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Abstract (150 words limits)

Root plays a key role in plant growth and functioning. Here we combine 10307 field
measurements of forest root biomass worldwide with global observations of forest structure,
climatic conditions, topography, land management and soil characteristics to derive a spatially-
explicit global high-resolution (~ 1km) root biomass dataset, including fine and coarse roots. In
total, 142 + 32 Pg of live dry matter biomass is stored below-ground, that is a global average
root:shoot biomass ratio of 0.25 £ 0.10. Our estimations of total root biomass in tropical,
temperate and boreal forests are 44-226% smaller than earlier studies'3. The smaller estimation
is attributable to the updated forest area, spatially explicit above-ground biomass density used to
predict the patterns of root biomass, new root measurements and upscaling methodology. We
show specifically that the root shoot allometry is one underlying driver that leads to

methodological overestimation of root biomass in previous estimations.
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Root; Carbon; Machine Learning; Forest; Biomass; Globe
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Roots mediate nutrient and water uptake by plants, below-ground organic carbon
decomposition, the flow of carbohydrates to mycorrhizae, species competition, soil stabilization
and plant resistance to windfall*. The global distribution of root biomass is related to how much
photosynthates plants must invest below-ground to obtain water, nitrogen and phosphorus for
sustaining photosynthesis, leaf area and growth. Root biomass and activity also control the land
surface energy budget through plant transpiration*®. While Earth Observation data combined
with field data enables the derivation of spatially explicit estimates of above-ground biomass
with a spatial resolution of up to 30 meters over the whole globe®’, the global carbon stock and
spatial details of the distribution of below-ground root biomass (fine + coarse) relied on punctual
measurements and coarse extrapolation so far, therefore remaining highly uncertain

More than twenty years ago, Jackson et al, 1996, 1997 *? provided estimates of the
average biomass density (weight per unit area) and vertical distribution of roots for 10 terrestrial
biomes. Multiplying their average root biomass density with the area of each biome gives a
global root biomass pool of 292 Pg, with forests accounting for ~68% of it. Saugier, et al. (2001)
estimated global root biomass to be 320 Pg by multiplying biome-average root to shoot ratios
(R:S) by shoot biomass density and the land area of each biome. Mokany, et al. (2006) argued
that the use of mean R:S values at biome scale is a source of error because root biomass
measurements are performed at small scales with roots having a high spatial heterogeneity and
their size distribution spanning across several orders of magnitude, the fine roots being
particularly difficult to sample®®. With updated R:S and broader vegetation classes, they gave a
higher global root biomass of 482 Pg. Robinson (2007) further suggested a 60% underestimation
of R:S, which translated into an even higher global root biomass of 540-560 Pg. These studies
provided a first order estimation of the root biomass for different biomes, but not of its spatial
details and it is worth noting that numbers have increased with time.

An alternative approach to estimate root biomass is through allometric scaling, dating
back to West, Brown and Enquist (1997, 1999)® 7 and Enquist and Niklas (2002). The allometric
scaling theory assumes that biological attributes scale with body mass, and in the case of roots,
an allometric equation verified by data takes the form of R « S where R is the root mass, S the
shoot mass and £ a scaling exponent. Differently than in the studies listed above assuming the
R:S ratio to be uniform, this equation implies that the R:S ratio varies with shoot size as 3 is not

equal to one %15 | Allometric equations also predict that smaller trees generally have a larger

4
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84 R:Swith g < 1, which is well verified by measurement of trees of different sizes 121°. The

85  allometric equation approach was applied for various forest types, and the scaling exponent 8

86  was observed to differ across sites®, species'’, age'?, leaf characteristics'®, elevation®®,

87  management status?, climatic conditions, such as temperature?*, soil moisture and climatic water

88  deficit 2°, as well as soil nutrient content and texture*. Despite successful application of

89 allometric equations for site- and species-specific studies?®, their use to predict large-scale and

90 global root biomass patterns appears to be challenging.

