

1 **Title Page**

2 **Integrating Lung Tissue and Lavage Proteomes Reveals Unique Pathways in Allergen-**

3 **Challenged Mice**

4

5 Thomas H Mahood^{1,2,3,6}, Christopher D Pascoe^{1,2,3,6}, Aruni Jha^{1,2,3,6}, Sujata Basu^{1,2,3,6}, Peyman

6 Ezzati⁴, Victor Spicer⁴, Neeloffer Mookherjee^{2,3,4,5,6}, Andrew J Halayko^{1,2,3,6}

7

8 ¹*Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, Manitoba,*

9 *R3E 0J9, Canada*

10 ²*DEVOTION Network, Winnipeg, Manitoba, Canada*

11 ³*Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg,*

12 *Manitoba, R3E 3P4, Canada*

13 ⁴*Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine,*

14 *University of Manitoba, University of Manitoba, Winnipeg, Manitoba, R3E 3P4, Canada*

15 ⁵*Department of Immunology, University of Manitoba, Winnipeg, Manitoba, R3E 0T5, Canada*

16 ⁶*on behalf of the Canadian Respiratory Research Network,*

17 *<http://respiratoryresearchnetwork.ca/>, Ottawa, Ontario, Canada*

18

19 **Running Title:** Lung Tissue and Lavage Proteome

20

21 **Abstract**

22 Independent proteomic analysis do not capture the biological interactions between the tissue and
23 extracellular biological compartments when examined in isolation. To address this, we analyzed
24 and compared the proteome from lung tissue and from bronchoalveolar lavage fluid (BALF) of
25 individual allergen-naïve and allergen-challenged BALB/c mice, a common pre-clinical model
26 of allergic asthma. Collectively, we quantified 2,695 proteins from both tissue and BALF of
27 allergen-naïve and -exposed mice. We created an integrated dataset to examine tissue-BALF
28 proteome interactions. Multivariate analysis identified this Integrated-Tissue-BALF (ITB)
29 dataset as being distinct from either the lung tissue or the BALF dataset. Pathway and network
30 analysis of the ITB dataset uncovered protein hubs that span both the tissue and BALF, but are
31 not significantly enriched in either sample dataset alone. This work reveals that by combining
32 individual datasets provides insight about protein networks that integrate biology in lung tissue
33 and the airway space in response to allergen challenge.

34

35 **Keywords:** bronchoalveolar lavage / asthma / bioinformatics / allergen / proteomics

36

37 **Introduction**

38 At the organ level, the biological underpinnings of chronic inflammatory disease involves
39 complex molecular interplay between local structural cells, recruited cells and the extracellular
40 mediators that they each release. Such is the case for asthma, a chronic disorder of the airways
41 that requires new therapies to fully control steroid-resistant inflammation. Mice challenged with
42 allergen are a mainstay for pre-clinical asthma research. A common approach is to use house
43 dust mite (HDM) as an aeroallergen as it is clinically relevant to human disease, and represents a
44 complex stimulus that includes multiple immunogens and stressors, including fungal spores,
45 bacterial endotoxins, lipid-binding proteins and proteases (Calderón *et al.* 2015; Choopong *et al.*
46 2016). Repeated HDM challenge induces pathophysiologic symptoms that are hallmarks of
47 human asthma (Jha *et al.* 2018), however the scope and complexity of the interplay between lung
48 cells, recruited inflammatory cells, extracellular mediators of autocrine and paracrine
49 significance, and the integrated signaling pathways that lead to pathobiology and can determine
50 the efficacy of pre-clinical asthma therapeutics, has not been refined as a systems biology model.

51 To understand complex and integrated disease mechanisms, a number of omics
52 technologies have been employed, including proteomics. Some studies examine the proteome of
53 individual biological compartments, including airway spaces - collected as bronchoalveolar
54 lavage fluid (BALF) or sputum - and lung tissue from asthmatic patients and murine models of
55 the disease (Wu *et al.* 2005; O'Neil *et al.* 2011; Burg *et al.* 2018). These studies have been
56 important for endotyping patients and animal models, identifying biomarkers of disease and
57 providing direction for new therapeutic strategies. However, analysis of these biological
58 compartments in isolation does not enable identification of integrated molecular networks that
59 that are critical for disease expression. Thus, despite some advances in identifying extracellular
60 biomarkers or tissue response networks, understanding the molecular systems that are affected
61 by the interaction between secreted proteins in the lung and the pathways that are regulated in the

62 resident cells of the lung tissue has not been fully established.

63 To address this, we used unbiased proteomic analysis to establish a molecular signature

64 in the lung through integrated analysis of matched lung tissue and BALF, and comparing

65 allergen-naïve and HDM-challenged mice. We found that inhaled HDM challenge induces

66 relatively distinct proteome signatures in lung tissue and BALF. Using a bioinformatic approach,

67 we developed an Integrated-Tissue-BALF (ITB) proteome that uncovers signaling networks that

68 are not evident from proteomic datasets of lung tissue and BALF individually.

69

70 **Results**

71 ***Lung function & differential cell count analysis***

72 For all mice, we characterized hallmark pathophysiological features that developed as a

73 result of repeated HDM challenge for two weeks in 6-8-week-old female BALB/c mice. We

74 performed lung function and differential immune cell count analyses to assess the phenotype of

75 individual animals (Supplemental Figure S1). HDM challenge resulted in features that are

76 consistent with human asthma, including increased methacholine-induced airway resistance

77 (adjusted p-value, $p.\text{adj} \leq 0.001$), tissue elastance ($p.\text{adj} \leq 0.001$) and tissue resistance ($p.\text{adj} \leq$

78 0.001) at 50 mg/mL methacholine (two-way nested ANOVA with Tukey's multiple comparison

79 and FDR correction, $n = 6$) (Supplemental Figure S2A). Differential counting of BALF immune

80 cells revealed that HDM challenge triggered their accumulation, including eosinophils and

81 neutrophils (Supplemental Figure S2B).

