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Abstract 

When we imagine an object and when we actually see that object, similar brain 

regions become active. Yet, the time course of neurocognitive mechanisms that support 

imagery is still largely unknown. The current view holds that imagery does not share early 

perceptual mechanisms, but starts with high-level visual representations. However, evidence 

of early shared mechanisms is difficult to obtain because imagery and perception tasks 

typically differ in visual input. We therefore tracked electrophysiological brain responses 

while fully controlling visual input, (1) comparing imagery and perception of objects with 

varying amounts of associated knowledge, and (2) comparing the time courses of successful 

and incomplete imagery. Imagery and perception were similarly influenced by knowledge 

already at early stages, revealing shared mechanisms during low-level visual processing. It 

follows that imagery is not merely perception in reverse; instead, both are active and 

constructive processes, based on shared mechanisms starting at surprisingly early stages. 

 

Keywords: mental imagery, early visual processing, event-related potentials, semantic 

knowledge, P1 component 
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Time course and shared neurocognitive mechanisms of mental imagery and visual 

perception 

A growing body of research suggests that seeing something with the mind’s eye—

mental imagery—may not be all that different from seeing something with one’s physical 

eyes. Indeed, imagery and perception recruit overlapping neural circuits, including primary 

visual areas 1-8, and the vividness of imagination correlates with the similarity of brain 

activities accompanying imagery and perception 9. 

Predictive processing accounts posit that perception arises from hierarchical Bayesian 

predictions—essentially imaginations—that are constrained by bottom-up sensory input 10-14. 

This theoretical framework is neurally plausible 15-20 and supported by evidence that even 

early stages of perception are subject to top-down influences 15,21-31. This suggests that initial 

aspects of imagery could be fast enough to generate early top-down effects. 

This suggestion contrasts with alternative accounts assuming that perception first runs 

through a strictly hierarchical succession of increasingly complex visual representations, with 

early stages mainly driven by bottom-up sensory processes. At later stages, recurrent feedback 

from higher-level brain areas is assumed to enable stabilization of visual representations and, 

eventually, conscious access 32,33. Based on this account of perception, recent work has 

mapped out how visual imagery could follow a reverse hierarchy of activation compared to 

perception 6,7,34-36. Under these assumptions, imagery would not rely on early perceptual 

mechanisms like feature processing but start relatively late, with entire visual representations 

that bring several levels of the visual hierarchy into concert 6,7,35. In support of this idea, 

Dijkstra, et al. 35 found neural activation patterns during imagery to correspond to those found 

during high-level perception, but not early, low-level stages of perception. Earlier studies 

reported imagery-related variations in the N1 component of the event-related potential (ERP) 

37-39 that is associated with configural visual processing 40-44. Here, we refer to configural 

visual processing as the encoding of constituent features into meaningful configurations (e.g., 
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whole objects) 45. Yet, the designs commonly used to compare perception and imagery are not 

optimal for providing evidence of shared mechanisms during early visual processing because 

imagery and perception conditions often involve substantially different visual stimulation 

35,36,38. This may mask early common neural mechanisms, in particular, given that brain 

activity in early visual processing is more strongly influenced by low-level stimulus 

properties 32,33. Here we propose a way to overcome this obstacle by varying the content of 

imagery while controlling for visual properties. This allows us to compare the time course and 

functional mechanisms of imagery and perception from initial to final stages and, specifically, 

to test for parallels at earlier stages than previously reported. If so, we would have to revise 

our current understanding of the mechanisms supporting mental imagery and how they unfold 

over time. 

Our approach borrows from designs used in perception research to investigate changes 

in early visual processing independent of the specific visual input 24,27,46. This is achieved by 

manipulating the semantic knowledge associated with a given object. Knowledge stored in 

semantic memory, for example, about the functions of objects 24,27,31,46, and categories defined 

by the language we speak 25,26,28,47-49, have all been shown to influence early visual processes. 

We combined this approach with recording and analyzing ERPs to test with high 

temporal precision whether early top-down effects, repeatedly observed in perception, are 

mirrored in imagery. Based on previous findings 24,27,46, we expected semantic knowledge to 

decrease the P1 component in the ERP, a marker of sensory processing sensitive to low-level 

visual features such as luminance and contrast 16,50-53, as well as the later N400 component, 

reflecting high-level semantic processing 24,27,54. Crucially, we predicted that knowledge 

would influence both components similarly in perception as well as imagery.  
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Figure 1. Study design. (a) Knowledge conditions with examples of object-unrelated 

information (minimal knowledge condition) and object-related information (in-depth 

knowledge condition). (b) Trial types and structure of the main task. All trial types came in all 

knowledge conditions (minimal, in-depth and well-known), with equal probability and in 

randomized order. 