91 Here we use a new approach to upscale root biomass of trees at global scale based on

92  machine learning algorithms trained by a large dataset of measurements and using as predictors

93  high-resolution maps of tree density, above-ground biomass, soils and environmental drivers

94  (Supplementary Tables 1, 2). Firstly, we collected 10307 in-situ measurements *43°3%of the

95  biomass of roots and shoots for individual woody plants (see Methods, Supplementary Data),

96  covering 465 species across 10 biomes defined by The Nature Conservancy?? (Supplementary

97  Figure 2). In biomes like savannas where trees and woody plants can be sparse, we estimate root

98  biomass as the average for the woody plants present in that biome given a canopy cover

99 threshold of 15% at a 30 m resolution globally?. In the root below-ground biomass estimates
100 (BGB) we count both coarse and fine roots. We acknowledge the importance of understanding
101  large scale temporal dynamics of fine root. As a first step, this study aims at the spatial pattern of
102  total root biomass. We upscaled root biomass from individual plant level measurements rather
103  than from stand-level data because a large number of primary data are collected for individual
104  woody plants, and this approach allows us to account in both the training of machine learning
105  models and their upscaling results, for the fact that root biomass depends on tree size or above-
106  ground biomass**>2, We searched through a pool of 47 predicting variables that include above-
107  ground biomass and other vegetation variables, edaphic, topographic, anthropogenic and climatic
108  conditions (Supplementary Table 1). Different machine learning models were tested, and we
109  selected the model that performs best on cross validation samples (see Methods for model
110  selection criterion). The best model is a random forest (RF, see Methods) and we mapped global
111  root biomass at a 1 km resolution through this model relying on 14 predicting gridded variables,
112  including the shoot biomass of an average tree derived from shoot density (weight per area) 2
113 and tree density (number of trees per area)®, tree height?®, soil nitrogen?’, pH?’, bulk density?’,

114  clay content?’, sand content?’, base saturation?’, cation exchange capacity?’, water vapor
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115  pressure?®, mean annual precipitation?®, mean annual temperature?®, aridity?® and water table

116  depth® (see Supplementary Table 1 for detailed information and references). To estimate root
117  biomass pools at global and biome scales, the mean root biomass of trees in each 1 km pixel was
118  multiplied by a tree density map available at the resolution of 1 km from ref. 2 (see Methods)
119  Results

120 We estimated a global total root biomass of 142+32 Pg (see Method for uncertainty

121  estimation and Supplementary Figures 3, 4) when forest is defined as all areas with tree cover
122 larger than 15% from the Hansen et al. (2013) tree cover map. The corresponding global

123 weighted mean R:S is 0.25 £ 0.10. The root biomass spatial distribution generally follows the
124  pattern of shoot biomass, but there are significant local and regional deviations as shown by

125  Figure 1. 51% of the global tree root biomass comes from tropical moist forest, 14% from boreal
126  forest, 12% from temperate broadleaf forest and 10% from woody plants in tropical and

127  subtropical grasslands, savanna and shrublands (Supplementary Table 3). Given our use of a tree
128  cover threshold of 15% at 30m resolution, our estimate ignores the roots of isolated woody plants
129  present in arid or cold regions 3!, as well as heterogeneous (e.g. urban or agriculture) landscapes
130  and is possibly an under-estimate. Total root biomass decreases from 151 to 134 Pg when the
131  canopy cover threshold used to define forest land is increased from 0% to 30%. The root biomass
132 density per unit of forest area is highest in tropical moist forest, followed by temperate

133 coniferous and Mediterranean forest (Figure 1, Supplementary Table 3). Cross validation showed
134  agood match between predictions from our RF model and in-situ observations (Figures 2e, all
135 data; Supplementary Figure 6, for each biome), with a coefficient of determination R? of 0.85
136  and a median R:S similar to validation samples (0.35 from in-situ observation vs. 0.38 from

137  prediction). Root biomass of tropical, temperate and boreal forests together is 44-226% lower
138  compared to earlier studies (Table 1, Supplementary Table 5, see Supplementary Information

139  Comparison with published results).
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141  Figure 1. Global maps of forest root biomass generated through the random forest model (a),
142  shoot biomass from GlobBiomass-AGB® (b) and R:S (c). Forest is defined as an area with
143  canopy cover > 15% from the Hansen et al. (2013) tree cover map.

