

20 *Acknowledgments*

21 For collecting permits, we thank the *Ministerio de Ambiente y Desarrollo Sostenible* and
22 the *Autoridad Nacional de Licencias Ambientales* (ANLA) in Colombia (*Permiso de*
23 *estudio con fines de investigación científica en diversidad biológica No. 27 del 22 de junio*
24 *de 2012, permiso de acceso a los recursos genéticos resolución No. 0377 del 11 marzo de*
25 *2014* to Andrew J. Crawford (A.J.C.) and *permiso marco resolución No. 1177* to the
26 Universidad de los Andes). We thank Santiago Castroviejo-Fisher for providing sequences
27 of *Dendropsophus microcephalus*, *Boana pugnax*, *Elachistocleis*, and *Scarthyla vigilans*.
28 We are very grateful to Michael J. Hickerson for providing feedback and recommendations
29 for running MTML-msBayes. This project was funded by the *Facultad de Ciencias* of the
30 Universidad de los Andes under the call *Proyectos cortos o generación de un producto*
31 *adicional*, and DIDI (*Dirección de Investigación, Desarrollo e Innovación*) of Universidad
32 del Norte. New DNA sequence data reported here for frogs were obtained with the
33 generous support of a grant in Basic Sciences No. 360-2013 from *Colciencias* to AJC.

34

35 **Abstract**

36

37 **Aim:** To evaluate the potential role of the orogeny of the Eastern Cordillera (EC) of the
38 Colombian Andes and the Mérida Andes (MA) of Venezuela as drivers of vicariance
39 between populations of 37 tetrapod lineages co-distributed on both flanks, through
40 geological reconstruction and comparative phylogeographic analyses.

41

42 **Location:** Northwestern South America

43

44 **Methods:** We first reviewed and synthesized published geological data on the timing of
45 uplift for the EC-MA. We then combined newly generated mitochondrial DNA sequence
46 data with published datasets to create a comparative phylogeographic dataset for 37
47 independent tetrapod lineages. We reconstructed time-calibrated molecular phylogenies for
48 each lineage under Bayesian inference to estimate divergence times between lineages
49 located East and West of the Andes. We performed a comparative phylogeographic
50 analysis of all lineages within each class of tetrapod using hierarchical approximate
51 Bayesian computation (hABC) to test for synchronous vicariance across the EC-MA. To
52 evaluate the potential role of life history in explaining variation in divergence times among
53 lineages, we evaluated 13 general linear models (GLM) containing up to six variables each
54 (maximum elevation, range size, body length, thermoregulation, type of dispersal, and
55 taxonomic class).

56

57 **Results:** Our synthesis of geological evidence suggested that the EC-MA reached
58 significant heights by 38–33 million years ago (Ma) along most of its length, and we reject
59 the oft-cited date of 2–5 Ma. Based on mtDNA divergence from 37 lineages, however, the
60 median estimated divergence time across the EC-MA was 3.26 Ma (SE = 2.84) in
61 amphibians, 2.58 Ma (SE = 1.81) in birds, 2.99 Ma (SE = 4.68) in reptiles and 1.43 Ma (SE
62 = 1.23) in mammals. Using Bayes Factors, the hypothesis for a single temporal divergence
63 interval containing synchronous divergence events was supported for mammals and but not
64 supported for amphibians, non-avian reptiles, or birds. Among the six life-history variables
65 tested, only thermoregulation successfully explained variation in divergence times

66 (minimum AICc, $R^2 = 0.10$), with homeotherms showing more recent divergence relative to
67 poikilotherms.

68

69 **Main conclusions:** Our results reject the hypothesis of the rise Andean Cordillera as driver
70 of vicariance of lowland population because divergence dates are too recent and too
71 asynchronous. We discuss alternative explanations, including dispersal through mountain
72 passes, and suggest that changes in the climatic conditions during the Pliocene and
73 Pleistocene interacted with tetrapod physiology, promoting older divergences in
74 amphibians and reptiles relative to mammals and birds on an already established orogen.

75

76 **Keywords:** Andean uplift, comparative phylogeography, divergence times, Eastern
77 Cordillera, hierarchical approximate Bayesian computation, Mérida Andes, orogeny.

78

79 **Introduction**

80 Vicariance is a biogeographical model that describes the division of a widespread
81 ancestral population into two daughter populations through the appearance of a barrier to
82 gene flow that eventually leads to allopatric speciation (Crisci, 2001). Traditionally, such
83 hypothesized barriers arise through geological changes, such as mountain uplift or the
84 appearance of rivers. Environmental changes, such as aridification, can also promote spatial
85 isolation of a formerly continuous population or meta-population system (Lomolino, Riddle
86 & Whittaker, 2017). Most older methods of biogeographic analysis are based on a strictly
87 vicariance model because dispersal was regarded as difficult to falsify (Rosen, 1978;
88 Morrone & Crisci, 1995; Ronquist, 1997). Vicariance is also the most general and easiest to
89 satisfy model of speciation, requiring only physical separation and the accumulation of
90 nucleotide substitutions over time to create two daughter species from a common ancestor
91 (Mayr, 1963; Wiens, 2004).

92 Despite the potential ubiquity of vicariance in promoting diversification of
93 evolutionary lineages, many appreciable barriers, such as tall mountain ranges, appear to
94 have conspecific populations on both sides. The effectiveness of a potential montane barrier
95 may depend on the steepness of the environmental gradient and not on elevation *per se*
96 (Janzen, 1967), suggesting that environmental heterogeneity might limit dispersal just as
97 much, or perhaps more so, than simple physical obstruction. Therefore, their effectiveness
98 in separating populations may have more to do with the interaction between environmental
99 heterogeneity and organismal life history (Paz *et al.*, 2015). For example, homeothermic
100 animals likely have a higher tolerance to temperature heterogeneity compared to
101 poikilotherms (Porter & Gates, 1969; Ghalambor, 2006). Life history variables could thus
102 explain why the same potential barrier could differentially impact even closely related
103 species.

104 We evaluate the vicariant model by looking across 37 lineages of tetrapods
105 distributed on either side of the Eastern Cordillera of the northern Andean mountains of
106 South America, specifically Colombia and Venezuela. The Andean Cordillera is the most
107 extensive mountain range in the world, and the highest in America, stretching 9,000 km
108 along the western coast of South America. Tropical mountains should represent an even
109 stronger barrier to the local fauna and flora than temperate mountains (Janzen 1967;

110 Ghalambor, 2006). Because the temperature in the tropical lowlands is relatively
111 homogeneous across the landscape, species are expected to evolve narrower temperature
112 tolerances compared to species that occupy high elevation zones and experience higher
113 daily variations in temperature (McCain, 2009).

114

115 *Geology of the Andes*

116 At its northern end, the Andes splits into three chains: The Western Cordillera
117 (WC), the Central Cordillera (CC), and the Eastern Cordillera (EC) (Fig. 1). The EC
118 extends 750 km from southern Colombia to northwestern Venezuela. The mean height of
119 the EC is close to ~3,000 m.a.s.l. with summits reaching 5,500 m.a.s.l. The Mérida Andes
120 (MA) extends 350 km from the northwestern Colombian-Venezuelan border (Fig. 1) and
121 reaches a maximum elevation of ~5000 m.a.s.l.

122 During Cretaceous times most of northwestern South America was covered by
123 shallow seas, the kind found on today's continental platforms, perhaps only ~200m deep.
124 Large, westward-flowing river systems, predating the Amazonian/Orinoco drainages
125 dumped massive, thick sandstone strata along the western margin of the stable Guiana
126 craton, today exposed, among others, in the Cocuy mountains of Colombia (Fabre, 1985).
127 The record of these shallow marine conditions consists of limestone and fine-grained
128 sedimentary rocks such as shale that generally grade eastward to coarser material such as
129 sandstone and siltstone (Villamil & Arango, 1998). This record is preserved throughout the
130 region in strata of that age, from the MA in the North, the Guajira Peninsula, the Santa
131 Marta massif, the Perijá range, the CC, the Maracaibo block and the EC (see review in
132 Sarmiento-Rojas et al., 2018). This Cretaceous shallow marine sequence (a passive margin)
133 constitutes the base level from which to study the influence of elevation, the development
134 of terrestrial barriers, and the effects of a dynamic landscape on biotas and diversification.

135 Arrival of oceanic-borne terranes to the Cretaceous passive margin of northwestern
136 South America took place during one or several arc-continent collisions (see review in
137 Montes et al., 2019). Collisions built relief along the margin of northwestern South
138 America (see review in Bayona, 2018), shedding coarse-grained clastic material, sand and
139 gravel, marking the start of a regional marine regression and the establishment of swampy
140 conditions where shallow marine conditions had been prevalent for a long time. From this

141 time onwards (latest Cretaceous to the south, to middle Paleocene in the north) we can
142 define a primordial, probably discontinuous, Central Cordillera from Guayaquil to the
143 Guajira peninsula. This orogen may have taken ~10 million years to propagate from south
144 to north (see review in Montes et al., 2019). This range would have spawned the first
145 Amazonian/Orinoco-style drainages, shutting down most or all westward-directed
146 drainages of the region (Hoorn et al., 2010). We can therefore roughly reconstruct a north-
147 south, single-cordillera configuration during latest Cretaceous to middle Eocene times in
148 northwestern South America.

149 By late Eocene times, ~38–33 Ma, the geodynamic configuration of the northern
150 Andes (Fig. 2A) changes and deformation starts to propagate eastwards into the domains of
151 today's EC (Mora et al., 2006; Ochoa et al., 2012; Bayona et al., 2013; Lamus et al., 2013).
152 From this time onwards, we can document a young Magdalena Valley north of ~ 4°N,
153 defined by a topographic depression between two flanking, linear, mostly continuous
154 ranges (Horton et al., 2015). These ranges were high enough to provide potential energy for
155 the erosion and transport of thick, coarse-grained deposits now preserved along both
156 margins of the Magdalena Valley. South of ~4°N, the mountainous terrain of the young EC
157 would have eased into the lowlands of Amazonia/Orinoco. Later, by middle Miocene times
158 (Fig. 2B, ~15–13 Ma) deformation on the western flank of the EC cordillera propagates
159 westward, building the flanks of the orogen (Restrepo-Pace et al., 2004). This process
160 propagates southward, where middle Miocene strata gets involved in the deformation
161 (Saeid et al., 2017). The Magdalena Valley is thus the result of a tectonic, not erosional,
162 processes that modified an originally low-lying topography. Today, the Valley floor is flat,
163 wide, and at the upper Valley, near 500 m.a.s.l., it defines the western edge of the EC.

164 The often-cited review paper about EC uplift (Gregory-Wodzicki, 2000), based on a
165 classical paleobotanical study of the Bogotá plateau by van der Hammen et al. (1973),
166 suggest that the modern elevation of the EC-MA was reached between 2–5 Ma. Such a date
167 has commonly been taken as an absolute value representing simultaneous uplift along the
168 entire length of the EC. Recent biomarker studies suggest that cooling revealed by
169 paleobotanical studies (~9–12°C), may need to be revised downwards (3±1°C, Anderson et
170 al., 2015). If that is the case, cooling may simply be the result of changing regional climates
171 in the Miocene-Pliocene transition with no need for further surface uplift at all (Perez-

172 Angel et al., 2017). Evidence for Andean uplift reviewed above suggests that its elevation
173 history is much longer and more complex as revealed by coarse-grained strata on the flanks
174 of the Andean ranges, and consistent with the recent biomarker studies.

175 In summary, the above synthesis of geological data, specifically of coarse-grained
176 deposits, suggests that surface uplift of the Eastern Cordillera was already well underway in
177 Eocene times (Fig. 2A), and nearly complete in middle Miocene times (Fig. 2B).

