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Abstract

When we imagine an object and when we actually see that object, similar brain
regions become active. Yet, the time course of neurocognitive mechanisms that support
imagery is still largely unknown. The current view holds that imagery does not share early
perceptual mechanisms, but starts with high-level visual representations. However, evidence
of early shared mechanisms is difficult to obtain because imagery and perception tasks
typically differ in visual input. We therefore tracked electrophysiological brain responses
while fully controlling visual input, (1) comparing imagery and perception of objects with
varying amounts of associated knowledge, and (2) comparing the time courses of successful
and incomplete imagery. Imagery and perception were similarly influenced by knowledge
already at early stages, revealing shared mechanisms during low-level visual processing. It
follows that imagery is not merely perception in reverse; instead, both are active and

constructive processes, based on shared mechanisms starting at surprisingly early stages.

Keywords: mental imagery, early visual processing, event-related potentials, semantic

knowledge, P1 component
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Time course and shared neurocognitive mechanisms of mental imagery and visual
perception

A growing body of research suggests that seeing something with the mind’s eye—
mental imagery—may not be all that different from seeing something with one’s physical
eyes. Indeed, imagery and perception recruit overlapping neural circuits, including primary
visual areas %, and the vividness of imagination correlates with the similarity of brain
activities accompanying imagery and perception °.

Predictive processing accounts posit that perception arises from hierarchical Bayesian
predictions—essentially imaginations—that are constrained by bottom-up sensory input %4,

This theoretical framework is neurally plausible '>-2°

and supported by evidence that even
early stages of perception are subject to top-down influences '>!-3!. This suggests that initial
aspects of imagery could be fast enough to generate early top-down effects.

This suggestion contrasts with alternative accounts assuming that perception first runs
through a strictly hierarchical succession of increasingly complex visual representations, with
early stages mainly driven by bottom-up sensory processes. At later stages, recurrent feedback
from higher-level brain areas is assumed to enable stabilization of visual representations and,
eventually, conscious access %3, Based on this account of perception, recent work has
mapped out how visual imagery could follow a reverse hierarchy of activation compared to
perception 473436 Under these assumptions, imagery would not rely on early perceptual
mechanisms like feature processing but start relatively late, with entire visual representations
that bring several levels of the visual hierarchy into concert 7%, In support of this idea,
Dijkstra, et al. 3 found neural activation patterns during imagery to correspond to those found
during high-level perception, but not early, low-level stages of perception. Earlier studies
reported imagery-related variations in the N1 component of the event-related potential (ERP)
37-39

that is associated with configural visual processing 444, Here, we refer to configural

visual processing as the encoding of constituent features into meaningful configurations (e.g.,
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whole objects) 4. Yet, the designs commonly used to compare perception and imagery are not
optimal for providing evidence of shared mechanisms during early visual processing because
imagery and perception conditions often involve substantially different visual stimulation
33,3638 This may mask early common neural mechanisms, in particular, given that brain
activity in early visual processing is more strongly influenced by low-level stimulus
properties 323, Here we propose a way to overcome this obstacle by varying the content of
imagery while controlling for visual properties. This allows us to compare the time course and
functional mechanisms of imagery and perception from initial to final stages and, specifically,
to test for parallels at earlier stages than previously reported. If so, we would have to revise
our current understanding of the mechanisms supporting mental imagery and how they unfold
over time.

Our approach borrows from designs used in perception research to investigate changes
in early visual processing independent of the specific visual input 4?74, This is achieved by
manipulating the semantic knowledge associated with a given object. Knowledge stored in

24,27,31,46

semantic memory, for example, about the functions of objects , and categories defined

by the language we speak 2326284749 "haye all been shown to influence early visual processes.
We combined this approach with recording and analyzing ERPs to test with high
temporal precision whether early top-down effects, repeatedly observed in perception, are

24,27,46

mirrored in imagery. Based on previous findings , we expected semantic knowledge to

decrease the P1 component in the ERP, a marker of sensory processing sensitive to low-level
visual features such as luminance and contrast '®°0-33 as well as the later N400 component,

24,27,54

reflecting high-level semantic processing . Crucially, we predicted that knowledge

would influence both components similarly in perception as well as imagery.
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Minimal knowledge In-depth knowledge Well-known objects
“For Italian tomato sauce, saute “This ladle-sized object is an ergono-
onions in oil in a saucepan over medi-  mically shaped measurement device

um-high heat until golden brown. Add  for quantities. It can measure both
crushed tomatoes, water, tomato paste,  liquid and solid materials by adjusting

basil, garlic, salt and pepper. Let the the shutter with the slider to make
sauce come to a boil, and stir occasio- the right amount fit in. The amount
nally until desired thickness. Sauce is is specified in milligrams, ounces or
ready when oil rises to the top.” cupfuls.”
Imagery (25%)
-+ _ Empty frame:
2 <3000 ms
PPPPPPP
PPPPPPP
PPPPPH
L PPPPPH or
Fixation: PRERDE
500 ms . PPPPPH
; ObJeCtt + Perception (25%)
ragment: . Full object:
200 ms Visual
search: < 3000 ms
<2500 ms Fixation:
200 ms or