144

145

146

147 We then analysed the dominant factors explaining spatial variations of root biomass and
148  R:S (see Methods). Broadly speaking, locations with small trees, low precipitation, strong

149 aridity, deep water table depth, high acidity, low bulk density, low base saturation and low cation
150  exchange capacity are more likely to have higher fractional root biomass (Figure 3). In line with
151  the allometric theory, shoot biomass emerged as the most important predictor of R:S and root
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152  biomass, as given by the Spearman correlation analysis shown in Figure 3, and partial

153  importance plots (Supplementary Figures 7, 8, 9). Water related variables (precipitation, water
154  table depth, aridity and vapor pressure) also emerged as important predictors in explaining R:S
155  patterns (Figure 3)?°, with trees and woody plants in dry regions generally having higher R:S
156  (Supplementary Tables S3, S4), and with stronger dependence on precipitation when it is small
157  and on water table depth when it is deep. Temperature is slightly negatively correlated with R:S
158 at the global scale, in line with Reich et al. (2014). However, the relationship between

159  temperature and below-ground biomass is not consistent among biomes (Figure 3) and biomass
160  size groups (Supplementary Figures 7, 8, 9). The relationship between total soil nitrogen and root
161  biomass is negative when soil nitrogen content is below 0.1-0.2 % (Supplementary Figure 7, 8,
162  9). Root biomass and R:S generally increases with soil alkalinity (Figure 3, Supplementary

163  Figures 7, 8, 9). Low pH is toxic to biological activities and roots, especially fine roots are

164  sensitive to soil acidification, as revealed by a recent meta-analysis®2. Our results also indicate
165  overall positive correlations between CEC, BS and R:S, but the processes that may account for
166  these correlations are less clear from literature. Age has been shown to be important for R:S*,
167  How age regulates R:S remains elusive, with studies showing positive®*, slightly negative or no
168  relationship®® between R:S and age. Including forest age (see Methods: Preparing predicting
169 variables) as a predictor only marginally improved our model prediction (see Sl for details). It is
170 likely that shoot biomass partially accounts for age information and the quality of the global
171  forest age data might also affect the power of this variable in improving root biomass

172  predictions.

173

174  Table 1. Comparison between studies quantifying root biomass in tropical, temperate and boreal
175  forests.

This This Jackson? Saugier? Robinson® This study 3
studyS? study®?
Method Machine Machine Biome average = Biome average Biome average  Allometric
learning learning root biomass R:S, shoot R:S, shoot equations
density biomass density  biomass density
Tropical (Tr, Pg) 92 76 114 147 246
Temperate(Te, Pg) 26 25 51 59 98
Boreal (Bo, Pg) 21 20 35 30 50
Tr+ Te + Bo (Pg) 139 121 200 236 394
Globe (Pg) 142 142 155-210
RDs1" 0% 44% 70% 183%
RDs2* 0% 65% 95% 226%

176 S1, Tropical moist forest (Biome 1), tropical dry forest (Biome 6), tropical/subtropical coniferous forest (Biome 11)
177  and forest in tropical/subtropical grasslands/savannas and shrublands (Biome 3) are aggregated to represent tropical
178 systems (Tr). Temperate broadleaf/mixed forest (Biome 4), temperate coniferous forest (Biome 5) and forest in

8
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temperate grasslands/savannas and shrublands (Biome 8) are merged together as temperate systems (Te). Boreal
forest (Biome 2) and woody plants in tundra region (Biome 7) are aggregated as boreal forest (Bo). Biome
classification is from The Nature Conservancy? and is shown in Supplementary Figure 2.

S2, Tropical systems (Tr): Biomes 1,6,11; Temperate systems (Te): Biomes 4,5; Boreal systems (Bo): Biome 2.

S3, Estimation based on allometric equations and the global above-ground biomass dataset from refé. See
Supplementary Table 7 for details.

* RDg, the relative difference of Tr + Te + Bo between this study (S1) and previous quantifications. RDs; = (previous
study — this study)/this study x 100%. For example, in the column with the head Jackson, RDs; = (200-
139)/139*100% = 44%.