178 Nonetheless, fossil fishes of Amazonian affinities found in the southern Magdalena Valley
179 (the giant Pirarucú, *Arapaima gigas*, and others), require Magdalena-Amazonia biotic
180 exchange until middle Miocene times (11 Ma; Lundberg and Chernoff, 1992). Such a pass
181 may have existed where the Central Cordillera meets the southern end of the EC. Similarly,
182 fossil catfish faunas of the upper Miocene Urumaco Formation in northwestern Falcon,
183 Venezuela (Diaz de Gamero, 1996; Aguilera et al., 2013), and the Pliocene Castilletes
184 Formation in the Guajira peninsula (Aguilera et al., 2013) suggest a lowland connection
185 between Amazonia and the Caribbean coast at western end of the MA (Venezuela) as
186 recently as ~ 3 Ma.

187

188 *Surface uplift and speciation*

189 Andean uplift triggered changes in climatic and hydrologic conditions that led to the
190 formation of the Amazon River system ~10.5 Ma (Figueiredo et al., 2009). This uplift is
191 widely cited as having caused the primary divergence between ancestral populations on
192 either side of the Andes. The rise of the EC, for example, is thought to have mediated the
193 initial split between eastern and western populations of woodcreepers (*Dendrocincla*; Weir
194 & Price, 2011), and between populations of the cane toad, *Rhinella marina*, with its
195 recently recognized sister species, *R. horribilis* (Slade & Moritz, 1998). However, these and
196 similar phylogeographic studies make strong assumptions about the timing and location of
197 uplift of the EC-MA. First, many biologists assume that the Andes, or even a small section
198 of the Andes such as the EC-MA, rose up synchronously across its entire length, without
199 allowing for spatial heterogeneity in the timing of uplift. Second, even if uplift were
200 spatially synchronous, at what point during the process of uplift should we assume
201 migration ended? In the case of the EC-MA should we assume the date of initial uplift date
202 of roughly 38 Ma for the separation of an ancestral population, or perhaps the final uplift

203 data of 2 Ma based on palynological records near Bogotá in the middle of the EC (Van der
204 Hammen et al., 1973), or some date in between? With such a long time period between the
205 start and end of uplift of the EC-MA, this process could explain nearly any divergence data
206 the investigator might obtain from evolutionary genetic analysis of her or his taxon of
207 interest. Furthermore, some conspecific populations separated by the EC are not
208 reciprocally monophyletic, demonstrating either a young separation date or continued
209 migration over the mountains (Miller et al., 2008). Third, even if uplift were synchronous,
210 and even if the investigator could connect without error a certain uplift date to divergence
211 dates based on genetic data, this date of separation between eastern and western populations
212 might not be relevant to other organisms with contrasting life histories (see above). Thus,
213 any evaluation of the role of the Andes in driving primary divergence, i.e., vicariance,
214 requires recognizing explicitly that even a section of the Andes, such as the EC-MA, is
215 comprised of historically independent geological elements, and it requires a widely
216 comparative approach to capture the variation among lineages in their response to changes
217 in the environmental conditions.

218 To evaluate the role of the uplift of the EC-MA mountain chains on genetic
219 variation, we chose to work with tetrapods, as these are similarly large and terrestrial
220 organisms for which ample phylogeographic data sets are available online. At the same
221 time this clade is also diverse enough to capture remarkable variation in potentially relevant
222 life-history and eco-physiological traits that allow us to evaluate their possible effect on
223 divergence times across the EC-MA. We used comparative phylogeography and
224 hierarchical approximate Bayesian computation (hABC) to test the following hypotheses,
225 in order of complexity. H1) The separation of eastern and western clades within each
226 species or genus was simultaneous among all taxa studied here, supporting the classic
227 vicariance model and little role for life-history variation affecting the timing of divergence.
228 This hypothesis predicts that A) our hABC analysis will reveal a single interval containing
229 all divergence events, and B) according to off-cited estimates, the divergence time interval
230 will be around 2–5 Ma, whereas our re-analysis of geological evidence (above) suggests
231 much older dates. The next three hypotheses suggest that barriers are the result of
232 organismal-environmental interactions. Thus, how the rise of the EC-MA affected each
233 species depends on the eco-physiological traits of each species. H2) The separation of

234 eastern and western clades was asynchronous among taxa and this variation can be
235 explained by differences in elevation and geographic range. As the EC-MA rose up,
236 lowland taxa would have separated first and organisms with wider distributional ranges,
237 higher dispersal abilities, and/or broader tolerance of landscape heterogeneity should be
238 less affected by the environmental gradient generated by mountain uplift. This hypothesis is
239 consistent with a traditional vicariance model but allows for some variation in divergence
240 times among co-distributed taxa. H2 thus predicts that species with higher elevation ranges
241 and widespread species will show younger divergence times relative to lowland and
242 narrowly distributed species since they have lower dispersal abilities and more specific
243 habitat requirements. H3) The effectiveness of a montane barrier will be stronger for small-
244 bodied species since they are poor dispersers compared to bigger species (Jenkins et al.,
245 2007; Paz et al., 2015), predicting that divergences vary according to body size, with older
246 divergences in smaller species. H4) Variation in divergence times (if any) can be explained
247 by physiological traits, as follows. 4A) homeotherms will show shallower divergences
248 across the Andes, while poikilotherms will show deeper divergences due to their
249 susceptibility to environmental temperature variation, reducing their dispersal across the
250 incipient environmental gradient created by mountain uplift (Porter & Gates, 1969; Buckley
251 et al., 2012). 4B) Flying species (bats and birds) will show younger divergences respect to
252 non-volant species since the former latter should disperse much more readily over the
253 nascent Andes.

254

255 **Materials and methods**

256 *Species selection and genetic data collection*

257 To re-assess the role of the Eastern Cordillera and Mérida Andes, EC-MA, in
258 separating ecologically diverse lowland taxa into eastern and western populations, we
259 combined new information with published data sets representing clades with *cis*- and *trans*-
260 Andean distributions, i.e., East and West of the EC-MA, respectively. We restricted the
261 selection of ingroup samples according to the following filters. First, we included only
262 tetrapods (see Introduction). Second, each set of related populations must comprise a
263 monophyletic group, independently of species names currently assigned to the populations.
264 Populations on either side of the EC-MA, however, were not required to be monophyletic

265 to be included in phylogenetic analyses (but see below regarding assumptions of
266 comparative phylogeographic analyses). Third, the chosen clade must include a maximum
267 of one species on at least one side of the EC-MA, while the opposite side could contain the
268 same species, a sister species, or a sister clade with up to a maximum of two named species
269 (Fig. 3). In this way, we sought to limit our study to potential cases of primary vicariance
270 across the mountains, while avoiding more ancient divergence events obscured by more
271 recent speciation on either side. Fourth, since we were testing a model of vicariance of
272 lowland taxa by mountain uplift, we excluded tetrapod species whose maximum elevation
273 range exceeded 2,000 m.a.s.l. Fifth, in order to exploit coalescent-based analytical tools, we
274 also required datasets to have a minimum of three conspecific individuals sampled on each
275 side of the EC-MA. Sixth, because very few published studies passing the preceding filters
276 also included nuclear DNA data, we were obliged to limit our comparative analyses to
277 mitochondrial DNA (mtDNA) sequence data available in GenBank, in the Barcode of Life
278 Database (BoLD; Ratnasingham & Hebert, 2007), or, in the case of frogs, using new data
279 reported here for the first time. We found 30 published data sets meeting the above
280 requirements, and to these we added five previously unpublished datasets from Colombian
281 frogs. Among these 37 data sets, the total number of lineages per taxonomic class was nine
282 amphibians, five from reptiles, 17 bird data sets, and six from mammals (Table 1).

283 GenBank accession numbers are provided in Table S1 (Accession numbers for new data
284 will be supplied prior to final acceptance of this manuscript for publication.)

285

286 *Molecular phylogenetic analyses*

287 To the above sampling we added one or more outgroup samples to each dataset in
288 order to root trees and to assist in temporal calibrations of molecular phylogenies. We
289 searched the literature for time-calibrated trees containing the ingroup of interest, and we
290 selected as outgroup the closest species that had published DNA sequences of the same
291 gene or genes as available for the ingroup. When available, we added additional outgroup
292 species from the same genus or family to reduce uncertainty on node ages. DNA sequence
293 data sets were aligned independently for each genus and each gene using ClustalW v. 1.74
294 (Larkin et al., 2007) with gap opening costs set to 20 for protein-coding genes and 16 for
295 ribosomal RNA genes. PartitionFinder2 (Lanfear *et al.*, 2012) was applied independently to

296 each alignment to select the best-fit partitioning schemes and models of nucleotide
297 substitution. Potential partitions considered included by gene and by codon position.

298 To estimate divergence times independently for each lineage between eastern and
299 western samples, we employed the Bayesian MCMC molecular phylogenetic software
300 BEAST v. 2.4.7 (Bouckaert *et al.*, 2014). We ran two chains for 80 million generations,
301 sampled every 5,000 steps with a coalescent constant-size tree prior since each data set
302 included population samples and it is the most suitable prior for describing relationships
303 within and between populations. Searches started from a random tree and assumed an
304 uncorrelated lognormal relaxed molecular clock. Datasets with multiple mitochondrial
305 genes were concatenated under the assumption of no recombination in tetrapod mtDNA.
306 For birds, we set the prior on the substitution rate using a lognormal distribution that
307 included the well-established rate for an avian mtDNA molecular clock of 2% total
308 divergence per million years (Weir & Schluter, 2008). For anuran mtDNA, we assumed a
309 lognormally distributed substitution rate prior with a mean of 0.00955 divergence per
310 lineage per million years and a range from 0.0074 to 0.01225, corresponding to the 2.5%
311 and 97.5% quantiles, respectively, derived from the silent site divergence rates reported in
312 Crawford (2003). For reptiles and mammals, we employed only secondary calibrations
313 derived from published timetrees (Appendix S2), and we did not used substitution rates
314 because the MCMC chains did not converged when we constrained used both the node ages
315 priors and with substitution rates.

316

317 *Comparative phylogeographic analysis*

318 We used the software MTML-msBayes (v. 20170511) (Overcast *et al.*, 2017) to
319 evaluate the degree of temporal coincidence of divergence events among $n = 37$ tetrapod
320 taxa geographically divided by the EC-MA. MTML-msBayes uses hierarchical
321 approximate Bayesian computation (hABC) to combine data from multiple co-distributed
322 lineages into a global coalescent analysis that includes a hyperparameter (Ψ) describing the
323 number of time intervals necessary to account for the observed range of divergence times
324 among n taxa, with a single time interval ($\Psi = 1$) implying simultaneous divergence of all
325 lineages, up to a maximum of $\Psi = n$, i.e., divergence across the EC-MA occurred at a
326 statistically distinct point in time for each taxon (Huang *et al.*, 2011).

327 The first step in the hABC analysis is estimating population genetic summary
328 statistics for each lineage. Subsequently, data sets of the same size as the observed data are
329 simulated under a coalescent model using parameter values drawn from a prior distribution,
330 and summary statistics are estimated from each simulated dataset. Finally, an
331 acceptance/rejection algorithm is applied to obtain a sample from the posterior distribution
332 by comparing the summary statistics of each simulated dataset with those from the
333 observed data (Huang et al., 2011). As suggested by Hickerson *et al.* (2007) for small
334 datasets, we employed the genetic distance between populations, π_b (Charlesworth, 1998),
335 as the summary statistic for the estimation of the parameters Ψ , the mean divergence time
336 $E(\tau)$, where τ is the age of the splitting event that divided the ancestral population, and for
337 Ω , the dispersion index of τ [$\text{var}(\tau)/E(\tau)$]. $\Omega < 0.0$ is commonly used as criterion for
338 simultaneous divergence for multiple pairs of codistributed lineages (Hickerson et al.,
339 2007). We assumed that mitochondrial genes are in perfect linkage disequilibrium, and
340 therefore treated multi-gene datasets as single, concatenated sequences in hABC, and
341 excluded any sample missing data from two or more genes. MTML-msBayes assumes a
342 two-population model (Fig. 3a) that is violated by deep phylogeographic structure on either
343 side of the proposed barrier (Huang et al., 2011). Therefore, we checked tree topologies
344 obtained using BEAST (see above) and for those few taxa with multiple lineages on one
345 side of the EC-MA we included only samples from the clade that best fit the two-
346 population model implemented in MTML-msBayes. Thus, for paraphyletic and
347 polyphyletic groups, we included the clade with the most samples (to obtain better
348 estimates of population genetic parameters) and/or clades geographically positioned most
349 closely to the EC-MA (Fig. 3c).