82

83 ***Lung tissue, BALF and Integrated-Tissue-BALF proteomes have distinct profiles***

84 In total, our proteomic analysis of lung tissue and BALF samples across all mice, yielded

85 2695 protein identifications (IDs). We obtained 1595 ± 155 protein IDs from lung tissue and 581 ± 201 (mean \pm SD) protein ID's from BALF (Supplemental Figure S3A,B).

87 HDM exposure increased the absolute number of proteins in the lung tissue by 16 %
88 (357), and by 53 % (621) in the BALF. The relative proportion of protein ID's that are unique to
89 tissue decreased from 78.4 % to 61.4 % after HDM exposure. In contrast, the proportion of
90 unique BALF proteins was relatively unchanged by HDM challenge (29.0 % and 28.2 %,
91 respectively). The relative proportion of protein ID's that are shared between the BALF and lung
92 tissue increased from 19.7 % to 33.47 % after HDM exposure (Figure 1A).

93 To confirm that secreted proteins are enriched in BALF, we characterized the protein
94 ID's using Uniprot annotation keywords. Of the proteins that could be annotated as "secreted"
95 we found that 29 % and 81 % of the protein ID's were classified as tissue and BALF
96 respectively. Therefore, the BALF is enriched in secreted proteins by 279 %, compared to lung
97 tissue. Of the proteins that could be annotated as "transmembrane" we found that 71 % of
98 proteins were associated with the lung tissue proteome, compared to only 19 % of BALF
99 proteins. Therefore, the tissue is enriched in cell-associated proteins by approximately 373 %,
100 compared to BALF.

101 Using the normalized log2 protein expression values, we calculated z-scores (on a
102 sample-by-sample basis) to assess the relative contribution of protein signatures from the tissue
103 or BALF on a common scale. Once calculated for each sample, z-scores for HDM exposure were
104 corrected by subtracting each sample by the mean z-score of the naïve samples. To assess the
105 integrated biological contribution of BALF and tissue proteomes from HDM challenged mice, z-
106 scores from individual datasets were summed. This Integrated-Tissue-BALF (ITB) dataset
107 includes 2,695 protein IDs.

108 To investigate if the proteome from lung tissue, BALF and ITB datasets are distinct we
109 performed Partial Least Squares Discriminant Analysis (PLSDA). Figure 1B shows that the
110 individual 95 % confidence interval ellipse for lung tissue, BALF and ITB proteome are
111 segregate. Variance Importance in Projection (VIP) scoring identified the proteins that are the

112 most significant discriminators of the three datasets. We identified 30 targets that had a VIP
113 score ≥ 2.37 . Of these, eight proteins (Rab1a, Fn1, Sftpa1, Clic4, Npepps, Iqgap1, Flna, Actr3)
114 comprised a group with the highest VIP scores, positioned above a natural inflection point set by
115 Actr3 (VIP = 2.64) (Figure 1C). We used matched lung tissue and BALF from individual mice,
116 thus we were not only able to discriminate proteins that were changed after HDM challenge, but
117 also detected those that were enriched or diminished specifically in BALF or lung tissue. For
118 example, the VIP Score projection plot (Figure 1C) reveals that fibronectin-1 (Fn1) was
119 diminished in tissue (z-score -0.816), enriched in BALF (z-score 0.91), and appeared to be
120 unchanged if considered in the ITB proteome (z-score 0.093). This suggests that the change in
121 protein abundance in one biological compartment, may be a reflection of change in another
122 compartment.

123

124 ***Unique and significantly enriched proteins from tissue, BALF and ITB proteomes***

125 We identified 1,818 proteins unique to lung tissue and BALF datasets across both the
126 HDM challenged and allergen-naïve mice. These are revealed in Figure 2 by plotting individual
127 protein z-scores (assigning a z-score of -4 for any absent value) from the naïve and HDM
128 treatments across the lung tissue, BALF, and ITB datasets. This approach classified proteins in
129 lung tissue, BALF, and ITB datasets as being: 1) unique to HDM-challenge (located along y-axis
130 of figure inserts in panels 2A-C); 2) unique to allergen-naïve (located along the x-axis of figure
131 inserts in panels 2A-C); or, 3) common to HDM-challenged and allergen-naïve mice (located
132 within the ellipse regions of figure inserts in panels 2A-C). Of the proteins that are unique to
133 HDM exposed mice, we detected 529 in lung tissue, 654 in BALF, and 699 in the ITB dataset.
134 For the proteins identified only in allergen-naïve mice, 174 existed in lung tissue, 34 in BALF,
135 and 171 in the ITB dataset. Of the proteins that were common in samples from HDM challenged
136 and allergen-naïve mice, we detected 1671 in tissue, 534 in BALF, and 1825 in the ITB dataset.

137 Using a statistical analysis of microarrays (SAM) workflow on the proteins that were
138 common to samples from allergen-naïve and HDM-challenged mice, we identified those proteins
139 that were significantly enriched or diminished in tissue (124 enriched; 134 diminished), BALF
140 (92 enriched; 56 diminished), and the ITB dataset (51 enriched; 35 diminished). These proteins
141 are highlighted in the volcano plots depicted in Figure 2A-2C. Of these differentially regulated
142 proteins, a number were uniquely affected in lung tissue or BALF, while only a small number
143 emerged as being differentially regulated exclusively in the ITB dataset.

144 To identify proteins that are common in the lung tissue and BALF proteomes, but
145 differentially regulated in each dataset by HDM exposure, we plotted the average BALF z-score
146 versus the average lung tissue z-score for each protein (Figure 2D). Of 27 proteins *enriched in*
147 *tissue, but diminished in the BALF proteome*, 10 were confirmed to be significantly enriched
148 (Benjamini-Hochberg multiple comparison correction; Limma R package, $p.\text{adj} \leq 0.05$) (Table
149 1). Reactome pathway analysis using the 10 most significantly enriched proteins, identified
150 glutathione synthase deficiency as the most significantly enriched pathway ($p.\text{adj} = 6.43 \times 10^{-4}$),
151 (Figure 2E). Of the 200 proteins *enriched in BALF but diminished in the lung tissue proteome*,
152 141 were confirmed to be significantly enriched (Benjamini-Hochberg multiple comparison
153 correction; Limma R package, $p.\text{adj} \leq 0.05$) (Table 2). InnateDB pathway analysis from these
154 141 proteins identified platelet degranulation as the most significantly enriched pathway ($p.\text{adj} =$
155 8.17×10^{-11}) (Figure 2F).