& RDs;, the same as RDs;, but with the S2 definition of tropical, temperate and boreal systems.
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Figure 2. Root biomass and root shoot ratio (R:S). (a) and (b) show as violin plots the
distribution of root and shoot biomass (in unit of kg/plant) and R:S ratios in the raw data used for
upscaling. (c) and (d) are the distributions of model predicted root biomass from this study, of
above-ground biomass used for the predicting, and of modelled R:S ratios at the global and
biome scales. (e) is a heat plot of observed vs. predicted root biomass in kg of root per individual
woody plant. (f) shows the mean (purple) and median (grey) R:S as a function of shoot biomass
from observations. A shift of the shoot biomass towards a larger size ((a), (c)) results in a smaller
predicted mean R:S at the global scale ((b),(d)) (see Supplementary Table 4 for exact values) as
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199  the mean R:S is size dependent (f). R? is the coefficient of determination, MAE is the mean

200  absolute error and N is the number of samples. TropMoist: tropical moist forest; Boreal: boreal
201  forest/taiga; TempBroad: temperate broadleaf and mixed forest; TempConif: temperate

202 coniferous forest; Mediterran: Mediterranean forests, woodlands and scrub; TropConif: tropical
203  and subtropical coniferous forest; and Mangrove forest: mangrove forest. Note that the scales of
204  y-axis are different between (a) and (c), (b) and (d). Model training and prediction were

205  conducted on filtered data with R:S falling between the 1% and 99" percentiles and shoot biomass
206  matching the range derived from GlobBiomass-AGBS® to reduce impacts from outliers.
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212  Figure 3. Spearman rank correlations between predicting variables and log-transferred R:S.

213  Spearman coefficients are shown at both the global and biome scales for LogAGB: the logarithm
214  of shoot biomass with base 10; HEIGHT: plant height; MAT: mean annual temperature; MAP:
215  mean annual precipitation; WT: water table depth; ARIDITY:: the aridity index; VAPR: water
216  vapor pressure; N: soil nitrogen content; BD: soil bulk density; BS: soil base saturation; CEC,
217  soil cation exchange capacity; CLAY:: soil clay content; SAND: soil sand content; and pH: soil
218  pH. From left to right, biomes are ordered descendingly according to their forest areas

219  (Supplementary Figure 2).

220

221
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222 Discussion

223 Our lower estimation of root biomass compared to earlier studies is attributable to differences in
224  forest area (Supplementary Table 5), above-ground biomass density (Supplementary Table 5),
225  root biomass measurement and upscaling methodology. For example, the forest area in temperate
226  zones used in Jackson et al. (1997) was about one third higher than in this study, which partly
227  explains their higher root biomass for this biome (Supplementary Table 5). Our lower values of
228  root biomass compared to Saugier et al. (2001), Mokany et al. (2006) and Robinson (2007) are
229  caused mainly by our lower above-ground biomass density and R:S (Supplementary Table 5).
230  Shoot biomass density (AGB) of tropical zones is 70% lower in our study than in Robinson

231  (2007) who used sparse plot data collected more than a decade ago (Supplementary Table 5,
232 case S2), and this lower AGB explains 27-46% of our lower root biomass (Supplementary

233  Tables 5, 6). On the other hand, lower biome average R:S explains 41-48% of our

234 underestimation compared to Robinson (2007). To elucidate this difference, we calculated

235  weighted biome average R:S ratios through dividing total biome level shoot biomass by root
236  biomass (i.e., weighted mean R:S). These weighted mean R:S ranging between 0.19 and 0.31
237  across biomes (Supplementary Table 3) are generally smaller than the R:S values reported in
238  previous studies, which were based on average ratios obtained from sparser data (Supplementary
239  Table 5), despite the arithmetic mean R:S (without weighting by biomass) from woody plants
240 located in tropical, temperate and boreal zones (Supplementary Table 4) from our database being
241  close to those from Robinson (2007).