350 The number of possible divergence models increases when more taxa are added,
351 thus the computer will not be able to evaluate all the possible models properly when
352 implementing a single analysis with the 37 lineages (Oaks et al., 2013), hence we ran one
353 independent analysis for each of the four classes of tetrapods. We set the upper limit of τ to
354 the oldest mean split age for each class according to our BEAST analysis. Divergence times
355 estimated from MTML-msBayes are in coalescent units, thus the conversion to millions of
356 years assumed roughly equal sex ratios, haploid and maternally inherited mtDNA, and was
357 made following the equation $t = \tau\theta_{\text{Ave}}/\mu$, where θ_{Ave} is the average effective population size

358 for each taxonomic class estimated by MTML-msBayes and μ is the neutral mutation rate
359 per site per generation. Values of μ for frogs were taken from Crawford (2003) and for
360 birds we followed Dolman & Joseph (2011). For mammals and non-avian reptiles, we used
361 specific rates per genus (see Appendix S3). Further details regarding estimating coalescent-
362 based divergence times, hyperpriors, substitution rates, and generation times assumed for
363 each taxon are given in Appendix S3. Hyper-posteriors were estimated from 1,000 accepted
364 draws from 1.5 million simulations. We made a local linear regression of the accepted
365 parameter values obtained by the acceptance/rejection step in order to improve the posterior
366 estimation. We used Bayes factors (BF; Kass & Raftery, 1995) to evaluate the relative
367 posterior support for the number of divergence pulses. To estimate the timing of each
368 divergence interval and the species contained in each, we constrained Ψ to the value with
369 maximum BF and repeated the analysis as outlined above (Paz et al. 2015).

370

371 *Life-history determinants of divergence times*

372 We selected six life-history variables potentially related to dispersal abilities that
373 could influence divergence times: body size as length, geographic range, upper elevation
374 limit, type of locomotion (flying versus not flying), thermoregulation (homeotherm versus
375 poikilotherm) and taxonomic class (amphibians, non-avian reptiles, birds, mammals). We
376 obtained snout-vent length of amphibians from the AmphiBIO database (Oliveira et al.,
377 2017). For reptiles we obtained body-size data from the literature (Savage, 2002; Bartlett &
378 Bartlett, 2003; Böhm et al., 2013; Fowler, 2018). We obtained body-size data for birds
379 from the Handbook of the Birds of the World (del Hoyo et al., 2018), and for mammals we
380 consulted the amniote life-history database (Myhrvold et al., 2015). We used species
381 distribution shapefiles from the IUCN Red List of Threatened Species (2018) to estimate
382 the geographic ranges of species in km². We obtained upper elevational-limit data from the
383 IUCN Red List of Threatened Species (2018), Amphibian Species of the World (Frost,
384 2018), and the Handbook of the Birds of the World. The variables mean divergence time
385 and body size were transformed with the natural logarithm function to better meet
386 assumptions of normality and homoscedasticity. Based on the above six life-history
387 variables we defined a total of 13 *a priori* general linear models (GLM, Table 2) that could
388 potentially explain variation in divergence times. We performed an AICc model selection

389 procedure using R v. 3.5.1 (R Core Team, 2018) to determine which variables are more
390 relevant in determining divergence times.

391

392 **Results**

393 *Divergence time estimation and hABC*

394 We defined our nodes of interest as the youngest node that had descendants on both
395 sides of the EC-MA. For frogs, the age of the node that split east and west populations in
396 BEAST analysis ranged from 1.09 to 10.3 Ma (Fig. 4a), for birds 0.72 to 8.04 Ma (Fig. 4b),
397 from 0.84 to 12.62 Ma in reptiles (Fig. 4c), and from 0.36 to 3.69 Ma among lineages of
398 mammals (Fig. 4d). The comparison of posterior distributions supported strongly a scenario
399 of asynchronous divergence in amphibians ($BF = 0$), reptiles ($BF = 0$) and birds ($BF = 0$),
400 while for mammals the scenario of simultaneous divergence was moderately supported (BF
401 = 3.29). For amphibians, BF values provided support for four divergence interval among
402 the 9 lineages ($BF = 4.12$; Appendix S4, Fig. S1a), three pulses among the 5 reptile
403 lineages ($BF = 2.58$; Appendix S4, Fig. S1b), and six among the 17 avian lineages ($BF =$
404 5.63; Appendix S4, Fig. S1c).

405 The timing of intervals of divergence events estimated by coalescent analysis and
406 the participating species within each interval are given in Table 3. For each taxon, the
407 divergence times across the EC-MA estimated from phylogenetic analyses largely agreed
408 with the coalescent-based results. We performed a sign test within each taxonomic class to
409 evaluate differences in divergence times estimated by the Bayesian phylogenetic approach
410 (BEAST) versus the explicitly coalescent approach (MTML-msbayes). Only birds showed a
411 significant difference, where the divergence time estimates using hABC were older than
412 those estimated using BEAST ($n = 17$, $p = 0.00235$; Appendix S4), for the other the other
413 taxa, we did not find significant differences (Amphibians: $n = 9$, $p = 0.1797$; Reptiles: $n =$
414 5, $p = 1$; Mammals: $n = 6$, $p = 0.0625$; Appendix S4).

415

416 *Life-history determinants of divergence times*

417 Among the thirteen models we evaluated to explain variation in divergence times,
418 the best-fit model contained only a single eco-physiological variable, ‘thermoregulation’
419 ($AICc = 91.28$; Table 2), with homeothermic species showing younger divergence times

420 relative to poikilotherms (Fig. 5). However, this model explained only a small portion of
421 the variation ($R^2 = 0.10$, Adjusted $R^2 = 0.08$). The second best-fitting model explained a
422 little more of the variation and contained only the variable, ‘taxonomic class’ ($\Delta AICc =$
423 1.49 , $R^2 = 0.19$, Adjusted $R^2 = 0.11$; Table 2). Body size and geographic range appear to be
424 the least informative predictors of divergence across the EC-MA since models including
425 these variables (single variable, within linear combinations, or as interaction terms) have
426 the highest AICc values.

427

428 Discussion

429 *Pulses of divergence and Andean uplift*

430 Comparison of phylogeographic patterns among co-distributed lineages allows the
431 researcher to test geological events and landscape features as possible determinants of
432 speciation that shaped current geographic patterns of biodiversity (Hickerson et al., 2010).
433 The typical null hypothesis assumes that co-distributed species share a common
434 biogeographic history influenced by the same historical events (Arbogast & Kenagy, 2008).
435 Our data are not consistent with this hypothesis, and our results demonstrate the occurrence
436 of several divergence pulses where the estimated divergence times, τ , vary so widely
437 among taxa within each of the four taxonomic classes of tetrapod that no single time
438 interval could account for this variation. The amphibian, non-avian reptile, and bird data
439 sets each have at least one divergence pulse in which the mean τ is older or younger than
440 the traditional dating of EC-MA uplift (2–5 Ma; Table 3). Only in mammals did the hABC
441 framework support a single divergence time interval. However, at 0.31–0.43 Ma, this
442 divergence time interval was far younger than the traditionally proposed divergence time
443 across the EC-MA (Table 3). Thus, the variation in divergence times among taxa, as well as
444 the number of splits outside the traditional 2–5 Ma interval, suggest we need to reconsider
445 our evolutionary and geological models of the uplift of the EC-MA mountain chains.

446

447 *Differences in phylogeographic approaches*

448 Birds showed a significantly older divergence time estimates using hABC relative
449 to BEAST (Appendix S4, Table S2), which is unexpected since the divergence of an
450 ancestral population should occur posterior to gene divergence, assuming no post-

451 divergence migration (Nei & Li, 1979). This discrepancy could be attributed to the models
452 used by each software, where BEAST estimates a phylogenetic timetree assuming complex
453 models of substitution while MTML-msBayes uses a coalescent approach. However, this
454 explanation would predict similar discrepancies in estimate divergence times across all 4
455 taxonomic classes, which was not the case. Avian taxa, however, showed substantial
456 polyphyly with respect to the two sides of the EC, which may explain why mean gene
457 divergence across the EC could be younger than the population divergence.

458 We employed mtDNA to infer phylogenetic relationships and the number and the
459 timing of divergence events. This marker is widely used in comparative phylogeographic
460 studies for several reasons. Its high mutation rate and lack of recombination provide ample
461 and detailed information needed to reconstruct the genealogy of samples with more
462 precision that found for any other single marker. The fact that its haploid and maternally
463 inherited means genetic drift is at least 4-fold faster, which greatly lowers the probability of
464 incomplete lineage sorting (ILS; Avise et al., 1987; Hudson & Coyne, 2002). Finally, the
465 conserved structure of the mitochondrial genome makes it the best single marker for
466 comparative analyses across diverse animal species (Carnaval et al., 2009), though mtDNA
467 does not always predict variation in nuclear DNA (nDNA; Toews & Brelsford, 2012). In
468 some cases, discordances between mtDNA and nDNA phylogenies are observed, so
469 analysis including different loci are recommended to confirm phylogeographic histories. In
470 this case in particular, we could not find DNA samples from multiple loci that could
471 constitute a representative geographic sampling that could help to answer our research
472 questions. Coalescent inference based on single-locus information could be inaccurate
473 (Edwards et al., 2000). However, the approach used in hABC takes into account the
474 intrinsic stochasticity in single-locus coalescence genealogies across different taxa and
475 moreover, estimation of population divergence time (τ) does not improve considerably until
476 eight nuclear loci are incorporated (Huang et al., 2011).

477

478 *Ecological factors and divergence times*

479 The only life-history variable that was found to be associated with divergence times
480 was thermal physiology, such that poikilotherms had older divergences across the EC-MA
481 than homeotherms. Poikilotherm dispersal is restricted by temperature and these animals

482 cannot perform across as wide a range of environmental temperatures as homeotherms can
483 (Porter & Gates, 1969). Tropical lowland poikilotherms have restricted altitudinal ranges,
484 narrow temperature tolerances and limited acclimation responses compared to high
485 elevation and temperate poikilotherms species (Ghalambor, 2006).

486 These physiological trends are reflected in variation in divergence times among
487 South American tetrapods, such that amphibians and non-avian reptiles tend to show
488 Miocene to Pliocene intraspecific divergences, whereas mammals and bird species tend to
489 show Late Pliocene to Pleistocene divergences (Turchetto-Zolet et al., 2013). Temperature
490 oscillations may determine the altitudinal extent of an ecosystem. Quaternary glaciation
491 events starting 2.58 Ma compressed vegetation belts downwards, while in the interglacial
492 cycles these belts expanded and reached higher elevations (Hooghiemstra & Van der
493 Hammen, 2004; Ramírez-Barahona & Eguiarte, 2013). As we argue in more detail below,
494 interglacial episodes offered opportunities for gene flow across the EC-MA when lowland
495 ecosystems expanded altitudinally, enhancing dispersal, thus explaining the relatively
496 young divergence times across the Andes as well as the slightly younger median divergence
497 times (estimated by BEAST) for mammals (1.43 Ma) and birds (2.58 Ma) relative to
498 amphibians (3.26 Ma) and in non-avian reptiles (2.99 Ma), as estimated by our
499 phylogenetic gene tree method (Fig. 4).

