated with 0 mM, 1.5 mM, 5 mM, 10 mM, and 20 mM FAC over 72 hours.
573 Results were normalized to 0 hours, represented by a horizontal dashed line. Significance was
574 assessed by one-way ANOVA. Bars represent mean \pm SEM. * $p \leq 0.05$, ** $p \leq 0.01$, *** $p \leq 0.001$
575 **** $p \leq 0.0001$. n=3 replicates per group.

576

577 **Figure 6. *Lcn2* depletion regulates expression of Extracellular Matrix (ECM) related
578 pathways.** (A) Heat map. Hierarchical clustering of genes generated using R. The heatmap genes
579 are colored proportional to voom log2 expression values. The color blue represents low
580 expression of the respective gene, while the color red represents high expression. Changes from
581 blue to red among the cell lines represent a relative increased in expression. Changes from red to
582 blue among the cell lines represent a relative decrease in expression. (B) Gene ontology analyses
583 of KPC parental and *Lcn2*-KO clone 1, showing the pathways associated with the genes
584 differentially expressed in a *Lcn2*-KO clone. (C) Biological processes associated with genes
585 differentially expressed in a *Lcn2*-KO clone. (D) Molecular function associated with the genes
586 differentially expressed in a *Lcn2* KO.

587

588 **Figure 7. Lcn2 depletion regulates expression of Extracellular Matrix (ECM) related**
589 **pathways.** GSEA analysis showing overrepresentation of (A) cell adhesion; (C) proteinaceous
590 extracellular matrix, and (E) integrin pathway in mKPC *Lcn2*-KO clone 1 vs mKPC parental
591 clone. (B) cell adhesion; (D) proteinaceous extracellular matrix, and (F) integrin pathway in
592 mKPC *Lcn2*-KO clone 2 vs mKPC parental clone.

593

594 **Supplementary File 1.** Guide RNA pairs for ligation into PX459V2.0 and Genomic PCR
595 oligonucleotides for CRISPR-derived biallelic *Lcn2* deletion in KPC and list of TaqMan primers
596 used in the qPCR expression measurements.

597 **REFERENCES**

- 598 1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7-30.
- 599 2. Ryan DP, Hong TS, Bardeesy N. Pancreatic adenocarcinoma. N Engl J Med. 2014;371(22):2140-1.
- 600 3. Tang D, Wang D, Yuan Z, Xue X, Zhang Y, An Y, et al. Persistent activation of pancreatic stellate
601 cells creates a microenvironment favorable for the malignant behavior of pancreatic ductal
602 adenocarcinoma. Int J Cancer. 2013;132(5):993-1003.
- 603 4. Oberstein PE, Olive KP. Pancreatic cancer: why is it so hard to treat? Therap Adv Gastroenterol.
604 2013;6(4):321-37.
- 605 5. Gomez-Chou S, Swidnicka-Siergiejko A, Badi N, Chavez-Tomar M, Lesinski GB, Bekaii-Saab T, et
606 al. Lipocalin-2 Promotes Pancreatic Ductal Adenocarcinoma by Regulating Inflammation in the Tumor
607 Microenvironment. Cancer Res. 2017.
- 608 6. Moniaux N, Chakraborty S, Yalniz M, Gonzalez J, Shostrom VK, Standop J, et al. Early diagnosis of
609 pancreatic cancer: neutrophil gelatinase-associated lipocalin as a marker of pancreatic intraepithelial
610 neoplasia. British journal of cancer. 2008;98(9):1540-7.
- 611 7. Chakraborty S, Kaur S, Guha S, Batra SK. The multifaceted roles of neutrophil gelatinase
612 associated lipocalin (NGAL) in inflammation and cancer. Biochim Biophys Acta. 2012;1826(1):129-69.
- 613 8. Devireddy LR, Gazin C, Zhu X, Green MR. A cell-surface receptor for lipocalin 24p3 selectively
614 mediates apoptosis and iron uptake. Cell. 2005;123(7):1293-305.
- 615 9. Devireddy LR, Hart DO, Goetz DH, Green MR. A mammalian siderophore synthesized by an
616 enzyme with a bacterial homolog involved in enterobactin production. Cell. 2010;141(6):1006-17.
- 617 10. Lane DJ, Mills TM, Shafie NH, Merlot AM, Saleh Moussa R, Kalinowski DS, et al. Expanding
618 horizons in iron chelation and the treatment of cancer: role of iron in the regulation of ER stress and the
619 epithelial-mesenchymal transition. Biochim Biophys Acta. 2014;1845(2):166-81.
- 620 11. Lui GY, Kovacevic Z, Richardson V, Merlot AM, Kalinowski DS, Richardson DR. Targeting cancer
621 by binding iron: Dissecting cellular signaling pathways. Oncotarget. 2015;6(22):18748-79.
- 622 12. Wang J, Wang S, Sun P, Cao F, Li H, Sun J, et al. Iron depletion participates in the suppression of
623 cell proliferation induced by lipin1 overexpression. Metallomics. 2018;10(9):1307-14.

624 13. Crichton RR. Iron metabolism : from molecular mechanisms to clinical consequences.
625 Chichester, West Sussex: Wiley,; 2016.

626 14. Torti SV, Torti FM. Iron and cancer: more ore to be mined. *Nat Rev Cancer*. 2013;13(5):342-55.

627 15. Tortorella S, Karagiannis TC. Transferrin receptor-mediated endocytosis: a useful target for
628 cancer therapy. *The Journal of membrane biology*. 2014;247(4):291-307.

629 16. Miller LD, Coffman LG, Chou JW, Black MA, Bergh J, D'Agostino R, Jr., et al. An iron regulatory
630 gene signature predicts outcome in breast cancer. *Cancer Res*. 2011;71(21):6728-37.

631 17. Torti SV, Manz DH, Paul BT, Blanchette-Farra N, Torti FM. Iron and Cancer. *Annu Rev Nutr*.
632 2018;38:97-125.

633 18. Yang Y, Bai YS, Wang Q. CDGSH Iron Sulfur Domain 2 Activates Proliferation and EMT of
634 Pancreatic Cancer Cells via Wnt/beta-Catenin Pathway and Has Prognostic Value in Human Pancreatic
635 Cancer. *Oncol Res*. 2017;25(4):605-15.

636 19. Aversa I, Zolea F, Ierano C, Bulotta S, Trotta AM, Faniello MC, et al. Epithelial-to-mesenchymal
637 transition in FHC-silenced cells: the role of CXCR4/CXCL12 axis. *J Exp Clin Cancer Res*. 2017;36(1):104.

638 20. Chanvorachote P, Luanpitpong S. Iron induces cancer stem cells and aggressive phenotypes in
639 human lung cancer cells. *Am J Physiol Cell Physiol*. 2016;310(9):C728-39.

640 21. Chen Z, Zhang D, Yue F, Zheng M, Kovacevic Z, Richardson DR. The iron chelators Dp44mT and
641 DFO inhibit TGF-beta-induced epithelial-mesenchymal transition via up-regulation of N-Myc
642 downstream-regulated gene 1 (NDRG1). *J Biol Chem*. 2012;287(21):17016-28.

643 22. Nishitani S, Noma K, Ohara T, Tomono Y, Watanabe S, Tazawa H, et al. Iron depletion-induced
644 downregulation of N-cadherin expression inhibits invasive malignant phenotypes in human esophageal
645 cancer. *International journal of oncology*. 2016;49(4):1351-9.

646 23. Richardson A, Kovacevic Z, Richardson DR. Iron chelation: inhibition of key signaling pathways in
647 the induction of the epithelial mesenchymal transition in pancreatic cancer and other tumors. *Crit Rev
648 Oncog*. 2013;18(5):409-34.

649 24. Shan Z, Wei Z, Shaikh ZA. Suppression of ferroportin expression by cadmium stimulates
650 proliferation, EMT, and migration in triple-negative breast cancer cells. *Toxicol Appl Pharmacol*.
651 2018;356:36-43.

652 25. Sioutas A, Vainikka LK, Kentson M, Dam-Larsen S, Wennerstrom U, Jacobson P, et al. Oxidant-
653 induced autophagy and ferritin degradation contribute to epithelial-mesenchymal transition through
654 lysosomal iron. *J Inflamm Res*. 2017;10:29-39.

655 26. Zhang KH, Tian HY, Gao X, Lei WW, Hu Y, Wang DM, et al. Ferritin heavy chain-mediated iron
656 homeostasis and subsequent increased reactive oxygen species production are essential for epithelial-
657 mesenchymal transition. *Cancer Res*. 2009;69(13):5340-8.

