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Abstract (150 words limits) 34 

Root plays a key role in plant growth and functioning. Here we combine 10307 field 35 

measurements of forest root biomass worldwide with global observations of forest structure, 36 

climatic conditions, topography, land management and soil characteristics to derive a spatially-37 

explicit global high-resolution (~ 1km) root biomass dataset, including fine and coarse roots. In 38 

total, 142 ± 32 Pg of live dry matter biomass is stored below-ground, that is a global average 39 

root:shoot biomass ratio of 0.25 ± 0.10. Our estimations of total root biomass in tropical, 40 

temperate and boreal forests are 44-226% smaller than earlier studies1-3. The smaller estimation 41 

is attributable to the updated forest area, spatially explicit above-ground biomass density used to 42 

predict the patterns of root biomass, new root measurements and upscaling methodology. We 43 

show specifically that the root shoot allometry is one underlying driver that leads to 44 

methodological overestimation of root biomass in previous estimations.  45 

 46 
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Roots mediate nutrient and water uptake by plants, below-ground organic carbon 53 

decomposition, the flow of carbohydrates to mycorrhizae, species competition, soil stabilization 54 

and plant resistance to windfall4. The global distribution of root biomass is related to how much 55 

photosynthates plants must invest below-ground to obtain water, nitrogen and phosphorus for 56 

sustaining photosynthesis, leaf area and growth. Root biomass and activity also control the land 57 

surface energy budget through plant transpiration4,5. While Earth Observation data combined 58 

with field data enables the derivation of spatially explicit estimates of above-ground biomass 59 

with a spatial resolution of up to 30 meters over the whole globe6,7, the global carbon stock and 60 

spatial details of the distribution of below-ground root biomass (fine + coarse) relied on punctual 61 

measurements and coarse extrapolation so far, therefore remaining highly uncertain 62 

More than twenty years ago, Jackson et al, 1996, 1997 1,2 provided estimates of the 63 

average biomass density (weight per unit area) and vertical distribution of roots for 10 terrestrial 64 

biomes. Multiplying their average root biomass density with the area of each biome gives a 65 

global root biomass pool of 292 Pg, with forests accounting for ~68% of it. Saugier, et al. (2001) 66 

estimated global root biomass to be 320 Pg by multiplying biome-average root to shoot ratios 67 

(R:S) by shoot biomass density and the land area of each biome. Mokany, et al. (2006) argued 68 

that the use of mean R:S values at biome scale is a source of error because root biomass 69 

measurements are performed at small scales with roots having a high spatial heterogeneity and 70 

their size distribution spanning across several orders of magnitude, the fine roots being 71 

particularly difficult to sample8,9. With updated R:S and broader vegetation classes, they gave a 72 

higher global root biomass of 482 Pg. Robinson (2007) further suggested a 60% underestimation 73 

of R:S, which translated into an even higher global root biomass of 540-560 Pg. These studies 74 

provided a first order estimation of the root biomass for different biomes, but not of its spatial 75 

details and it is worth noting that numbers have increased with time.   76 

  An alternative approach to estimate root biomass is through allometric scaling, dating 77 

back to West, Brown and Enquist (1997, 1999)6 7 and Enquist and Niklas (2002). The allometric 78 

scaling theory assumes that biological attributes scale with body mass, and in the case of roots, 79 

an allometric equation verified by data takes the form of 𝑅 ∝ 𝑆𝛽 where R is the root mass, S the 80 

shoot mass and 𝛽 a scaling exponent. Differently than in the studies listed above assuming the 81 

R:S ratio to be uniform, this equation implies that the R:S ratio varies with shoot size as β is not 82 

equal to one 10-15 . Allometric equations also predict that smaller trees generally have a larger 83 
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R:S with 𝛽 < 1 , which is well verified by measurement of trees of different sizes 12-15. The 84 

allometric equation approach was applied for various forest types, and the scaling exponent 𝛽  85 

was observed to differ across sites16, species17, age13, leaf characteristics18, elevation19, 86 

management status20, climatic conditions, such as temperature21, soil moisture and climatic water 87 

deficit 20, as well as soil nutrient content and texture14. Despite successful application of 88 

allometric equations for site- and species-specific studies16, their use to predict large-scale and 89 

global root biomass patterns appears to be challenging.     90 

Here we use a new approach to upscale root biomass of trees at global scale based on 91 

machine learning algorithms trained by a large dataset of measurements and using as predictors 92 

high-resolution maps of tree density, above-ground biomass, soils and environmental drivers 93 