500

501 *Alternative scenarios to Andean vicariance*

502 Our synthesis of recent geological studies (Figs. 2A and 2B) combined with our
503 comparative phylogeographic analyses failed for two reasons to support the traditional
504 model of vicariance mediated by the northern Andes. Geological evidence suggests the EC-
505 MA had already reached significant elevation as early as 38–33 Ma north of ~4°N (see
506 below), and genetic analyses show that divergence was asynchronous within taxonomic
507 classes, except for mammals, as well as among classes, especially the mammals. Here we
508 consider some alternative explanations for variation among our 37 clades in divergence
509 times across the EC-MA. Under a model of pure vicariance caused by a physical barrier,
510 populations on either side start as polyphyletic entities that, in the absence of subsequence
511 migration, will reach reciprocal monophyly at a rate inversely proportional to effective
512 population size (Avise et al. 1983), such that monophyly would be reached 4 times faster

513 in mtDNA than in nDNA (Hudson & Coyne 2002) or even faster (Crawford 2003). Of the
514 37 tetrapod lineages studied here, 17 (46%; 3 amphibians, 3 non-avian reptiles, 9 birds, and
515 2 mammals) showed polyphyly with respect to the position of the EC-MA. If this frequent
516 polyphyly is due to incomplete lineage sorting, then this provides further evidence that the
517 hypothesized vicariant split was recent relative to population size, further suggesting that
518 any potential impact of the EC-MA on tetrapods tended to take place more recently than
519 traditionally accepted dates for the end of the uplift of the EC-MA. The asynchrony in
520 timing of divergence makes this explanation less likely, however. Alternatively, polyphyly
521 could be created by multiple crossings of the EC following an initial vicariant separation, as
522 found in, for example, the bird *Mionectes* (Miller et al., 2008) and the frog, *Rheobates*
523 (Muñoz-Ortiz et al., 2015), suggesting that the EC-MA is an ineffective barrier for half of
524 tetrapod lineages studied here. Such a model of recent dispersal across a fully formed
525 Andes could explain the heterogeneity in divergence times among lineages, the overall
526 young ages relative to the old age of the EC-MA as synthesized here, and the young
527 divergence times among homeotherms relative to poikilotherms (Fig. 5).

528 Our goal here is to synthesize a geological perspective with evolutionary genetic
529 inferences to better understand the biogeographic patterns and processes behind divergence
530 across the northern Andes. As discussed above, the geological evidence suggests a much
531 older and complex EC-MA uplift, yet the genetic data show asynchronous divergence
532 (except in mammals) with median dates that tend to be too young: 3.26 Ma in amphibians,
533 2.99 Ma in non-avian reptiles, 2.58 Ma in birds, and 1.43 Ma in mammals (Fig. 4). We
534 propose that Pleistocene climate fluctuations facilitating dispersal over the EC-MA. One
535 alternative trans-Andean dispersal scenario, however, could include dispersal through
536 lowland passes. As mentioned in the Introduction, the Magdalena River valley on the
537 Caribbean coast of Colombia contains fossil fishes of Amazonian affinities, suggesting that
538 a pass through the southern EC was open until at least 11 Ma, and fossil catfishes from
539 northern Venezuela suggest a pass existed through the MA as recently as 3–5 Ma (Aguilera
540 et al., 2013). If such connections existed, the geological data is not yet clear where these
541 passages would have been located, but we propose two possible lowland passes through an
542 otherwise tall EC-MA. The western end of the MA could have connected Amazonia and
543 the Caribbean coast to the north ~3 Ma. The junction of the Central Cordillera and southern

544 end of the EC in Colombia, allowed lowland connectivity between Amazonia and the
545 Magdalena ~11 Ma. A potentially younger pass could be represented by the geologically
546 youngest section of the EC (Kroonenberg et al., 1981; van der Wiel, 1991; Ujueta, 1999).
547 Conducting phylogeographic studies across these potential gaps may prove challenging,
548 however, because the environmental conditions today differ dramatically between the two
549 sides, with semi-arid conditions on the western side contrasting sharply with the humid
550 Amazonian moist forest to the East, and very few if any species are found in both.

551 We report four main observations here that we hope can be accounted for by a
552 single historical explanation: 1) geological evidence revealing old age of uplift for the EC-
553 MA in general dating to around 38–33 Ma, coupled with 2) paleontological evidence from
554 Amazonian lineages of fishes found in the northern Magdalena Valley at 11 Ma and
555 northern Venezuela at 3–5 Ma. 3) asynchrony (aka, high variance) in divergence times
556 (estimated by hABC) within and among groups of tetrapods, ranging from 0.13 Ma in
557 *Boana boans* to 9.05 Ma in *Boa constrictor*, and finally 4) low median divergence times
558 (estimated by BEAST) within each tetrapod group from 3.26 Ma in amphibians to 1.43 Ma
559 in mammals. Because a traditional model of Andean uplift cannot account for the young
560 dates or the variation in divergence times among tetrapod lineages spanning the northern
561 Andes, we propose the following explanation. The significant albeit weak relationship
562 between divergence times and thermal biology (Fig. 5) provides a clue that the interaction
563 between life history and environment may play an important role in structuring variation
564 across the Andes, as has been found in a related comparative phylogeographic study of
565 frogs in Panama (Paz et al. 2015). While the EC-MA was largely formed in the Late
566 Eocene (38–33 Ma), climatic fluctuations continued and were especially strong during the
567 Pleistocene (Flantua et al., 2019). The cooling in the Pliocene and subsequent Pleistocene
568 climate oscillations likely created a ‘flickering connectivity’ (Flantua et al., 2019) between
569 lowland populations east and west of the EC-MA, and the connectivity would have been
570 greater in homeotherms relative to poikilotherms since the former can withstand lower
571 temperatures and thus disperse more easily across an elevational gradient. Thus,
572 environmental variation, not geology, recently separated lineages on either side of the EC-
573 MA.

574 Geology and evolutionary genetics offer complementary views of the history of our
575 planet. Any historical hypothesis generated from genetic data should be evaluated with
576 geological information, and vice versa. The present analysis is unique in explicitly
577 synthesizing geological and genetic perspectives, including one of the first comparative
578 studies involving organisms with widely varied physiological and ecological traits, to
579 evaluate the role of the northern end of the World's longest mountain chain, the Andes of
580 South America, in promoting lowland diversification. We conclude that mountains did not
581 limit dispersal, climate did, and we look forward to further testing of our hypothesis using a
582 greater diversity of lineages and genetic markers.

583

584 **References**

585 Aguilera, O., Lundberg, J., Birindelli, J., Sabaj Pérez, M., Jaramillo, C., & Sánchez-
586 Villagra, M.R. (2013) Palaeontological evidence for the last temporal occurrence of the
587 ancient western Amazonian River outflow into the Caribbean. *PLoS ONE*, 8(9), 1–17.

588 Anderson, V.J., Saylor, J.E., Shanahan, T.M. & Horton, B.K. (2015) Paleoelevation records
589 from lipid biomarkers: Application to the tropical Andes. *GSA Bulletin*, 127(11-12),
590 1604–1616.

591 Arbogast, B.S. & Kenagy, G.J. (2008) Comparative phylogeography as an integrative
592 approach to historical biogeography. *Journal of Biogeography*, 28(7), 819–825.

593 Avise, J.C., Arnold, J., Ball, R.M., Bermingham, E., Lamb, T., Neigel, J.E., Reeb, C.A., &
594 Saunders, N.C. (1987) Intraspecific Phylogeography: The Mitochondrial DNA Bridge
595 Between Population Genetics and Systematics. *Annual Review of Ecology and
596 Systematics*, 18(1), 489–522.

597 Avise, J.C., Shapira, J.F., Daniel, S.W., Aquadro, C.F., & Lansman, R.A. (1983)
598 Mitochondrial DNA differentiation during the speciation process in *Peromyscus*.
599 *Molecular Biology and Evolution*, 1(1), 38–56.

600 Barat, F., Mercier de Lepinay, B., Sosson, M., Muller, C., Baumgartner, P.O. &
601 Baumgartner-Mora, C. (2014) Transition from the Farallon Plate subduction to the
602 collision between South and Central America: Geological evolution of the Panama
603 Isthmus. *Tectonophysics*, 622, 145–167.

604 Bartlett, R., P. Bartlett. (2003) *Red-tailed Boas and Relatives: Reptile Keeper's Guide*.
605 Hauppauge, NY: Barron's Educational Series, Inc.

606 Bayona, G. (2018) El inicio de la emergencia de los Andes del norte: una perspectiva a
607 partir del registro tectónico-sedimentológico del Coniaciano al Paleoceno. *Revista de la*
608 *Academia Colombiana de Ciencias*, 42(165), 364–378.

609 Bayona, G., Cardona, A., Jaramillo, C., Mora, A., Montes, C., Caballero, V., Mahecha, H.,
610 Lamus, F., Montenegro, O., Jimenez, G., Mesa, A., & Valencia, V. (2013) Onset of fault
611 reactivation in the Eastern Cordillera of Colombia and proximal Llanos Basin; response
612 to Caribbean-South American convergence in early Palaeogene time. *Geological Society*
613 *Special Publication*, 377(1), 285–314.

614 Bayona, G., Cortes, M., Jaramillo, C., Ojeda, G., Aristizabal John, J. & Reyes-Harker, A.
615 (2008) An integrated analysis of an orogen-sedimentary basin pair; latest Cretaceous-
616 Cenozoic evolution of the linked Eastern Cordillera Orogen and the Llanos foreland
617 basin of Colombia. *Geological Society of America Bulletin*, 120(9–10), 1171–1197.

618 Böhm, M., Collen, B., Baillie, J. E., Bowles, P., Chanson, J., Cox, N., ... & Rhodin, A. G.
619 (2013). The conservation status of the world's reptiles. *Biological Conservation*, 157,
620 372–385.

621 Borrero, C., Pardo, A., Jaramillo, C.M., Osorio, J.A., Cardona, A., Flores, A., Echeverri, S.,
622 Rosero, S., Garcia, J. & Castillo, H. (2012) Tectonostratigraphy of the Cenozoic Tumaco
623 forearc basin (Colombian Pacific) and its relationship with the northern Andes orogenic
624 build up. *Journal of South American Earth Sciences*, 39, 75–92.

625 Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.H., Xie, D., Suchard, M.A.,
626 Rambaut, A., & Drummond, A.J. (2014) BEAST 2: A Software Platform for Bayesian
627 Evolutionary Analysis. *PLoS Computational Biology*, 10(4), e1003537.

628 Buckley, L.B., Hurlbert, A.H., & Jetz, W. (2012) Broad-scale ecological implications of
629 ectothermy and homeothermy in changing environments. *Global Ecology and*
630 *Biogeography*, 21(9), 873–885.

631 Caicedo, J. & Roncancio, J. (1994) El Grupo Gualanday como ejemplo de acumulacion
632 sintectonica, en el Valle Superior del Magdalena, durante el Paleogeno. In F. Etayo
633 Serna (Ed.), *Estudios geológicos del Valle Superior del Magdalena* (pp. 1001–1019).
634 Bogotá: Universidad Nacional de Colombia-Ecopetrol.

635 Cardona, A., Montes, C., Ayala, C., Bustamante, C., Hoyos, N., Montenegro, O., Ojeda, C.,
636 Nino, H., Ramirez, V., Valencia, V., Rincon, D., Vervoort, J.D. & Zapata, S. (2012)
637 From arc-continent collision to continuous convergence, clues from Paleogene
638 conglomerates along the southern Caribbean-South America plate boundary.
639 *Tectonophysics*, 580, 58–87.

640 Cardona, A., Weber, M., Valencia, V., Bustamante, C., Montes, C., Cordani, U. & Munoz,
641 C. (2014) Geochronology and geochemistry of the Parashi granitoid, NE Colombia:
642 Tectonic implication of short-lived Early Eocene plutonism along the SE Caribbean
643 margin. *Journal of South American Earth Sciences*, 50, 75–92.

644 Carnaval, A.C., Hickerson, M.J., Haddad, C.F.B., Rodrigues, M.T., & Moritz, C. (2009)
645 Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. *Science*,
646 323(5915), 785–789.

647 Charlesworth, B. (1998) Measures of divergence between populations and the effect of
648 forces that reduce variability. *Molecular Biology and Evolution*, 15(5), 538–543.

649 Christophoul, F., Baby, P. & Davila, C. (2002) Stratigraphic responses to a major tectonic
650 event in a foreland basin: the Ecuadorian Oriente Basin from Eocene to Oligocene times.
651 *Tectonophysics*, 345(1–4), 281–298.