Filler trial (50%)
Different object:
<3000 ms

Figure 1. Study design. (a) Knowledge conditions with examples of object-unrelated
information (minimal knowledge condition) and object-related information (in-depth
knowledge condition). (b) Trial types and structure of the main task. All trial types came in all
knowledge conditions (minimal, in-depth and well-known), with equal probability and in

randomized order.

We further compared successful and incomplete imagery, akin to previous studies
leveraging vividness ratings 7%, to determine the processing stages that drive successful

imagery without confounding influences from visual input. We assumed that successful and
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incomplete imagery would show similar activation patterns during low-level visual processing
(P1 component), but would differ in high-level, configural visual processing (N1 component).
Finally, to gain further understanding of the mechanisms driving mental imagery, we
tested how the neural dynamics that dissociate successful and incomplete imagery relate to

perception.

Results

To investigate whether perception and imagery rely on shared early perceptual
mechanisms and examine their time course, we recorded EEG from 32 participants while they
viewed or imagined objects with varying amounts of associated knowledge. Target objects
were cued with object fragments and, following an intervening visual search task to reset
visual activity, participants either made a familiarity judgment on a presented object or
imagined the cued object on an empty frame (see Figure 1).
Behavioral results

In the imagery task, participants were asked to form intact and detailed mental images
of the cued objects. They indicated successful and incomplete imagery via button press.
Overall, participants indicated successful imagery in 84.5 % of the trials. Imagery success
rates were higher in the well-known compared to the in-depth knowledge condition (89.2 %
vs. 83.0 %; nested binomial GLMM: b = 0.53, z = 5.58, p <.001), but there was no difference
between the in-depth and the minimal knowledge condition (83.0 % vs. 81.1 %; b =0.08, z =
0.88, p = .380; see Figure 2). Knowledge affected reaction times (RTs), which gradually
decreased with the depth of knowledge, indicating faster imagery for objects learned with in-
depth compared to minimal knowledge (1730.4 vs. 1770.2 ms; b =-0.02, t = -2.04, p = .042),
and for well-known objects compared to objects with in-depth knowledge (1673.7 vs. 1730.4

ms; b = -0.05, ¢ = -3.06, p = .003).
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In the perception task, participants classified object pictures as newly learned vs. well-
known. Classification accuracy was lower in the well-known compared to the in-depth
knowledge condition (b =-0.88, z =-4.89, p <.001) and also in the in-depth compared to the
minimal knowledge condition (b =-0.55, z =-2.23, p = .026). RTs in the perception task
(Figure 2) did not differ across knowledge conditions (nested LMM, in-depth - minimal: b <
0.01, t = .61, p = .544; well-known - in-depth: b =-0.02, t = -.90, p = .375). Lower accuracy
in classifying well-known objects can be explained by context effects: Participants were to
classify well-known objects as “old”, but these objects had been rare during the learning
session, thus in the context of the test session they were “new”. In contrast, participants were
to classify newly learned objects as “new”, but in the context of the experiment these objects
had been seen many times, and objects associated with richer semantic knowledge may have
seemed subjectively more familiar, and thus “old”. While the incongruence between long-
term semantic knowledge and contextual familiarity may have muddied the waters, the
observation of facilitated imagery demonstrates that our semantic knowledge manipulation
was effective.
Effects of semantic knowledge on ERPs

To test the hypothesis that imagery and perception share knowledge-related
modulations of early visual activity, we analyzed the effects of semantic knowledge on the P1
component, an index of early perceptual processing. We further tested for later effects of
knowledge in the N400, an indicator of semantic processing. In line with our hypothesis,
across both imagery as well as perception, P1 amplitudes decreased with semantic knowledge,
yielding significant reductions from minimal to in-depth, and from in-depth knowledge to
well-known objects (Figure 2, Table 1). The full LMMs, including semantic knowledge, task
and their interactions revealed no significant interactions of knowledge and task, suggesting
similar effects of knowledge in both conditions. Exclusion of these interactions further did not

significantly decrease model fit, AX?(4) < 5.19, p > .268, and fit indices favored the reduced
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models (AAICpi: -7, ABICpi: -37; AAICnN400: -3, ABICna00: -32). In the N400, well-known
objects produced significantly more negative amplitudes than newly learned objects, whereas
the minimal and in-depth knowledge conditions did not differ.