 

We further compared successful and incomplete imagery, akin to previous studies 

leveraging vividness ratings 7,9, to determine the processing stages that drive successful 

imagery without confounding influences from visual input. We assumed that successful and 
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incomplete imagery would show similar activation patterns during low-level visual processing 

(P1 component), but would differ in high-level, configural visual processing (N1 component). 

Finally, to gain further understanding of the mechanisms driving mental imagery, we 

tested how the neural dynamics that dissociate successful and incomplete imagery relate to 

perception. 

 

Results 

To investigate whether perception and imagery rely on shared early perceptual 

mechanisms and examine their time course, we recorded EEG from 32 participants while they 

viewed or imagined objects with varying amounts of associated knowledge. Target objects 

were cued with object fragments and, following an intervening visual search task to reset 

visual activity, participants either made a familiarity judgment on a presented object or 

imagined the cued object on an empty frame (see Figure 1). 

Behavioral results 

In the imagery task, participants were asked to form intact and detailed mental images 

of the cued objects. They indicated successful and incomplete imagery via button press. 

Overall, participants indicated successful imagery in 84.5 % of the trials. Imagery success 

rates were higher in the well-known compared to the in-depth knowledge condition (89.2 % 

vs. 83.0 %; nested binomial GLMM: b = 0.53, z = 5.58, p < .001), but there was no difference 

between the in-depth and the minimal knowledge condition (83.0 % vs. 81.1 %; b = 0.08, z = 

0.88, p = .380; see Figure 2). Knowledge affected reaction times (RTs), which gradually 

decreased with the depth of knowledge, indicating faster imagery for objects learned with in-

depth compared to minimal knowledge (1730.4 vs. 1770.2 ms; b = -0.02, t = -2.04, p = .042), 

and for well-known objects compared to objects with in-depth knowledge (1673.7 vs. 1730.4 

ms; b = -0.05, t = -3.06, p = .003).  
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In the perception task, participants classified object pictures as newly learned vs. well-

known. Classification accuracy was lower in the well-known compared to the in-depth 

knowledge condition (b = -0.88, z = -4.89, p < .001) and also in the in-depth compared to the 

minimal knowledge condition (b = -0.55, z = -2.23, p = .026). RTs in the perception task 

(Figure 2) did not differ across knowledge conditions (nested LMM, in-depth - minimal: b < 

0.01, t = .61, p = .544; well-known - in-depth: b = -0.02, t = -.90, p = .375). Lower accuracy 

in classifying well-known objects can be explained by context effects: Participants were to 

classify well-known objects as “old”, but these objects had been rare during the learning 

session, thus in the context of the test session they were “new”. In contrast, participants were 

to classify newly learned objects as “new”, but in the context of the experiment these objects 

had been seen many times, and objects associated with richer semantic knowledge may have 

seemed subjectively more familiar, and thus “old”. While the incongruence between long-

term semantic knowledge and contextual familiarity may have muddied the waters, the 

observation of facilitated imagery demonstrates that our semantic knowledge manipulation 

was effective. 

Effects of semantic knowledge on ERPs 

To test the hypothesis that imagery and perception share knowledge-related 

modulations of early visual activity, we analyzed the effects of semantic knowledge on the P1 

component, an index of early perceptual processing. We further tested for later effects of 

knowledge in the N400, an indicator of semantic processing. In line with our hypothesis, 

across both imagery as well as perception, P1 amplitudes decreased with semantic knowledge, 

yielding significant reductions from minimal to in-depth, and from in-depth knowledge to 

well-known objects (Figure 2, Table 1). The full LMMs, including semantic knowledge, task 

and their interactions revealed no significant interactions of knowledge and task, suggesting 

similar effects of knowledge in both conditions. Exclusion of these interactions further did not 

significantly decrease model fit, ΔΧ2(4) < 5.19, p > .268, and fit indices favored the reduced 
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models (ΔAICP1: -7, ΔBICP1: -37; ΔAICN400: -3, ΔBICN400: -32). In the N400, well-known 

objects produced significantly more negative amplitudes than newly learned objects, whereas 

the minimal and in-depth knowledge conditions did not differ.  

Given differences in visual stimulation, trivial differences in ERP amplitudes between 

the tasks are expected. Indeed, across both ERP components, we found more positive 

amplitudes for perception, while there was no difference between imagery and incomplete 

imagery.  

 

 

Figure 2. Semantic knowledge effects. (a) Behavioral results: Accuracy in the perception task 

and imagery success rate (top) and mean RTs (bottom) as a function of object knowledge. 