242 The common practice of estimating root biomass through an average R:S without

243 considering the high spatial variability of biomass and this ratio? is a source of systematic error,
244 leading to overestimating the global root biomass for two reasons. Firstly, upscaling ratios

245  through arithmetic averages (possibly weighted by the number of trees or area, but not

246  accounting for the fine grained distribution of biomass) systematically overestimates the true
247  mean R:S (see SI Arithmetic mean R:S section) because R:S is a convex negative function of S
248  given by R: S « S~ with B taking typical values of about 0.9 352728, This explains why high-
249  resolution S data used to diagnose weighted mean R:S ratios in our approach give generally

250  smaller values than using arithmetic means at the biome level (see also Supplementary Tables 3
251 and 4). Secondly, available measurements tend to sample more small woody plants than big trees

252  compared to real world distributions, because small plants are easier to excavate for measuring

11
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253 roots (see Figure 2a, 2c) but smaller plants tend to have larger R:S (Figure 2e). This sampling
254 Dbias shifts the R:S towards larger values when using the mean from all samples in current

255  databases. Our RF approach uses these data for training but in the upscaling, it accounts for

256  realistic distributions of plant size. We further verified that our upscaled R:S ratios are robust to
257  sub-sampling the training data in observed distributions, so that the bias of training data towards
258  small plants does not translate into a bias of upscaled results.

259 The upscaling approach using allometric equations should also tend to overestimate the
260  global root biomass due to the curvature of these allometric functions (see SI Allometric

261  upscaling section). The global forest root biomass ranges between 154 — 210 Pg when root

262  biomass was upscaled through different allometric equations collected from literature and fitted
263  to our database (Supplementary Table 7), generally larger than from the RF mapping. Excluding
264  the under-sampling issue in root biomass measurement, the global root biomass is likely to be
265  smaller than when applying the allometric equation to the spatial average of shoot biomass

266  (Supplementary Figures 10,11,12,13). Thus, future in-situ characterization of size structure

267  across the world’s forests (see SI Allometric upscaling section) would greatly improve root

268  biomass quantification.

269 An accurate spatially explicit global map of root biomass helps to improve our

270  understanding of the Earth system dynamics by facilitating fundamental studies on resource

271 allocation, carbon storage, plant water uptake, nutrient acquisition and other aspects of

272  biogeochemical cycles. For example, the close correlation (correlation coefficient: 0.8) between
273  root biomass and rooting depth® at the global scale and the importance of root in plant water
274  uptake and transpiration reflect close interactions between vegetation and hydrological cycles.
275  The quest for drivers that affect allocation and consumption of photosynthetic production is a
276  major focus of comparative plant ecology and evolution, as well as the basis of plant life history,
277  ecological dynamics and global changes*!. Turnover time and allocation are two key aspects that
278  contribute to large uncertainties in current terrestrial biosphere model predictions*®*. Our root
279  biomass map does not provide data on turnover or allocation, but an outcome on their aggregated
280  effects. Future studies combining the root biomass map with upscaled root turnover data could
281  shed light on the allocation puzzle. The growth of the fast turnover part of root, mostly fine root,
282  and leaf are highly linked. If we assume an annual turnover of leaf and fine root, a preliminary

283  estimation of average forest fine root biomass (from leaf biomass) reaches 6.7-7.7 Pg (see

12


https://doi.org/10.1101/2020.01.14.906883
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.14.906883; this version posted January 15, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

284  Supplementary Information: Preliminary estimation of fine root biomass). Despite being a small
285  portion and highly uncertain, fine roots are temporally variable and functionally critical in

286  ecosystem dynamics. Future studies on global distribution and temporal dynamics of fine roots
287  are valuable. Considering specific biomes, tropical savannas would benefit from better root

288  biomass estimation due to its large land area, and in tropical dry forests, field measurements of
289  root and shoot biomass are needed to refine root biomass quantifications.

290

291 Methods

292 Overview

293  Our global mapping of root biomass relies on a predicting model based on a machine learning
294  algorithm that is fitted to a large number of ground field measurements. Root biomass was

295  upscaled as a function of shoot biomass, tree height, age, species, land management, topography,
296  edaphic and climate variables. The process takes three major steps (Supplementary Figure 1).
297  The first step is to collect field measurements, and observations of auxiliary variables such as
298 tree height, age, species and management status (see sections field measurements and preparing
299  predicting variables below). In a second step, we compared the allometric upscaling and tested
300 three machine learning techniques, the random forest (RF), the artificial neural networks (ANN)
301 and multiple adaptive regression splines (MARS) through 47 input variables. The best predicting
302  model with the minimum number of predictors and with the lowest mean absolute error (MAE)
303  and highest R-squared value (R?) was selected through cross-validation (see section Building
304  predicting models below). The next step was to generate a 1 km global root biomass map by
305  running the best predicting model on spatially-explicit gridded fields of model inputs. The model
306  outputs were initially expressed as root biomass in unit of weight per individual woody plant and
307  were then mapped into root biomass per unit area using tree densities (the number of trees per
308 unit area)?®. The uncertainty of the mapping and the importance of the model inputs were

309 analysed in detail as explained below.