652 Crisci, J. V. (2001) The voice of historical biogeography. *Journal of Biogeography*, 28(2),
653 157–168.

654 Díaz de Gamero, M.L. (1996) The changing course of the Orinoco River during the
655 Neogene: a review. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 123(1–4),
656 385–402.

657 Dolman, G., & Joseph, L. (2012). A species assemblage approach to comparative
658 phylogeography of birds in southern Australia. *Ecology and Evolution*, 2(2), 354–369.

659 Edwards, S. V., Beerli, P. (2000) Perspective: Gene divergence, population divergence , and
660 the variance in coalescence time in phylogeographic studies. *Evolution*, 54(6), 1839–
661 1854.

662 Erikson, J.P., Kelley, S.A., Osmolovsky, P. & Verosub, K.L. (2012) Linked basin
663 sedimentation and orogenic uplift: the Neogene Barinas basin sediments derived from
664 the Venezuelan Andes. *Journal of South American Earth Sciences*, 39, 138–156.

665 Fabre, A., (1985) Dinámica de la sedimentación Cretácica en la región de la Sierra Nevada
666 del Cocuy (Cordillera Oriental de Colombia), *in* Etayo Serna, F., and Laverde Montano,
667 F., eds., *Proyecto Cretácico*, 16, 1–20.

668 Farris, D.W., Cardona, A., Montes, C., Foster, D. & Jaramillo, C. (2017) Magmatic
669 evolution of Panama Canal volcanic rocks: A record of arc processes and tectonic
670 change. *PloS one*, 12(5), e0176010.

671 Figueiredo, J., Hoorn, C., van der Ven, P., & Soares, E. (2009) Late Miocene onset of the
672 Amazon River and the Amazon deep-sea fan: Evidence from the Foz do Amazonas
673 Basin. *Geology*, 37(7), 619–622.

674 Flantua, S.G.A., O'Dea, A., Onstein, R.E., Giraldo, C., & Hooghiemstra, H. (2019) The
675 flickering connectivity system of the north Andean páramos. *Journal of Biogeography*,
676 46(8), 1808–1025.

677 Fowler, M.E. (2018) *Veterinary Zootoxicology*. CRC Press, Boca Raton, FL.

678 Frost, Darrel R (2019). Amphibian Species of the World: an Online Reference. Version 6.0.
679 Electronic Database accessible at
680 <http://research.amnh.org/herpetology/amphibia/index.html>. American Museum of
681 Natural History, New York, USA.

682 Ghalambor, C.K. (2006) Are mountain passes higher in the tropics? Janzen's hypothesis
683 revisited. *Integrative and Comparative Biology*, 46(1), 5–17.

684 Gómez, E., Jordan, T.E., Allmendinger, R.W., & Cardozo, N. (2005) Development of the
685 Colombian foreland-basin system as a consequence of diachronous exhumation of the
686 northern Andes. *Geological Society of America Bulletin*, 117(9–10), 1272–1292.

687 Gregory-Wodzicki, K.M. (2000) Uplift history of the Central and Northern Andes: A
688 review. *Geological Society of America Bulletin*, 112(7), 1091–1105.

689 Grosse, E. (1926) Estudio Geológico del Terciario Carbonífero de Antioquia en la parte
690 occidental de la Cordillera Central de Colombia entre el río Arma y Sacaosal. Dietrich
691 Reimer (Ernst Vohsen), Berlin.

692 Guerrero, J. (1997) Stratigraphy, sedimentary environments, and the Miocene uplift of the
693 Colombian Andes. In R. Kay, R. Madden, R. Cifelli and J. Flynn (Eds.), *Vertebrate*
694 *Paleontology in the Neotropics: The Miocene Fauna of La Venta, Colombia* (pp. 15–43).
695 Washington DC: Smithsonian Institution Press.

696 Herrera, F., Manchester, S. & Jaramillo, C. (2012) Permineralized fruits from the late
697 Eocene of Panama give clues of the composition of forests established early in the uplift
698 of Central America. *Review of Paleobotany and Palynology*, 175, 10-24.

699 Hickerson, M.J., Carstens, B.C., Cavender-Bares, J., Crandall, K.A., Graham, C.H.,
700 Johnson, J.B., Rissler, L., Victoriano, P.F., & Yoder, A.D. (2010) Phylogeography's
701 past, present, and future: 10 years after Avise, 2000. *Molecular Phylogenetics and*
702 *Evolution*, 54(1), 291–301.

703 Hickerson, M.J., Stahl, E., & Takebayashi, N. (2007) msBayes: pipeline for testing
704 comparative phylogeographic histories using hierarchical approximate Bayesian
705 computation. *BMC Bioinformatics*, 8(268), 1–7.

706 Hooghiemstra, H. & Van der Hammen, T. (2004) Quaternary Ice-Age dynamics in the
707 Colombian Andes: Developing an understanding of our legacy. *Philosophical*
708 *Transactions of the Royal Society B: Biological Sciences*, 359(1442), 173–181.

709 Hoorn, C., Wesselingh, F.P., Steege, H. ter, Bermudez, M.A., Mora, A., Sevink, J.,
710 Sanmartín, I., Sanchez-Meseguer, A., Anderson, C.L., Figueiredo, J.P., Jaramillo, C.,
711 Riff, D., Negri, F.R., Hooghiemstra, H., Lundberg, J., Stadler, T., Särkinen, T., &
712 Antonelli, A. (2010) Amazonia through time: Andean uplift, climate change, landscape
713 evolution, and biodiversity. *Science*, 330(6006), 927–931.

714 Horton, B.K., Anderson, V.J., Caballero, V., Saylor, J.E., Nie, J., Parra, M., & Mora, A.
715 (2015) Application of detrital zircon U-Pb geochronology to surface and subsurface
716 correlations of provenance, paleodrainage, and tectonics of the Middle Magdalena
717 Valley Basin of Colombia. *Geosphere*, 11(6), 1790–1811.

718 del Hoyo, J., Elliot, A., Sargatal, J., Christie, D.A., de Juana, E. (2018) Handbook for the
719 birds of the world. Available at: <http://www.hbw.com/>.

720 Huang, W., Takebayashi, N., Qi, Y., & Hickerson, M.J. (2011) MTML-msBayes:
721 approximate Bayesian comparative phylogeographic inference from multiple taxa and
722 multiple loci with rate heterogeneity. *BMC bioinformatics*, 12(1), 1–14.

723 Hudson, R.R. & Coyne, J.A. (2002) Mathematical consequences of the genealogical
724 species concept. *Evolution*, 56(8), 1557–1565.

725 IUCN (2019). *The IUCN Red List of Threatened Species. Version 2019-2*. Available at
726 <http://www.iucnredlist.org>.

727 Janzen, D.H. (1967) Why mountain passes are higher in the Tropics. *The American*
728 *Naturalist*, 101(919), 233–246.

729 Jenkins, D.G., Brescacin, C.R., Duxbury, C. V., Elliott, J.A., Evans, J.A., Grablow, K.R.,
730 Hillegass, M., Lyon, B.N., Metzger, G.A., Olandese, M.L., Pepe, D., Silvers, G.A.,
731 Suresch, H.N., Thompson, T.N., Trexler, C.M., Williams, G.E., Williams, N.C., &
732 Williams, S.E. (2007) Does size matter for dispersal distance? *Global Ecology and*
733 *Biogeography*, 16(4), 415–425.

734 Kass, R.E. & Raftery, A.E. (1995) Bayes Factors. *Journal of the American Statistical*
735 *Association*, 90(430), 773–795.

736 Kolarsky, R.A., Mann, P. & Monechi, S. (1995) Stratigraphic development of southwestern
737 Panama as determined from integration of marine seismic data and onshore geology. In
738 P. Mann (Ed.), *Geologic and Tectonic Development of the Caribbean Plate Boundary in*
739 *Southern Central America* (pp. 159–200). Boulder, CO: Geological Society of America.

740 Kroonenberg, S.B., Leon, L.A., Do, N., Pastrana, M.R. & Pessoa, M.R. (1981). Ignimbritas
741 Plio-Pleistocénicas en el suroeste del Huila, Colombia y su influencia en el desarrollo
742 morfológico. *Mem. Primer Seminario Cuatern Colombia, Revista CIAF*, 6, 293–314.

743 Lamus, F., Bayona, G., Cardona, A., & Mora, A. (2013) Procedencia de las unidades
744 cenozoicas del sinclinal de guaduas: implicación en la evolución tectónica del sur del
745 valle medio del Magdalena y orógenos adyacentes. *Boletín de Geología*, 35(1), 17–42.

746 Lanfear, R., Calcott, B., Ho, S.Y.W., & Guindon, S. (2012) Partitionfinder: combined
747 selection of partitioning schemes and substitution models for phylogenetic analyses.
748 *Molecular Biology and Evolution*, 29(1), 1695–1701.

749 Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., Mcgettigan, P.A., McWilliam,
750 H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., &
751 Higgins, D.G. (2007) Clustal W and Clustal X version 2.0. *Bioinformatics*, 23(21),
752 2947–2948.

753 Leon, S., Cardona, A., Parra, M., Jaramillo, J.S., Valencia, V., Chew, D., Sobel, E.R.,
754 Montes, C., Pardo-Trujillo, A., Posada, G. & Echeverri, S. (2018) Transition from
755 collision to subduction: an example from Panama-Nazca Neogene interactions.
756 *Tectonics*, 37(1), 119–139.

757 Lomolino, M. V., Riddle, B. R., Whittaker, R. J. (2017). *Biogeography*. (5th edition).
758 Sunderland, MA: Oxford University Press.

759 Lundberg, J.G. & Chernoff, B. (1992) A Miocene fossil of the Amazonian fish *Arapaima*
760 (Teleostei, Arapaimidae) from the Magdalena River region of Colombia –
761 Biogeographic and evolutionary implications. *Biotropica*, 24(1), 2–14.

762 Mayr, E. (1963). *Animal species and evolution*. Cambridge, MA: Belknap Press.

763 McCain, C.M. (2009) Vertebrate range sizes indicate that mountains may be ‘higher’ in the
764 tropics. *Ecology Letters*, 12(6), 550–560.

765 Miller, M.J., Bermingham, E., Klicka, J., Escalante, P., do Amaral, F.S.R., Weir, J.T., &
766 Winker, K. (2008) Out of Amazonia again and again: episodic crossing of the Andes
767 promotes diversification in a lowland forest flycatcher. *Proceedings of the Royal Society
768 B: Biological Sciences*, 275(1639), 1133–1142.

769 Montes, C., Guzman, G., Bayona German, A., Cardona, A., Valencia, V. & Jaramillo
770 Carlos, A. (2010) Clockwise rotation of the Santa Marta massif and simultaneous
771 Paleogene to Neogene deformation of the Plato-San Jorge and Cesar-Rancheria basins.
772 *Journal of South American Earth Sciences*, 29(4), 832–848.

773 Montes, C., Rodriguez-Corcho, A.F., Bayona, G., Hoyos, N., Zapata, S. & Cardona, A.
774 (2019) Continental margin response to multiple arc-continent collisions: The northern
775 Andes-Caribbean margin. *Earth-Science Reviews*, 198, 102903.

776 Mora, A., Parra, M., Strecker, M.R., Kammer, A., Dimaté, C., & Rodríguez, F. (2006)
777 Cenozoic contractional reactivation of Mesozoic extensional structures in the Eastern
778 Cordillera of Colombia. *Tectonics*, 25(2), 1–19.

779 Moreno, F., Hendy, A., Quiroz, L., Hoyos, N., Jones, D., Zapata, V., Zapata, S., Ballen, G.,
780 Cadena, E., Cárdenas, A., Carrillo, J.D., Delgado, D., Escobar, J., Martínez, J.I., Montes,
781 C., Moreno, J., Perez, N., Sanchez, R., Suarez, C., Vallejo, M.C. & Jaramillo Carlos, A.
782 (2015) Revised stratigraphy of Neogene strata in the Cocinetas basin, La Guajira,
783 Colombia. *Swiss Journal of Palaeontology*, 134(1) 5–43.