(Supplementary Tables 1, 2). Firstly, we collected 10307 in-situ measurements 14,30,31of the 94 

biomass of roots and shoots for individual woody plants (see Methods, Supplementary Data), 95 

covering 465 species across 10 biomes defined by The Nature Conservancy22 (Supplementary 96 

Figure 2). In biomes like savannas where trees and woody plants can be sparse, we estimate root 97 

biomass as the average for the woody plants present in that biome given a canopy cover 98 

threshold of 15% at a 30 m resolution globally23. In the root below-ground biomass estimates 99 

(BGB) we count both coarse and fine roots. We acknowledge the importance of understanding 100 

large scale temporal dynamics of fine root. As a first step, this study aims at the spatial pattern of 101 

total root biomass. We upscaled root biomass from individual plant level measurements rather 102 

than from stand-level data because a large number of primary data are collected for individual 103 

woody plants, and this approach allows us to account in both the training of machine learning 104 

models and their upscaling results, for the fact that root biomass depends on tree size or above-105 

ground biomass14,15,20. We searched through a pool of 47 predicting variables that include above-106 

ground biomass and other vegetation variables, edaphic, topographic, anthropogenic and climatic 107 

conditions (Supplementary Table 1). Different machine learning models were tested, and we 108 

selected the model that performs best on cross validation samples (see Methods for model 109 

selection criterion). The best model is a random forest (RF, see Methods) and we mapped global 110 

root biomass at a 1 km resolution through this model relying on 14 predicting gridded variables, 111 

including the shoot biomass of an average tree derived from shoot density (weight per area) 24 112 

and tree density (number of trees per area)25, tree height26, soil nitrogen27, pH27, bulk density27, 113 

clay content27, sand content27, base saturation27, cation exchange capacity27, water vapor 114 
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pressure28, mean annual precipitation28, mean annual temperature28, aridity29 and water table 115 

depth30 (see Supplementary Table 1 for detailed information and references). To estimate root 116 

biomass pools at global and biome scales, the mean root biomass of trees in each 1 km pixel was 117 

multiplied by a tree density map available at the resolution of 1 km from ref.  25 (see Methods) 118 

Results  119 

We estimated a global total root biomass of 142±32 Pg (see Method for uncertainty 120 

estimation and Supplementary Figures 3, 4) when forest is defined as all areas with tree cover 121 

larger than 15% from the Hansen et al. (2013) tree cover map. The corresponding global 122 

weighted mean R:S is 0.25 ± 0.10. The root biomass spatial distribution generally follows the 123 

pattern of shoot biomass, but there are significant local and regional deviations as shown by 124 

Figure 1. 51% of the global tree root biomass comes from tropical moist forest, 14% from boreal 125 

forest, 12% from temperate broadleaf forest and 10% from woody plants in tropical and 126 

subtropical grasslands, savanna and shrublands (Supplementary Table 3). Given our use of a tree 127 

cover threshold of 15% at 30m resolution, our estimate ignores the roots of isolated woody plants 128 

present in arid or cold regions 31, as well as heterogeneous (e.g. urban or agriculture) landscapes 129 

and is possibly an under-estimate. Total root biomass decreases from 151 to 134 Pg when the 130 

canopy cover threshold used to define forest land is increased from 0% to 30%. The root biomass 131 

density per unit of forest area is highest in tropical moist forest, followed by temperate 132 

coniferous and Mediterranean forest (Figure 1, Supplementary Table 3). Cross validation showed 133 

a good match between predictions from our RF model and in-situ observations (Figures 2e, all 134 

data; Supplementary Figure 6, for each biome), with a coefficient of determination R2 of 0.85 135 

and a median R:S similar to validation samples (0.35 from in-situ observation vs. 0.38 from 136 

prediction). Root biomass of tropical, temperate and boreal forests together is 44-226% lower 137 

compared to earlier studies (Table 1, Supplementary Table 5, see Supplementary Information 138 

Comparison with published results).  139 
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 140 

Figure 1. Global maps of forest root biomass generated through the random forest model (a), 141 
shoot biomass from GlobBiomass-AGB6 (b) and R:S (c). Forest is defined as an area with 142 
canopy cover > 15% from the Hansen et al. (2013) tree cover map.   143 

 144 

 145 

 146 

We then analysed the dominant factors explaining spatial variations of root biomass and 147 