Error bars represent 95% confidence intervals. (b) Effects of object knowledge on the P1 and 

N400 components. Left, top panel: Grand average ERPs at electrode PO7, aggregated over 

perception and imagery. Bottom panel: Zooming in on the P1 peak illustrates comparable 

knowledge effects in imagery and perception. Right panel: Difference topographies 

comparing the knowledge conditions in the P1 and N400 time windows (120-170 ms; 300-

500 ms, respectively). Region of interest (ROI) electrodes are marked as dots. 
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Table 1 

Knowledge effects on the P1 and N400 components during perception and mental imagery. 

  P1 amplitude N400 amplitude 
Predictors Estimates SE t-value p-value Estimates SE t-value p-value 
(Intercept) 5.09*** 0.61 8.38 <0.001 3.65*** 0.42 8.64 <0.001 

Visual (Ima–Per) -0.93* 0.39 -2.39 0.016 -0.71* 0.35 -2.04 0.042 

Visual (Nima–
Ima) 

0.28 0.16 1.72 0.086 0.30 0.21 1.46 0.146 

Knowledge 
(Deep–Min) 

-0.26* 0.10 -2.55 0.011 -0.17 0.11 -1.50 0.133 

Knowledge (Well–
Deep) 

-0.30* 0.14 -2.12 0.033 -0.45** 0.17 -2.61 0.009 

Random Effects SD SD 
Participants 3.41  2.34  

Visual (Ima–Per) 2.14  1.90  
Visual (Nima–
Ima) 

0.14  0.57  

Object Identity 0.35  0.47  
Residual 4.27 4.70 
Deviance 61305.513 63272.899 
log-Likelihood -30652.756 -31636.449 

Note: Visual (Ima–Per) = Perception – Imagery, Visual (Nima–Ima) = Incomplete Imagery – 
Imagery, Knowledge (Deep–Min) = in-depth – minimal, Knowledge (Well–Deep) = well-known 
– in-depth 
* p<0.05   ** p<0.01   *** p<0.001 

 

Knowledge effects on the P1 in perception have been repeatedly observed in the 

absence of cueing 24,27,46, and any visual priming in the present study could only occur 

partially as we only showed object fragments followed by an intervening visual search task to 

reset visual activity. Nevertheless, a potential remaining concern in the current design is that 

knowledge effects on the P1 may reflect spillovers from the cues. If this were true, we should 

observe knowledge effects also on filler trials, where non-cued objects were shown. In a 

control analysis we found no evidence that the knowledge condition of the object cue 

influenced the P1 in filler trials. There was no difference between the well-known and the in-

depth knowledge condition (LMMFillers: b = -0.070, t = -0.674, p = .500) or between the in-

depth and the minimal knowledge condition (LMMFillers: b = 0.002, t = -0.021, p = .984). 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 15, 2020. ; https://doi.org/10.1101/2020.01.14.905885doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.14.905885
http://creativecommons.org/licenses/by-nc-nd/4.0/


MENTAL IMAGERY: TIME COURSE, COGNITIVE MECHANISMS 10 

Thus, knowledge effects in the P1 appear to be specific to imagining or seeing the 

corresponding objects. 

To summarize, in line with our hypothesis we found semantic knowledge effects in 

early visual processes across both imagery and perception: P1 amplitudes were reduced with 

increasing depth of object-related knowledge. This effect replicates previous findings from 

visual perception24,27,46 and extends them to imagery. Previously reported differences between 

minimal and in-depth conditions in the N400, reflecting high-level semantic processes, were 

not replicated 24,27.  

Comparisons between successful and incomplete imagery 

To better understand the mechanisms that differentiate between successful and 

unsuccessful imagery, we compared trials in which participants had indicated the former vs 

the latter. The hypothesis was that incomplete compared to successful imagery may arise from 

failed configural processing and should thus be associated with differences in the N1 

component. Since imagery may be supported by increased fronto-posterior coupling 34,55, 

differences in frontal activity were also expected. Even though EEG scalp distributions do not 

translate easily to generators of activity in the brain, we hypothesized that posterior N1 effects 

may therefore coincide with mirrored effects at frontal sites 56. To test for global differences 

between successful and incomplete imagery we compared mean amplitudes with the cluster-

based permutation test approach (CBPT), which revealed a significant difference. Underlying 

this difference were two clusters across electrodes and time: a posterior cluster between 228 

and 392 ms, and a frontoparietal cluster between 304 and 492 ms that was slightly lateralized 

to the right hemisphere (Figure 3). As expected, the beginning and topography of the posterior 

cluster suggested a modulation of the N1 component (Figure 3).  
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Figure 3. ERP-comparisons of successful imagery, incomplete imagery, and perception. (a) 

Grand average difference-topographies. Highlighted electrodes are part of spatio-temporal 

clusters most compatible with the significant differences between successful and incomplete 

imagery (top), and between imagery and perception (bottom). (b) Comparisons of successful 

imagery, incomplete imagery, and perception in the N1 time window. Time windows entering 

the analysis of the posterior N1 amplitudes (left) and the simultaneous frontal positivity 