784 Morrone, J.J. & Crisci, J. V. (1995) Historical biogeography: Introduction to methods.
785 *Annual Review Ecology and Systematics*, 26(1), 373–401.

786 Muñoz-Ortiz, A., Velásquez-Álvarez, A.A., Guarnizo. C.E., & Crawford, A.J. (2015) Of
787 peaks and valleys: testing the roles of orogeny and habitat heterogeneity in driving

788 allopattery in mid-elevation frogs (Aromobatidae: *Rheobates*) of the northern Andes.
789 *Journal of Biogeography*, 42(1), 193–205.

790 Myhrvold, N.P., Baldridge, E., Chan, B., Sivam, D., Freeman, D.L., & Ernest, S.K.M.
791 (2015) An amniote life-history database to perform comparative analyses with birds,
792 mammals, and reptiles. *Ecology*, 96(11), 3109–3109.

793 Nei, M. & Li, W.H. (1979) Mathematical model for studying genetic variation in terms of
794 restriction endonucleases. *Proceedings of the National Academy of Sciences of the
795 United States of America*, 76(10), 5269–5273.

796 Oaks, J.R., Sukumaran, J., Esselstyn, J.A., Linkem, C.W., Siler, C.D., Holder, M.T., &
797 Brown, R.M. (2013) Evidence for climate-driven diversification? A caution for
798 interpreting ABC inferences of simultaneous historical events. *Evolution*, 67(4), 991–
799 1010.

800 Ochoa, D., Hoorn, C., Jaramillo, C., Bayona, G., Parra, M. and De la Parra, F. (2012) The
801 final phase of tropical lowland conditions in the axial zone of the Eastern Cordillera of
802 Colombia: Evidence from three palynological records. *Journal of South American Earth
803 Sciences*, 39, 157–169.

804 Oliveira, B.F., São-Pedro, V.A., Santos-Barrera, G., Penone, C., & Costa, G.C. (2017)
805 AmphiBIO, a global database for amphibian ecological traits. *Scientific Data*, 4,
806 170123.

807 Overcast, I., Bagley, J.C., & Hickerson, M.J. (2017) Strategies for improving approximate
808 Bayesian computation tests for synchronous diversification. *BMC Evolutionary Biology*,
809 17(203), 1–11.

810 Parnaud, F., Gou, Y., Pacual, J.-C., Capello, M.A., Truskowski, I. & Passalacqua, H.
811 (1995) Stratigraphic synthesis of western Venezuela. In A.J. Tankard, S. Suarez and H.J.
812 Welsink (Eds.), *Petroleum Basins of South America* (pp. 681–698). AAPG (American
813 Association of Petroleum Geologists).

814 Paz, A., Ibáñez, R., Lips, K.R., & Crawford, A.J. (2015) Testing the role of ecology and
815 life history in structuring genetic variation across a landscape: A trait-based
816 phylogeographic approach. *Molecular Ecology*, 24(14), 3723–3737.

817 Perez-Angel, L.C. & Molnar, P. (2017) Sea Surface Temperatures in the Eastern Equatorial
818 Pacific and Surface Temperatures in the Eastern Cordillera of Colombia During El Niño:
819 Implications for Pliocene Conditions. *Paleoceanography*, 32(11), 1309-1314.

820 Porter, W.P. & Gates, D.M. (1969) Thermodynamic equilibria of animals with
821 environment. *Ecological Monographs*, 39(3), 227–244.

822 Quiroz, L., Jaramillo, C., Sanchez-Villagra, M., Aguilera, O. & Carlini, A. (2010)
823 Stratigraphy and sedimentary environments of Miocene shallow to marginal marine
824 deposits in the Urumaco Trough, Falcon Basin, western Venezuela. In M. Sanchez-
825 Villagra, O. Aguilera and A. Carlini (Eds.), *Urumaco and Venezuelan Paleontology* (pp.
826 153–172). IN:Indiana University Press.

827 R Core Team (2018) R: A Language and Environment for Statistical Computing.

828 Ramírez-Barahona, S. & Eguiarte, L.E. (2013) The role of glacial cycles in promoting
829 genetic diversity in the Neotropics: the case of cloud forests during the Last Glacial
830 Maximum. *Ecology and Evolution*, 3(3), 725–738.

831 Ratnasingham, S. & Hebert, P.D.N. (2007) The Barcode of Life Data System
832 (www.barcodinglife.org). *Molecular Ecology Notes*, 7(3), 355–364.

833 Restrepo-Pace, P.A., Colmenares, F., Higuera, C. & Mayorga, M. (2004) A fold-and-thrust
834 belt along the western flank of the Eastern Cordillera of Colombia-style, kinematics, and
835 timing constraints derived from seismic data and detailed surface mapping. In K.R.
836 McClay (Ed.), *Thrust tectonics and hydrocarbon systems* (pp. 598–613). Tulsa, OK:
837 AAPG (American Association of Petroleum Geologists).

838 Ronquist, F. (1997) Dispersal-vicariance analysis: a new approach to the quantification of
839 historical biogeography. *Systematic Biology* 46(1), 195–203.

840 Rosen, D.E. (1978) Vicariant patterns and historical explanation in biogeography.
841 *Systematic Zoology*, 27(2), 159–188.

842 Saeid, E., Bakioglu, K., Kellogg, J., Leier, A., Martinez, J. & Guerrero, E. (2017) Garzón
843 Massif basement tectonics: Structural control on evolution of petroleum systems in
844 upper Magdalena and Putumayo basins, Colombia. *Marine and Petroleum Geology*, 88,
845 381–401.

846 Sarmiento-Rojas, L.F. (2018) Cretaceous Stratigraphy and Paleo-Facies Maps of
847 Northwestern South America. In F. Cediell and H. Shaw John (Eds.), *Geology and*
848 *Tectonics of Northwestern South America* (pp. 673–747). Springer, Cham.

849 Savage, J.M. (2002) *The Amphibians and Reptiles of Costa Rica: A Herpetofauna Between*
850 *Two Continents, Between Two Seas*. Chicago, IL: The University of Chicago Press. |

851 Slade, R.W. & Moritz, C. (1998) Phylogeography of *Bufo marinus* from its natural and
852 introduced ranges. *Proceedings of the Royal Society, Biological Sciences*, 265(1398),
853 769–777.

854 Toews, D.P.L. & Brelsford, A. (2012) The biogeography of mitochondrial and nuclear
855 discordance in animals. *Molecular Ecology*, 21(16), 3907–3930.

856 Turchetto-Zolet, A. C., Pinheiro, F., Salgueiro, F., & Palma-Silva, C. (2013).
857 Phylogeographical patterns shed light on evolutionary process in South America.
858 *Molecular Ecology*, 22(5), 1193–1213.

859 Ujueta, G. (1999). La Cordillera Oriental colombiana no se desprende de la Cordillera
860 Central. *Geología Colombiana*, 24, 3–28.

861 van der Hammen, T., Werner, J. & Van Dommelen, H. (1973) Palynological record of the
862 upheaval of the Northern Andes: a study of the Pliocene and Lower Quaternary of the
863 Colombian Eastern Cordillera and the early evolution of its High-Andean biota. *Review*
864 *of Palaeobotany and Palynology*, 16(1–2), 1–122.

865 van der Wiel, A.M. (1991). Uplift and volcanism of the SE Colombian Andes in relation to
866 Neogene sedimentation in the Upper Magdalena Valley (Doctoral dissertation).
867 Wageningen University.

868 Villamil, T., & Arango, C. (1998). Integrated stratigraphy of latest Cenomanian and early
869 Turonian facies of Colombia. In J. Pindall & C. Drake (Eds.), *Paleogeographic*
870 *Evolution and Non-glacial Eustacy, Northern South America* (pp. 129–159). Tulsa, OK:
871 SEPM (Society for Sedimentary Geology)

872 Weir, J.T. & Price, M. (2011) Andean uplift promotes lowland speciation through
873 vicariance and dispersal in *Dendrocincla* woodcreepers. *Molecular Ecology*, 20(21),
874 4550–4563.

875 Weir, J.T. & Schlüter, D. (2008) Calibrating the avian molecular clock. *Molecular Ecology*,
876 17(10), 2321–2328.

877 Wiens, J.J. (2004) Speciation and ecology revisited: phylogenetic niche conservatism and
878 the origin of species. *Evolution*, 58(1), 193–197.

879 Woodring, W.P. (1957) Geology and description of Tertiary mollusks (Gastropods;
880 Trochidae to Turritellidae). *U S Geological Survey Professional Paper*, 306-A, 1–145.

881

882 ***Biosketches***

883

884 **Erika Rodríguez-Muñoz** is interested in biogeography and evolutionary ecology of plants
885 and animals in the Neotropics.

886 **Camilo Montes** is a structural geologist interested in learning about paleogeography and
887 how different tectonic configurations through time may have impacted climate, global
888 circulation, and life.

889 **Andrew J. Crawford** (<http://www.dna.ac/>) is an evolutionary geneticist interested in the
890 history and mechanisms of speciation and adaptation in frogs and other tetrapods in the
891 American Tropics. Find him on Twitter via @CrawfordAJ

892 **Author contributions:** Authors jointly conceived the ideas. C.M. synthesized the
893 geological information. A.J.C. supervised collection of the genetic data for frogs but did
894 not actually pick up a pipettor. E.R.M. did the real work of organizing the previously
895 published DNA data and performing all evolutionary genetic analyses. All authors
896 participated in the writing.

897 **Table 1.** List of 37 taxa among four taxonomic classes of tetrapods analyzed in the present
898 work, along with abbreviations for the mitochondrial genes used in phylogenetic and
899 comparative phylogeographic analyses. Data published for the first time here are marked
900 with an *. GenBank numbers for new and previously published data are provided in
901 Supplementary Online Table S1

Family	Genus	Species	Gene(s)
Amphibians			
Hylidae	<i>Boana</i>	<i>B. boans</i> *	COI, 16S
Hylidae	<i>Boana</i>	<i>B. xerophylla</i>	COI, 16S
Hylidae	<i>Boana</i>	<i>B. pugnax</i> *	COI, 16S
Hylidae	<i>Dendropsophus</i>	<i>D. microcephalus</i>	COI, 16S
Hylidae	<i>Scarthyla</i>	<i>Sca. vigilans</i> *	COI, 16S
Hylidae	<i>Scinax</i>	<i>Sci. ruber</i>	COI, 16S
Leptodactylidae	<i>Leptodactylus</i>	<i>L. bolivianus</i> *	COI
Leptodactylidae	<i>Leptodactylus</i>	<i>L. fuscus</i>	COI, 16S
Microhylidae	<i>Elachistocleis</i>	<i>E. ovalis, E. pearsei, E. bicolor</i> *	COI, 16S
Reptiles			
Alligatoridae	<i>Caiman</i>	<i>Ca. crocodilus</i>	Cytb, COI
Boidae	<i>Boa</i>	<i>B. constrictor</i>	Cytb
Colubridae	<i>Leptodeira</i>	<i>L. annulata, L. septentrionalis</i>	Cytb, ND4
Testudinidae	<i>Chelonoidis</i>	<i>Che. carbonaria</i>	Cytb
Viperidae	<i>Crotalus</i>	<i>Cro. durissus</i>	Cytb, ND2, ND4
Birds			
Cardinalidae	<i>Saltator</i>	<i>Sal. maximus</i>	ND2
Cotingidae	<i>Querula</i>	<i>Q. purpurata</i>	Cytb
Cotingidae	<i>Schiffornis</i>	<i>Sc. turdina</i>	Cytb
Furnariidae	<i>Automolus</i>	<i>A. ochroalemus</i>	Cytb
Furnariidae	<i>Glyphorhynchus</i>	<i>G. spirurus</i>	Cytb, ND2, ND3
Furnariidae	<i>Sclerurus</i>	<i>Sc. mexicanus</i>	Cytb
Pipridae	<i>Lepidothrix</i>	<i>L. coronata</i>	Cytb, ND2, ND3
Thamnophilidae	<i>Cymbilaimus</i>	<i>Cy. lineatus</i>	Cytb
Thraupidae	<i>Chlorophanes</i>	<i>Ch. spiza</i>	Cytb
Thraupidae	<i>Cyanerpes</i>	<i>Cy. caeruleus</i>	Cytb