310

311  Field measurements

312 Our dataset was compiled from literature and existing forest biomass structure or

313  allometry databases* 203343, We included studies and databases that reported georeferenced

314 location, root biomass and shoot biomass. For example, Ref** is not included due to lack of
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315  georeferenced location and Ref*® in not used as we also need measurements of other plant

316  compartments like shoot biomass. Repeated entries from existing databases were removed. One
317  of the databases*? reported data on woody plants which also include shrub species. We kept the
318 shrub data partly because the remote sensing products we used to generate our root map do not
319 clearly separate trees from shrubs. Around 82% of the extracted entries also recorded plant

320 height and management status. Height was identified as an important predictor in our model
321  assessment, and entries were discarded when height was missing (18% of data). As woody plant
322  age was reported in 19% of the entries only, the values of this variable was determined from
323  another source of information, i.e. from a composite global map introduced in the next section.
324  Species names were systematically reported, but biotic, climatic, topographic and soil

325 information were missing for a substantial proportion of entries and values of these variables
326  were thus extracted from independent observation-driven global maps as explained in the next
327  section. Our final dataset includes biomass measurements collected in 494 different locations
328  from 10307 individual plants, which cover 465 species across 10 biomes as defined by The

329  Nature Conservancy?? (Supplementary Figure 2; Supplementary Data).

330

331 Preparing predicting variables

332 We used 47 predictors that broadly cover 5 categories: vegetative, edaphic, climatic,
333  topographic and anthropogenic (Supplementary Table 1). Vegetative variables include shoot
334  biomass, height, age, maximum rooting depth, biome class and species. Edaphic predictors cover
335  soil bulk density, organic carbon, pH, sand content, clay content, total nitrogen, total phosphorus,
336  Bray phosphorus, total potassium, exchangeable aluminium, cation exchange capacity, base
337  saturation (BS), soil moisture and water table depth (WT). Climatic predictors are mean annual
338  temperature (MAT), mean annual precipitation (MAP), the aridity index that represents the ratio
339  between precipitation the reference evapotranspiration, solar radiation, potential

340  evapotranspiration (PET), vapor pressure, cumulative water deficit (CWD=PET - MAP), wind
341  speed, and mean diurnal range of temperature (BIO2 ), isothermality (BIO2/B107) (B103),

342  temperature seasonality (BIO4), max temperature of warmest month (BIO5), min temperature of
343  coldest month (BIOG6), temperature annual range (BIO7), mean temperature of wettest quarter
344  (BlO8), mean temperature of driest quarter (B1O9), mean temperature of warmest quarter

345 (BIO10), mean temperature of coldest quarter (BIO11), precipitation of wettest month (B1013),
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346  precipitation of driest month (BIO14), precipitation seasonality (B1O15), precipitation of wettest
347  quarter (BIO16), precipitation of driest quarter (BIO17), precipitation of warmest quarter

348 (BIO18), precipitation of coldest quarter (BIO19). The topographic variable is elevation and we
349  take the management status (managed or not) as the anthropogenic predictor. All references are
350 given in Supplementary Table 1.

