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Abstract

Motivation: Accurate prediction of liquid chromatographic retention times from small
molecule structures is useful for reducing experimental measurements and for improved
identification in targeted and untargeted MS. However, different experimental setups (e.g.
differences in columns, gradients, solvents, or stationary phase) have given rise to a
multitude of prediction models that only predict accurate retention times for a specific
experimental setup. In practice this typically results in the fitting of a new predictive model
for each specific type of setup, which is not only inefficient but also requires substantial prior

data to be accumulated on each such setup.

Results: Here we introduce the concept of generalized calibration, which is capable of the
straightforward mapping of retention time models between different experimental setups.
This concept builds on the database-controlled calibration approach implemented in
PredRet, and fits calibration curves on predicted retention times instead of only on observed
retention times. We show that this approach results in significantly higher accuracy of

elution peak prediction than is achieved by setup-specific models.
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Introduction

Mass spectrometry (MS) coupled to liquid chromatography (LC) is a key method for high-
throughput analysis of the metabolome. The LC-based separation, which separates
analytes based on their broader physicochemical properties, is carried out before the MS
analysis, and ensures that only a fraction of the analytes compete for ionization over time,
leading to less isobaric analytes being captured in the same fragmentation spectrum. LC
separation thus enables more sensitive identification of low abundant analytes, as there
is less competition for ionization, and as isobaric analytes are more likely to result in
individual fragmentation spectra’-3. In addition to these benefits, the retention time (t5) of
an analyte provides complementary information to the mass-to-charge (m/z), as it derives
from a broader set of physiochemical properties of the analyte. This complementary
information can be especially beneficial in metabolomics where many of the analytes are

isobaric 4°.

Even though the retention time has been shown to be a useful component for the
identification of analytes 4617, the incorporation in identification software remains limited.
This is mainly due to the limited availability of retention time information in small molecule

libraries, which in turn is tied to the variance in retention time caused by specific LC setups

8,18,19

It would therefore be ideal to be able to predict observed retention times on a given LC
setup for all known small molecule structures in databases, which has resulted in
increasing interest in modeling chromatographic setups and associated retention times.
There are two main strategies to achieve this: retention time inference using observed
retention times for a given set of analytes on different experimental setups as anchors

4.20-22_ or predicting retention times from structure alone*%823, Because this first strategy


https://doi.org/10.1101/2020.01.14.905844
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.14.905844; this version posted January 14, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

relies on data from multiple setups for the same set of analytes, it requires that these
analytes have been consistently observed across setups, and is limited by the number of
different setups for which these analytes have been observed?*. The second strategy
finds the relation between structural features (e.g. quantitative structure-retention
relationships?®) and retention time using Machine Learning (ML) algorithms. Because of
their predictive nature, these models are not limited by prior observations of an analyte,
but rather by the availability of structures for the analytes of interest. However, this
limitation is strongly mitigated due to the availability of extensive databases of small

molecule structures 26-28,

As a result, such ML models have already been applied in non-targeted mass
spectrometry to improve identification rates. For example, predicted retention times were
used to halve the number of candidate isobaric lipids while retaining the majority of correct
identifications*. In addition to limiting the search space, retention time predictions have
also been used to decrease the number of false identifications for small molecules (< 400
Da)'!, natural products from Streptomyces'?, and sphingolipids?®. While these methods
are typically implemented down-stream of the identification process, an approach for the
direct incorporation of retention time predictions in the identification process proper has

also been developed?®.

Nevertheless, these structure-based prediction models usually remain tied to a specific
experimental setup, and perform very poorly for most other setups. This because
differences in LC setup will significantly influence the retention times of analytes in
complex ways, which results in non-transferable prediction models between setups. Even
though the elution order is often conserved when the same type of column is used, there
can still be dramatic variations in the retention times due to other differences in LC setup
(e.g. in the RIKEN and FEM_long data sets as used in PredRet'®). In practice, these

differences therefore typically result in the fitting of a new predictive model for each
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experimental setup, even when there are only seemingly small differences in the setup.
This in turn gave rise to a multitude of prediction models that only predict accurate

retention times for a specific setup®3°.