Given differences in visual stimulation, trivial differences in ERP amplitudes between
the tasks are expected. Indeed, across both ERP components, we found more positive

amplitudes for perception, while there was no difference between imagery and incomplete

imagery.
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Figure 2. Semantic knowledge effects. (a) Behavioral results: Accuracy in the perception task
and imagery success rate (top) and mean RTs (bottom) as a function of object knowledge.
Error bars represent 95% confidence intervals. (b) Effects of object knowledge on the P1 and
N400 components. Left, top panel: Grand average ERPs at electrode PO7, aggregated over
perception and imagery. Bottom panel: Zooming in on the P1 peak illustrates comparable
knowledge effects in imagery and perception. Right panel: Difference topographies
comparing the knowledge conditions in the P1 and N400 time windows (120-170 ms; 300-

500 ms, respectively). Region of interest (ROI) electrodes are marked as dots.
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Table 1

Knowledge effects on the P1 and N400 components during perception and mental imagery.

P1 amplitude N400 amplitude

Predictors Estimates  SE  t-value p-value Estimates SE  t-value p-value

(Intercept) 5.09%**  0.61 838  <0.001 3.65%** (042 8.64 <0.001

Visual (Ima—Per) -0.93* 039 -239 0.016 -0.71* 035 -2.04 0.042

Visual (Nima— 0.28 0.16 1.72 0.086 0.30 021 146 0.146

Ima)

Knowledge -0.26* 0.10 -2.55 0.011 -0.17 0.11  -1.50  0.133

(Deep—Min)

Knowledge (Well—- -0.30* 0.14 -2.12 0.033 -0.45%%* 0.17 -2.61  0.009
Deep)

Random Effects SD SD

Participants 341 2.34

Visual (Ima—Per) 2.14 1.90

Visual (Nima— 0.14 0.57

Ima)
Object Identity 0.35 0.47
Residual 4.27 4.70
Deviance 61305.513 63272.899
log-Likelihood -30652.756 -31636.449

Note: Visual (Ima—Per) = Perception — Imagery, Visual (Nima—Ima) = Incomplete Imagery —
Imaggry,hKnowledge (Deep—Min) = in-depth — minimal, Knowledge (Well-Deep) = well-known
— 1n-dept

*p<0.05 **p<0.01 ***p<0.001

Knowledge effects on the P1 in perception have been repeatedly observed in the

absence of cueing 242746

, and any visual priming in the present study could only occur
partially as we only showed object fragments followed by an intervening visual search task to
reset visual activity. Nevertheless, a potential remaining concern in the current design is that
knowledge effects on the P1 may reflect spillovers from the cues. If this were true, we should
observe knowledge effects also on filler trials, where non-cued objects were shown. In a
control analysis we found no evidence that the knowledge condition of the object cue
influenced the P1 in filler trials. There was no difference between the well-known and the in-

depth knowledge condition (LMMFiiers: b = -0.070, £ = -0.674, p = .500) or between the in-

depth and the minimal knowledge condition (LMMeFiiers: & = 0.002, £ =-0.021, p = .984).
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Thus, knowledge effects in the P1 appear to be specific to imagining or seeing the
corresponding objects.

To summarize, in line with our hypothesis we found semantic knowledge effects in
early visual processes across both imagery and perception: P1 amplitudes were reduced with
increasing depth of object-related knowledge. This effect replicates previous findings from

2427.46 and extends them to imagery. Previously reported differences between

visual perception
minimal and in-depth conditions in the N400, reflecting high-level semantic processes, were
not replicated 24?7,
Comparisons between successful and incomplete imagery

To better understand the mechanisms that differentiate between successful and
unsuccessful imagery, we compared trials in which participants had indicated the former vs
the latter. The hypothesis was that incomplete compared to successful imagery may arise from
failed configural processing and should thus be associated with differences in the N1
component. Since imagery may be supported by increased fronto-posterior coupling 343,
differences in frontal activity were also expected. Even though EEG scalp distributions do not
translate easily to generators of activity in the brain, we hypothesized that posterior N1 effects
may therefore coincide with mirrored effects at frontal sites *°. To test for global differences
between successful and incomplete imagery we compared mean amplitudes with the cluster-
based permutation test approach (CBPT), which revealed a significant difference. Underlying
this difference were two clusters across electrodes and time: a posterior cluster between 228
and 392 ms, and a frontoparietal cluster between 304 and 492 ms that was slightly lateralized

to the right hemisphere (Figure 3). As expected, the beginning and topography of the posterior