351 To derive the shoot or above-ground biomass (AGB) per tree (in unit of weight per tree),
352  we combined the GlobBiomass-AGB satellite data product? ( in unit of weight per unit area)
353  with a tree density map (number of trees per unit area)?®. The GlobBiomass dataset was based on
354  multiple remote sensing products (radar, optical, LIDAR) and a large pool of in-situ observations
355  of forest variables®#¢. The original GlobBiomass-AGB map was generated at 100 m spatial

356  resolution; for this study, the map was averaged into a 1 km pixel by considering only those

357  pixels that were labeled as forest 6. A pixel was labeled as forest when the canopy density was
358 larger than 15% according to Hansen et al. (2013)’s dataset (Hansen2013) averaged at 100 m.
359  The 1-kmresolution global tree density map was constructed through upscaling 429,775 ground-
360 based tree density measurements with a predictive regression model for forests in each biome?°.
361  The forest canopy height map took advantage of the Geoscience Laser Altimeter System (GLAS)
362 aboard ICESat (Ice, Cloud, and land Elevation Satellite). Forest definitions are slightly different
363  among these three maps. Forest area of the tree density map was based on a global consensus
364 land cover dataset that merges four land cover products #’, which gave an equal total tree count
365  asthe Hansen et al. (2013) land cover 2°. The canopy height map used the Globcover land cover
366  map*® as reference to define forest land. We took Hansen2013 with a 15% canopy cover

367 threshold as our base forest cover map. We approximated the missing values in tree density and
368  height (due to mismatches in forest cover) by the mean of a 5x5 window that is centered on the
369 corresponding pixel. We quantified the potential impact of mismatches in forest definition by
370 looking into two different thresholds: 0% and 30%.

371 We merged several regional age maps to generate a global forest age map. The base age
372  map was derived from biomass through age-biomass curve similarly as conducted in tropical
373  regions in ref.*® This age map does not cover the northern region beyond 35 N. We filled the
374  missing northern region with a North American age map *° and a second age map covers

375  China®. Remaining missing pixels were further filled with the age map derived from MODIS

376  disturbance observations. For the final step, we filled the remaining pixels with the GFAD V1.1
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377  age map*. GFAD V1.1 has 15 age classes and 4 plant functional types (PFTs). We choose the
378 middle value of each age class and estimated the age as the average among different PFTs.

379 Detailed information of all ancillary variables is listed in Supplementary Table 1. To stay
380  coherent, we re-gridded each map to a common 1 km x 1 km grid through the nearest

381  neighbourhood method.

382  Building predicting models

383 We investigated the performance of the allometric scaling and three non-parametric

384 models: RF, ANN and MARS. Allometric upscaling relates root biomass to shoot biomass in the
385 form of R « S#. RF is an ensemble machine learning method that builds a number of decision
386 trees through training samples®2. A decision tree is a flow-chart-like structure, where each

387 internal (non-leaf) node denotes a binary test on a predicting variable, each branch represents the
388  outcome of a test, and each leaf (or terminal) node holds a predicted target variable. With a

389 combination of learning trees (models), RF generally increases the overall predicting

390 performance and reduces over-fitting. ANN computes through an interconnected group of nodes,
391 inspired by a simplification of neurons in a brain. MARS is a non-parametric regression method
392  that builds multiple linear regression models across a range of predictors.

393 Tree shoot biomass from the in-situ observation data spans a wider range than shoot

394  biomass per plant derived from global maps (1x107 to 8800 vs. 7.9x107° to 933 kg/plant). To
395 reduce potential mapping errors, we selected training samples with shoot biomass between 5x10°
396  °and 1000 kg/plant. The medians and means of shoot biomass, root biomass and R:S from the
397  selected training samples are similar as that from the entire database. Also, to reduce the

398  potential impact of outliers, we analyzed samples with R:S falling between the 1% and 99"

399  percentiles, which consists of 9589 samples with R:S ranging from 0.05 to 2.47 and a mean of
400 0.47 and a median of 0.36. Sample filtering slightly deteriorated model performance and had
401  minor impact on the final global root biomass prediction (145 from whole samples vs.142 Pg
402  from filtered data). We chose root biomass as our target variable instead of R:S because big and
403  small trees contribute equally to R:S while big trees are relatively more important in biomass
404 quantification. In our observation database, we have more samples being small woody plants. A
405  predicting model with an overall good performance will not guarantee a good prediction on

406  woody plants with higher biomass. We, furthermore split the in-situ measured shoot biomass into