156

157 ***Unique biological processes induced by allergen challenge in tissue, BALF and ITB***

158 Using InnateDB we identified biological responses that are significantly altered by HDM
159 challenge as represented in the lung tissue, BALF, and ITB datasets (Figure 3). In the lung tissue
160 proteome a number of dataset-unique processes were induced. The top five statistically
161 significant processes were: small molecule metabolism ($p.\text{adj} = 1.04 \times 10^{-10}$); antigen processing

162 and presentation ($p.\text{adj} = 2.19 \times 10^{-9}$); activation of PKC ($p.\text{adj} = 5.82 \times 10^{-7}$); activation of the
163 adaptive immune system ($p.\text{adj} = 6.57 \times 10^{-7}$); and, platelet degranulation ($p.\text{adj} = 9.50 \times 10^{-7}$)
164 (Figure 3A).

165 In BALF several dataset-unique biological processes were also evident, with the top five
166 responses being: cell cycle arrestment through degradation of Cyclin D ($p.\text{adj} = 5.39 \times 10^{-21}$);
167 dysfunctional binding of β -catenin through altered AMER1 and APC ($p.\text{adj} = 6.07 \times 10^{-21}$);
168 altered WNT signaling through TCF7L2 frameshift mutations ($p.\text{adj} = 6.07 \times 10^{-21}$); and, GSK3
169 stabilization and nuclear localization through β -catenin mutations ($p.\text{adj} = 6.07 \times 10^{-21}$) (Figure
170 3B).

171 In the ITB dataset we identified 19 pathways for which tissue was the major contributing
172 factor (Figure 3C). The top 3 most significant pathways included, trafficking and processing of
173 endosomal TLR ($p.\text{adj} = 1.43 \times 10^{-4}$), antigen processing and presentation ($p.\text{adj} = 4.85 \times 10^{-4}$),
174 and cross-presentation of particulate exogenous antigens (phagosomes) ($p.\text{adj} = 4.97 \times 10^{-4}$). We
175 also identified 6 pathways for which BALF was the major contributing factor in the ITB
176 proteome ($p.\text{adj} \leq 0.05$) (Figure 3D), with the top three being antigen processing (ubiquitination
177 & proteasome degradation, $p.\text{adj} = 2.22 \times 10^{-13}$), recycling pathway of L1 ($p.\text{adj} = 3.14 \times 10^{-7}$),
178 and post-chaperonin tubulin folding pathway ($p.\text{adj} = 2.35 \times 10^{-5}$).

179 We identified 11 pathways that were only significantly enriched after the proteome
180 datasets from the lung tissue and BALF were integrated, thus were unique to the ITB dataset
181 ($p.\text{adj} \leq 0.05$) (Figure 3E). The top processes included: endosomal transport (ESCRT) ($p.\text{adj} =$
182 0.0217); phospholipid metabolism ($p.\text{adj} = 0.0332$); glycerophospholipid metabolism ($p.\text{adj} =$
183 0.0334); synthesis of IP3 and IP4 in the cytosol ($p.\text{adj} = 0.0352$); and, degradation of the ECM
184 ($p.\text{adj} = 0.0353$).

185

186 ***Disparate protein-protein interactions in BALF and tissue datasets***

187 The underpinnings of the biological processes affected by allergen challenge in lung
188 tissue and BALF proteome datasets lies in the protein interaction hubs and networks that are
189 engaged. To decipher these pathways we used NetworkAnalyst and identified the most
190 significantly induced networks, based on the number of first order protein-protein interactions,
191 but independent of the fold-change in abundance of individual proteins. We extracted the top 3
192 protein-protein interaction hubs in the individual datasets for the lung tissue and BALF datasets
193 (Figure 4). In lung tissue, the top three protein interaction hubs were for Hdac1, Ctnnb1 and
194 Smarca4 (Figure 4A). Collectively, these lung tissue protein interaction hubs create a network
195 associated with adherens junctions interactions ($p.\text{adj} = 7.44 \times 10^{-5}$). In the BALF dataset, the top
196 three first order interaction hubs were Akt1, Dnm1 and Csf1r (Figure 4B). The biological
197 pathways associated with these interaction hubs were distinct from those of lung tissue proteome.
198 The resulting network formed from these three BALF hubs was associated with immune system
199 pathways ($p.\text{adj} = 2.00 \times 10^{-14}$).

200 To assess the impact of integrating the lung tissue and BALF datasets on the top three
201 pathways predicted from each dataset individually, we reassessed the degree of networking for
202 each of these six hubs in the ITB dataset (Figure 4C). Dataset integration increased the average
203 number of first order protein-protein interactions by 2.83 per hub (a 7.7 % increase). For the top
204 interaction nodes first identified in the lung tissue dataset alone (Figure 4A), the biological
205 pathways associated to each protein hub were unchanged in the ITB dataset (Figure 4C).
206 However, for the most significant interaction hubs first identified in the BALF dataset alone
207 (Akt1, Dnm1 and Csf1) (Figure 4B), the increased number and diversity of protein-protein
208 interactions created in the ITB dataset changed the biological process predicted from “immune
209 response” to “adaptive immune system pathways” ($p.\text{adj} = 9.70 \times 10^{-13}$). Finally, for the ITB
210 dataset, “developmental biology” ($p.\text{adj} = 1.49 \times 10^{-13}$) emerged as the most significantly
211 associated biological pathway when we assessed the integration of the six interaction hubs

212 identified in lung tissue and BALF proteomes individually. These data demonstrate the diversity
213 of insight that can be obtained from individual biological compartments of the lung, and from an
214 ITB dataset that includes both components.