658 27. Nieto MA, Huang RY, Jackson RA, Thiery JP. Emt: 2016. *Cell*. 2016;166(1):21-45.

659 28. Rhim AD, Mirek ET, Aiello NM, Maitra A, Bailey JM, McAllister F, et al. EMT and dissemination
660 precede pancreatic tumor formation. *Cell*. 2012;148(1-2):349-61.

661 29. Russell R, Perkhofer L, Liebau S, Lin Q, Lechel A, Feld FM, et al. Loss of ATM accelerates
662 pancreatic cancer formation and epithelial-mesenchymal transition. *Nature communications*.
663 2015;6:7677.

664 30. Fortin PM, Madgwick KV, Trivella M, Hopewell S, Doree C, Estcourt LJ. Interventions for
665 improving adherence to iron chelation therapy in people with sickle cell disease or thalassaemia.
666 Cochrane Database Syst Rev. 2016;2016(9).

667 31. Yang Y, Xu Y, Su A, Yang D, Zhang X. Effects of Deferoxamine on Leukemia In Vitro and Its
668 Related Mechanism. *Med Sci Monit*. 2018;24:6735-41.

669 32. Cao LL, Liu H, Yue Z, Liu L, Pei L, Gu J, et al. Iron chelation inhibits cancer cell growth and
670 modulates global histone methylation status in colorectal cancer. *Biometals*. 2018;31(5):797-805.

671 33. Kuban-Jankowska A, Sahu KK, Gorska-Ponikowska M, Tusynski JA, Wozniak M. Inhibitory
672 Activity of Iron Chelators ATA and DFO on MCF-7 Breast Cancer Cells and Phosphatases PTP1B and SHP2.
673 Anticancer Res. 2017;37(9):4799-806.

674 34. Kovacevic Z, Fu D, Richardson DR. The iron-regulated metastasis suppressor, Ndrg-1:
675 identification of novel molecular targets. Biochim Biophys Acta. 2008;1783(10):1981-92.

676 35. Angst E, Sibold S, Tiffon C, Weimann R, Gloor B, Candinas D, et al. Cellular differentiation
677 determines the expression of the hypoxia-inducible protein NDRG1 in pancreatic cancer. British journal
678 of cancer. 2006;95(3):307-13.

679 36. Bauckman KA, Haller E, Flores I, Nanjundan M. Iron modulates cell survival in a Ras- and MAPK-
680 dependent manner in ovarian cells. Cell Death Dis. 2013;4:e592.

681 37. Deer EL, Gonzalez-Hernandez J, Coursen JD, Shea JE, Ngatia J, Scaife CL, et al. Phenotype and
682 genotype of pancreatic cancer cell lines. Pancreas. 2010;39(4):425-35.

683 38. Jung M, Mertens C, Bauer R, Rehwald C, Brune B. Lipocalin-2 and iron trafficking in the tumor
684 microenvironment. Pharmacol Res. 2017;120:146-56.

685 39. Tlsty TD, Coussens LM. Tumor stroma and regulation of cancer development. Annu Rev Pathol.
686 2006;1:119-50.

687 40. Kakhlon O, Cabantchik ZI. The labile iron pool: characterization, measurement, and participation
688 in cellular processes(1). Free radical biology & medicine. 2002;33(8):1037-46.

689 41. Cen G, Zhang K, Cao J, Qiu Z. Downregulation of the N-myc downstream regulated gene 1 is
690 related to enhanced proliferation, invasion and migration of pancreatic cancer. Oncol Rep.
691 2017;37(2):1189-95.

692 42. Fang BA, Kovacevic Z, Park KC, Kalinowski DS, Jansson PJ, Lane DJ, et al. Molecular functions of
693 the iron-regulated metastasis suppressor, NDRG1, and its potential as a molecular target for cancer
694 therapy. Biochim Biophys Acta. 2014;1845(1):1-19.

695 43. Chiang KC, Yeh TS, Wu RC, Pang JS, Cheng CT, Wang SY, et al. Lipocalin 2 (LCN2) is a promising
696 target for cholangiocarcinoma treatment and bile LCN2 level is a potential cholangiocarcinoma
697 diagnostic marker. Sci Rep. 2016;6:36138.

698 44. Philip B, Roland CL, Daniluk J, Liu Y, Chatterjee D, Gomez SB, et al. A high-fat diet activates
699 oncogenic Kras and COX2 to induce development of pancreatic ductal adenocarcinoma in mice.
700 Gastroenterology. 2013;145(6):1449-58.

701 45. Gilkes DM, Semenza GL, Wirtz D. Hypoxia and the extracellular matrix: drivers of tumour
702 metastasis. Nat Rev Cancer. 2014;14(6):430-9.

703 46. Chiang AC, Massague J. Molecular basis of metastasis. N Engl J Med. 2008;359(26):2814-23.

704 47. Le NT, Richardson DR. The role of iron in cell cycle progression and the proliferation of
705 neoplastic cells. Biochim Biophys Acta. 2002;1603(1):31-46.

706 48. Tan MH, Nowak NJ, Loor R, Ochi H, Sandberg AA, Lopez C, et al. Characterization of a new
707 primary human pancreatic tumor line. Cancer Invest. 1986;4(1):15-23.

708 49. Wen S, Zhan B, Feng J, Hu W, Lin X, Bai J, et al. Non-invasively predicting differentiation of
709 pancreatic cancer through comparative serum metabonomic profiling. BMC cancer. 2017;17(1):708.

710 50. Gomez-Tomas A, Pumarega J, Alguacil J, Amaral AFS, Malats N, Pallares N, et al. Concentrations
711 of trace elements and KRAS mutations in pancreatic ductal adenocarcinoma. Environmental and
712 molecular mutagenesis. 2019.

713 51. Clarke SL, Thompson LR, Dandekar E, Srinivasan A, Montgomery MR. Distinct TP53 Mutation
714 Subtypes Differentially Influence Cellular Iron Metabolism. Nutrients. 2019;11(9).

715 52. Martin LK, Grecula J, Jia G, Wei L, Yang X, Otterson GA, et al. A dose escalation and
716 pharmacodynamic study of triapine and radiation in patients with locally advanced pancreas cancer.
717 International journal of radiation oncology, biology, physics. 2012;84(4):e475-81.

718 53. Harima H, Kaino S, Takami T, Shinoda S, Matsumoto T, Fujisawa K, et al. Deferasirox, a novel oral
719 iron chelator, shows antiproliferative activity against pancreatic cancer in vitro and in vivo. *BMC cancer*.
720 2016;16:702.

721 54. Lang J, Zhao X, Wang X, Zhao Y, Li Y, Zhao R, et al. Targeted Co-delivery of the Iron Chelator
722 Deferoxamine and a HIF1alpha Inhibitor Impairs Pancreatic Tumor Growth. *ACS nano*. 2019;13(2):2176-
723 89.

724 55. Shinoda S, Kaino S, Amano S, Harima H, Matsumoto T, Fujisawa K, et al. Deferasirox, an oral iron
725 chelator, with gemcitabine synergistically inhibits pancreatic cancer cell growth in vitro and in vivo.
726 *Oncotarget*. 2018;9(47):28434-44.

727 56. Wang L, Li X, Mu Y, Lu C, Tang S, Lu K, et al. The iron chelator desferrioxamine synergizes with
728 chemotherapy for cancer treatment. *Journal of trace elements in medicine and biology : organ of the
729 Society for Minerals and Trace Elements*. 2019;56:131-8.

730 57. Li J, He K, Liu P, Xu LX. Iron participated in breast cancer chemoresistance by reinforcing IL-6
731 paracrine loop. *Biochemical and biophysical research communications*. 2016;475(2):154-60.

732 58. Adamska A, Elaskalani O, Emmanouilidi A, Kim M, Abdol Razak NB, Metharom P, et al. Molecular
733 and cellular mechanisms of chemoresistance in pancreatic cancer. *Advances in biological regulation*.
734 2018;68:77-87.

735 59. Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and
736 tumor metastasis. *Dev Cell*. 2008;14(6):818-29.

737 60. Liu W, Zhang B, Hu Q, Qin Y, Xu W, Shi S, et al. A new facet of NDRG1 in pancreatic ductal
738 adenocarcinoma: Suppression of glycolytic metabolism. *International journal of oncology*.
739 2017;50(5):1792-800.

740 61. Zheng X, Carstens JL, Kim J, Scheible M, Kaye J, Sugimoto H, et al. Epithelial-to-mesenchymal
741 transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. *Nature*.
742 2015;527(7579):525-30.