R:S (see Methods). Broadly speaking, locations with small trees, low precipitation, strong 148 

aridity, deep water table depth, high acidity, low bulk density, low base saturation and low cation 149 

exchange capacity are more likely to have higher fractional root biomass (Figure 3). In line with 150 

the allometric theory, shoot biomass emerged as the most important predictor of R:S and root 151 
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biomass, as given by the Spearman correlation analysis shown in Figure 3, and partial 152 

importance plots (Supplementary Figures 7, 8, 9). Water related variables (precipitation, water 153 

table depth, aridity and vapor pressure) also emerged as important predictors in explaining R:S 154 

patterns (Figure 3)20, with trees and woody plants in dry regions generally having higher R:S 155 

(Supplementary Tables S3, S4), and with stronger dependence on precipitation when it is small 156 

and on water table depth when it is deep. Temperature is slightly negatively correlated with R:S 157 

at the global scale, in line with Reich et al. (2014). However, the relationship between 158 

temperature and below-ground biomass is not consistent among biomes (Figure 3) and biomass 159 

size groups (Supplementary Figures 7, 8, 9). The relationship between total soil nitrogen and root 160 

biomass is negative when soil nitrogen content is below 0.1-0.2 % (Supplementary Figure 7, 8, 161 

9). Root biomass and R:S generally increases with soil alkalinity (Figure 3, Supplementary 162 

Figures 7, 8, 9). Low pH is toxic to biological activities and roots, especially fine roots are 163 

sensitive to soil acidification, as revealed by a recent meta-analysis32. Our results also indicate 164 

overall positive correlations between CEC, BS and R:S, but the processes that may account for 165 

these correlations are less clear from literature. Age has been shown to be important for R:S33. 166 

How age regulates R:S remains elusive, with studies showing positive34, slightly negative35 or no 167 

relationship36 between R:S and age. Including forest age (see Methods: Preparing predicting 168 

variables) as a predictor only marginally improved our model prediction (see SI for details). It is 169 

likely that shoot biomass partially accounts for age information and the quality of the global 170 

forest age data might also affect the power of this variable in improving root biomass 171 

predictions. 172 

 173 

Table 1. Comparison between studies quantifying root biomass in tropical, temperate and boreal 174 
forests.  175 

 This 

studyS1 

This 

studyS2 

Jackson1 Saugier2 Robinson3 This study S3 

Method Machine 

learning 

Machine 

learning 

Biome average 

root biomass 

density 

Biome average 

R:S, shoot 

biomass density 

Biome average 

R:S, shoot 

biomass density 

Allometric 

equations 

Tropical (Tr, Pg) 92 76 114 147 246  

Temperate(Te, Pg) 26 25 51 59 98  

Boreal (Bo, Pg) 21 20 35 30 50  

Tr + Te + Bo (Pg) 139 121 200 236 394  

Globe (Pg) 142 142    155-210 

RDS1
* 0%  44% 70% 183%  

RDS2
&  0% 65% 95% 226%  

S1, Tropical moist forest (Biome 1), tropical dry forest (Biome 6), tropical/subtropical coniferous forest (Biome 11) 176 
and forest in tropical/subtropical grasslands/savannas and shrublands (Biome 3) are aggregated to represent tropical 177 
systems (Tr). Temperate broadleaf/mixed forest (Biome 4), temperate coniferous forest (Biome 5) and forest in 178 
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temperate grasslands/savannas and shrublands (Biome 8) are merged together as temperate systems (Te). Boreal 179 
forest (Biome 2) and woody plants in tundra region (Biome 7) are aggregated as boreal forest (Bo). Biome 180 
classification is from The Nature Conservancy22 and is shown in Supplementary Figure 2. 181 
S2, Tropical systems (Tr): Biomes 1,6,11; Temperate systems (Te): Biomes 4,5; Boreal systems (Bo): Biome 2. 182 
S3, Estimation based on allometric equations and the global above-ground biomass dataset from ref6. See 183 
Supplementary Table 7 for details.  184 
* RDS1, the relative difference of Tr + Te + Bo between this study (S1) and previous quantifications. RDS1 = (previous 185 
study – this study)/this study x 100%. For example, in the column with the head Jackson, RDS1 =  (200-186 
139)/139*100% = 44%. 187 
& RDS2, the same as RDS1, but with the S2 definition of tropical, temperate and boreal systems.     188 
 189 