215

216 ***Protein-protein interaction enrichment in the Integrated-Tissue-BALF dataset***

217 We catalogued the new interactions that emerge in the ITB dataset to explore how
218 unifying lung tissue and BALF datasets affects the scope of the predicted protein-protein
219 interactions (Table 3A and 3B). For this purpose, we developed a combined dataset that included
220 1,346 proteins unique to the lung tissue, and 333 proteins unique to the BALF proteome after
221 HDM challenge. In total this comprised 1,679 proteins and is hereafter called the “Unique-to-
222 Combined” (UtC) dataset. The UtC dataset is distinct from the ITB dataset as it *excludes* the 845
223 proteins that we identified in both lung tissue and BALF. This enables more direct critical
224 assessment of the potential integration of networks between compartments. We limited our
225 analysis of protein hubs that had at least five first order interactions in the UtC dataset, and
226 assessed the number of new first order interactions that emerged for lung tissue- or BALF-
227 specific proteins.

228 First order interactions specifically identified for BALF-specific proteins were enriched
229 $42.1 \pm 21.8\%$ (range of 12-85%) in the UtC dataset (Table 3A), whereas protein hubs identified
230 from the lung tissue-specific proteome were only enriched $20.4 \pm 5.8\%$ (range of 14-33%) (Table
231 3B). To more clearly decipher the impact of combining unique to-lung tissue or -BALF proteins
232 we determined first order protein interaction networks in the UtC dataset using the Reactome
233 module within NetworkAnalyst. To streamline our analysis, we specifically examined the effects
234 on networks developed from the top three protein hubs that emerged from unique to-lung tissue
235 data, and top four unique-to-BALF dataset (the 3rd and 4th ranked hubs had identical enrichment
236 scores).

237 For hubs involving lung tissue-unique proteins, Hgs, Arhgef7 and Akap8 were most
238 enriched by integrating BALF proteins (Figure 5A), however there was limited interaction
239 evident between individual hubs. The network of these three interaction hubs identified
240 “signaling by interleukins” (p.adj = 1.49 x10⁻¹³) as the most significantly associated biological
241 process. For hubs formed by unique-to-BALF proteins, all hubs were interconnected, for
242 example, two independent connections were evident between Casp7 and Spp1 (Figure 5B). The
243 network formed by the four BALF-unique proteins (Dnm1, Tceb1, Spp1 and Casp7) identified
244 “axon guidance” (p.adj = 0.0224) as the most significantly associated biological process.

245 To further assess the impact of integrating unique-to-lung tissue and -BALF proteins in
246 the UtC, we reassessed the degree of networking for each hubs formed by lung tissue- and
247 BALF-unique proteins (Figure 5C). In the UtC dataset we identified a large number of new
248 connections between individual proteins and between protein hubs, highlighting the strong
249 potential for protein-protein interactions between the lung tissue and BALF compartments. The
250 resulting increased number of protein-protein interactions at these hubs in the UtC dataset
251 predicted new biological functions. For example, new interactions in the UtC dataset for the lung
252 protein hubs (Hgs, Arhgef7 and Akap8) changed pathway association from signalling by
253 interleukins (Figure 5A) to being “SMC binds to IAPs” (p.adj = 7.24x10⁻⁵). The effect of data
254 integration in the UtC dataset also changed the biological function predicted for unique-to-BALF
255 protein hubs (Dnm1, Tceb1, Spp1 and Casp7), resulting in a prediction for EGFR
256 downregulation (4.31x10⁻⁷). Together these results suggest that the UtC dataset enriches the
257 number of protein-protein interactions within individual networks. This enrichment enhances
258 interconnectivity of proteins between biological compartments of the lung and refines that
259 predicted biological significance of these networks.

260

261 **Discussion**

262 Murine models of allergic airways inflammation employ inhaled aeroallergen such as
263 HDM to support preclinical and discovery research. Asthma pathobiology involves recruited
264 inflammatory cells and lung structural cells that interact to define pathobiological processes. In
265 this study, we used label-free proteomics and multivariate bioinformatics to describe and
266 compare the molecular interactome in BALF and lung tissue specimens from HDM challenged
267 mice. We used matched samples from a cohort of individual mice for this process, and in so
268 doing have been able to discriminate responses in tissue and the airspaces, and through *in silico*
269 re-integration, predict the interactions between the lung tissue and the BALF. We demonstrate
270 that the proteome between the lung tissue and BALF is significantly different in mice, with each
271 sample exhibiting unique proteins that are differentially changed by HDM challenge, revealing
272 unique biological responses in each. We generated an Integrated-Tissue-BALF dataset to enable
273 network analysis that reveals points of interaction between lung tissue and airspace proteins and
274 pathways. Our study provides a platform that reveals the scope and limits of biological insights
275 that can be obtained from lung tissue or BALF sample proteins alone and offers the potential to
276 interrogate network interactions between the lung tissue and extracellular airway space during
277 allergen challenge.

278 Most ‘omics’ bases studies, including proteome profiling, usually focuses on what is
279 enriched/depleted or up-/down-regulated in a treatment in a tissue or individual bio-sample,
280 compared to a control. Though this is insightful, it is often not possible to distinguish whether
281 proteins are from cells, released by cells, or both in a tissue. The source of the proteins can be
282 predicted using most available informatics tools, though their annotation is completely based on
283 if that protein resides within the tool being used. In this study we demonstrate that investigating
284 individual compartments of one organ, the lung, then integrating them post hoc can provide
285 clarity about the source of the biological processes in the whole system. In this study we

286 developed a methodology to integrate proteomes from two separate, but biologically linked
287 compartments. To enable this, we sampled lung tissue and airway lavage from each animal to
288 separate sample-unique proteomes. We also used untargeted proteomics to provide a broad,
289 unbiased survey of changes in BALF and lung tissue pre- and post- allergen challenge. Once
290 proteome data was acquired we employed non-biased statistics to integrate the two datasets,
291 specifically using z-score analysis that normalized for differences in total protein abundance in
292 different samples. This approach allowed us to consider the biological interaction between the
293 tissue and airspace compartments of the murine lung.