A possible solution is provided by calibration between experiments, but current
approaches for such calibration are mostly limited by matching observed retention times
of analytes between the originally modeled LC setup, and the new LC setup. Importantly,
however, this also means that generalization is lost, which means that accurate
predictions for the new setup are now limited to only those analytes that were observed
in the original setup. An example of this approach is PredRet'8, which calibrates retention
times between different experimental setups using Generalized Additive Models (GAM)3'.
In addition to calibration, an ML approach to predict the elution order of analytes has been
developed based on the conserved elution order for specific column types across different
LC setups®. However, the prediction of rank does not provide the same level of granularity
as the prediction of exact retention time, and also requires specialized methods to

incorporate in downstream analyses such as identification.

It can thus be clear that, despite very promising efforts to overcome the problem of across-
setup retention time prediction, the problem has not yet been fully solved. Indeed, ideally
we would be able to utilize the vast amount of data available in public repositories like

MetaboLights®? and MoNA (http://mona.fiehnlab. ucdavis.edu/) to predict the retention

time of any desired analyte on any kind of LC setup based on that analyte’s structure
alone. This is all the more interesting as the combination of data from across many
different experiments should provide more accurate predictions, and better generalization

across a wider range of small molecules®.

We here therefore combine the two approaches of calibration and of generalization

through ML to obtain a much more generic method to predict analyte retention times
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across LC setups based on structure alone. The result is our CALLC (CALibrate ALL LC)
method, which uses a generalized calibration approach based on the mapping of retention
time predictions between different LC setups. Interestingly, our approach also increases
the amount of available data that can be used to fit the model, which in turn increases the

predictive power of the model8-30:33,

Methods

Overview of CALLC

The objective of CALLC is to compute a retention time (tz) prediction model for a given
LC setup from a number of data sets that contain observed analytes’ retention times,
many of which can come from different LC setups. The goal of CALLC is therefore to
generalize and calibrate previously trained predictive models from different LC setups for
a specific LC setup. CALLC achieves this using three connected processing layers that

each have their own distinct function (Figure 1).

The first layer implements the predictive model training approach in which a machine
learning model is optimized for a specific LC setup (LC;), based on retention times
obtained on that setup (Set;). CALLC uses five distinct regression algorithms to fit this
model for the given LC setup. These five distinct algorithms are used because a priori
selection of the best performing algorithm is decidedly non-trivial, and because combining
multiple models actually improves prediction accuracy®C. After training specific models
(M;) for each specific LC setup (LC;), five tz predictions per analyte are derived from each

model M; for the specific data set (Set,) obtained on the LC setup of interest (LC,).

The second layer calibrates all of these predictions for Set, based on a similar approach

to that of PredRet'®. The key difference is that our approach uses predicted retention
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times instead of the observed retention times used in PredRet. The output of this second
layer therefore again consists of five t; predictions for each model M; per analyte in Set,,

but all these predictions have now been calibrated for setup LC,.

The third layer then linearly combines these calibrated t; predictions from Layer 2 into a

single predicted retention time per analyte. Each layer is described in more detail below.

Layer 1 Layer 2 Layer 3

S— Feature Regression | I *
extraction ’—_’| models (5) | Calibration N

o) N
— " -
Feature ,| Regression | o Calibration | :I quea r ‘__»

extraction models (5) J1] | combination

Feature [ Regression ||| Calibration i//
[ Set, | extraction | models (5)

Figure 1: CALLC workflow using multiple models originating from different experimental
setups. Each numbered data set derives from a given LC setup. For each data set,
structural features for every molecule, and five setup-specific regression models are then
trained in Layer 1. Predictions for the data set of interest (set,) from Layer 1 are then
calibrated to the setup of interest (LC,) in Layer 2, and these calibrated predictions are

then combined linearly in Layer 3 to yield a single predicted retention time per analyte.