Thraupidae	<i>Tersina</i>	<i>Te. viridis</i>	Cytb
Troglodytidae	<i>Henicorhina</i>	<i>He. leucosticta</i>	ND2
Troglodytidae	<i>Microcerculus</i>	<i>Mic. marginatus</i>	Cytb
Trogonidae	<i>Trogon</i>	<i>Tro. rufus</i>	Cytb
Tyrannidae	<i>Colonia</i>	<i>Col. colonus</i>	Cytb
Tyrannidae	<i>Mionectes</i>	<i>Mio. oleagineus</i>	ND2
Vireonidae	<i>Hylophylus</i>	<i>Hy. ochraceiceps</i>	Cytb
Mammals			
Cebidae	<i>Cebus</i>	<i>Ce. albifrons</i>	Cytb
Cebidae	<i>Saimiri</i>	<i>Sai. sciureus, Sai. oerstedii</i>	Cytb
Didelphidae	<i>Marmosa</i>	<i>Ma. robinsoni</i>	COI
Didelphidae	<i>Philander</i>	<i>P. opposum</i>	COI
Erethizontidae	<i>Coendou</i>	<i>Coe. prehensilis</i>	Cytb
Phyllostomidae	<i>Trachops</i>	<i>Tra. cirrhosus</i>	COI

903 **Table 2.** List of the thirteen models selected *a priori* that could potentially explain
904 differences in divergence times among data sets, the biological relevance of each model and
905 their corrected Akaike Information Criterion (AICc) coefficients. Linear combination of
906 variables is represented by ‘+’ symbol, while interaction between variables is represented
907 by ‘×’.

Model	Biological relevance	AICc	ΔAICc
Temperature regulation	Homeotherms can face environmental gradients, facilitating dispersal.	86.79	0
Upper elevation limit	Physical barriers would have greater impact for species with lower elevation limits.	89.71	2.92
Class	Differences in divergence times rely only in taxonomy.	89.94	3.15
Upper elevation limit × Temperature regulation	Homeotherms can face lower temperatures associated with elevation gradients and thus could reach higher elevations.	90.61	3.81
Body size	It is easier for larger organisms to disperse.	91.07	4.28
Dispersal	Flying organisms would be better dispersers.	91.3	4.51
Geographic range	Organisms with wider geographic ranges can be considered generalists and thus better dispersers.	91.34	4.55
Geographic range + Upper elevation limit	Species with wide geographic and elevation ranges.	91.45	4.66
Body size + Geographic range	Large and generalist species could disperse wider distances.	93.15	6.36
Body size + Geographic range + Upper elevation limit	Large species with wide geographic ranges and higher elevation limits would be more tolerant to environmental heterogeneity and would be more able to disperse more.	93.33	6.54

Body size × Class	Body size can vary across tetrapod classes, influencing dispersal abilities.	96.65	9.86
Geographic range × Class	Geographic range could vary depending on the class the organisms belong.	97.97	11.18
Upper elevation limit × Class	Elevation limit could differ among classes.	98.24	11.45

908

909 **Table 3.** Number, grouping, and timing of each divergence interval (Ψ) estimated by
910 hierarchical approximate Bayesian computation (hABC) as implemented in the software,
911 MTML-msBayes. Intervals are independently estimated within each of the four taxonomic
912 classes. Complete generic level names are found in Table 1. Ma = millions of years ago. CI
913 = posterior credibility interval.

Number of events (Ψ)	Set of species	Time (Ma)	95% CI
Amphibians			
Ψ_1	<i>Boana boans, Sca. vigilans</i>	0.13	0 – 0.45
Ψ_2	<i>Boana xerophylla, Elachistocleis, Leptodactylus fuscus</i>	2.14	0.85 – 3.5
Ψ_3	<i>Boana pugnax, Den. microcephalus</i>	3.62	1.97 – 5.83
Ψ_4	<i>Leptodactylus bolivianus, Sci. ruber</i>	7.57	6.29 – 8.69
Reptiles			
Ψ_1	<i>Cr. durissus, Che. carbonaria</i>	1.9	0.51 – 3.02
Ψ_2	<i>Caiman crocodilus</i>	4.59	1.5 – 8.66
Ψ_3	<i>Boa constrictor, Leptodeira</i>	9.05	6.3 – 11.8
Birds			
Ψ_1	<i>Chl. spiza, Q. purpurata, Scl. mexicanus, Te. viridis</i>	0.23	0 – 0.47
Ψ_2	<i>Cya. caeruleus, Cym. lineatus, Mio. oleagineus</i>	0.65	0 – 1.2
Ψ_3	<i>Col. colonus, Le. coronata, Sa. maximus</i>	1.53	0.65 – 2.33
Ψ_4	<i>G. spirurus, He. leucosticta, Sch. turdina</i>	2.10	1.22 – 2.96
Ψ_5	<i>A. ochroalemus, Mic. marginatus, Tro. rufus</i>	2.67	1.62 – 4.06
Ψ_6	<i>Hy. ochraceiceps</i>	7.73	6.07 – 9.44
Mammals			
Ψ_1	<i>Ce. albifrons, Co. prehensilis, Ma. robinsoni, P. opossum, Saimiri, Tra. cirrhosus</i>	0.36	0.31 – 0.43

914

915 **Figure legends**

916

917 **Figure 1.** Sampling across in South America and Middle America per each of the four taxonomic
918 classes of tetrapod studied here. The divisions of the northern Andes are labeled as Western
919 Cordillera (WC), Central Cordillera (CC), Eastern Cordillera (EC), and the Mérida Andes as (MA).

920

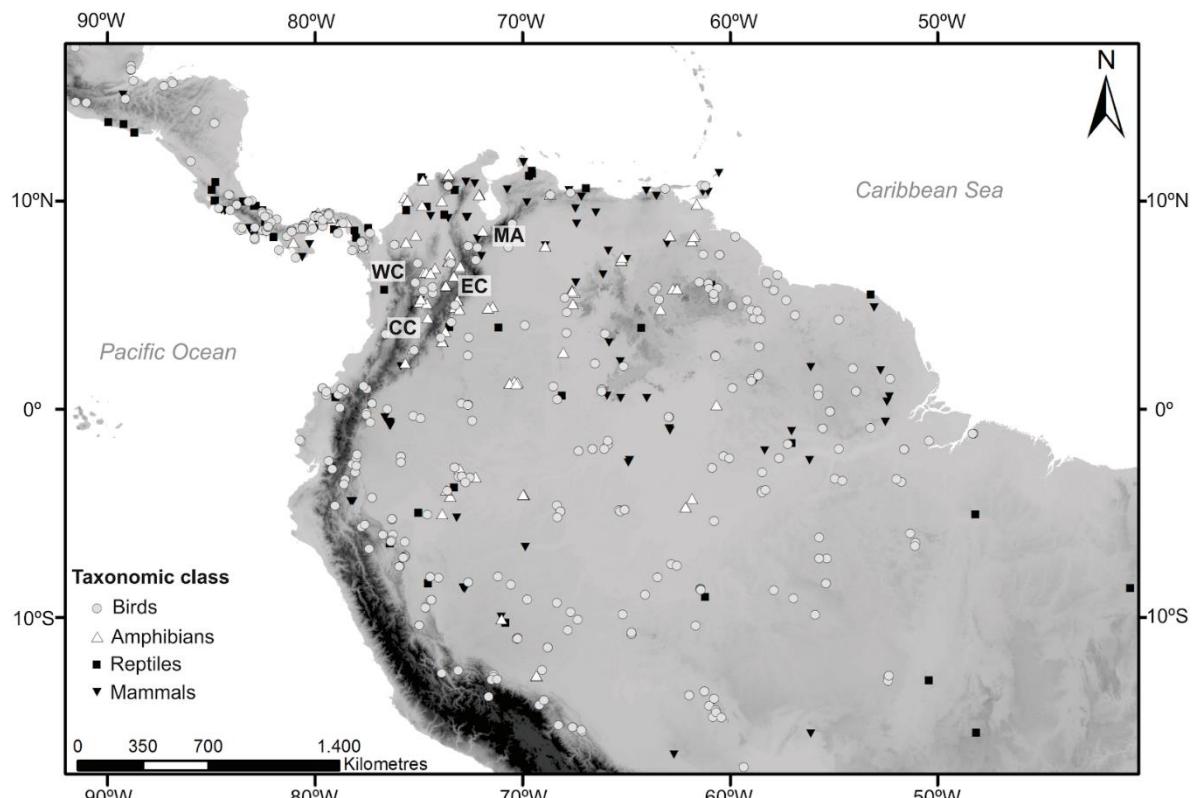
921 **Figure 2A.** Palinspastic reconstruction of the northern Andes and southern Caribbean for latest
922 Eocene-early Oligocene times (Montes et al., 2019). Political boundaries and the outline of
923 Maracaibo Lake for reference. Note that the coarse-grained deposits (conglomerate and sandstone),
924 common at this time, are used to track the presence and approximate location of relief, but not its
925 magnitude (lithostratigraphic units after Bayona et al., 2008; Borrero et al., 2012; Caicedo and
926 Roncancio, 1994; Cardona et al., 2012; Cardona et al., 2014; Christophoul et al., 2002; Gomez et
927 al., 2005; Grosse, 1926; Herrera et al., 2012; Kolarsky et al., 1995; Moreno et al., 2015; Ochoa et
928 al., 2012; Parnaud et al., 1995; Rodriguez and Sierra, 2010; Woodring, 1957).

929

930 **Figure 2B.** Palinspastic reconstruction of the northern Andes and southern Caribbean for middle
931 Miocene times (Montes et al., 2019). Political boundaries and the outline of Maracaibo Lake for
932 reference. Most coarse-grained deposits at this time are sandy, from mostly fluvial and near-shore
933 environments, and mark the segmentation of basins by rising mountain belts (Anderson et al., 2015;
934 Barat et al., 2014; Borrero et al., 2012; Erikson et al., 2012; Farris et al., 2017; Gomez et al., 2005;
935 Grosse, 1926; Guerrero, 1997; Hoorn et al., 2010; Leon et al., 2018; Montes et al., 2010; Moreno et
936 al., 2015; Parnaud et al., 1995; Quiroz et al., 2010). Only two possible lowland passages are
937 allowed at this time by these lithostratigraphic constraints and fish faunas: The Putumayo
938 (Lundberg and Chernoff, 1992) to the South, and the Táchira corridor to the North.