cluster suggested a modulation of the N1 component (Figure 3).
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Figure 3. ERP-comparisons of successful imagery, incomplete imagery, and perception. (a)
Grand average difference-topographies. Highlighted electrodes are part of spatio-temporal
clusters most compatible with the significant differences between successful and incomplete
imagery (top), and between imagery and perception (bottom). (b) Comparisons of successful
imagery, incomplete imagery, and perception in the N1 time window. Time windows entering
the analysis of the posterior N1 amplitudes (left) and the simultaneous frontal positivity
(right) are highlighted with grey shading. Topographies illustrate differences in the

highlighted time windows with ROI electrodes marked by dots.
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Follow-up LMM analyses based on single trial amplitudes in an independently
determined posterior ROI (see Method) confirmed a significant difference in the N1
component. Successful imagery was characterized by a larger N1 compared to incomplete
imagery (Table 2). Around the same time, successful and incomplete imagery also differed at
frontal sites, with a larger positivity in the frontal ROI in successful imagery trials (Figure 3,
Table 2). Thus, the comparison between successful and incomplete imagery aligns with our
hypothesis that successful imagery is supported by mechanisms of configural processing
indexed by the posterior N1 and potentially supported by frontal top-down regulation.

To test whether the same neural dynamics dissociate between imagery and perception,
we compared these conditions using the same two-step approach. CBPT revealed significant
differences between perception and imagery. Starting with a relative negativity for imagery at
parieto-occipital sites around 80 ms post stimulus, all remaining time windows yielded
significant clusters (cf. Figure 3). As outlined above, early differences between imagery and
perception are trivial due to differences in visual stimulation. Further, differences between
imagery and perception could be driven by latency shifts, amplitude differences, or both. We
therefore analyzed peak latencies of key ERP components—P1 and N1—in the different
visual conditions (perception, successful and incomplete imagery as one factor). P1 and N1
peak latencies were detected in the average ERP at PO7 for each participant and condition.
Indeed, latency of the posterior N1 component was significantly delayed by an estimated 27
ms in imagery compared to perception (LMMimagery-Perception: & = 27.75; t = 2.88; p = .005),
while there were no reliable latency shifts in the P1 component (LMMimagery-Perception: & = 5.87;

t=1.62; p=.110).

Table 2
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Comparisons between imagery, incomplete imagery, and perception in the N1 time window.

N1 amplitude Frontal P1 amplitude
Predictors Estimates SE  t-value p-value Estimates SE  t-value p-value
(Intercept) 1.66 *** 036 457 <0.001 0.20 022 0.89 0.383
Visual Ima—  -0.96 * 042 -227 0.030 0.62 ** 021 292 0.006

Per)

Visual (Nima—  0.54 *** 0.15 3.63 <0.001 -0.24* 0.12  -2.04  0.041
Ima)

Centered P1 4.20 *** 0.05 79.76 <0.001

Centered N1f 0.71 *** 0.01 81.06 <0.001
Random Effects SD SD
Participants 2.03 1.22
Visual (Ima— 2.36 1.12
Per)
Object Identity 0.27 0.12
Visual (Ima— 0.31
Per)
Residual 3.94 3.12
Deviance 59540.162 54515.483
log-Likelihood -29770.081 -27257.741

Note: Visual Ima—Per = Perception — Imagery, Visual Nima—Ima = Incomplete Imagery —

Imagery, P1 = preceding posterior P1 component, N1f = preceding frontal N1 component
*p<0.05 **p<0.01 ***p<0.001

The LMM analysis of N1 amplitudes was adjusted for these latency shifts (time
windows are highlighted in Figure 3). To account for the differences in visual stimulation
between imagery and perception, we further included centered trial-by-trial P1 amplitudes as
a covariate. This can be seen as a kind of baseline correction 37 because the P1 should capture
a large portion of the variance related to differences in visual input and correct for amplitude
differences resulting from evoked amplitude variance. When testing for an interaction
between P1 amplitude and visual condition it was not significant. Exclusion of the interaction
did not significantly decrease model fit, AX?(2) = 3.28, p = .194, and fit indices favored the
reduced models (AAIC: -1, ABIC: -15). The N1 was significantly larger for successful

imagery compared to perception (Table 2). The N1 further increased (became more negative)
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with more positive P1 amplitudes. Thus, the difference between perception and imagery
found in the overall CBPT analysis appears to be driven by latency and amplitude differences.

Like for the comparison between successful and incomplete imagery, there was a
modulation at frontal sites, where we found a larger positivity for imagery compared to
perception coinciding with the posterior N1 component (Figure 3, Table 2). The frontal P1
further increased with more positive amplitudes of the preceding frontal negativity, which we
controlled in order to account for earlier visually evoked differences.