743 62. Bae DH, Jansson PJ, Huang ML, Kovacevic Z, Kalinowski D, Lee CS, et al. The role of NDRG1 in the
744 pathology and potential treatment of human cancers. *J Clin Pathol*. 2013;66(11):911-7.

745 63. Sibold S, Roh V, Keogh A, Studer P, Tiffon C, Angst E, et al. Hypoxia increases cytoplasmic
746 expression of NDRG1, but is insufficient for its membrane localization in human hepatocellular
747 carcinoma. *FEBS Lett*. 2007;581(5):989-94.

748 64. Theil EC. Ferritin: structure, gene regulation, and cellular function in animals, plants, and
749 microorganisms. *Annu Rev Biochem*. 1987;56:289-315.

750 65. Malik R, Lelkes PI, Cukierman E. Biomechanical and biochemical remodeling of stromal
751 extracellular matrix in cancer. *Trends Biotechnol*. 2015;33(4):230-6.

752 66. Ouyang H, Mou L, Luk C, Liu N, Karaskova J, Squire J, et al. Immortal human pancreatic duct
753 epithelial cell lines with near normal genotype and phenotype. *The American journal of pathology*.
754 2000;157(5):1623-31.

755 67. Furukawa T, Duguid WP, Rosenberg L, Viallet J, Galloway DA, Tsao MS. Long-term culture and
756 immortalization of epithelial cells from normal adult human pancreatic ducts transfected by the E6E7
757 gene of human papilloma virus 16. *The American journal of pathology*. 1996;148(6):1763-70.

758 68. Ma Y, Hwang RF, Logsdon CD, Ullrich SE. Dynamic mast cell-stromal cell interactions promote
759 growth of pancreatic cancer. *Cancer Res*. 2013;73(13):3927-37.

760 69. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-
761 Cas9 system. *Nat Protoc*. 2013;8(11):2281-308.

762 70. Moyer TC, Holland AJ. Generation of a conditional analog-sensitive kinase in human cells using
763 CRISPR/Cas9-mediated genome engineering. *Methods Cell Biol*. 2015;129:19-36.

764 71. Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R, et al. Analysis of lung tumor
765 initiation and progression using conditional expression of oncogenic K-ras. *Genes & development*.
766 2001;15(24):3243-8.

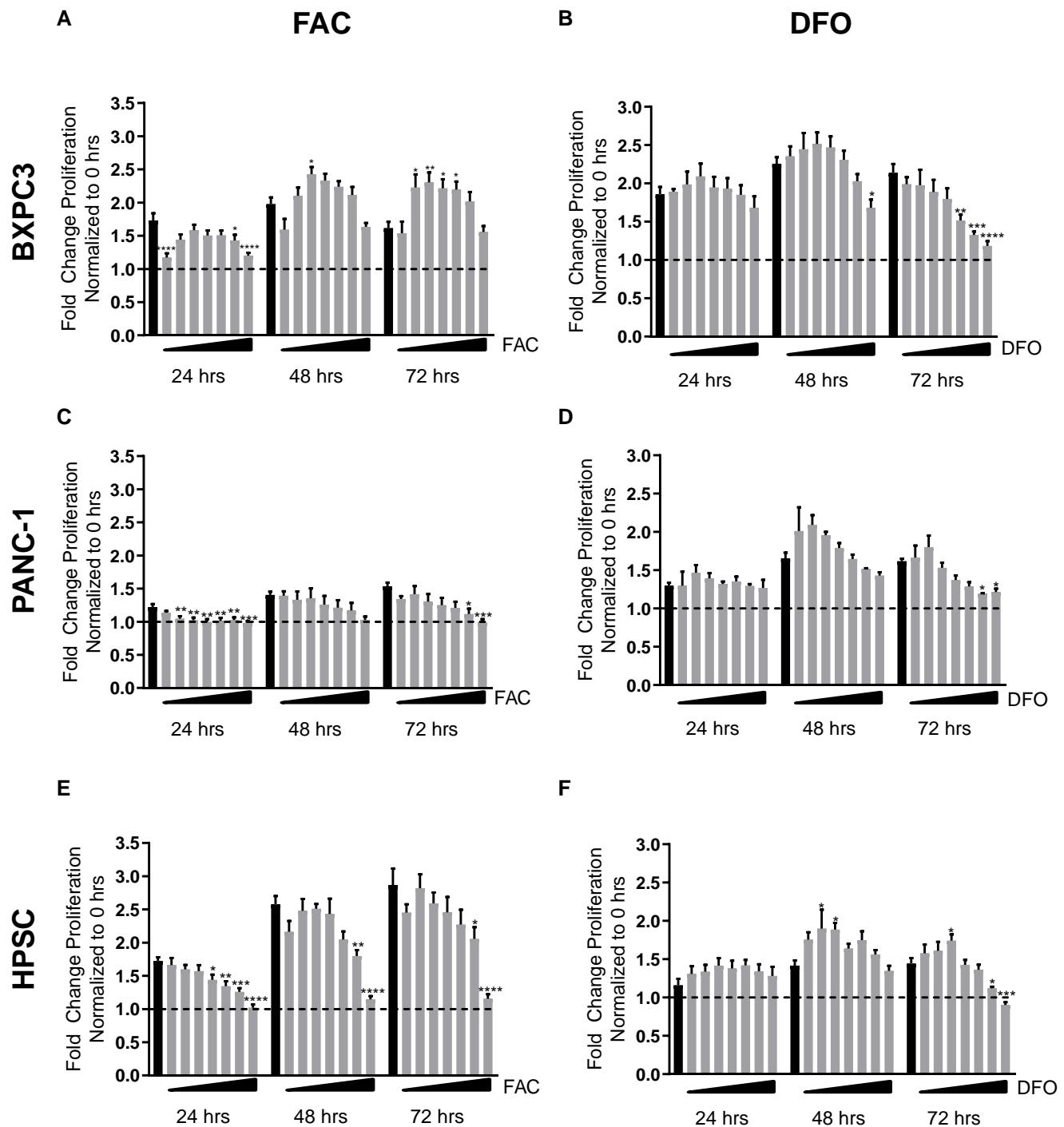
767 72. Ji B, Song J, Tsou L, Bi Y, Gaiser S, Mortensen R, et al. Robust acinar cell transgene expression of
768 CreErT via BAC recombineering. *Genesis*. 2008;46(8):390-5.

769 73. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and
770 hybridization array data repository. *Nucleic acids research*. 2002;30(1):207-10.

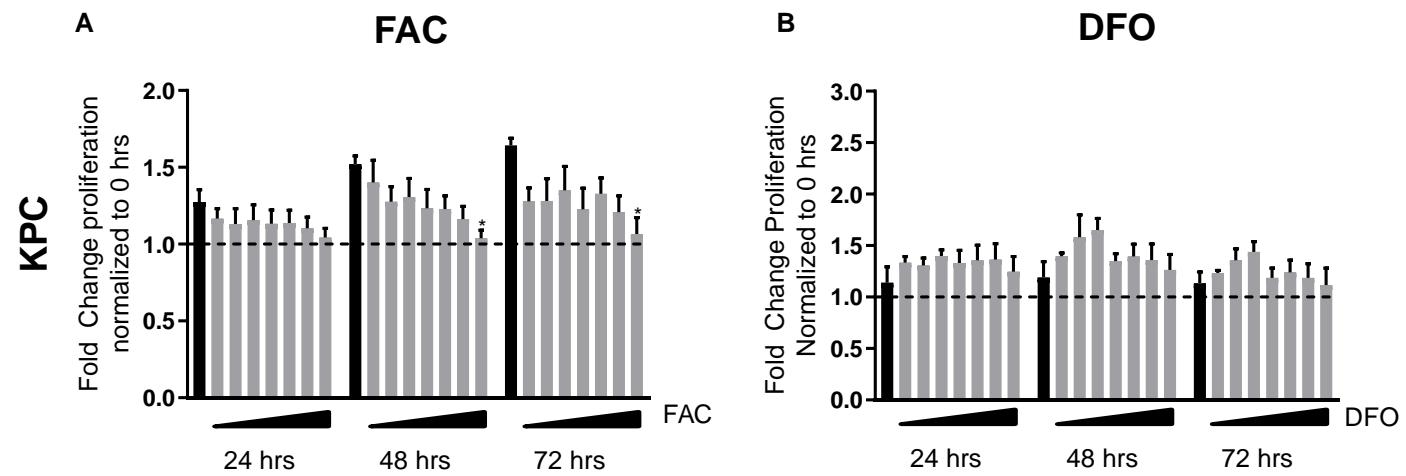
771 74. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements.
772 *Nature methods*. 2015;12(4):357-60.