LC setup specific data sets

A total of 42 experimental data sets containing a grand total of 4633 analytes from different
experimental setups and labs were compiled from MoNA

(http://mona.fiehnlab.ucdavis.edu/), PredRet'®, and Aicheler*. After filtering duplicate

analytes based on their InChl key a total of 2454 unique analytes remained across these
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42 data sets. This compiled data set contains molecules with diverse molecular weights
(from 44.078 Da to 2406.648 Da) and structures (from acetamides to lipids). Various data

set properties, and their respective LC column types, are available in Tables S-1 — S-3.

Features

RDKitis used to convert each InChl to numerical representations of the structure in what
is called a feature vector®*. A total of 196 features were calculated, which were filtered
down to 157 features based on the requirement that each feature should have a standard
deviation across analytes higher than 0.01, and squared Pearson correlation between
features lower than 0.96. The original 196 features are listed in Table S-4, and the 157

filtered features are given in Table S-5.

Layer 1

The first layer was trained using five machine learning algorithms: XGBoost3® (GB),
Support Vector Regression® (SVR), Least Absolute Shrinkage and Selection Operator3’
(LASSO), Adaptive Boosting® (AB), and Bayesian Ridge Regression®® (BRR). Every data
set from Table S-1 was used to create its own set of five models. This yielded a total of
210 models for the 42 data sets. A ten-fold Cross-Validation (CV) with 25 randomly
sampled hyperparameter sets was used for model optimization (see Code Listing S-1),
because randomly selecting hyperparameters has been shown to require fewer iterations
for optimization*?. The hyperparameter set with the lowest Mean Absolute Error was used

for training the model.

To calibrate predictions from an original LC setup to a new LC setup, CALLC needs
training molecules with known tj for the new setup (just as with PredRet'®). These training
molecules will be referred to as the calibration analytes. First, these calibration analytes
are used to train five specific models for the LC setup of interest, and these models are

added to the pool of pre-trained models from different LC setups. Second, predictions are
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made for the calibration analytes using all models in the pool. These predictions are made
with the same cross-validation scheme that was defined for the hyperparameter
optimization, which means that these calibration predictions are independent from the
learned model parameters or hyperparameters. These predictions are then used as input

for the second layer.

Layer 2

The second layer takes the various predictions for the calibration analytes from Layer 1
to fit a calibration curve that maps between the retention time predictions and
observations. The calibration curve for the five newly trained models that were originally
based on the calibration analytes constitutes the trivial case, and is therefore expected to
be linear and have a slope of 1 and intercept of 0. In contrast, calibration curves for the
other pre-trained models are expected to have a wide range of shapes: linear, sigmoidal,

or even more complex functions.

These calibration curves are fitted using a Generalized Additive Models (GAMs) that uses
thin plate splines from the R-package mgcv*'. The GAM is able to fit a wide range of
functions due to its additive nature, and is fitted for every model from Layer 1 individually.
The dimensions of the smoothing term are set to one degree of freedom (k — 1), while all

other hyperparameters are kept at default values.

The cross-validation scheme from Layer 1 is re-used to obtain predictions for the
calibration analytes to avoid information leakage between the folds of the CV. The
resulting calibrated predictions for the calibration analytes are subsequently blended in

Layer 3.
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Layer 3

The calibrated predictions from Layer 2 are here blended in a single prediction per
calibration analyte using an elastic net*?. This elastic net model is used to get a
regularized linear combination of calibrated predictions that originate from different

experimental setups and algorithms for the same analyte.

Model evaluation

The CALLC architecture is evaluated using two analyses; layer performance and existing
model comparison. The layer performance evaluation is repeated twice, once including
duplicate analyte structures between data sets, and once with duplicate structures
removed. This second evaluation tests whether differences in performance are solely due
to the presence of duplicate structures. Interestingly, PredRet or similar calibration
approaches would not be able to create a model without duplicate analytes across data

sets.

The layers are evaluated with learning curves and a ten-fold CV strategy. The CV strategy
is performed on two levels. On the first level, one fold is separated from the fitting
procedure, with training in all layers based on the nine remaining folds. The separated
fold, which is independent from parameter or hyperparameter optimization in any of the
layers, is then used for final evaluation purposes across the three layers. Data sets are

excluded from evaluation if they contain less than twenty analytes.