294
295 We used an untargeted approach to compare the lung tissue and BALF proteomic
296 changes which occur during repeated aeroallergen challenge. To do this, we collected animal-
297 matched samples, meaning that the lung tissue proteome was determined in lungs after BALF
298 was collected; as such, the protein fingerprint linked to secretory function of egressed
299 inflammatory cells and structural cells is enriched in BALF, and diminished in the lung tissue
300 proteome. To create a ‘pseudo whole lung’ proteome, we integrated individual datasets post hoc
301 to create the ITB dataset, rather than collecting a proteome dataset from lungs that had not
302 undergone BALF collection. Our design was necessary to enable discrimination of unique effects
303 in the lung tissue and BALF compartments. Importantly, prior to proteomic analysis, BALF
304 samples were centrifuged to remove immune cells for counting and differential analysis. Thus,
305 our integrated dataset does not capture intracellular proteins from immune cells that had
306 migrated into the airway space.

307

308 ***Biological pathways in the lung tissue proteome***

309 The lung tissue dataset had a 447 % more unique protein ID’s compared to BALF. When
310 examining the top 10 unique tissue pathways, the immune system was found to be a significant
311 biological signature. These pathways were associated with an acute immune response signature,

312 specifically allergen detection and antigen processing/presentation. This likely reflects the
313 significant immune cell population that resides in the airway wall and the lung interstitium, but
314 may also include the small number of cells remaining in the pulmonary circulation. Upon
315 allergen challenge, epithelial, mesenchymal and resident immune cells are stimulated and secrete
316 cytokines, chemokines and other pro-inflammatory mediators that have auto- and paracrine
317 effects on structural cells such as fibroblasts and airway smooth muscle cells (Halayko and
318 Amrani, 2003). These cells have a significant immunomodulatory capacity, and also secretion
319 mediators to orchestrate local inflammation and epithelial cell biology. This promotes
320 inflammatory and fibro-proliferative processes in lung tissue that are hallmarks of the response
321 to allergen exposure (Halayko and Amrani, 2003). An immune signature in lung tissue and
322 BALF has been described to represent a Th2-polarized response after challenge with inhaled
323 HDM (Piyadasa *et al.* 2016), and as we confirmed in the current study, includes significant tissue
324 infiltration by eosinophils and neutrophils. Together this data suggests that immune responses in
325 lung tissue likely reflect the coordinated activity of resident structural cells and immune cells that
326 has infiltrated lung tissue.

327

328 ***Biological pathways in the BALF proteome***

329 In our BALF proteomic dataset, we detected a strong biosignature for pathways involving
330 β -catenin, which has recognized roles in regulation of cell-cell adhesion and gene transcription
331 (Baarsma *et al.* 2013; Koopmans *et al.* 2017). Within the airways, epithelial barrier function is
332 maintained through adherens junctions in which β -catenin interacts with its neighbouring
333 partners α -catenin, p120 and e-cadherin. Through repeated allergen exposure, e-cadherin is
334 down-regulated to disrupt β -catenin function and barrier repair signaling through epithelial-
335 growth-factor-receptor mediated signaling (Heijink *et al.* 2007). This is also associated with the
336 secretion of Th2 immune mediators (Heijink *et al.* 2007), and local cell damage and necrosis in

337 response to HDM challenge (Chan *et al.* 2016; O'Neil *et al.* 2011; Petta *et al.* 2017). Our
338 proteome analysis indicates that epithelial cell denudation and barrier disruption during allergen
339 challenge contributes significantly to molecular mechanisms that can be detected in BALF.

340

341 ***Biological pathways in the Integrated-Tissue-BALF proteome***

342 We identified several biological mechanisms that emerge as significant processes only
343 after integrating the proteome of the lung tissue and BALF. This appears to arise from an
344 enrichment of the number of pathway-specific proteins, and the additive effect on the abundance
345 of proteins that are common to lung tissue and BALF. As an example, the ITB dataset uniquely
346 reveals processes for generating multi-vesicular bodies that both target protein for ubiquitination
347 leading to turnover in lysosomes (Karim *et al.* 2018), and for the biogenesis of extracellular
348 vesicles (Colombo *et al.* 2013). This specifically relates to proteins associated with multiunit
349 Endosomal Sorting Complexes Required for Transport (ESCRT), including endosomal sorting
350 protein Chmp6, and vesicle sorting (Vps4b) and trafficking (Vta1) proteins from lung tissue, and
351 ubiquination proteins (Tonsoku Like, DNA Repair Protein (Tonsl) and ubiquitin B) and vacuole
352 sorting proteins (Vps25 and Vps4a) from BALF. Interestingly, ESCRT is associated with
353 secretion of inflammatory mediators and protein turnover, key processes in inflammation and
354 tissue remodeling processes (Kulshreshtha *et al.* 2013; Karim *et al.* 2018).

355 Another example of a biological pathway that is significantly enriched only in the ITB
356 dataset relates to the degradation of the extracellular matrix (ECM). BALF included a number of
357 ECM proteins, including collagen (Col17a1) and fibronectin (Fn1). Lung tissue included
358 multiple enzymes that modulate ECM homeostasis, such as nicastrin (Ncstn, a member of the
359 gamma secretase complex), cathepsins G, L1, and S, neutrophil elastase (Elane), and matrix
360 metalloproteinase-9 (MMP9). The emergence of both ESCRT signaling and ECM turnover only
361 after combining the lung tissue and BALF proteomes suggests that mechanisms that define

362 interactions between lung tissue cells and the lung airspace are underrepresented in the
363 individual proteomes for lung tissue or BALF.

364 To better understand how the proteins in BALF and lung tissue may influence the
365 biological activity in each compartment we created a subset of ITB data that merged only those
366 proteins that were unique to either BALF or lung tissue. The so-called, UtC enabled
367 identification of protein hubs in BALF or lung tissue that could be most significantly influenced
368 by signals in the other compartment. Through this approach predictive assessment of pathways
369 that link biological processes in lung tissue and the airspace compartment is possible. In our
370 analysis we showed that a unique lung tissue protein network predicted to support signaling by
371 interleukins, was refined to one associated with SMAC binding to IAPs, which releases caspases
372 that mediate apoptotic cell death (Du *et al.* 2000). In parallel, a unique BALF protein network
373 predicted to support axonal guidance, was refined to one associated with EGFR down regulation
374 on the basis of the influence of lung tissue proteins. Furthermore, in the UtC, developmental
375 biology emerged as the primary response pattern, a result that was not predicted from lung tissue
376 or BALF proteome datasets individually. Overall integrating lung tissue and BALF proteomes
377 strengthens independent connectedness and yields new biological insight for the whole lung in
378 response to allergen exposure.