773 75. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning
774 sequence reads to genomic features. *Bioinformatics*. 2014;30(7):923-30.

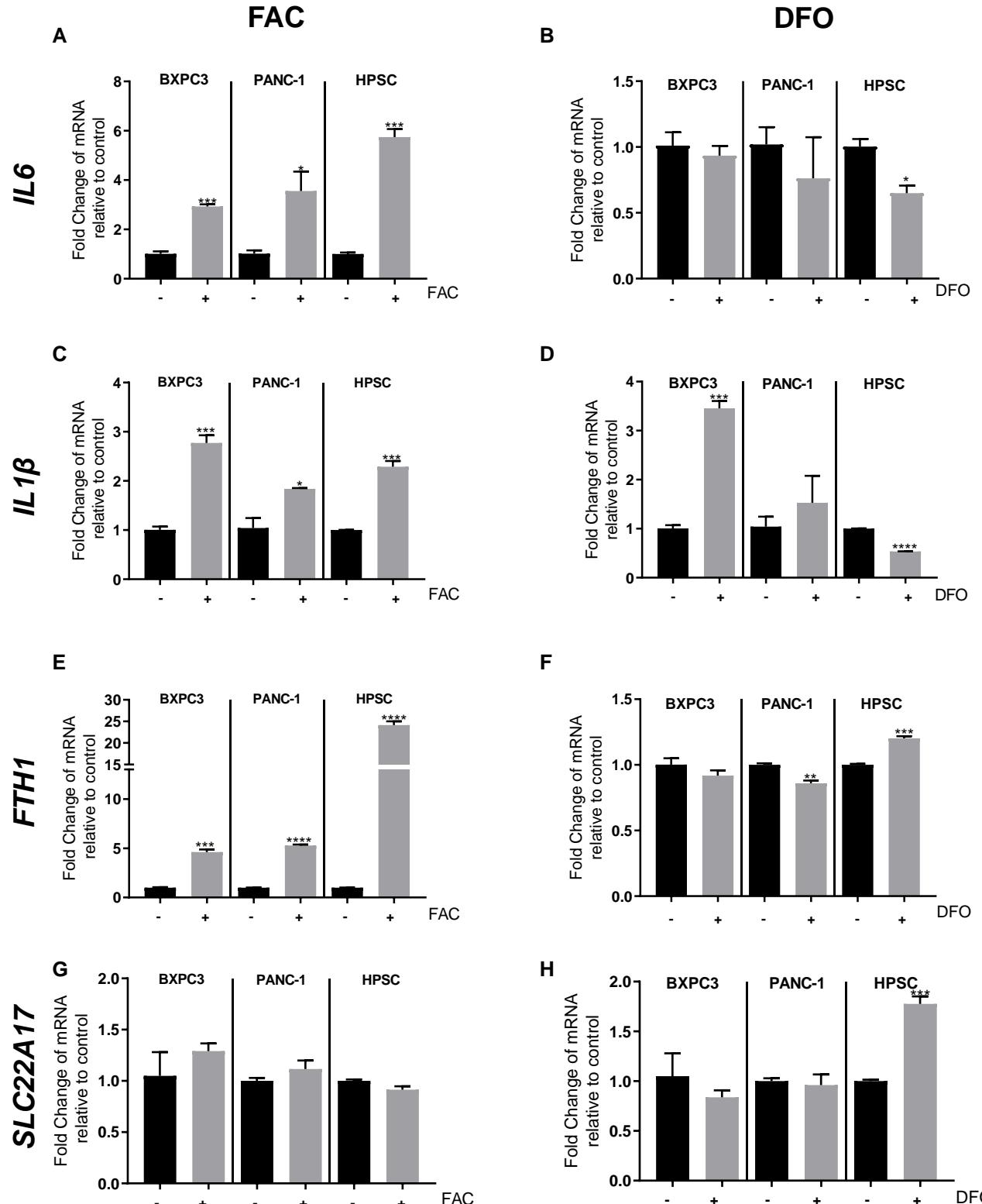
775 76. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression
776 analyses for RNA-sequencing and microarray studies. *Nucleic acids research*. 2015;43(7):e47.


777 77. Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in
778 multidimensional genomic data. *Bioinformatics*. 2016;32(18):2847-9.

779 78. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set
780 enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.
781 *Proceedings of the National Academy of Sciences of the United States of America*. 2005;102(43):15545-
782 50.


783 79. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpha-
784 responsive genes involved in oxidative phosphorylation are coordinately downregulated in human
785 diabetes. *Nature genetics*. 2003;34(3):267-73.

786 80. Bares V GX. gskb: Gene Set data for pathway analysis in mouse. In: 1.16.0. Rpv, editor. 2019.


787

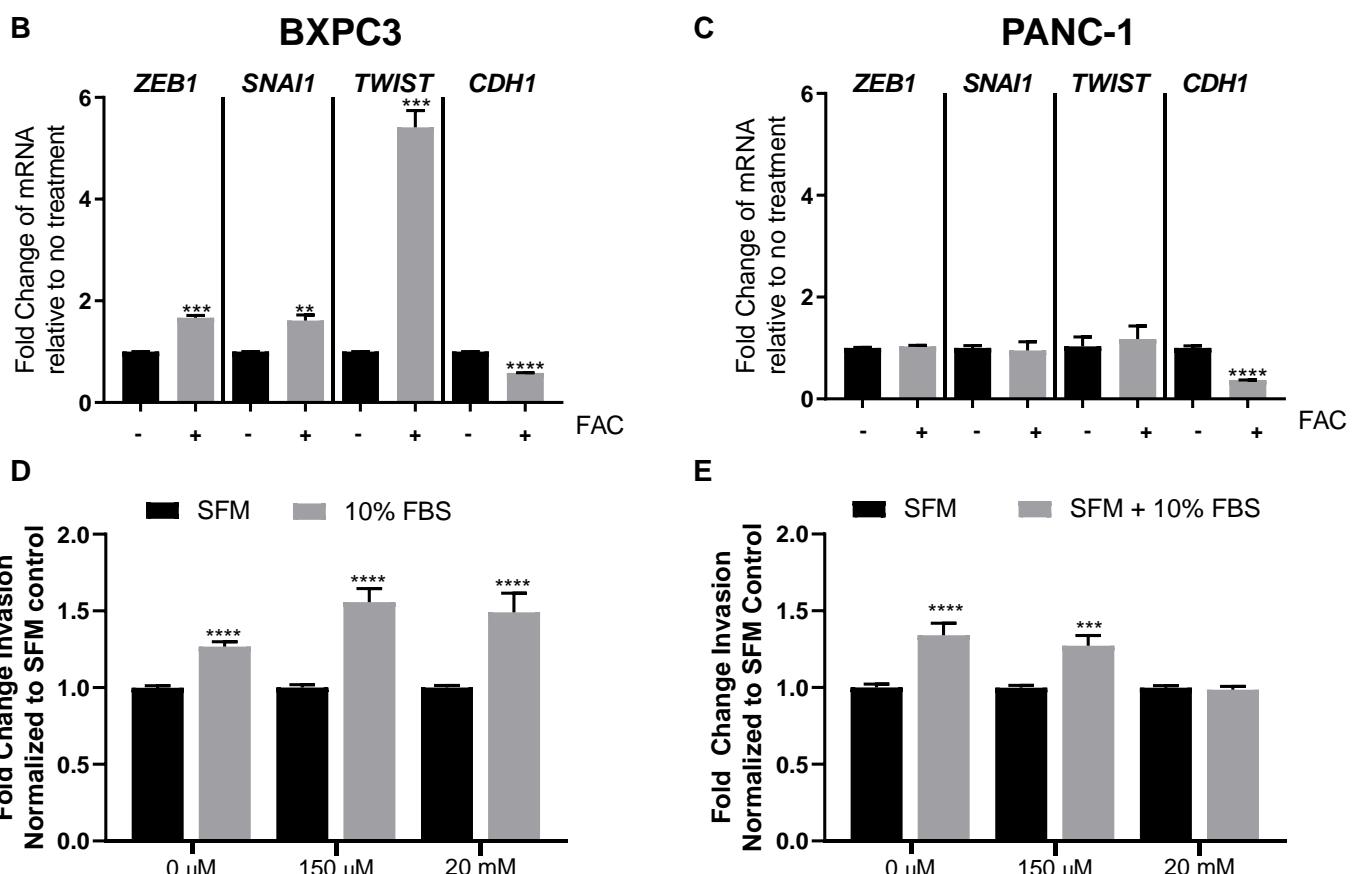
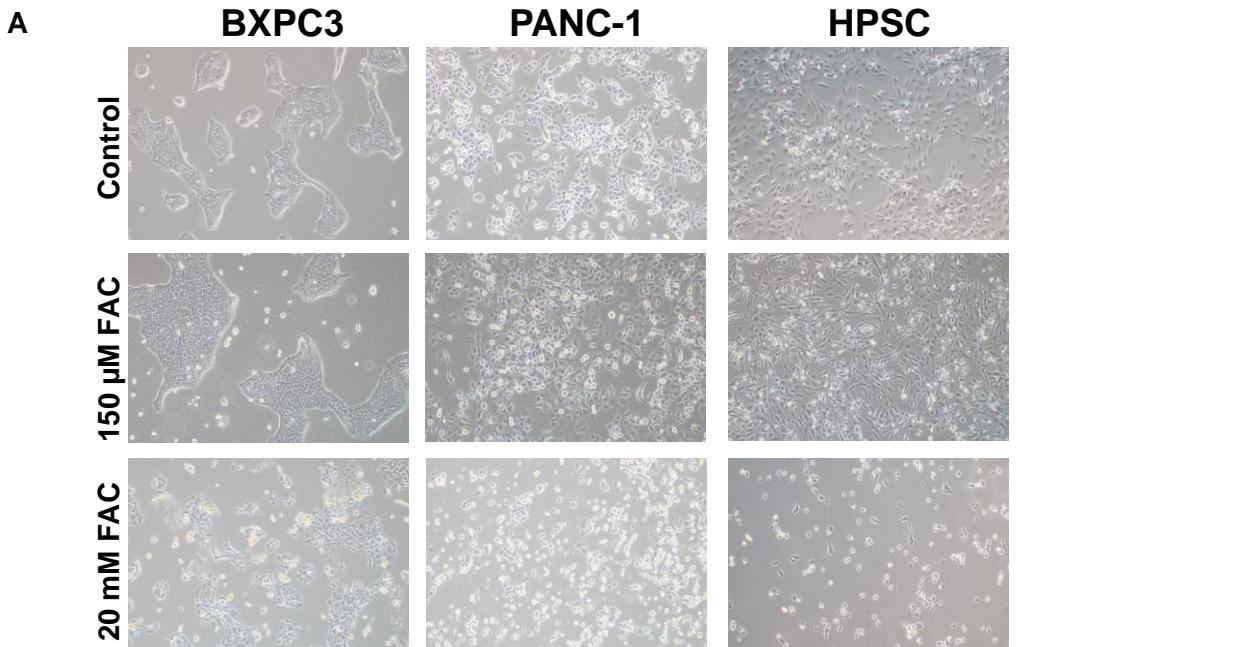
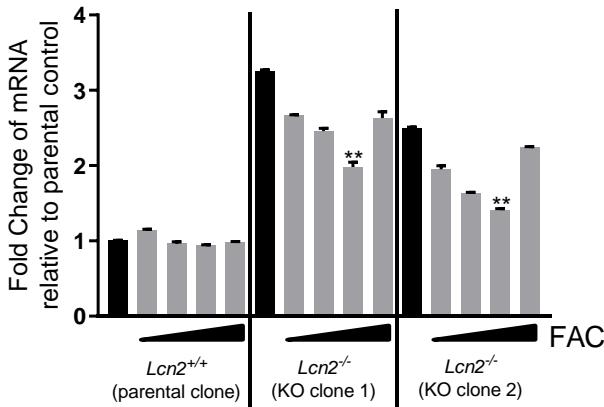