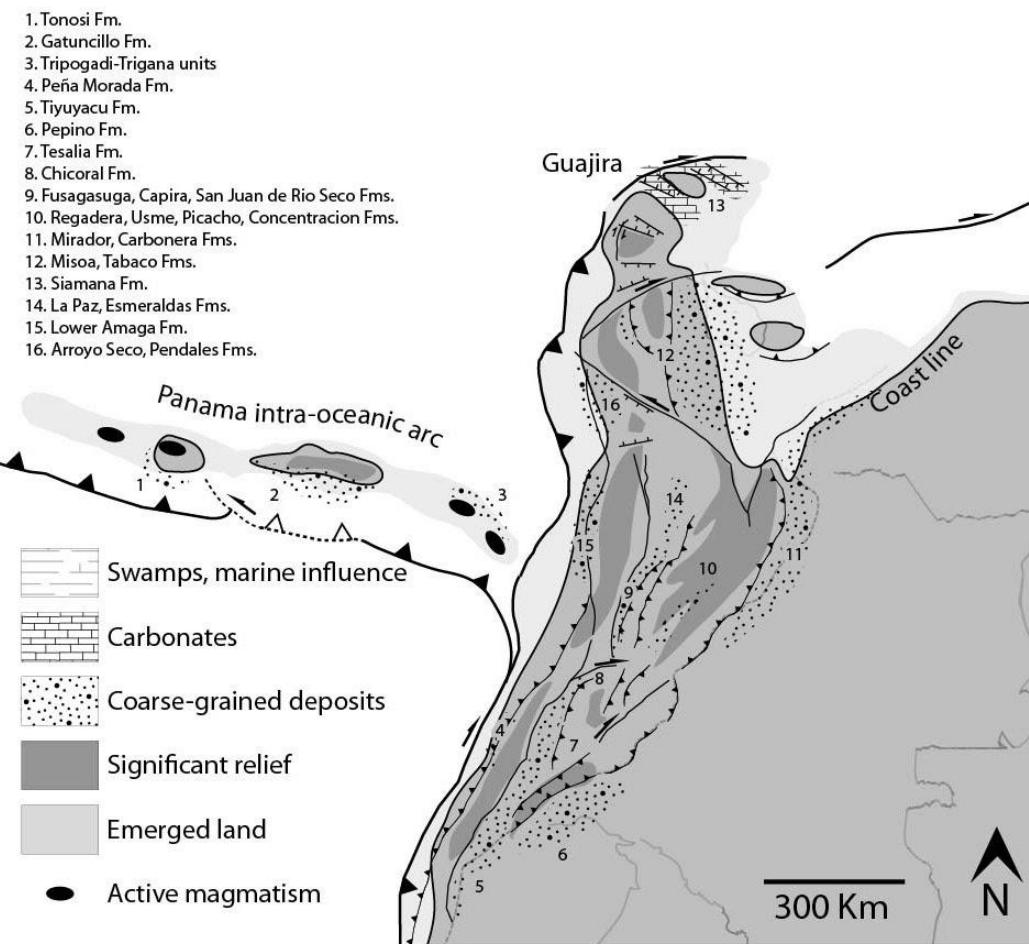
939

940 **Figure 3.** The assumptions of the comparative phylogeographic analysis in msBayes using hABC
941 (see Methods) required sub-sampling the Bayesian phylogenetic consensus trees, as follows.
942 Arrows mark the subclades selected for analysis by hABC according to the possible tree topology.
943 For reciprocally monophyletic groups (a) all data were used. For paraphyletic groups (b) we
944 sampled only the clade that fit the two-population model assumed by msBayes. For polyphyletic
945 groups (c) we selected the clade that adjusted to the two-population model with sampling localities
946 geographically closest to the Eastern Cordillera (EC). COL = Colombia, ECU = Ecuador, GUY =
947 Guiana.

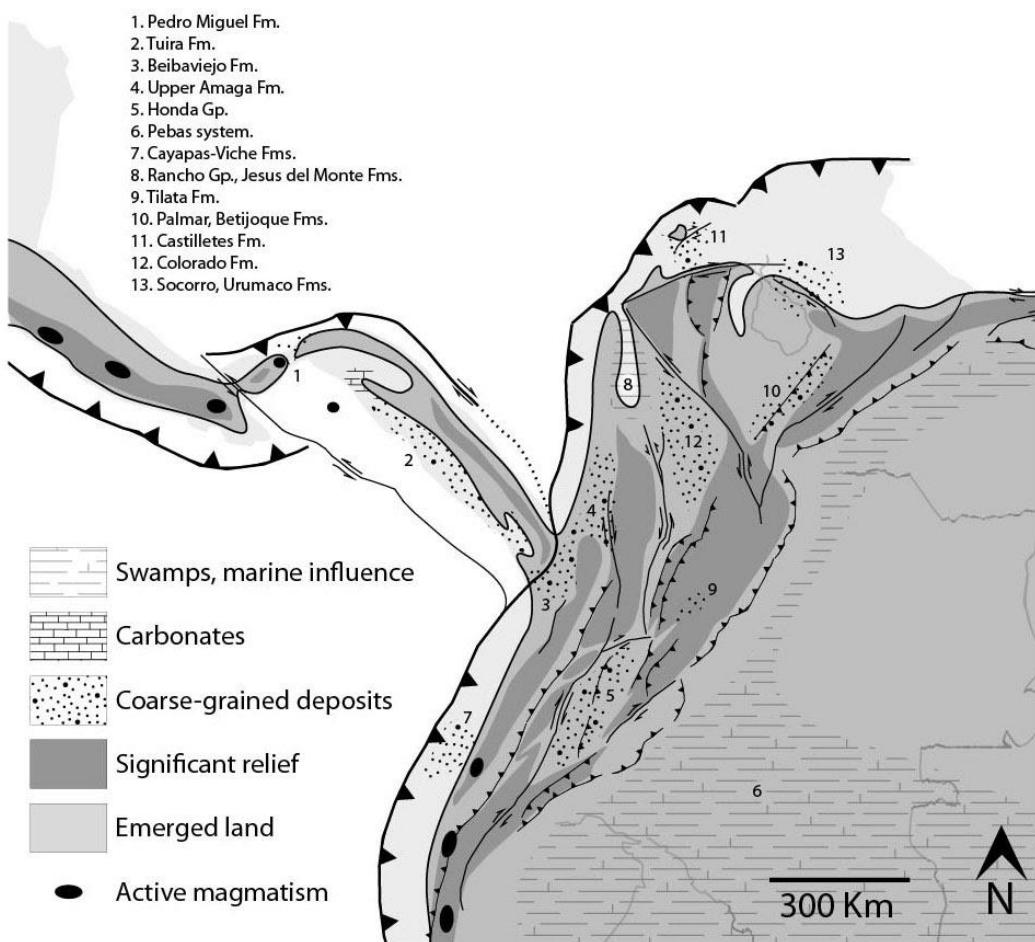

948 **Figure 4.** Distribution of divergence time estimates between eastern and western lineages of (a)
949 amphibians, (b) birds, (c) mammals and (d) non-avian reptiles, estimated by Bayesian MCMC
950 relaxed-clock phylogenetic analysis of mitochondrial DNA. Dots indicate the mean divergence time
951 and dotted lines indicate the median divergence time within each class. Median divergence time in
952 amphibians was 3.14 million years ago (Ma), 2.99 Ma in non-avian reptiles, 2.58 Ma in birds, and
953 1.03 Ma in mammals.

954

955 **Figure 5.** Mean divergence times (in million years, Ma) of eastern and western populations as
956 estimated by Bayesian inference for homeotherm and poikilotherm tetrapods. The points represent
957 the mean divergence time of each of 37 data sets.

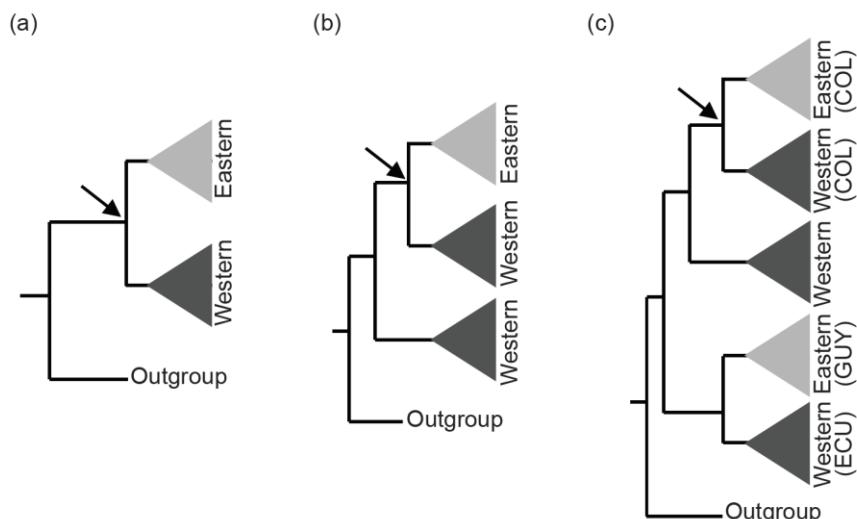

958

959 Figure 1


960

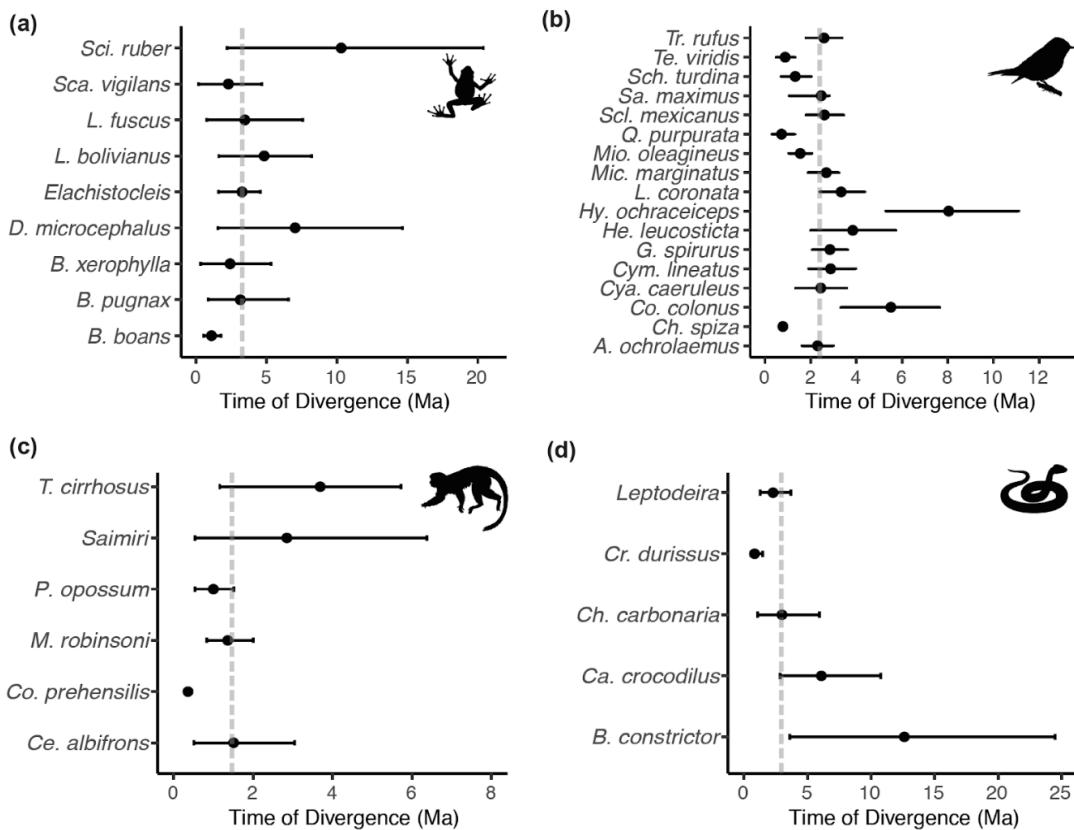
961 Figure 2A

962


963 Figure 2B

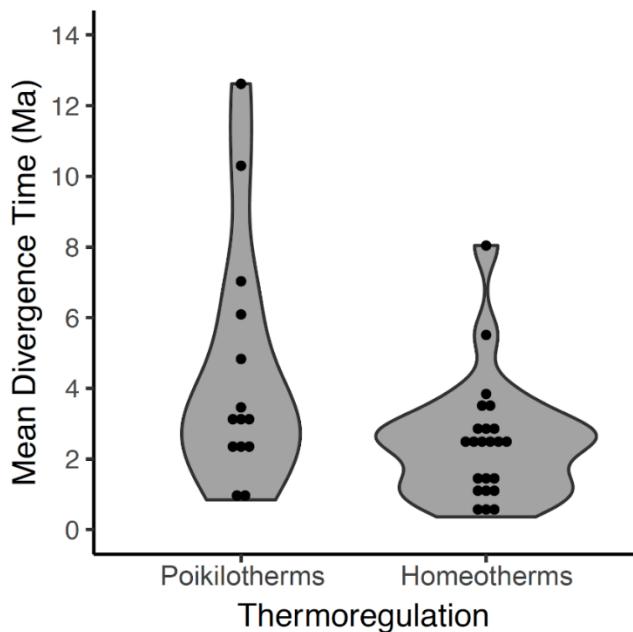
964

965


966 Figure 3

967

968


969 Figure 4

970

971

972 Figure 5

973