379 The interpretation of our study is limited by a number of factors. Though we carefully
380 controlled our collection methods to reduce variability and decrease damaging effects of BALF
381 collection on tissue cells, but we cannot discount that BALF samples included a small fraction of
382 proteins from damaged cells. Our samples were only collected at a single time point (48 hours
383 after final allergen challenge), a strategic choice, as this represents the time when lung
384 dysfunction is greatest, including airway hyperresponsiveness. Thus, our work provides only a
385 snapshot of the dynamics of proteome response to a specific allergen challenge, and future
386 studies looking at temporal patterns in response to HDM and other allergens are needed for a

387 more robust resource to delineate the molecular responses that contribute to lung inflammation
388 and dysfunction in allergen-challenge mouse models.

389

390 ***Conclusion***

391 We characterized the proteome of lung tissue and BALF from HDM-challenged mice that
392 mimic allergic asthma pathophysiology. Using matched samples from individual animals, our
393 work reveals that lung tissue and BALF proteomes are diverse, and that integrating both datasets
394 reveals additional novel biological processes and protein interaction hubs. This work provides a
395 resource and approach for identifying new proteins and pathways, and a basis to interrogate
396 interactions between sample compartments to identify mechanisms for airways pathophysiology
397 and, perhaps, new targets for developing therapeutic approaches.

398

399 **Methods**

400

401 ***Animal experiments***

402 ***(a) Murine HDM allergen challenge***

403 All animal experiments were planned and performed following the approved protocols
404 and guidelines of the animal ethics board at the University of Manitoba. Female, BALB/c mice
405 (6-8 weeks, $n = 3$) were intranasally challenged with HDM (25 μ g per mouse, in a total volume
406 of 35 μ L saline) five times a week for two weeks (Supplemental 1). Our HDM formulation
407 consisted of HDM extract (Greer Labs, Lenoir, NC) prepared in sterile phosphate buffered saline
408 (PBS, pH 7.4; Life Technologies, Waltham, MA). The HDM extract we used contained 36,000
409 endotoxin units (EU) per vial (7877 EU/mg of protein or 196.9 EU/dose) containing 4.9 % Der p
410 1 protein.

411

412 ***(b) Lung function, inflammatory differential cell counts and sample collection***

413 Lung function was performed 48 h after the last HDM challenge. Mice were anesthetized
414 with sodium pentobarbital (90 mg/kg), given intraperitoneally and tracheotomized with a 20-
415 gauge polyethylene catheter. The polyethylene catheter was connected to a flexiVent small
416 animal ventilator (Scireq, Montréal, Canada) and mice were mechanically ventilated with a tidal
417 volume of 10 mL/kg body weight, 150 times/min. Forced oscillation technique and positive end
418 expiratory pressure of 3 cm·H₂O was used for the entire study. Mice were subjected to an
419 nebulized methacholine (MCh) challenge (0 to 50 mg/mL) to assess concentration dependent
420 response of the respiratory mechanics. Measures of newtonian resistance (R_n), peripheral tissue
421 damping (G) and tissue elastance (H), and total resistance (R) were collected. Values for each
422 parameter were calculated as the peak of all 12 perturbation cycles performed after each MCh
423 challenge.

424 Following the lung function measurement, lungs were lavaged with 1.0 mL of saline two
425 times, for a total of 2 mL containing 0.1 % ethylenediaminetetraacetic acid (EDTA; Sigma-
426 Aldrich, St. Louis, MO). BALF was centrifuged to collect the immune cell pellet (1,000 xg, 10
427 min, 4 °C) and the supernatant was collected and aliquoted prior to flash freezing in liquid
428 nitrogen and storage at -80 °C. Immune cell pellet was resuspended in saline and the total
429 immune cell count was estimated using a hemocytometer. For differential counts, cells were
430 stained with a modified Wright-Giemsa stain (HEMA 3 STAT PACK, Fisher Scientific,
431 Waltham, MA). Cell distribution was analyzed by manually identifying and counting
432 eosinophils, neutrophils, macrophages and lymphocytes in six randomly chosen fields of view
433 examined under a light microscope at 200 x magnification. Post-BAL lung tissue from the left
434 lung and half the right lung were excised, portioned (~35 mg/each), wrapped in aluminum foil,
435 placed in a 2.0 mL centrifuge tube prior to flash freezing in liquid nitrogen and storage at -80 °C
436 until processed.

437

438 ***Assessment of protein extraction proficiency***

439 From each randomly chosen portion of frozen lung tissue (35 mg, wt/wt) our extraction
440 process yielded an average of 1.146 mg of total protein. BALF yielding an average of 600 µg of
441 total protein (100 µg per 250 µL aliquot) per mouse. Qualitative assessment of total protein
442 molecular weight diversity was performed by gradient SDS-PAGE of both BALF and tissue
443 protein lysates followed by coomassie blue staining. Using our extraction protocol, we obtained
444 protein homogenates from both tissue (Supplemental 4A) and BALF (Supplemental 4B) rich in
445 diverse molecular weight proteins. The dark band in BALF shown at ~66.5 kDa approximates
446 the molecular weight of albumin as no high abundance protein depletion methods were
447 employed for either BALF or tissue samples to reduce potential elimination bias.

448 To determine the quality of both technical and biological replicates we used mouse

449 BALF samples and performed two in parallel protein Filter Assisted Sample Preparation (FASP)
450 procedures. We first examined our technical variation by assessing as early as possible the
451 variation that might accumulate as we move identical samples through the FASP process. We
452 divided the same sample into equal parts (100 µg total protein each) and processed the samples
453 individually but in parallel through the entire FASP protocol and informatics pipeline. Our
454 second experiment mirrored the first with exception to examining the effect that biological
455 variation has on our FASP workflow. Our results show that technical variation (Supplemental
456 4C,D) is lower than our biological variation (Supplemental 4E,F). Therefore, we negated the use
457 of technical replicates for our proteomic analysis.