 190 
Figure 2. Root biomass and root shoot ratio (R:S).  (a) and (b) show as violin plots the 191 
distribution of root and shoot biomass (in unit of kg/plant) and R:S ratios in the raw data used for 192 
upscaling.  (c) and (d) are the distributions of model predicted root biomass from this study, of 193 
above-ground biomass used for the predicting, and of modelled R:S ratios at the global and 194 
biome scales. (e) is a heat plot of observed vs. predicted root biomass in kg of root per individual 195 
woody plant. (f) shows the mean (purple) and median (grey) R:S as a function of shoot biomass 196 
from observations. A shift of the shoot biomass towards a larger size ((a), (c)) results in a smaller 197 
predicted mean R:S at the global scale ((b),(d)) (see Supplementary Table 4 for exact values) as 198 
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the mean R:S is size dependent (f). R2 is the coefficient of determination, MAE is the mean 199 
absolute error and N is the number of samples. TropMoist: tropical moist forest; Boreal: boreal 200 
forest/taiga; TempBroad: temperate broadleaf and mixed forest; TempConif: temperate 201 
coniferous forest; Mediterran: Mediterranean forests, woodlands and scrub; TropConif: tropical 202 
and subtropical coniferous forest; and Mangrove forest: mangrove forest. Note that the scales of 203 
y-axis are different between (a) and (c), (b) and (d). Model training and prediction were 204 
conducted on filtered data with R:S falling between the 1st and 99th percentiles and shoot biomass 205 
matching the range derived from GlobBiomass-AGB6 to reduce impacts from outliers.  206 

 207 

 208 
 209 

 210 
 211 
Figure 3. Spearman rank correlations between predicting variables and log-transferred R:S. 212 
Spearman coefficients are shown at both the global and biome scales for LogAGB: the logarithm 213 
of shoot biomass with base 10; HEIGHT: plant height; MAT: mean annual temperature; MAP: 214 
mean annual precipitation; WT: water table depth; ARIDITY: the aridity index; VAPR: water 215 
vapor pressure; N: soil nitrogen content; BD: soil bulk density; BS: soil base saturation; CEC, 216 
soil cation exchange capacity; CLAY: soil clay content; SAND: soil sand content; and pH: soil 217 
pH. From left to right, biomes are ordered descendingly according to their forest areas 218 
(Supplementary Figure 2).  219 
 220 

 221 
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Discussion  222 

Our lower estimation of root biomass compared to earlier studies is attributable to differences in 223 

forest area (Supplementary Table 5), above-ground biomass density (Supplementary Table 5), 224 

root biomass measurement and upscaling methodology. For example, the forest area in temperate 225 

zones used in Jackson et al. (1997) was about one third higher than in this study, which partly 226 

explains their higher root biomass for this biome (Supplementary Table 5). Our lower values of 227 

root biomass compared to Saugier et al. (2001), Mokany et al. (2006) and Robinson (2007) are 228 

caused mainly by our lower above-ground biomass density and R:S (Supplementary Table 5). 229 

Shoot biomass density (AGB) of tropical zones is 70% lower in our study than in Robinson 230 

(2007) who used sparse plot data collected more than a decade ago  (Supplementary Table 5, 231 

case S2), and this lower AGB explains 27-46% of our lower root biomass (Supplementary 232 

Tables 5, 6). On the other hand, lower biome average R:S explains 41-48% of our 233 

underestimation compared to Robinson (2007). To elucidate this difference, we calculated 234 

weighted biome average R:S ratios through dividing total biome level shoot biomass by root 235 

biomass (i.e., weighted mean R:S). These weighted mean R:S ranging between 0.19 and 0.31 236 

across biomes (Supplementary Table 3) are generally smaller than the R:S values reported in 237 

previous studies, which were based on average ratios obtained from sparser data (Supplementary 238 

Table 5), despite the arithmetic mean R:S (without weighting by biomass) from woody plants 239 

located in tropical, temperate and boreal zones (Supplementary Table 4) from our database being 240 

close to those from Robinson (2007).  241 

The common practice of estimating root biomass through an average R:S without 242 

considering the high spatial variability of biomass and this ratio4 is a source of systematic error, 243 

leading to overestimating the global root biomass for two reasons. Firstly,  upscaling ratios 244 

through arithmetic averages (possibly weighted by the number of trees or area, but not 245 

accounting for the fine grained distribution of biomass) systematically overestimates the true 246 

mean R:S (see SI Arithmetic mean R:S section) because R:S is a convex negative function of S 247 