To summarize, we found a larger posterior N1 for successful compared to incomplete
imagery and for imagery compared to perception. These effects were accompanied by
modulations of a frontal positivity in the approximate time range of the N1, which was
significantly enhanced for successful compared to incomplete imagery, as well as for imagery
compared to perception. Taken together these findings indicate increased demands on
configural processing in imagery compared to perception, potentially supported by increased
recruitment of frontal top-down processing, and that imagery fails if these increased demands

are not met.

Discussion

It is now widely accepted that visual perception and mental imagery rely on shared
brain circuits, including regions in early visual cortex, as well as frontal and parietal regions
27 Yet, the time course of imagery and the timing of the involvement of early visual cortex
are still open questions. In line with predictive processing accounts one hypothesis holds that
perception engages top-down predictions even during low-level processing 226147 and that
imagery might share this mechanism.

A different hypothesis based on a more strictly hierarchical account of perception is
that imagery works like perception in reverse, assuming that it activates the entire visual

representation from the start, and does not rely on early perceptual representations 673433,
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This account is supported by work showing similarities of brain activity between imagery and
high-level perception *3, and by imagery-related effects at the level of configural processing,
as reflected in the N1 component of the ERP 37-3*8, Thus, late involvement of early visual
areas is mainly supported by a lack of evidence for early involvement. Such evidence is
difficult to obtain, however, when the visual input between imagery and perception differs
3536,

To overcome this obstacle, we varied the amount of knowledge associated with
objects that participants saw and imagined—that is, we manipulated top-down predictions
while keeping bottom-up input constant. This allowed us to detect changes in early visual
activity independent of the visual stimulation. Using this approach, we show that like in
perception, semantic knowledge modulates early visual activity also during imagery,
revealing similar mechanisms at a much earlier stage than previously assumed. We further
show that successful imagery is characterized by increased activity during high-level,
configural visual processing compared to both, incomplete imagery as well as perception.
This suggests that demands on configural processing are higher in the absence of supporting
bottom-up input, and that rather than initiating imagery, stable visual representations need to
be constructed, much like in perception.

Knowledge facilitates imagery and shapes early stages of imagery and perception

In imagery, like in perception, object-related knowledge and familiarity influenced
visual processing at an early stage. Deeper knowledge was associated with decreases in the
amplitude of the P1 component that reflects low-level visual processing in extrastriate visual
areas 93031 If knowledge can influence imagery at this stage, it suggests that at least some
imagery-related processes take place in early visual areas already at an early latency. Object
knowledge appears to inform top-down predictions that are used in both, imagery and
perception. The effect being located in the P1 component demonstrates an influence on the

processing of low-level object features. We conclude that knowledge about an object’s
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function and its relevant parts facilitates low-level feature processing when we see or when
we imagine an object. These findings demonstrate that imagery and perception rely on shared
top-down mechanisms in the construction of low-level visual representations.

Notably, the influence of semantic knowledge on imagery was of direct behavioral
relevance: imagery of well-known objects was more often successful and faster than imagery
of less familiar objects. Additionally, imagery was faster when participants had acquired in-
depth rather than only minimal knowledge about initially unfamiliar objects. Thus, the more
we know about an object, the better we can imagine it.

While the P1 component in the imagery condition was evoked by a visual stimulus,
the presentation of a light blue square, this physical stimulus was identical for the semantic
knowledge conditions and can, hence, not have produced the observed knowledge effects. A
potential objection is that modulations of early visual ERPs might not have been related to
imagery, but to spillovers from the object fragment cue. However, this explanation is unlikely
as 1) the same semantic knowledge effects on perception have been shown in the absence of
cueing #2746 2) we only presented fragments of the objects to be imagined or perceived, 3)
visual input was reset by an intervening visual search task, and 4) there were no cue-related
knowledge effects for filler trials. We therefore conclude that object knowledge influences
low-level visual processes during both, perception and imagery.

At variance with our predictions, we did not observe an influence of in-depth versus
minimal semantic knowledge on the N400 component. In contrast to previous studies

demonstrating these effects in perception 24?7

, here, we cued the objects, which likely
triggered object recognition and semantic processing. Whereas the intervening visual search
task interfered with visual working memory, higher-level semantic network activation of the
current object might have been sustained, given that it was potentially relevant for the

upcoming task. Since the N400 is typically smaller for expected stimuli and reflects changes

in semantic network activation *°, the cues in our paradigm may have muted the N400 effects.
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What distinguishes successful imagery from incomplete imagery and from perception?