The learning curves use an increasing number of calibration analytes for training, with this
number ranging from 20 to 100 in steps of 20 calibration analytes. The calibration analytes
for each step are randomly sampled, and the remaining analytes are used for evaluation
purposes. The whole procedure for each data set is repeated five times with different sets
of calibration analytes. A data set is excluded from steps in the learning curve if less than

ten analytes remain after selecting the calibration analytes. Importantly, each evaluation
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for the learning curve is based on a subset of the data that was not used in parameter or

hyperparameter optimization in any of the layers.

The predicted retention times are evaluated between predicted and observed {r using the
Relative Mean Absolute Error (RMAE) and Pearson correlation (R) metrics. The MAE is
made relative for each data set by dividing by the fr of the last observed analyte. For
evaluation of the layers, models from Layer 1 and Layer 2 are chosen to represent the
layers based on the highest R or lowest RMAE on the training set CV. The exact metric

is selected by matching it with the visualization metric for the test set.

The external comparison is made between Layer 3 of CALLC and the reported
performance from the Aicheler et al. SVR model*. Overlapping structures across data sets

are allowed for CALLC.

Data availability and study reproducibility
Scikit-learn*® V0.20.0, XGBoost*® V0.9, RDKit* V2019.09.1 and Pandas* V0.25.3

libraries for Python V3.6 were used. The library mgcv4' V1.8-31 was used for R V3.5.1.
The code used to generate the regression models and make predictions and figures is

available at:

https://github.com/RobbinBouwmeester/CALLC evaluation

In addition to the code required to reproduce the research presented, CALLC has a user-

friendly Graphical User Interface (Figure S-1) that is available at:

https://github.com/RobbinBouwmeester/CALLC
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Results

Layer 1

The CALLC architecture consists of three connected layers (Figure 1). The first layer
(Layer 1) uses a similar approach to fitting a conventional setup-specific tr prediction
model. The performance of each Layer 1 algorithm for different numbers of calibration
analytes is shown in Figure 2. In this comparison a representative model of Layer 1 is
selected by choosing the learning algorithm with the best CV performance (labeled as

Layer 1 in the figure).

This comparison clearly shows that using more training analytes leads to higher
performance, and as we have observed before3°, there is not one algorithm that always
outperforms the others. Instead of selecting a single learning algorithm, the best

performing model is therefore used in further comparisons of the layers in CALLC.

There is no difference in performance between the two different analyses (with duplicate
analytes between data sets and without duplicate analytes). For completeness, the same
evaluation is repeated with the RMAE as the metric (Figure S-2), yielding identical

conclusions.
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Figure 2: Comparison of different regression models in Layer 1 and the model predictions
that were selected based on the CV performance (labeled as Layer 1). The evaluation
metric is the Pearson correlation and the red dot shows the mean value of this metric.
The left panel consists of 34 data sets that have shared analyte structures between data
sets. The right panel consists of 21 data sets that do not share any analyte structures

between data sets.

Layer 2

In the second layer (Layer 2) a GAM is used to calibrate the predictions from Layer 1 for
the experimental setup that is being evaluated. A GAM was chosen based on its relative
simplicity and robustness to overfitting. Furthermore, a GAM is a suitable algorithm
because a significant proportion of experimental setups have a conserved elution order,
meaning that the calibration curve must be able to fit monotonal increasing or decreasing
calibration curves. The capability of a GAM to fit complex calibration curves is shown in

Figure 3 where the gradient profile of the solvents is different.

The performance of the mapping mainly depends on the accuracy of predictions from

Layer 1. Figure S-3 shows a less successful mapping due to inaccurate predictions from
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Layer 1. These kinds of inaccurate predictions, which remain inaccurate after calibration,
do not contribute to an improvement of the prediction accuracy. In the third and last layer
the calibrated predictions from Layer 2 are combined into a single prediction per analyte,
but in such a way that inaccurate (calibrated) predictions are likely to be ignored in this

combination.