given by 𝑅: 𝑆 ∝ 𝑆𝛽−1 with 𝛽 taking typical values of about 0.9 35,37,38. This explains why high-248 

resolution S data used to diagnose weighted mean R:S ratios in our approach give generally 249 

smaller values than using arithmetic means at the biome level (see also Supplementary Tables 3 250 

and 4). Secondly, available measurements tend to sample more small woody plants than big trees 251 

compared to real world distributions, because small plants are easier to excavate for measuring 252 
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roots (see Figure 2a, 2c) but smaller plants tend to have larger R:S (Figure 2e). This sampling 253 

bias shifts the R:S towards larger values when using the mean from all samples in current 254 

databases. Our RF approach uses these data for training but in the upscaling, it accounts for 255 

realistic distributions of plant size. We further verified that our upscaled R:S ratios are robust to 256 

sub-sampling the training data in observed distributions, so that the bias of training data towards 257 

small plants does not translate into a bias of upscaled results. 258 

The upscaling approach using allometric equations should also tend to overestimate the 259 

global root biomass due to the curvature of these allometric functions (see SI Allometric 260 

upscaling section). The global forest root biomass ranges between 154 – 210 Pg when root 261 

biomass was upscaled through different allometric equations collected from literature and fitted 262 

to our database (Supplementary Table 7), generally larger than from the RF mapping. Excluding 263 

the under-sampling issue in root biomass measurement, the global root biomass is likely to be 264 

smaller than when applying the allometric equation to the spatial average of shoot biomass 265 

(Supplementary Figures 10,11,12,13). Thus, future in-situ characterization of size structure 266 

across the world’s forests (see SI Allometric upscaling section) would greatly improve root 267 

biomass quantification.    268 

An accurate spatially explicit global map of root biomass helps to improve our 269 

understanding of the Earth system dynamics by facilitating fundamental studies on resource 270 

allocation, carbon storage, plant water uptake, nutrient acquisition and other aspects of 271 

biogeochemical cycles. For example, the close correlation (correlation coefficient: 0.8) between 272 

root biomass and rooting depth39 at the global scale and the importance of root in plant water 273 

uptake and transpiration reflect close interactions between vegetation and hydrological cycles. 274 

The quest for drivers that affect allocation and consumption of photosynthetic production is a 275 

major focus of comparative plant ecology and evolution, as well as the basis of plant life history, 276 

ecological dynamics and global changes11. Turnover time and allocation are two key aspects that 277 

contribute to large uncertainties in current terrestrial biosphere model predictions40,41. Our root 278 

biomass map does not provide data on turnover or allocation, but an outcome on their aggregated 279 

effects. Future studies combining the root biomass map with upscaled root turnover data could 280 

shed light on the allocation puzzle. The growth of the fast turnover part of root, mostly fine root, 281 

and leaf are highly linked. If we assume an annual turnover of leaf and fine root, a preliminary 282 

estimation of average forest fine root biomass (from leaf biomass) reaches 6.7-7.7 Pg (see 283 
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Supplementary Information: Preliminary estimation of fine root biomass). Despite being a small 284 

portion and highly uncertain, fine roots are temporally variable and functionally critical in 285 

ecosystem dynamics. Future studies on global distribution and temporal dynamics of fine roots 286 

are valuable. Considering specific biomes, tropical savannas would benefit from better root 287 

biomass estimation due to its large land area, and in tropical dry forests, field measurements of 288 

root and shoot biomass are needed to refine root biomass quantifications.   289 

 290 

Methods  291 

Overview  292 

Our global mapping of root biomass relies on a predicting model based on a machine learning 293 

algorithm that is fitted to a large number of ground field measurements. Root biomass was 294 

upscaled as a function of shoot biomass, tree height, age, species, land management, topography, 295 

edaphic and climate variables. The process takes three major steps (Supplementary Figure 1). 296 