In line with our hypothesis that imagery relies strongly on configural visual
processing, successful and incomplete imagery started to diverge in the posterior N1
component “0-#**, Successful imagery was associated with larger posterior N1 amplitudes
accompanied by larger frontal positive amplitude modulations. The former finding is
consistent with previous EEG and MEG studies that showed imagery-related modulations of
the posterior N1 373938 In terms of its functional relevance and typical latency, the N1 effect
fits well with the finding that neural representations decoded from imagery using MEG match
those observed in perception around 160 ms, that is, the N1 time window 3°. As incomplete
imagery did not differ from successful imagery in the P1, it seems to share the early low-level
activations but to lack (some of) the later configural processes and top-down feedback that
stabilizes the image. The reduced frontal activity may thus reflect insufficient involvement of
frontal areas, and their connectivity to occipitotemporal visual areas, which provide crucial
top-down monitoring for imagery to be maintained 7+, Holding intact and detailed images
before the mind’s eye thus seems to be supported by configural visual processing and large-
scale connectivity including frontal and occipital areas that stabilizes and maintains visual
representations 6343,

This interpretation is further supported by our findings comparing imagery and
perception. We found that the posterior N1 was both delayed and increased in imagery
compared to perception. Simultaneously, frontal activity was more pronounced in imagery
than in perception. These results suggest that imagery relies more strongly on configural
processing than perception, and engages more top-down control. When these additional
demands are not met, imagery fails. To test whether success vs failure of imagery is all or
none or reflects gradual degradation in configural processing, future studies could employ
trial-by-trial vividness ratings to test whether these correspond to linear decreases in frontal

and posterior activity °.
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Taken together, across perception and imagery, we found modulations of early visual
processing by semantic knowledge. Compared to both perception and incomplete imagery,
successful imagery was characterized by increased frontal and posterior activity in the N1
time range, presumably reflecting increased connectivity between higher level control and
lower level visual areas to support configural processing.
Interestingly, this pattern bears similarities to what we know about conscious access.

26:60 "and also did not

The P1 component is not typically associated with perceptual awareness
dissociate between successful and incomplete imagery in the present study. Conscious
perception is thought to depend on “global ignition” or recurrent processing in a widespread
network of brain areas 32!, Tt is therefore conceivable that differences between successful and
incomplete imagery starting in the N1, as well as late, high-level visual representations
decodable around 500 ms 33, reflect the beginning of conscious mental imagery, not the
beginning of imagery-related processing per se. The earlier imagery-related processing stages
revealed by knowledge effects on the P1 could be pre-conscious, just as in perception.
What we learn about perception

The fact that we find the same knowledge effects on the P1 in imagery and perception
also teaches us something relevant about perception. Recently, the debate if there are any true
top-down effects on perception has sparked new controversy 236264, Here we show semantic
top-down influences on early visual processing in the absence of the relevant physical
stimulus. This demonstrates that knowledge can have true top-down effects on early and
automatic stages of perception. This is in line with the predictive processing account in which
perception is seen as a process of active hierarchical Bayesian inference %14, Tt construes
perception more from the inside out than from the outside in: what we perceive is described as
the brain’s best guess about the causes of afferent sensory input. The fact that imagery and
perception appear to share early top-down predictions brings to mind the notion that

perception might be a form of “controlled hallucination™ '°. Perception might actually have
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elements of controlled imagery—involving a form of non-voluntary and pre-conscious
imagery that is triggered and constrained by sensory input .
Conclusion

Our results provide important insights into the time course of visual mental imagery
by demonstrating that top-down influences modulate imagery already at an early stage of low-
level visual feature processing. This challenges the idea that imagery and perception share
neural substrates only for high-level visual processes. Instead, they engage common
neurocognitive mechanisms already during early visual processing stages— consisting in top-
down predictions, informed by knowledge stored in memory. Whether in seeing or imagining
objects, our brains begin to construct what we “see” before the mind’s eye from basic visual

features and with the help of what we know.

Methods

Participants

Participants were 32 native German speakers (23 women; mean age 24 years; age
range 20-35). All were right-handed with normal or corrected-to-normal visual acuity. Two
participants were replaced due to excessive EEG artifacts. The study was approved by the
Ethics Committee of the Humboldt-Universitét zu Berlin. Participants gave written informed
consent and received payment or course credits.
Apparatus and stimuli

Stimuli were presented on a 17°” monitor using Presentation (Neurobehavioral
Systems ®, Berkeley, USA) with a viewing distance of approximately 90 cm. The stimulus
set comprised 40 rare objects 2* unfamiliar to all participants (Figure 1) and 20 well-known
objects. All stimuli were gray-scale pictures of either entire objects or object fragments (used
as cues), covering about 20% of the object, all displayed on a blue background frame of 3.5 x

3.5 cm (2.22° x 2.22° visual angle; see Figure 1). Object fragments were typical parts of the
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corresponding objects, allowing recognition. Fragment positions (center, left, right, top,
bottom part of the object) were counterbalanced across objects. During learning, object names
consisting of pseudo-nouns uninformative regarding the object’s function, were presented in
both written and spoken form. In addition, for each unfamiliar object, an audio description
was presented containing either a short explanation of the object’s function, use and origin
(mean duration 18.3 s), or a cooking recipe (out of 20 recipes; mean duration 18.6 s, see
Figure 1).