Figure 1. Iron and DFO treatments regulate cell proliferation in the TME. (A), BXPC3, (C), PANC-1 and (E). HPSC were treated with, 0.313 mM, 0.625 mM, 1.25 mM, 2.5 mM, 5 mM, 10 mM, and 20 mM, FAC. (B) BXPC3, (D) PANC-1 and (F) HPSC were treated with 0.781 μ M, 1.563 μ M, 3.125 μ M, 6.25 μ M, 12.5 μ M, 25 μ M, and 50 μ M DFO. Cell proliferation was measured using MTS following exposure to FAC or DFO over a range of 72 hours. Results were normalized to 0 hours, represented by a horizontal dashed line. Significance was assessed by one-way ANOVA comparison test. Bars represent mean \pm SEM. * $p\leq 0.05$, ** $p\leq 0.01$, *** $p\leq 0.001$ **** $p\leq 0.0001$. Sample size ranged from 3 to 12 replicates, each group. Black bars represent non-treated cells.

Figure 1 – figure supplement 1. Iron and DFO treatments regulate cell proliferation and viability in the TME. (A) Mouse PDAC cell line KPC treated with same concentration of FAC as Figure 1A. (B) Mouse PDAC cell line KPC treated with same concentration of DFO as Figure 1B. Significance was assessed by one-way ANOVA. Bars represent mean \pm SEM. * $p \leq 0.05$, ** $p \leq 0.01$, *** $p \leq 0.001$ **** $p \leq 0.0001$. n=3-6 per group.

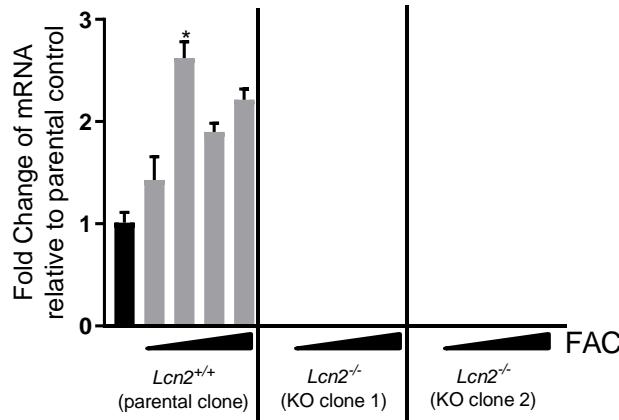
Figure 2. Iron and DFO levels modulate the expression of pro-inflammatory cytokines and iron-transport genes in the TME. Gene expression levels for (A) *IL6*; (C) *IL1β*; (E) *FTH1* and (G) *SLC22A17* in BXPC3, PANC-1, and HPSC with and without iron treatment. Results are relative to 0 μ M FAC (-), (+) denotes 150 μ M FAC, maintained for 24 hours. Gene expression levels for (B) *IL6*; (D) *IL1β*; (F) *FTH1* and (H) *SLC22A17* in BXPC3, PANC-1 and HPSC with and without DFO treatment relative to 0 μ M DFO (-), (+) denotes 20 μ M DFO, maintained for 24 hours. Unpaired t-test was used to compare the groups. Bars represent mean \pm SEM. * $p\leq 0.05$, ** $p\leq 0.01$, *** $p\leq 0.001$ **** $p\leq 0.0001$. n=3 replicates.

Figure 3. Increased iron levels upregulate genes involved in EMT and promotes an invasive phenotype in BXPC3. (A) Phase contrast images of BXPC3, PANC-1 and HPSC treated for 48 hours with 150 μ M FAC or 20 mM FAC, compared to non-treated control. (B) Gene expression levels for *ZEB1*, *SNAI1*, *TWIST*, and *CDH1* in BXPC3 (B) and PANC-1 (C) relative to 0 mM FAC (-) treatment and 20 mM FAC (+). Treatments were maintained for 48 hours. Invasion assays for BXPC3 (D) and PANC-1 (E) with 150 μ M FAC or 20 mM FAC treatments. Fold change relative to media no FBS for each treatment. Significance was assessed by unpaired t-test. Bars represent mean \pm SEM, results are normalized to non-treated cells in SFM. * $p \leq 0.05$, ** $p \leq 0.01$, *** $p \leq 0.001$ **** $p \leq 0.0001$. n=3 replicates for B and C, n=3-5 independent experiments for D and E.