The first step is to collect field measurements, and observations of auxiliary variables such as 297 

tree height, age, species and management status (see sections field measurements and preparing 298 

predicting variables below). In a second step, we compared the allometric upscaling and tested 299 

three machine learning techniques, the random forest (RF), the artificial neural networks (ANN) 300 

and multiple adaptive regression splines (MARS) through 47 input variables. The best predicting 301 

model with the minimum number of predictors and with the lowest mean absolute error (MAE) 302 

and highest R-squared value (R2) was selected through cross-validation (see section Building 303 

predicting models below). The next step was to generate a 1 km global root biomass map by 304 

running the best predicting model on spatially-explicit gridded fields of model inputs. The model 305 

outputs were initially expressed as root biomass in unit of weight per individual woody plant and 306 

were then mapped into root biomass per unit area using tree densities (the number of trees per 307 

unit area)25. The uncertainty of the mapping and the importance of the model inputs were 308 

analysed in detail as explained below.     309 

    310 

Field measurements  311 

Our dataset was compiled from literature and existing forest biomass structure or 312 

allometry databases42 20,33,43. We included studies and databases that reported georeferenced 313 

location, root biomass and shoot biomass. For example, Ref44 is not included due to lack of 314 
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georeferenced location and Ref45 in not used as we also need measurements of other plant 315 

compartments like shoot biomass. Repeated entries from existing databases were removed. One 316 

of the databases42 reported data on woody plants which also include shrub species. We kept the 317 

shrub data partly because the remote sensing products we used to generate our root map do not 318 

clearly separate trees from shrubs. Around 82% of the extracted entries also recorded plant 319 

height and management status. Height was identified as an important predictor in our model 320 

assessment, and entries were discarded when height was missing (18% of data). As woody plant 321 

age was reported in 19% of the entries only, the values of this variable was determined from 322 

another source of information, i.e. from a composite global map introduced in the next section. 323 

Species names were systematically reported, but biotic, climatic, topographic and soil 324 

information were missing for a substantial proportion of entries and values of these variables 325 

were thus extracted from independent observation-driven global maps as explained in the next 326 

section. Our final dataset includes biomass measurements collected in 494 different locations 327 

from 10307 individual plants, which cover 465 species across 10 biomes as defined by The 328 

Nature Conservancy22 (Supplementary Figure 2; Supplementary Data).  329 

 330 

Preparing predicting variables  331 

We used 47 predictors that broadly cover 5 categories: vegetative, edaphic, climatic, 332 

topographic and anthropogenic (Supplementary Table 1). Vegetative variables include shoot 333 

biomass, height, age, maximum rooting depth, biome class and species. Edaphic predictors cover 334 

soil bulk density, organic carbon, pH, sand content, clay content, total nitrogen, total phosphorus, 335 

Bray phosphorus, total potassium, exchangeable aluminium, cation exchange capacity, base 336 

saturation (BS), soil moisture and water table depth (WT). Climatic predictors are mean annual 337 

temperature (MAT), mean annual precipitation (MAP), the aridity index that represents the ratio 338 

between precipitation the reference evapotranspiration, solar radiation, potential 339 

evapotranspiration (PET), vapor pressure, cumulative water deficit (CWD=PET - MAP), wind 340 

speed, and mean diurnal range of temperature (BIO2 ), isothermality (BIO2/BIO7) (BIO3), 341 

temperature seasonality (BIO4), max temperature of warmest month (BIO5), min temperature of 342 

coldest month (BIO6), temperature annual range (BIO7), mean temperature of wettest quarter 343 

(BIO8), mean temperature of driest quarter (BIO9), mean temperature of warmest quarter 344 

(BIO10), mean temperature of coldest quarter (BIO11), precipitation of wettest month (BIO13), 345 
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precipitation of driest month (BIO14), precipitation seasonality (BIO15), precipitation of wettest 346 

quarter (BIO16), precipitation of driest quarter (BIO17), precipitation of warmest quarter 347 

(BIO18), precipitation of coldest quarter (BIO19). The topographic variable is elevation and we 348 

take the management status (managed or not) as the anthropogenic predictor. All references are 349 

given in Supplementary Table 1. 350 

To derive the shoot or above-ground biomass (AGB) per tree (in unit of weight per tree), 351 

we combined the GlobBiomass-AGB satellite data product24 ( in unit of weight per unit area) 352 

with a tree density map (number of trees per unit area)25. The GlobBiomass dataset was based on 353 

multiple remote sensing products (radar, optical, LiDAR) and a large pool of in-situ observations 354 

of forest variables6,46. The original GlobBiomass-AGB map was generated at 100 m spatial 355 

resolution; for this study, the map was averaged into a 1 km pixel by considering only those 356 

pixels that were labeled as forest 6. A pixel was labeled as forest when the canopy density was 357 

larger than 15% according to Hansen et al. (2013)’s dataset (Hansen2013) averaged at 100 m. 358 

The 1-km resolution global tree density map was constructed through upscaling 429,775 ground-359 

based tree density measurements with a predictive regression model for forests in each biome25. 360 