Visual search displays consisted of a 7 by 7 matrix of uppercase letters with one single
deviant letter (see Figure 1). One of three different letter combinations (F-E, P-B, and T-L)
was shown on a light blue background measuring 5 % 3.5 ¢cm (3,17° x 2.22°). The deviant
letter could appear in any position of the matrix except for the center column.

Task and procedure

All participants completed two sessions on different days: a learning session, in which
they acquired semantic knowledge about unfamiliar objects, and a test session that tested
imagery and perception of the learned objects along with well-known objects.

Learning Phase. The learning session consisted of two parts. In Part 1, lasting about
45 minutes, participants were presented with 40 unfamiliar objects and their names (written
and spoken). The first part ended with a short test (approximately 10 min), comprising verbal
naming and familiarity decisions on both, well-known objects and newly learned objects.

In Part 2, lasting about 75 min, participants listened to recordings that provided object-
related information about origin, function and use of half of the unfamiliar objects (in-depth
knowledge condition), and unrelated cooking recipes for the other half (minimal knowledge
condition). Object—knowledge combinations were counterbalanced across participants, such
that each object was equally often part of both knowledge conditions. All stories were
presented twice. Thus, all unfamiliar objects were presented equally often and for the same

duration and only object-related knowledge was manipulated. This resulted in three


https://doi.org/10.1101/2020.01.14.905885
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.14.905885; this version posted January 15, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

MENTAL IMAGERY: TIME COURSE, COGNITIVE MECHANISMS 21
conditions with increasingly elaborate knowledge: newly learned objects without functional
information (20 objects, minimal knowledge condition), newly learned objects with detailed
information (20 objects, in-depth knowledge condition), and well-known objects, with
preexisting information, visual and hands-on experience (20 objects, well-known objects
condition). Part 2 ended with the same naming and familiarity test as Part 1.

Test Phase. The test session, which included EEG recordings, took place two to three
days after the learning session. Before the experiment, participants filled in a knowledge
questionnaire, testing recall of the pictures and related information of newly learned and well-
known objects. Then, they were familiarized with the object fragments, to make sure they
could recognize the corresponding objects. Before the main task, participants performed a
practice block with five well-known objects (not part of the test set), which was repeated up
to two times if necessary.

In the main task, participants either imagined or saw pictures of objects. Investigating
imagery with ERPs bears some timing-related difficulties: the content of imagery must be
cued, but cue processing should not overlap in time with imagery, and the precise onset of
imagery should be controlled. Furthermore, effects of object-knowledge on neural processing
should be related to imagery, not processing of the cue. We designed a task to control the
onset and content of imagery (Figure 1). First, an object fragment was presented as cue,
followed by a demanding visual search trial meant to delay the onset of imagery by taxing

66-68 "and as a precaution against the transfer of semantic effects

visual working memory
induced by the cue to the onset of mental imagery. Participants were instructed to indicate the
position of a deviant letter in the left or right half of the display. Next, participants either saw
an empty blue frame (imagery task, 180 trials, 25 %), a full picture of the cued object
(perception task, 180 trials, 25 %), or a different object (filler trials, 360 trials, 50 %).

Immediately after a response or if no response had been given within 3 s after stimulus onset,

a blank screen of 1 s duration was presented.
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In the imagery task, participants were instructed to form an intact and detailed mental
image of the cued object as quickly and accurately as possible. Participants indicated
successful or incomplete imagery via button press. In perception and filler trials, participants
indicated via button press whether the object was newly learned or well-known. In filler trials,
two different non-corresponding object fragments were randomly assigned to each object per
participant.

Requiring imagery only in 25% of the trials was meant to discourage participants from
initiating imagery already upon seeing the object fragment. Task preparation was rendered
ineffective by the filler trials, in which invalid cues were shown. Response button
assignments in the familiarity and mental imagery tasks were counterbalanced across
participants. Trial types were presented in random order with short breaks after every 30
trials. Minimal knowledge, in-depth knowledge, and well-known object conditions were
evenly distributed across tasks. At the end of the session, prototypical eye movements and
blinks were recorded in a calibration procedure for ocular artifact correction.