407  three groups, namely with shoot biomass smaller than 0.1, between 0.1 and 10, and larger than
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408 10 kg/plant. The rationale behind this splitting is: (1), the distribution of in-situ measured woody
409  shoot biomass (Figure 2); (2), empirical evidence showing the shift of root shoot allometry with
410  tree size* 2°; (3), a better performance on independent validation samples through numerous
411  combinations of splitting trials; (4), tests through weighting samples or resampling samples (e.g.,
412  over-sampling using Synthetic Minority Over-sampling Technique) gave no better performance.
413 Model performances were assessed by 4-fold cross-validation using two criteria: the

414  mean absolute error (MAE), the R-squared value (R?). MAE quantifies the overall error while R?
415  estimates the proportion of variance in root biomass that is captured by the predicting model. We
416  favored the model with a smallest MAE, a highest R? and with minimum number of predictors.
417  For non-parametric models, starting from a model with all 47 predictors, we sequentially

418  excluded predictors that did not improve model performance one after another. The order of

419  predictor removing is random. After a combination of trials, the best model is from RF and the
420  final set of predictors include shoot biomass, height, soil nitrogen, pH, bulk density, clay content,
421  sand content, base saturation, cation exchange capacity, vapor pressure, mean annual

422  precipitation, mean annual temperature, aridity and water table depth.

423  Generation of the global root biomass map

424 We assumed shoot size and other selected predictors to be drivers of root biomass.

425  Building upon a large set of samples with each field measurement being an outcome of complex
426 local interactions (including within-vegetation competition), we implicitly accounted for sub-
427  pixel variability (e.g., resource competition and responses to environmental conditions) on

428 allometry. Biome class and species were excluded from the pool of predicting variables because
429  they did not improve model performance. We combined the RF model with global maps of

430  selected predicting variables to produce the root biomass map which has a unit of weight per
431  tree. This map was multiplied by tree density at 1-km resolution to obtain the final root biomass
432  map with a unit of weight per area (Supplementary Figure 1).

433  Uncertainty quantification

434 We estimated the overall uncertainty of the root biomass estimates through quantifying
435  relative errors caused by predictors at the 1-km resolution, predicting errors associated with RF
436  given correct predicting variables, and errors from upscaling root biomass per tree to root

437  biomass per unit area.

438  Predictor errors (ypred): We collected 8 additional global predictor datasets (3 shoot biomass, 2
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439  soil and 3 climate datasets) (Supplementary Table 2). We carried out 8 sets of additional

440 predictions replacing the predictors by each of these additional data maps and calculated the
441  standard deviation among 8 predictions for each pixel. The overall predictor errors were

442  expressed in a relative term, that is, the ratio between the standard deviation and the standard
443  prediction (with the GlobBiomass-AGB and other predictors listed in Supplementary Table 1)
444  for each pixel.

445  RF errors (yre): The performance of machine learning models is frequently verified through the
446  independent test samples. We carried out 4-fold cross-validation. The RF error is quantified as
447  the relative error (the standard deviation divided by the mean) from 4-fold predictions.

448  Upscaling errors (yup): Upscaling the root biomass from per tree to per area relies on the tree
449  density map. The upscaling error is set as the relative uncertainty of tree density?°.

450 At last we propagated these relative errors across the entire root biomass quantification
451  processes assuming these three errors were random and independent. So the errors were assumed
452  to be uncorrelated and the covariation were assumed to be 0. The overall relative errors at the

453  pixel level was calculated through,

454 Nroot = \/rlzznred + r112?F + rl%tp ¢y

455 Uncertainty at the global or biome scale (o;,me) IS quantified through expanding

456  calculating area and propagating the relative errors at the pixel level,

457
N

458 Opiome = Z(BRirlrooti)z (2)
i=1

459

460  where BR is the total root biomass (in unit of weight) in each forested pixel and N is the number
461  of pixels within biome boundaries (or all forested pixels when calculate the global total). n,,,.,
462 s the relative uncertainty in quantifying root biomass for the ith pixel.

463  Relative importance of predicting variables

464 The impact of predictors on predicting R:S was estimated through the Spearman'’s rank-
465  order correlation at both the global and biome scales. We log-transformed the R:S and shoot

466  biomass before standardizing these datasets. Partial dependence plot> tells the marginal effect of
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467  one predictor have on root biomass from a machine learning model, and serves as a supplement
468  tothe Spearman correlation.
469
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