(right) are highlighted with grey shading. Topographies illustrate differences in the 

highlighted time windows with ROI electrodes marked by dots. 
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Follow-up LMM analyses based on single trial amplitudes in an independently 

determined posterior ROI (see Method) confirmed a significant difference in the N1 

component. Successful imagery was characterized by a larger N1 compared to incomplete 

imagery (Table 2). Around the same time, successful and incomplete imagery also differed at 

frontal sites, with a larger positivity in the frontal ROI in successful imagery trials (Figure 3, 

Table 2). Thus, the comparison between successful and incomplete imagery aligns with our 

hypothesis that successful imagery is supported by mechanisms of configural processing 

indexed by the posterior N1 and potentially supported by frontal top-down regulation. 

To test whether the same neural dynamics dissociate between imagery and perception, 

we compared these conditions using the same two-step approach. CBPT revealed significant 

differences between perception and imagery. Starting with a relative negativity for imagery at 

parieto-occipital sites around 80 ms post stimulus, all remaining time windows yielded 

significant clusters (cf. Figure 3). As outlined above, early differences between imagery and 

perception are trivial due to differences in visual stimulation. Further, differences between 

imagery and perception could be driven by latency shifts, amplitude differences, or both. We 

therefore analyzed peak latencies of key ERP components—P1 and N1—in the different 

visual conditions (perception, successful and incomplete imagery as one factor). P1 and N1 

peak latencies were detected in the average ERP at PO7 for each participant and condition. 

Indeed, latency of the posterior N1 component was significantly delayed by an estimated 27 

ms in imagery compared to perception (LMMImagery-Perception: b = 27.75; t = 2.88; p = .005), 

while there were no reliable latency shifts in the P1 component (LMMImagery-Perception: b = 5.87; 

t = 1.62; p = .110). 

 

 

Table 2 
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Comparisons between imagery, incomplete imagery, and perception in the N1 time window. 

  N1 amplitude Frontal P1 amplitude 
Predictors Estimates SE t-value p-value Estimates SE t-value p-value 
(Intercept) 1.66 *** 0.36 4.57 <0.001 0.20 0.22 0.89 0.383 

Visual (Ima–
Per) 

-0.96 * 0.42 -2.27 0.030 0.62 ** 0.21 2.92 0.006 

Visual (Nima–
Ima) 

0.54 *** 0.15 3.63 <0.001 -0.24 * 0.12 -2.04 0.041 

Centered P1 4.20 *** 0.05 79.76 <0.001 
    

Centered N1f  
    

0.71 *** 0.01 81.06 <0.001 

Random Effects SD SD 
Participants 2.03 1.22  

Visual (Ima–
Per) 

2.36 1.12 

Object Identity 0.27 0.12 
Visual (Ima–
Per) 

 0.31  

Residual 3.94  3.12 
Deviance 59540.162 54515.483 
log-Likelihood -29770.081 -27257.741 

Note: Visual Ima–Per = Perception – Imagery, Visual Nima–Ima = Incomplete Imagery – 
Imagery, P1 = preceding posterior P1 component, N1f = preceding frontal N1 component 
* p<0.05   ** p<0.01   *** p<0.001 
 

 

The LMM analysis of N1 amplitudes was adjusted for these latency shifts (time 

windows are highlighted in Figure 3). To account for the differences in visual stimulation 

between imagery and perception, we further included centered trial-by-trial P1 amplitudes as 

a covariate. This can be seen as a kind of baseline correction 57 because the P1 should capture 

a large portion of the variance related to differences in visual input and correct for amplitude 

differences resulting from evoked amplitude variance. When testing for an interaction 

between P1 amplitude and visual condition it was not significant. Exclusion of the interaction 

did not significantly decrease model fit, ΔΧ2(2) = 3.28, p = .194, and fit indices favored the 

reduced models (ΔAIC: -1, ΔBIC: -15). The N1 was significantly larger for successful 

imagery compared to perception (Table 2). The N1 further increased (became more negative) 
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with more positive P1 amplitudes. Thus, the difference between perception and imagery 

found in the overall CBPT analysis appears to be driven by latency and amplitude differences. 

Like for the comparison between successful and incomplete imagery, there was a 

modulation at frontal sites, where we found a larger positivity for imagery compared to 

perception coinciding with the posterior N1 component (Figure 3, Table 2). The frontal P1 

further increased with more positive amplitudes of the preceding frontal negativity, which we 

controlled in order to account for earlier visually evoked differences.  