A

FAC

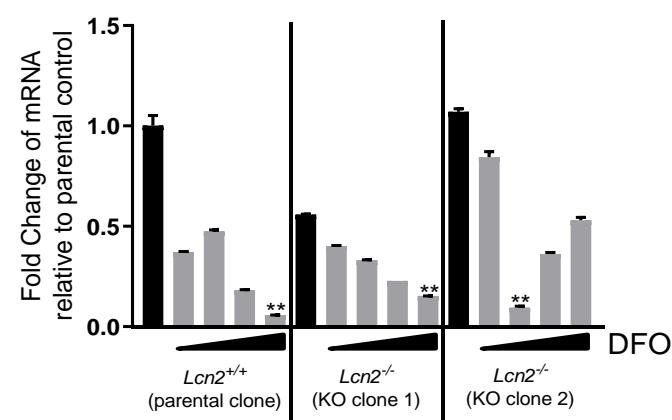

B

DFO

Ndrg1

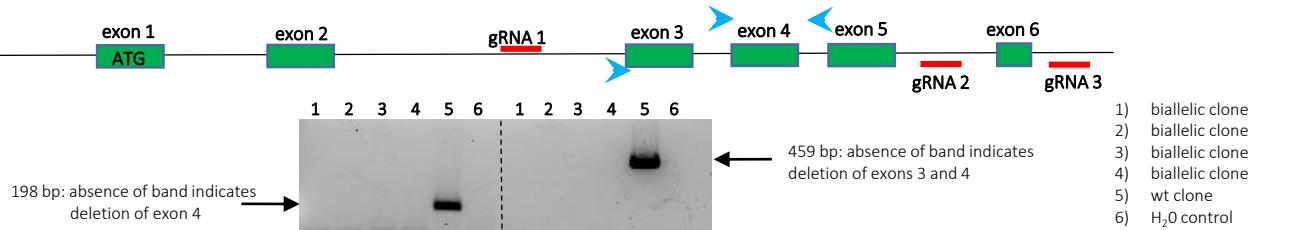
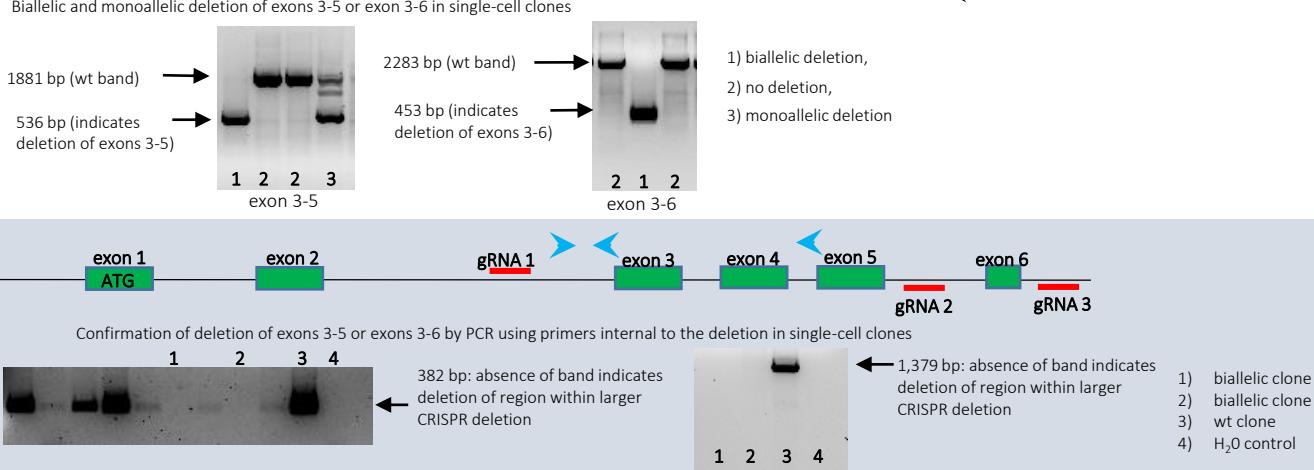
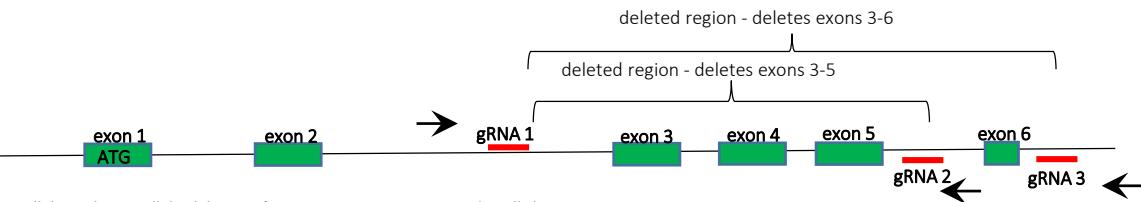
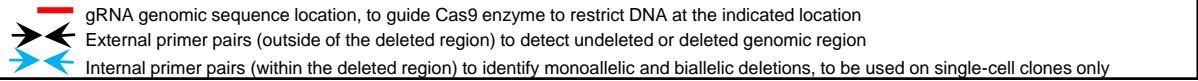

C

D


Lcn2

E

F





Fth1

F

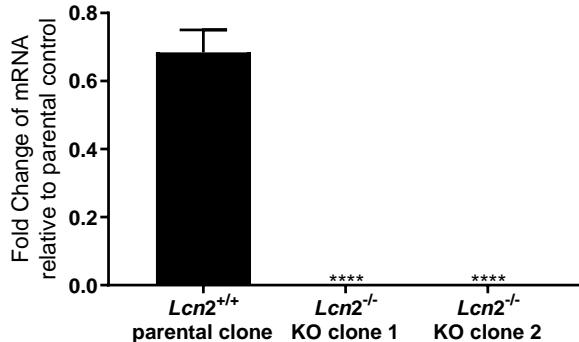
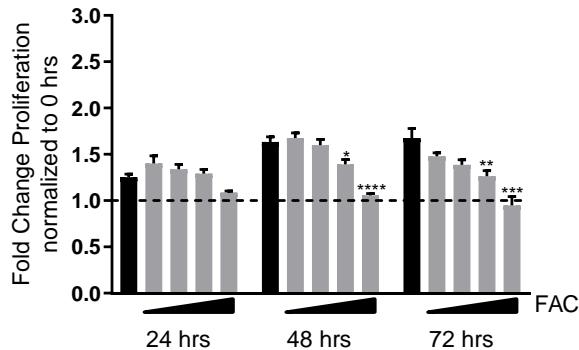
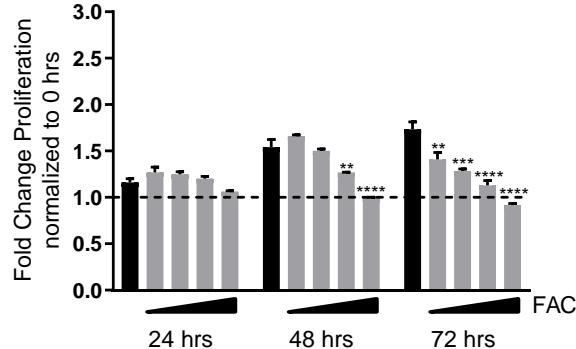




Figure 5. Lcn2 depletion elevates Ndrg1 expression, which is regulated in an iron-dependent manner.