458

459 ***Preparation of lung tissue***

460 A randomly selected portioned lung tissue was thawed and weighed. The tissue surface
461 was marred to increase surface area using scissors. To wash the lung tissue of residual blood
462 contamination, each tissue sample was placed in a 15 mL centrifuge tube containing inhibitors
463 dissolved in 15 mL PBS (-CaCl₂, -MgCl₂, pH 7.4; Invitrogen) and placed on an end-over-end
464 mixer at 4 °C for 30 min. Inhibitors including Phenylmethylsulfonyl Fluoride (PMSF, 100 mM
465 stock), Phosphatase Inhibitor Cocktail 2 (Sigma-Aldrich, St. Louis, MO), and Protease Inhibitor
466 (Sigma-Aldrich) each at 1:100 dilution. Tissues were then removed and placed into siliconized
467 2.0 mL centrifuge tubes (Thomas Scientific, Swedesboro, NJ) along with 100 µL of lysis buffer.
468 Lysis buffer composition: 150 mM NaCl (Fisher Scientific), 50 mM Tris-HCL (pH 7.5; Fisher
469 Scientific, Waltham, MA), 5 % glycerol (Sigma-Aldrich), 1 % sodium deoxycholate (Sigma-
470 Aldrich), 1 % benzonase (25 U/µL; Merck, Kenilworth, NJ), 1 % sodium dodecyl sulfate (SDS;
471 Fisher Scientific), Protease Inhibitor Cocktail 2 (1:100 dilution, Sigma-Aldrich), 1 mM PMSF
472 (Sigma-Aldrich), Phosphatase Inhibitor Cocktail 2 (1:100 dilution, Sigma-Aldrich), 2 mM
473 MgCl₂ (Fisher Scientific) built up with molecular grade water (Invitrogen). Tissue samples were

474 kept on ice during homogenization. Additional 100 μ L of homogenization buffer was added
475 sequentially until an optimal ratio was obtained (400 μ L lysis buffer / 0.0335g lung tissue).
476 Foaming was kept to a minimum by centrifugation throughout the homogenization process
477 (10,000 xg, 30 s). Tissue homogenate was centrifuged (21,000 xg, 10 min, 4 °C, no break) and
478 the supernatant was transferred to a separated siliconized centrifuge tube before incubating at
479 room temperature for 30 min to permit benzonase activity before storing on ice. All chemicals
480 used for tissue preparation were of molecular/electrophoresis grade. Tissues samples and
481 homogenates were transferred and manipulated on wet ice (~4 °C) whenever possible.

482

483 ***Protein sample quality control***

484 BALF, samples were thawed on ice and spun (21,000 xg, 5 min, 4 °C, no break) and the
485 pellets stored at -80 °C. The resulting supernatant was used for protein quantification using a
486 micro bicinchoninic acid (μ BCA) protein assay (Pierce, Waltham, MA) as per the
487 manufacturer's instructions. Lung tissue homogenate was quantified using a DC-Lowery Kit
488 (Bio-Rad DC Assay; Hercules, CA) as per the manufacturer's instructions. Both colourmetric
489 kits were read using a UV-Vis spectrophotometer (BioTek; Winooski, VT) using quadrupole
490 technical replicates. Homogenates were subsequently stored at -80 °C.

491 Identification of protein complexity by molecular weight for both BALF and tissue was
492 discerned using SDS-PAGE and coomassie total protein stain. Briefly, (20 μ g total protein) was
493 prepared in LDS-Loading buffer (Invitrogen) combined with 100 mM DTT (final conc.) and
494 boiled for 5 min. After sample was cooled, proteins were loaded into a pre-cast Bis-Tris gradient
495 gel (4-12 %, 1.0 mm, 10 well; NuPAGE; Invitrogen). With 20 μ g per tissue sample (7 μ g for
496 BALF) and 5 μ L of protein standard (Page Ruler Plus, ThermoFisher Scientific, Cat no: 26619),
497 samples were run at 75 V for 15 min before final separation at 150V until dye was run off the
498 gel. Gels were washed to remove salt (MiliQ H₂O, 50 rpm, 3 x 20 min wash) prior to coomassie

499 stain overnight (GelCode, Invitrogen) and destained for 1h (MiliQ H₂O, 50 rpm, 3x20 min wash)
500 to remove background before white field imaging (ChemiDock, Bio-Rad), (Supplemental Figure
501 S4A,B).

502

503 ***Filter assisted sample preparation (FASP) of lung tissue***

504 We modified a previously used FASP protocol for use in lung tissue (Wisniewski *et al.*
505 2009). Tissue homogenate (300 µg total protein) was supplemented with DTT (final
506 concentration 100 mM) before boiling for 5 min, cooled and centrifuged (21,000 xg, 10 min, 4
507 °C, no break) before transferring the supernatant to a siliconized centrifuge tube. Molecular
508 weight cut off filters at 30 kDa (Amicron Ultra 0.5; Milipore; Burlington, MA) were tested for
509 efficiency by adding 450 µL of 8 M urea (in 100 mM Tris in LCMS grade water) to each column
510 and centrifuging them through (10,000 xg, 10 min, room temperature). Tissue homogenates were
511 built with urea buffer (8 M urea, in LCMS grade 100 mM Tris) to 800 µL (to dilute SDS and
512 deoxycholate in the sample) before loading onto tested 30 kDa molecular weight cut off columns
513 (Milipore). Samples were repeatedly spun through the column (10,000 xg, 10 min, room
514 temperature) until samples were fully loaded onto the column. Once samples were bound,
515 columns were washed twice with urea buffer (450 µL) to wash out excess DTT (10,000 xg, 10
516 min, room temperature). Samples were alkylated by adding 400 µL iodoacacidimide (IAA; 50 mM
517 in urea buffer; Sigma-Aldrich) to the columns (45 mins, protected from light, room temperature).
518 To halt the cysteine residue modifications by the IAA reaction, 20 mM DTT was added before
519 centrifugation (13,000 xg, 10 min, room temperature). Columns were then washed twice with
520 450 µL of urea buffer (13,000 xg, 10 min, room temperature) before one last hard spin to reduce
521 the volume to a minimum within the column (14,000 xg, 15 min, room temperature). A fresh
522 collection tube filled with 150 µL (98 % ACN, 2 % TFA) was then prepared used prior to
523 trypsinization. Using a protein:trypsin ratio of 50:1 (Trypsin Gold; Promega; Madison, WI), 6 µg