To summarize, we found a larger posterior N1 for successful compared to incomplete 

imagery and for imagery compared to perception. These effects were accompanied by 

modulations of a frontal positivity in the approximate time range of the N1, which was 

significantly enhanced for successful compared to incomplete imagery, as well as for imagery 

compared to perception. Taken together these findings indicate increased demands on 

configural processing in imagery compared to perception, potentially supported by increased 

recruitment of frontal top-down processing, and that imagery fails if these increased demands 

are not met. 

 

Discussion 

It is now widely accepted that visual perception and mental imagery rely on shared 

brain circuits, including regions in early visual cortex, as well as frontal and parietal regions 

2,7. Yet, the time course of imagery and the timing of the involvement of early visual cortex 

are still open questions. In line with predictive processing accounts one hypothesis holds that 

perception engages top-down predictions even during low-level processing 25,26,31,47, and that 

imagery might share this mechanism.  

A different hypothesis based on a more strictly hierarchical account of perception is 

that imagery works like perception in reverse, assuming that it activates the entire visual 

representation from the start, and does not rely on early perceptual representations 6,7,34,35. 
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This account is supported by work showing similarities of brain activity between imagery and 

high-level perception 35, and by imagery-related effects at the level of configural processing, 

as reflected in the N1 component of the ERP 37-39,58. Thus, late involvement of early visual 

areas is mainly supported by a lack of evidence for early involvement. Such evidence is 

difficult to obtain, however, when the visual input between imagery and perception differs 

35,36.  

To overcome this obstacle, we varied the amount of knowledge associated with 

objects that participants saw and imagined—that is, we manipulated top-down predictions 

while keeping bottom-up input constant. This allowed us to detect changes in early visual 

activity independent of the visual stimulation. Using this approach, we show that like in 

perception, semantic knowledge modulates early visual activity also during imagery, 

revealing similar mechanisms at a much earlier stage than previously assumed. We further 

show that successful imagery is characterized by increased activity during high-level, 

configural visual processing compared to both, incomplete imagery as well as perception. 

This suggests that demands on configural processing are higher in the absence of supporting 

bottom-up input, and that rather than initiating imagery, stable visual representations need to 

be constructed, much like in perception. 

Knowledge facilitates imagery and shapes early stages of imagery and perception  

In imagery, like in perception, object-related knowledge and familiarity influenced 

visual processing at an early stage. Deeper knowledge was associated with decreases in the 

amplitude of the P1 component that reflects low-level visual processing in extrastriate visual 

areas 16,50,51. If knowledge can influence imagery at this stage, it suggests that at least some 

imagery-related processes take place in early visual areas already at an early latency. Object 

knowledge appears to inform top-down predictions that are used in both, imagery and 

perception. The effect being located in the P1 component demonstrates an influence on the 

processing of low-level object features. We conclude that knowledge about an object’s 
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function and its relevant parts facilitates low-level feature processing when we see or when 

we imagine an object. These findings demonstrate that imagery and perception rely on shared 

top-down mechanisms in the construction of low-level visual representations. 

Notably, the influence of semantic knowledge on imagery was of direct behavioral 

relevance: imagery of well-known objects was more often successful and faster than imagery 

of less familiar objects. Additionally, imagery was faster when participants had acquired in-

depth rather than only minimal knowledge about initially unfamiliar objects. Thus, the more 

we know about an object, the better we can imagine it.  

While the P1 component in the imagery condition was evoked by a visual stimulus, 

the presentation of a light blue square, this physical stimulus was identical for the semantic 

knowledge conditions and can, hence, not have produced the observed knowledge effects. A 

potential objection is that modulations of early visual ERPs might not have been related to 

imagery, but to spillovers from the object fragment cue. However, this explanation is unlikely 

as 1) the same semantic knowledge effects on perception have been shown in the absence of 

cueing 24,27,46, 2) we only presented fragments of the objects to be imagined or perceived, 3) 

visual input was reset by an intervening visual search task, and 4) there were no cue-related 

knowledge effects for filler trials. We therefore conclude that object knowledge influences 

low-level visual processes during both, perception and imagery. 

At variance with our predictions, we did not observe an influence of in-depth versus 

minimal semantic knowledge on the N400 component. In contrast to previous studies 

demonstrating these effects in perception 24,27, here, we cued the objects, which likely 

triggered object recognition and semantic processing. Whereas the intervening visual search 

task interfered with visual working memory, higher-level semantic network activation of the 

current object might have been sustained, given that it was potentially relevant for the 

upcoming task. Since the N400 is typically smaller for expected stimuli and reflects changes 

in semantic network activation 59, the cues in our paradigm may have muted the N400 effects. 
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What distinguishes successful imagery from incomplete imagery and from perception? 