The forest canopy height map took advantage of the Geoscience Laser Altimeter System (GLAS) 361 

aboard ICESat (Ice, Cloud, and land Elevation Satellite). Forest definitions are slightly different 362 

among these three maps. Forest area of the tree density map was based on a global consensus 363 

land cover dataset that merges four land cover products 47, which gave an equal total tree count 364 

as the Hansen et al. (2013) land cover 25. The canopy height map used the Globcover land cover 365 

map48 as reference to define forest land. We took Hansen2013 with a 15% canopy cover 366 

threshold as our base forest cover map. We approximated the missing values in tree density and 367 

height (due to mismatches in forest cover) by the mean of a 5x5 window that is centered on the 368 

corresponding pixel. We quantified the potential impact of mismatches in forest definition by 369 

looking into two different thresholds: 0% and 30%.       370 

We merged several regional age maps to generate a global forest age map. The base age 371 

map was derived from biomass through age-biomass curve similarly as conducted in tropical 372 

regions in ref.49  This age map does not cover the northern region beyond 35 N. We filled the 373 

missing northern region with a North American age map 50 and a second age map covers 374 

China51. Remaining missing pixels were further filled with the age map derived from MODIS 375 

disturbance observations. For the final step, we filled the remaining pixels with the GFAD V1.1 376 
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age map49. GFAD V1.1 has 15 age classes and 4 plant functional types (PFTs). We choose the 377 

middle value of each age class and estimated the age as the average among different PFTs. 378 

Detailed information of all ancillary variables is listed in Supplementary Table 1. To stay 379 

coherent, we re-gridded each map to a common 1 km x 1 km grid through the nearest 380 

neighbourhood method.   381 

Building predicting models   382 

We investigated the performance of the allometric scaling and three non-parametric 383 

models: RF, ANN and MARS. Allometric upscaling relates root biomass to shoot biomass in the 384 

form of 𝑅 ∝ 𝑆𝛽. RF is an ensemble machine learning method that builds a number of decision 385 

trees through training samples52. A decision tree is a flow-chart-like structure, where each 386 

internal (non-leaf) node denotes a binary test on a predicting variable, each branch represents the 387 

outcome of a test, and each leaf (or terminal) node holds a predicted target variable. With a 388 

combination of learning trees (models), RF generally increases the overall predicting 389 

performance and reduces over-fitting. ANN computes through an interconnected group of nodes, 390 

inspired by a simplification of neurons in a brain. MARS is a non-parametric regression method 391 

that builds multiple linear regression models across a range of predictors.  392 

Tree shoot biomass from the in-situ observation data spans a wider range than shoot 393 

biomass per plant derived from global maps (1x10-7 to 8800 vs. 7.9x10-5 to 933 kg/plant). To 394 

reduce potential mapping errors, we selected training samples with shoot biomass between 5x10-395 

5 and 1000 kg/plant. The medians and means of shoot biomass, root biomass and R:S from the 396 

selected training samples are similar as that from the entire database. Also, to reduce the 397 

potential impact of outliers, we analyzed samples with R:S falling between the 1st and 99th 398 

percentiles, which consists of 9589 samples with R:S ranging from 0.05 to 2.47 and a mean of 399 

0.47 and a median of 0.36. Sample filtering slightly deteriorated model performance and had 400 

minor impact on the final global root biomass prediction (145 from whole samples vs.142 Pg 401 

from filtered data). We chose root biomass as our target variable instead of R:S because big and 402 

small trees contribute equally to R:S while big trees are relatively more important in biomass 403 

quantification. In our observation database, we have more samples being small woody plants. A 404 

predicting model with an overall good performance will not guarantee a good prediction on 405 

woody plants with higher biomass. We, furthermore split the in-situ measured shoot biomass into 406 

three groups, namely with shoot biomass smaller than 0.1, between 0.1 and 10, and larger than 407 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2020. ; https://doi.org/10.1101/2020.01.14.906883doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.14.906883
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

10 kg/plant. The rationale behind this splitting is: (1), the distribution of in-situ measured woody 408 

shoot biomass (Figure 2); (2), empirical evidence showing the shift of root shoot allometry with 409 

tree size44 20 ; (3), a better performance on independent validation samples through numerous 410 

combinations of splitting trials; (4), tests through weighting samples or resampling samples (e.g., 411 

over-sampling using Synthetic Minority Over-sampling Technique) gave no better performance.    412 