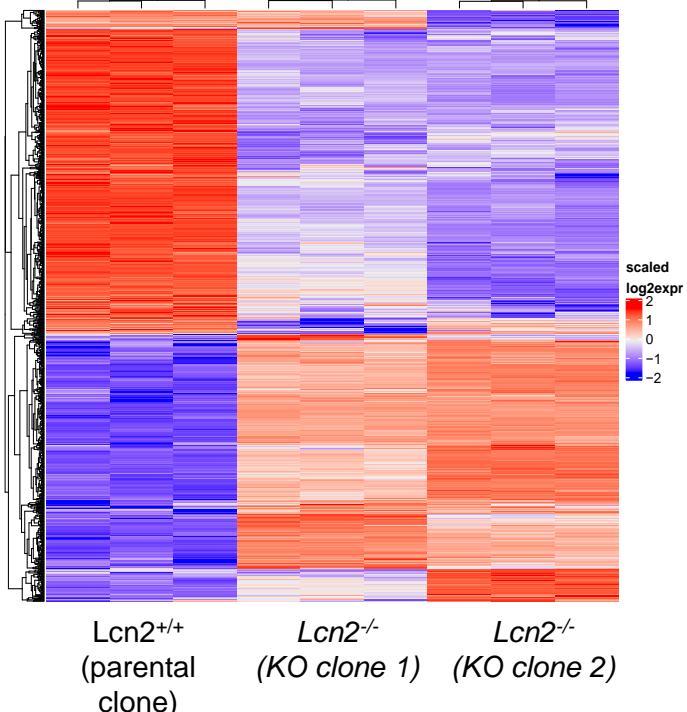
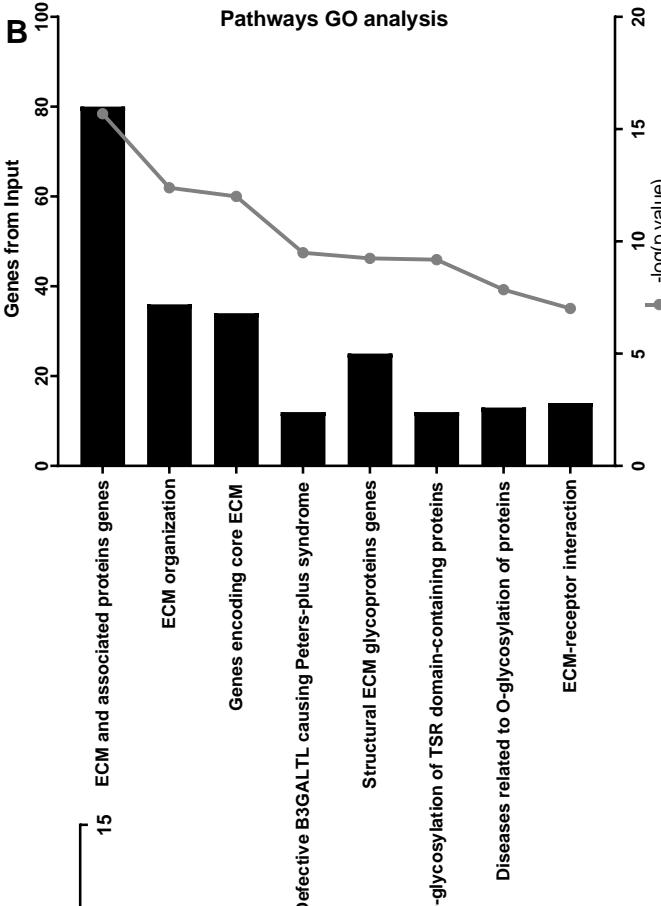
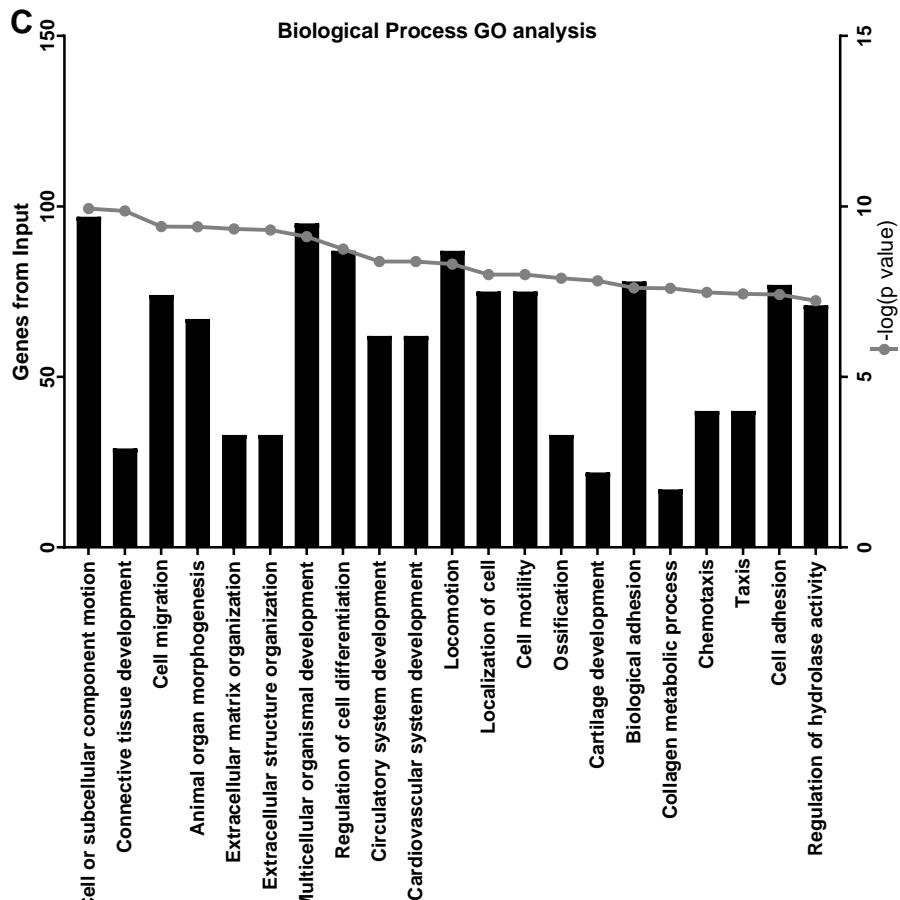
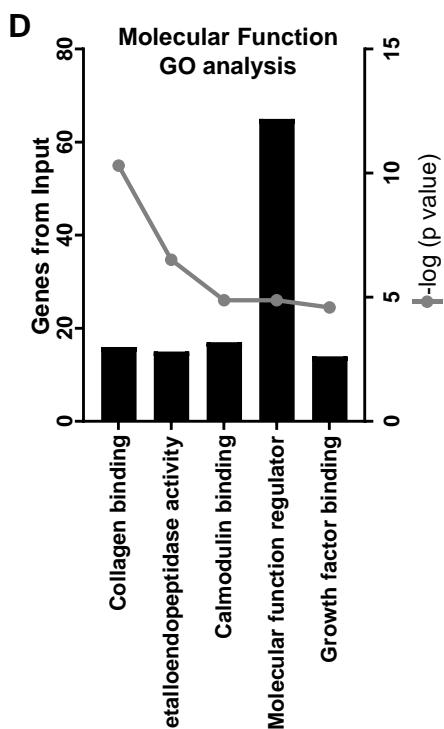

(A) *Ndrg1* expression in the *Lcn2*-KO clones after 24 hours of 0 μM, 25 μM, 50 μM, 150 μM, and 1500 μM FAC. (B) *Ndrg1* expression in mKPC controls and *Lcn2*-KO clones after DFO treatments of 0 μM, 1 μM, 10 μM, 50 μM, and 100 μM for 24 hours. (C) *Lcn2* expression in mKPC controls and *Lcn2*-KOs after same FAC treatments as Figure 5A. (D) *Lcn2* expression in mKPC controls and *Lcn2*-KOs after the same DFO treatments as Figure 5B. (E) *Fth1* expression in mKPC controls and *Lcn2*-KO clones after same FAC treatments as Figure 5A. (F) *Fth1* expression in mKPC controls and *Lcn2*-KO clones after the same DFO treatments as Figure 5B. n=3 replicates, Kruskal Wallis test was used to determine significance. Bars represent mean ± SEM. *p≤0.05, **p≤0.01, ***p≤0.001 ****p≤0.0001.

Figure 5 – figure supplement 1. Mouse *Lcn2* gene – gRNA placement and PCR detection of deleted regions via CRISPR

A***Lcn2*****B****KPC parental clone****C*****Lcn2*-KO clone 1****D*****Lcn2*-KO clone 2**



Figure 5 – figure supplement 2. Two distinct clones of a CRISPR-derived biallelic *Lcn2* deletion in KPC. (A) Gene expression levels for *Lcn2* in KPC parental clone, *Lcn2*-KO clone 1 and KPC *Lcn2*-KO clone 2 relative to KPC parental clone. (B) Iron treatments affect cell proliferation and viability in KPC parental clone. (C) *Lcn2*-KO clone 1, and (D) *Lcn2*-KO clone 2. Cells were treated with 0 mM, 1.5 mM, 5 mM, 10 mM, and 20 mM FAC over 72 hours. Results were normalized to 0 hours, represented by a horizontal dashed line. Significance was assessed by one-way ANOVA. Bars represent mean \pm SEM. * $p \leq 0.05$, ** $p \leq 0.01$, *** $p \leq 0.001$ **** $p \leq 0.0001$. n=3 replicates per group.