In line with our hypothesis that imagery relies strongly on configural visual 

processing, successful and incomplete imagery started to diverge in the posterior N1 

component 40-44. Successful imagery was associated with larger posterior N1 amplitudes 

accompanied by larger frontal positive amplitude modulations. The former finding is 

consistent with previous EEG and MEG studies that showed imagery-related modulations of 

the posterior N1 37-39,58. In terms of its functional relevance and typical latency, the N1 effect 

fits well with the finding that neural representations decoded from imagery using MEG match 

those observed in perception around 160 ms, that is, the N1 time window 35. As incomplete 

imagery did not differ from successful imagery in the P1, it seems to share the early low-level 

activations but to lack (some of) the later configural processes and top-down feedback that 

stabilizes the image. The reduced frontal activity may thus reflect insufficient involvement of 

frontal areas, and their connectivity to occipitotemporal visual areas, which provide crucial 

top-down monitoring for imagery to be maintained 7,34,55. Holding intact and detailed images 

before the mind’s eye thus seems to be supported by configural visual processing and large-

scale connectivity including frontal and occipital areas that stabilizes and maintains visual 

representations 6,34,55.  

This interpretation is further supported by our findings comparing imagery and 

perception. We found that the posterior N1 was both delayed and increased in imagery 

compared to perception. Simultaneously, frontal activity was more pronounced in imagery 

than in perception. These results suggest that imagery relies more strongly on configural 

processing than perception, and engages more top-down control. When these additional 

demands are not met, imagery fails. To test whether success vs failure of imagery is all or 

none or reflects gradual degradation in configural processing, future studies could employ 

trial-by-trial vividness ratings to test whether these correspond to linear decreases in frontal 

and posterior activity 9.  
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Taken together, across perception and imagery, we found modulations of early visual 

processing by semantic knowledge. Compared to both perception and incomplete imagery, 

successful imagery was characterized by increased frontal and posterior activity in the N1 

time range, presumably reflecting increased connectivity between higher level control and 

lower level visual areas to support configural processing.   

Interestingly, this pattern bears similarities to what we know about conscious access. 

The P1 component is not typically associated with perceptual awareness 26,60, and also did not 

dissociate between successful and incomplete imagery in the present study. Conscious 

perception is thought to depend on “global ignition” or recurrent processing in a widespread 

network of brain areas 32,61. It is therefore conceivable that differences between successful and 

incomplete imagery starting in the N1, as well as late, high-level visual representations 

decodable around 500 ms 35, reflect the beginning of conscious mental imagery, not the 

beginning of imagery-related processing per se. The earlier imagery-related processing stages 

revealed by knowledge effects on the P1 could be pre-conscious, just as in perception. 

What we learn about perception 

The fact that we find the same knowledge effects on the P1 in imagery and perception 

also teaches us something relevant about perception. Recently, the debate if there are any true 

top-down effects on perception has sparked new controversy 25,62-64. Here we show semantic 

top-down influences on early visual processing in the absence of the relevant physical 

stimulus. This demonstrates that knowledge can have true top-down effects on early and 

automatic stages of perception. This is in line with the predictive processing account in which 

perception is seen as a process of active hierarchical Bayesian inference 10-14. It construes 

perception more from the inside out than from the outside in: what we perceive is described as 

the brain’s best guess about the causes of afferent sensory input. The fact that imagery and 

perception appear to share early top-down predictions brings to mind the notion that 

perception might be a form of “controlled hallucination” 10. Perception might actually have 
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elements of controlled imagery—involving a form of non-voluntary and pre-conscious 

imagery that is triggered and constrained by sensory input 65. 

Conclusion 

Our results provide important insights into the time course of visual mental imagery 

by demonstrating that top-down influences modulate imagery already at an early stage of low-

level visual feature processing. This challenges the idea that imagery and perception share 

neural substrates only for high-level visual processes. Instead, they engage common 

neurocognitive mechanisms already during early visual processing stages— consisting in top-

down predictions, informed by knowledge stored in memory. Whether in seeing or imagining 

objects, our brains begin to construct what we “see” before the mind’s eye from basic visual 

features and with the help of what we know. 

 

Methods 

Participants 

Participants were 32 native German speakers (23 women; mean age 24 years; age 

range 20-35). All were right-handed with normal or corrected-to-normal visual acuity. Two 

participants were replaced due to excessive EEG artifacts. The study was approved by the 

Ethics Committee of the Humboldt-Universität zu Berlin. Participants gave written informed 

consent and received payment or course credits.  