Model performances were assessed by 4-fold cross-validation using two criteria: the 413 

mean absolute error (MAE), the R-squared value (R2). MAE quantifies the overall error while R2 414 

estimates the proportion of variance in root biomass that is captured by the predicting model. We 415 

favored the model with a smallest MAE, a highest R2 and with minimum number of predictors. 416 

For non-parametric models, starting from a model with all 47 predictors, we sequentially 417 

excluded predictors that did not improve model performance one after another. The order of 418 

predictor removing is random. After a combination of trials, the best model is from RF and the 419 

final set of predictors include shoot biomass, height, soil nitrogen, pH, bulk density, clay content, 420 

sand content, base saturation, cation exchange capacity, vapor pressure, mean annual 421 

precipitation, mean annual temperature, aridity and water table depth. 422 

Generation of the global root biomass map  423 

We assumed shoot size and other selected predictors to be drivers of root biomass. 424 

Building upon a large set of samples with each field measurement being an outcome of complex 425 

local interactions (including within-vegetation competition), we implicitly accounted for sub-426 

pixel variability (e.g., resource competition and responses to environmental conditions) on 427 

allometry. Biome class and species were excluded from the pool of predicting variables because 428 

they did not improve model performance. We combined the RF model with global maps of 429 

selected predicting variables to produce the root biomass map which has a unit of weight per 430 

tree. This map was multiplied by tree density at 1-km resolution to obtain the final root biomass 431 

map with a unit of weight per area (Supplementary Figure 1).   432 

Uncertainty quantification   433 

We estimated the overall uncertainty of the root biomass estimates through quantifying 434 

relative errors caused by predictors at the 1-km resolution, predicting errors associated with RF 435 

given correct predicting variables, and errors from upscaling root biomass per tree to root 436 

biomass per unit area. 437 

Predictor errors (ƞpred): We collected 8 additional global predictor datasets (3 shoot biomass, 2 438 
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soil and 3 climate datasets) (Supplementary Table 2). We carried out 8 sets of additional 439 

predictions replacing the predictors by each of these additional data maps and calculated the 440 

standard deviation among 8 predictions for each pixel. The overall predictor errors were 441 

expressed in a relative term, that is, the ratio between the standard deviation and the standard 442 

prediction (with the GlobBiomass-AGB and other predictors listed in Supplementary Table 1) 443 

for each pixel.  444 

RF errors (ƞRF): The performance of machine learning models is frequently verified through the 445 

independent test samples. We carried out 4-fold cross-validation. The RF error is quantified as 446 

the relative error (the standard deviation divided by the mean) from 4-fold predictions.  447 

Upscaling errors (ƞup): Upscaling the root biomass from per tree to per area relies on the tree 448 

density map. The upscaling error is set as the relative uncertainty of tree density25.   449 

At last we propagated these relative errors across the entire root biomass quantification 450 

processes assuming these three errors were random and independent. So the errors were assumed 451 

to be uncorrelated and the covariation were assumed to be 0. The overall relative errors at the 452 

pixel level was calculated through, 453 

ƞ𝑟𝑜𝑜𝑡 = √ƞ𝑝𝑟𝑒𝑑
2 + ƞ𝑅𝐹

2 + ƞ𝑢𝑝
2                (1) 454 

Uncertainty at the global or biome scale (𝜎𝑏𝑖𝑜𝑚𝑒) is quantified through expanding 455 

calculating area and propagating the relative errors at the pixel level,  456 

 457 

𝜎𝑏𝑖𝑜𝑚𝑒 = √∑(𝐵𝑅𝑖ƞ𝑟𝑜𝑜𝑡𝑖
)2

𝑁

𝑖=1

             (2) 458 

 459 

where BR is the total root biomass (in unit of weight) in each forested pixel and N is the number 460 

of pixels within biome boundaries (or all forested pixels when calculate the global total). ƞ𝑟𝑜𝑜𝑡𝑖
 461 

is the relative uncertainty in quantifying root biomass for the ith pixel. 462 

Relative importance of predicting variables  463 

The impact of predictors on predicting R:S was estimated through the Spearman's rank-464 

order correlation at both the global and biome scales. We log-transformed the R:S and shoot 465 

biomass before standardizing these datasets. Partial dependence plot53 tells the marginal effect of 466 
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one predictor have on root biomass from a machine learning model, and serves as a supplement 467 

to the Spearman correlation.   468 

 469 
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