EEG recording

The EEG was recorded from 56 Ag/AgCl electrodes placed according to the extended
10-20 system, initially referenced to the left mastoid. The vertical electrooculogram (EOQG)
was recorded from electrodes FP1 and I01. The horizontal EOG was recorded from
electrodes F9 and F10. Electrode impedance was kept below 5 kQ. A band pass filter with
0.032 - 70 Hz, and a 50 Hz notch filter were applied; sampling rate was 250 Hz. Offline, the
EEG was recalculated to average reference and low-pass filtered at 30 Hz. Eye movement and
blink artifacts were removed with a spatio-temporal dipole modeling using BESA ¢, based on
the recorded prototypical eye movements and blinks. Trials with remaining artifacts and
missing responses were discarded. The continuous EEG was segmented into epochs of 1.2 s
locked to the stimulus of the main task (object picture or empty blue frame), including a 200

ms pre-stimulus baseline.
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Experimental Design and Statistical Analysis

Statistical analyses were performed with R (Version 3.6.1. 7°) and the Fieldtrip
toolbox 7! for Matlab (Version 2016a). Trials with unsuccessful visual search or with reaction
times (RTs) shorter than 150 ms or longer than 3 SDs from individual participant’s means
were excluded from all analyses. In addition, trials with incorrect familiarity classification in
the perception task were excluded from RT and ERP analyses. RTs were log transformed to
approximate a normal distribution. Using the Ime4 package (Version 1.1-21 ), accuracy and
imagery success were analyzed with binomial generalized linear mixed models (GLMMs);
RTs and ERPs were analyzed with linear mixed models (LMMs) 7. LMM analyses included
random intercepts and (if supported) random slopes for subjects and object identity, allowing
for better generalization of results from the particular sample of participants and the set of
object pictures used here. P-values were computed using the ImerTest package 7. We applied
sliding difference contrasts that compare mean differences between adjacent factor levels.
When indicated, we reduced models by excluding non-significant interaction terms. Model
selection was performed using the anova function of the stats package in R. Along with the
results of the X>-Test, we compared fit indices, Akaike information criterion (AIC) and
Bayesian information criterion (BIC), that are smaller for better model fit considering the
number of parameters in each model. Behavioral data were analyzed using a nested model
with the factor knowledge (well-known, in-depth and minimal) nested within task (Imagery
and Perception).

To address knowledge effects on ERPs during imagery and perception, we tested a
priori hypotheses based on previous literature, that is, reduced P1 and enhanced N400
amplitudes with semantic knowledge in pre-specified regions of interest (ROIs). For the
analysis of P1 amplitude, we averaged amplitudes within 120 to 170 ms at PO7, PO3, PO4,
and POS (Pratt, 2011). The N400 was quantified as the mean amplitude between 300 and 500

ms at PO7, PO3, PO4, PO8, O1, Oz and O2 ?*?’. Single trial amplitudes aggregated within
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ROIs and time windows were submitted to LMMs with the factors visual condition
(perception, imagery and incomplete imagery) and knowledge (well-known, in-depth and
minimal) as fixed effects. We fitted random structures by omitting random slopes of
experimental conditions that explained zero variance, as determined by singular value
decomposition.

To track the time course of activation that specifically supports imagery, we compared
trials with attempted but incomplete imagery and trials with successful imagery. We also
compared imagery and perception directly. To this end, we calculated each participant’s
average ERP in the perception, successful imagery, and incomplete imagery condition across
all scalp electrodes in time windows from 0 to 540 ms. Group-level statistics were based on
paired-samples #-tests and corrected for multiple comparisons using cluster-based permutation
tests (CBPT) across time and electrodes. The cluster forming threshold was set to p = .05. We
report differences with corrected p-values < .025 as statistically significant.

Based on the hypothesis that imagery might be supported in particular by configural
visual processing, we looked at the N1 component. N1-amplitudes were compared in a
posterior ROI consisting of PO7, PO3, PO4, PO8, O1, Oz, and O2 *2. To adjust for latency
shifts (see Results), different time windows were used for the N1 component in perception
and imagery, centered around the grand mean peak latencies: For perception, we aggregated
over 170 — 210 ms and for imagery (both successful and incomplete) we aggregated over 210
— 250 ms. Frontal activity that coincided with the posterior N1 was analyzed in a ROI ¢
consisting of electrodes Fpl, Fpz, Fp2, AF3, AFz, AF4, F3, Fz, F4, FC1, FC2. Note that the
ERP pattern at frontal sites is the opposite of that at posterior sites, therefore, we observe a

frontal P1 coinciding with the posterior N1.
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