Experimental retention time (s)
100 150 200 250 300 350
] ] ] ] ] |

50

Spearman correlation: 0.972
I I I I I
50 100 150 200 250

Predicted retention time (s)

Figure 3: Example of a GAM model that is used to calibrate predictions from a model
based on the ‘LIFE _old’ data set to the ‘LIFE_new’ data set. Black points show predictions
used for fitting the calibration curve, while red points are part of the test set. The shaded

grey area is the standard deviation of the fit.
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Layer 3

After calibration in Layer 2, the final layer (Layer 3) of the model blends the predictions
from different data sets and algorithms for a more accurate prediction. The learning
algorithm in Layer 3 should be able to handle the sparsity in (accurate) predictions from
Layer 2 to make accurate predictions, because a large proportion of calibrated predictions
are not useful for achieving a higher performance (e.g. Figure S-3). An elastic net can do
this because it blends predictions without overtraining due to regularization, and because
of its relative simplicity of the trained linear model. An additional advantage of the elastic
net is that the fitted coefficients, and the contribution of each model from the previous

layers can be interpreted with relative ease.

Layer evaluation

In this section, the performance of each layer is evaluated. The performance of Layer 1 is
based on the best performing model from Layer 1. Performance of this layer is determined
by the model and data for the specific data set. The performance of Layer 2 is based on
the best CV performing model from Layer 1 after calibration. Performance of this layer is
determined by a single calibrated model selected from several data sets. Finally, for Layer
3 no selection of models needs to be made, because a linear combination of all calibrated
predictions is used. This also means that performance from Layer 3 is not determined by

single data sets or learning algorithms.

A significant difference in performance can be observed for the different layers in the
learning curves (Figure 4). For both analyses, with duplicate analytes between data sets
and without duplicate analytes, Layer 3 achieves the highest performance for all the
different number of calibration analytes. This is particularly noticeable for low numbers of
calibration analytes (below 60). In addition, Layer 2 outperforms Layer 1, especially when
duplicate analytes are allowed across the data sets. This is unsurprising, because those

analytes have been observed before and are therefore relatively easy to predict after
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calibration as shown before by PredRet'®. However, when no overlapping analytes
between data sets are available, calibration of predictions can still improve predictions.
And even when there is no overlap in analyte structures the performance is increased by
further combining these calibrated predictions in Layer 3. For completeness, the same
evaluation is performed with the RMEA as a metric (Figure S-4), yielding the same

conclusions.

Duplicate analytes Unique analyte structures

0.75 0.75

0.50

Pearson correlation
Pearson correlation
o
@

g

0.25 0.25

B3 Layer 1 B3 Layer 1
Layer 2 Layer 2

E3 Lay E3 Lay

B8 Layer 3 BE Layer 3

20 40 60 80 100 20 40

60 80 100
Number of calibration analytes Number of calibration analytes

Figure 4: Performance comparison between the different layers using the Pearson
correlation between predicted and experimental tr. In the left panel duplicated molecules
are allowed for 34 data sets, while in the right panel duplicate molecules are removed for

21 data sets. The red dot shows the mean value.

An analysis with a ten-fold CV was used to show individual performance on the data sets
(Figure 5). In this analysis, 16 out of the 40 data sets achieve an easily observable higher
performance in Layer 3 predictions compared to Layer 1 predictions. Only a slightly better
performance can be observed for 17 out of 40 data sets, and a slightly worse performance

was observed for seven data sets.
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Comparisons between Layer 1 and Layer 2 show that performance differences here are
smaller (Figure S-5). Ten data sets achieve an easily observable higher performance for
Layer 2, while the remaining data sets perform on par with Layer 1. For the comparison
between Layer 2 and Layer 3, almost all data sets had better or equal performance,

except for two data sets that performed worse (Figure S-6).

For the analysis without duplicate structures between data sets the same observations
are made (Figures S-7 — S-9). However, as expected, the difference in performance

between Layer 1 and Layer 2 is smaller here due to the absence of overlapping analytes.