Apparatus and stimuli 

Stimuli were presented on a 17’’ monitor using Presentation (Neurobehavioral 

Systems ®, Berkeley, USA) with a viewing distance of approximately 90 cm. The stimulus 

set comprised 40 rare objects 24 unfamiliar to all participants (Figure 1) and 20 well-known 

objects. All stimuli were gray-scale pictures of either entire objects or object fragments (used 

as cues), covering about 20% of the object, all displayed on a blue background frame of 3.5 × 

3.5 cm (2.22° × 2.22° visual angle; see Figure 1). Object fragments were typical parts of the 
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corresponding objects, allowing recognition. Fragment positions (center, left, right, top, 

bottom part of the object) were counterbalanced across objects. During learning, object names 

consisting of pseudo-nouns uninformative regarding the object’s function, were presented in 

both written and spoken form. In addition, for each unfamiliar object, an audio description 

was presented containing either a short explanation of the object’s function, use and origin 

(mean duration 18.3 s), or a cooking recipe (out of 20 recipes; mean duration 18.6 s, see 

Figure 1).  

Visual search displays consisted of a 7 by 7 matrix of uppercase letters with one single 

deviant letter (see Figure 1). One of three different letter combinations (F-E, P-B, and T-L) 

was shown on a light blue background measuring 5 × 3.5 cm (3,17° × 2.22°). The deviant 

letter could appear in any position of the matrix except for the center column.  

Task and procedure 

All participants completed two sessions on different days: a learning session, in which 

they acquired semantic knowledge about unfamiliar objects, and a test session that tested 

imagery and perception of the learned objects along with well-known objects. 

Learning Phase. The learning session consisted of two parts. In Part 1, lasting about 

45 minutes, participants were presented with 40 unfamiliar objects and their names (written 

and spoken). The first part ended with a short test (approximately 10 min), comprising verbal 

naming and familiarity decisions on both, well-known objects and newly learned objects.  

In Part 2, lasting about 75 min, participants listened to recordings that provided object-

related information about origin, function and use of half of the unfamiliar objects (in-depth 

knowledge condition), and unrelated cooking recipes for the other half (minimal knowledge 

condition). Object–knowledge combinations were counterbalanced across participants, such 

that each object was equally often part of both knowledge conditions. All stories were 

presented twice. Thus, all unfamiliar objects were presented equally often and for the same 

duration and only object-related knowledge was manipulated. This resulted in three 
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conditions with increasingly elaborate knowledge: newly learned objects without functional 

information (20 objects, minimal knowledge condition), newly learned objects with detailed 

information (20 objects, in-depth knowledge condition), and well-known objects, with 

preexisting information, visual and hands-on experience (20 objects, well-known objects 

condition). Part 2 ended with the same naming and familiarity test as Part 1. 

Test Phase. The test session, which included EEG recordings, took place two to three 

days after the learning session. Before the experiment, participants filled in a knowledge 

questionnaire, testing recall of the pictures and related information of newly learned and well-

known objects. Then, they were familiarized with the object fragments, to make sure they 

could recognize the corresponding objects. Before the main task, participants performed a 

practice block with five well-known objects (not part of the test set), which was repeated up 

to two times if necessary.  

In the main task, participants either imagined or saw pictures of objects. Investigating 

imagery with ERPs bears some timing-related difficulties: the content of imagery must be 

cued, but cue processing should not overlap in time with imagery, and the precise onset of 

imagery should be controlled. Furthermore, effects of object-knowledge on neural processing 

should be related to imagery, not processing of the cue. We designed a task to control the 

onset and content of imagery (Figure 1). First, an object fragment was presented as cue, 

followed by a demanding visual search trial meant to delay the onset of imagery by taxing 

visual working memory 66-68, and as a precaution against the transfer of semantic effects 

induced by the cue to the onset of mental imagery. Participants were instructed to indicate the 

position of a deviant letter in the left or right half of the display. Next, participants either saw 

an empty blue frame (imagery task, 180 trials, 25 %), a full picture of the cued object 

(perception task, 180 trials, 25 %), or a different object (filler trials, 360 trials, 50 %). 

Immediately after a response or if no response had been given within 3 s after stimulus onset, 

a blank screen of 1 s duration was presented.  
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In the imagery task, participants were instructed to form an intact and detailed mental 

image of the cued object as quickly and accurately as possible. Participants indicated 

successful or incomplete imagery via button press. In perception and filler trials, participants 

indicated via button press whether the object was newly learned or well-known. In filler trials, 

two different non-corresponding object fragments were randomly assigned to each object per 

participant.  

Requiring imagery only in 25% of the trials was meant to discourage participants from 

initiating imagery already upon seeing the object fragment. Task preparation was rendered 

ineffective by the filler trials, in which invalid cues were shown. Response button 

assignments in the familiarity and mental imagery tasks were counterbalanced across 

participants. Trial types were presented in random order with short breaks after every 30 

trials. Minimal knowledge, in-depth knowledge, and well-known object conditions were 

evenly distributed across tasks. At the end of the session, prototypical eye movements and 

blinks were recorded in a calibration procedure for ocular artifact correction. 