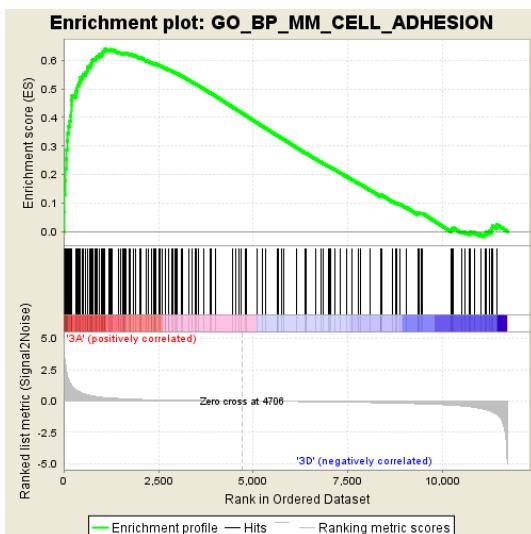
A


Lcn2^{+/+}
(parental
clone)

Lcn2^{-/-}
(KO clone 1)

Lcn2^{-/-}
(KO clone 2)

B Pathways GO analysis**C**


Biological Process GO analysis

D

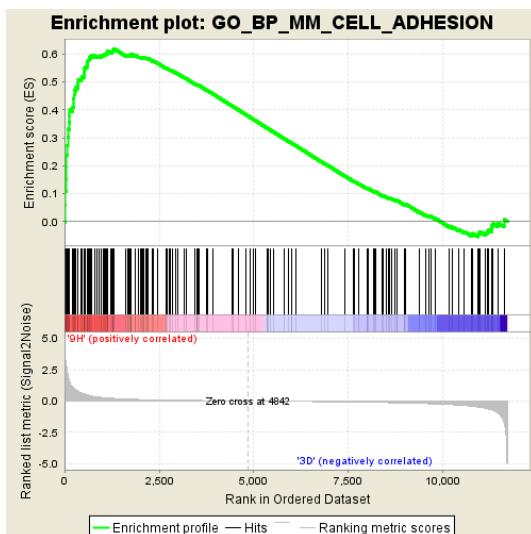
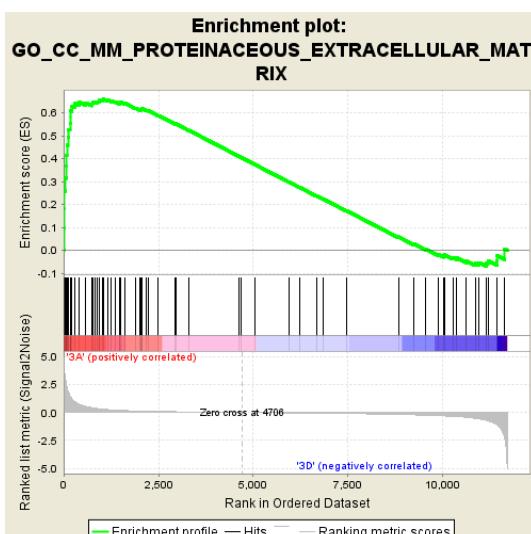
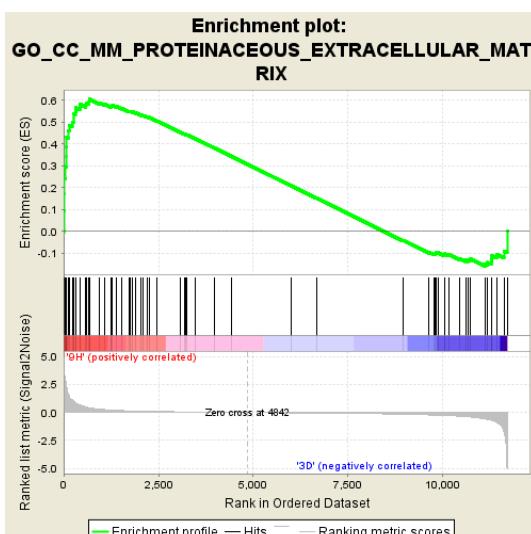
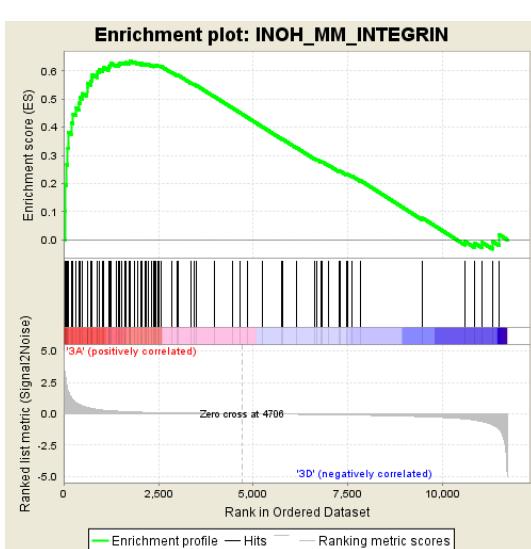
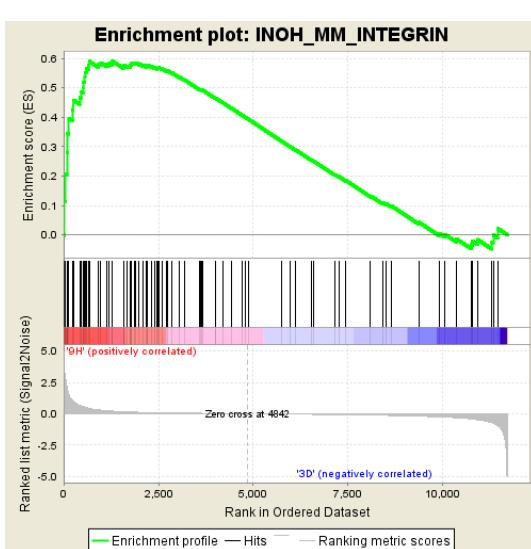

Molecular Function GO analysis

Figure 6. *Lcn2* depletion regulates expression of Extracellular Matrix (ECM) related pathways. (A) Heat map. Hierarchical clustering of genes generated using R. The heatmap genes are colored proportional to voom log2 expression values. The color blue represents low expression of the respective gene, while the color red represents high expression. Changes from blue to red among the cell lines represent a relative increased in expression. Changes from red to blue among the cell lines represent a relative decrease in expression. (B) Gene ontology analyses of KPC parental and *Lcn2*-KO clone 1, showing the pathways associated with the genes differentially expressed in a *Lcn2*-KO clone. (C) Biological processes associated with genes differentially expressed in a *Lcn2*-KO clone. (D) Molecular function associated with the genes differentially expressed in a *Lcn2* KO.


A


B


C


D

E

F

Figure 7. Lcn2 depletion regulates expression of Extracellular Matrix (ECM) related pathways. GSEA analysis showing overrepresentation of (A) cell adhesion; (C) proteinaceous extracellular matrix, and (E) integrin pathway in mKPC *Lcn2*-KO clone 1 vs mKPC parental clone. (B) cell adhesion; (D) proteinaceous extracellular matrix, and (F) integrin pathway in mKPC *Lcn2*-KO clone 2 vs mKPC parental clone.

Supplementary File 1. Guide RNA pairs for ligation into PX459V2.0 and Genomic PCR oligonucleotides for CRISPR-derived biallelic *Lcn2* deletion in KPC and list of TaqMan primers used in the qPCR expression measurements

Guide RNA pairs for ligation into PX459V2.0	
gRNA-1	CACCGCACAGGGTGAAATGCCCG
gRNA-1R	AAACCGGGGCATTCACCCGTGCG
gRNA-2	CACCGATCCGATGGCTAGAGCAG
gRNA-2R	AAACCTGCTCTAGCCATCGGGATC
gRNA-3	CACCGTGGATGCGCAGAGACCCAA
gRNA-3R	AAACTTGGGTCTCTGCGCATCCCAC
Genomic PCR oligonucleotides:	
external-1F	GTCAAAGTGAGAAGGACACACAAGCCACAG
external-2R	GTCTTCTACCCAAGTCACTTGAAAGC
external-3R	GGTGTAAAGACAGGTGGATGGGAGTGC
internal-1F	GCAAAATATCTGAGGAGCAAAGGGCAGGTG
internal-2R	CATAGGCTGGAGTGTCCCTTGGACTAG
internal-3F	GTTCTCCACGCCCTCAGGGTATCCTC
internal-4R	CTGAAGCTGAGACTGGGGTGTAAACCTG
internal-4R	CTGAAGCTGAGACTGGGGTGTAAACCTG
internal-5F	CTAGTCAAAGGACACTCCAGCCTATG
internal-6R	CAGGTTACACCCAGTCTCAGCTTCAG
TaqMan List:	
Mouse	
FTH1	mm00850707_g1 FTH1
NDRG1	mm00440447_m1 Ndrg1
LCN2	mm01324472_g1 Lcn2
Human	
IL-6	Hs00913644_m1 IL6
IL1B	Hs01555410_m1 IL1B
FTH1	Hs01694011_s1 FTH1
SLC22A17	Hs01033111_m1 SLC22A17
ZEB1	Hs01566408_m1 ZEB1 FAM
SNAI1	Hs00195591_m1 SNAI1
TWIST1	Hs01675818_s1 TWIST FAM
CDH1	Hs01023895_m1 CDH1
NDRG1	Hs00608387_m1 NDRG1
LCN2	Hs01008571_m1 LCN2