When the results from Figure 5 are analyzed in more detail, it becomes clear why certain
data sets show no improvement in Layer 3 over Layer 1 (Figures S-10 — S-13).
Specifically, for the Krauss set, none of the layers show any real ability to predict analyte
retention times. For MTBLS4 and MTBLS17, their small data set sizes (less than 40
analytes) can potentially explain the worse performance. Cao_HILIC is only providing
worse predictions for analytes that are non-retained (or at least that elude very early),

because prediction performance of Layer 3 is higher for longer retained analytes.

We can thus show that using several learning algorithms and incorporating more data
increases the accuracy of retention time prediction for CALLC. Moreover, every layer in
CALLC has its own distinct function, and all are critical to obtaining the highest possible
performance. Importantly, these results show that overlap in analyte structures is not
required to improve performance, and that the concept of generalized calibrations works

well even when there is no overlap in structures between the data sets.
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Figure 5: CV performance evaluation between Layer 1 and Layer 3 on 40 data sets, where
shared analytes structures between data sets are allowed. The evaluation metric is the
Pearson correlation between predicted and observed retention times. The left panel
shows the achieved correlation for each data set in both layers, where the dotted line
indicates the position where both layers perform equally. The right panel shows the
difference in the Pearson correlation between the layers. Positive values mean that Layer
3 had a higher correlation than Layer 1, with the height of the bar showing the magnitude
of the difference between the correlation values. Negative values show a higher

correlation in Layer 1 than Layer 3.

Layer 3 coefficient interpretation

One of the advantages of using an elastic net in Layer 3 is the relative ease of
interpretation. These coefficients can be used to determine which prediction sets, from a
specific learning algorithm and data set, are the most predictive for the data set of interest.
These elastic net coefficients show only a slight clustering between used models (Figures
S-14 and S-15), and, importantly, that Layer 3 used a large variety of models to generate

predictions for a data set.
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Comparison with the Aicheler model

To obtain an external evaluation of CALLC, a comparison is made with the SVR-based
predictor from Aicheler et al.# (Figure 6). This shows the added value of CALLC compared
to existing strategies. In this comparison, CALLC demonstrates an average improvement
of about 1.5 times for the MAE. Even when the procedure is repeated twenty times for
each step, each time using different calibration analytes there are only two of the 340
rounds that perform worse than the MAE reported by Aicheler et al. While the difference
between the models becomes smaller for large numbers of calibration analytes, CALLC

performance remains significantly better.

40

30
1
]

Aicheler model (SVR)

T \ CALLC (Layer 3)

MAE (s)

20
1

10

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
Training analytes
Figure 6: Performance comparison between an external tr prediction model and this
model. For CALLC the data sets contained duplicate structures across data sets. Error
bars for different numbers of initial training instances are only shown for CALLC, while

only average performance for the Aicheler et al. model could be obtained.
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Discussion

Retention time prediction has still not been used to its fullest potential in LC-MS, mainly
because it is difficult to port predictions to different LC setups. To boost the use of
retention time prediction, we here therefore introduced CALLC, which uses the concept of
generalized calibrations for a more flexible application of retention time prediction and
accurate predictions across LC setups. CALLC selects the most predictive molecular
features, the most appropriate machine learning algorithms, and combines all information
from individual pre-trained models. We show that using multiple data sets instead of a
single data set improves prediction accuracy. Internal validation showed a significant
increase in the performance of our approach, regardless of whether duplicated molecules
were included (Figure 4 and 5). Moreover, external validation also shows a significant

improvement in tr prediction accuracy (Figure 6).

Of note, our strategy is adaptive because of its layered design. When a new data set is
added, the model does not need to be retrained entirely. Indeed, a new model is only
trained in Layer 1 for the added data set. Layer 2 and Layer 3 are then very fast to retrain
due to the single feature used in the calibration, and the inherent simplicity of the elastic
net, respectively. The chosen learning algorithms or calibration method can also be
swapped out to make the overall approach more suitable for any specific problems the

researcher might be facing.

CALLC is also made freely available online as a software tool, which includes a Graphical

User Interface to allow researchers to apply CALLC on their own data.
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