EEG recording  

The EEG was recorded from 56 Ag/AgCl electrodes placed according to the extended 

10-20 system, initially referenced to the left mastoid. The vertical electrooculogram (EOG) 

was recorded from electrodes FP1 and IO1. The horizontal EOG was recorded from 

electrodes F9 and F10. Electrode impedance was kept below 5 kΩ. A band pass filter with 

0.032 - 70 Hz, and a 50 Hz notch filter were applied; sampling rate was 250 Hz. Offline, the 

EEG was recalculated to average reference and low-pass filtered at 30 Hz. Eye movement and 

blink artifacts were removed with a spatio-temporal dipole modeling using BESA 69, based on 

the recorded prototypical eye movements and blinks. Trials with remaining artifacts and 

missing responses were discarded. The continuous EEG was segmented into epochs of 1.2 s 

locked to the stimulus of the main task (object picture or empty blue frame), including a 200 

ms pre-stimulus baseline.  
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Experimental Design and Statistical Analysis  

Statistical analyses were performed with R (Version 3.6.1. 70) and the Fieldtrip 

toolbox 71 for Matlab (Version 2016a). Trials with unsuccessful visual search or with reaction 

times (RTs) shorter than 150 ms or longer than 3 SDs from individual participant’s means 

were excluded from all analyses. In addition, trials with incorrect familiarity classification in 

the perception task were excluded from RT and ERP analyses. RTs were log transformed to 

approximate a normal distribution. Using the lme4 package (Version 1.1–21 72), accuracy and 

imagery success were analyzed with binomial generalized linear mixed models (GLMMs); 

RTs and ERPs were analyzed with linear mixed models (LMMs) 73. LMM analyses included 

random intercepts and (if supported) random slopes for subjects and object identity, allowing 

for better generalization of results from the particular sample of participants and the set of 

object pictures used here. P-values were computed using the lmerTest package 74. We applied 

sliding difference contrasts that compare mean differences between adjacent factor levels. 

When indicated, we reduced models by excluding non-significant interaction terms. Model 

selection was performed using the anova function of the stats package in R. Along with the 

results of the Χ2-Test, we compared fit indices, Akaike information criterion (AIC) and 

Bayesian information criterion (BIC), that are smaller for better model fit considering the 

number of parameters in each model. Behavioral data were analyzed using a nested model 

with the factor knowledge (well-known, in-depth and minimal) nested within task (Imagery 

and Perception).  

To address knowledge effects on ERPs during imagery and perception, we tested a 

priori hypotheses based on previous literature, that is, reduced P1 and enhanced N400 

amplitudes with semantic knowledge in pre-specified regions of interest (ROIs). For the 

analysis of P1 amplitude, we averaged amplitudes within 120 to 170 ms at PO7, PO3, PO4, 

and PO8 (Pratt, 2011). The N400 was quantified as the mean amplitude between 300 and 500 

ms at PO7, PO3, PO4, PO8, O1, Oz and O2 24,27. Single trial amplitudes aggregated within 
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ROIs and time windows were submitted to LMMs with the factors visual condition 

(perception, imagery and incomplete imagery) and knowledge (well-known, in-depth and 

minimal) as fixed effects. We fitted random structures by omitting random slopes of 

experimental conditions that explained zero variance, as determined by singular value 

decomposition. 

To track the time course of activation that specifically supports imagery, we compared 

trials with attempted but incomplete imagery and trials with successful imagery. We also 

compared imagery and perception directly. To this end, we calculated each participant’s 

average ERP in the perception, successful imagery, and incomplete imagery condition across 

all scalp electrodes in time windows from 0 to 540 ms. Group-level statistics were based on 

paired-samples t-tests and corrected for multiple comparisons using cluster-based permutation 

tests (CBPT) across time and electrodes. The cluster forming threshold was set to p = .05. We 

report differences with corrected p-values < .025 as statistically significant.  

Based on the hypothesis that imagery might be supported in particular by configural 

visual processing, we looked at the N1 component. N1-amplitudes were compared in a 

posterior ROI consisting of PO7, PO3, PO4, PO8, O1, Oz, and O2 52. To adjust for latency 

shifts (see Results), different time windows were used for the N1 component in perception 

and imagery, centered around the grand mean peak latencies: For perception, we aggregated 

over 170 – 210 ms and for imagery (both successful and incomplete) we aggregated over 210 

– 250 ms. Frontal activity that coincided with the posterior N1 was analyzed in a ROI 56 

consisting of electrodes Fp1, Fpz, Fp2, AF3, AFz, AF4, F3, Fz, F4, FC1, FC2. Note that the 

ERP pattern at frontal sites is the opposite of that at posterior sites, therefore, we observe a 

frontal P1 coinciding with the posterior N1.   
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