524 of fresh trypsin (trypsin was dissolved in 1x digestion buffer; 50 mM Tris, 2 mM CaCl₂, LCMS
525 water) and filled to the top of the filter (~350 µL). Samples were sealed with parafilm and placed
526 under shaking conditions at 37 °C for 16 h before the reaction was halted by the addition of TFA
527 (1 % final concentration) and placing the samples at 4 °C. A saline solution (500 mM NaCl, final
528 concentration) was added to each column prior to a test centrifugation (5,000 xg, 10 min, room
529 temperature) to ensure filter integrity. Columns were then washed by adding 400 µL 50 %
530 methanol (LCMS grade water), incubating for 5 min at room temperature prior to centrifugation
531 (10,000 xg, 10 min, room temperature). A final wash was completed by adding 300 µL 15 %
532 acetonitrile (LCMS grade water), incubating for 5 min at room temperature prior to
533 centrifugation (10,000 xg, 10 min, room temperature). Flow through was transferred to a clean
534 siliconized tube and a hard spin (13,000 xg, 10 min, room temperature) was then completed and
535 merged with the remainder of the centrifuge tube. Samples were then frozen with the lids open at
536 -80 °C until perfectly frozen to assist in sample drying by speed vac until dry (~4 h). Dried
537 samples were sealed and frozen at -80 °C until ready for reconstitution.

538

539 ***Filter assisted sample preparation of BALF***

540 Mouse BALF samples were processed in a similar manner to that of mouse lung tissue
541 with some minor changes to the protocol. Thawed BALF supernatant samples were centrifuged
542 (10,000 xg, 5 min, 4 °C), 100 µg of total protein was denatured in 8M urea buffer with DTT (100
543 mM final concentration) to a volume of 450 µL under mixing conditions for 1 h (room
544 temperature) before loading onto 30 kDa molecular weight columns (Milipore) and proceeded to
545 protein digestion steps mentioned previously.

546

547 ***Peptide desalting by reverse phase 1D-HPLC***

548 BALF or tissue lysate samples were warmed, inspected for condensation (if present put

549 on speed vac) and re-suspended in 800 μ L TFA (0.5 %, LCMS grade water), vortexed for 15 min
550 until peptides dissolved, and centrifuged (21,000 xg, 10 min, 4 °C) to check for undissolved
551 peptides before the supernatant was injected. BALF samples were loaded onto a C18 column
552 (Luna 10 μ M C18(2), 100 Å, 50 x 4.6 mm; Phenomenex, Torrance, CA) while tissue lysate
553 samples were loaded onto a separate C18 column (Phenomenex). Column efficiency and elution
554 conditions were tested using a specialized 6 peptide solution prior to starting the samples
555 (Krokhin and Spicer, 2009). Samples were collected at a flow rate of 500 μ L/min with an
556 additional 30 s before and after the eluted peptide spectra was detected. Manual loading was used
557 with no gradient. Agilent 1110 HPLC System using ChemStation for Control and Data Analysis
558 (Santa Clara, CA) was used to analyze the chromatograms from Reverse Phase – HPLC (high
559 pressure liquid chromatography). Samples were frozen at -80 °C with the lids open. All
560 chemicals used were mass spec grade.

561

562 ***Reconstitution of sample & LC-MS/MS run***

563 Thawed samples were desiccated by speed vac (as previously mentioned) and
564 reconstituted in 50 μ L formic acid (0.1 %, LCMS grade water). Samples were vortexed for 15
565 min to encourage dissolving of the peptides. Peptide concentration was determined by UV
566 spectrophotometry (Nanodrop Spectrophotometer 2000, ThermoFisher) at 280 nm.
567 Spectrophotometer was checked for contamination between samples to ensure accurate
568 measurements \pm 10 nm. Peptides (2 μ g) were diluted in formic acid (0.1 %, LCMS grade water)
569 and injected into the LC-MS/MS analysis at a flow rate of (500 nL/min). Samples were injected
570 into an online LC-MS/MS workflow using a 3 h gradient run resulting in a 180 min run on a
571 Sciex TripleTOF 5600 instrument (Sciex; Framingham, MA). Raw spectra files were converted
572 into Mascot Generic File format (MGF) for protein identification using the tools bundled by the
573 manufacturer. All chemicals used were mass spec grade.

574

575 ***Bioinformatic & statistical analysis***

576 The MGF files were processed by X!Tandem (Craig and Beavis, 2004) against single-
577 missed-cleavage tryptic peptides from the *Mus musculus* Uniprot database (16704 proteins). The
578 following X!Tandem search parameters were used: 20 ppm and 50 ppm mass tolerance for
579 parent and fragment ions, respectively; constant modification of Cys with iodoacetamide; default
580 set post-translational modifications: oxidation of Met, Trp; N-terminal cyclization at Qln, Cys;
581 N-terminal acetylation, phosphorylation (Ser, Thr, Tyr), deamidation (Asn and Gln); an
582 expectation value cut-off of $\log_e < -1$ for both proteins and peptides.

583 Each MS run in yielded a list of protein expression values in a \log_2 scale, quantified
584 based on their member peptide MS2 fragment intensity sums. The simple rule of a quantified
585 protein needing at least two non-redundant (unique) peptides with identification scores $\log_e < -$
586 1.5 each followed from our prior approaches. To correct for total protein loading differences
587 when comparing between BALF and tissue, z-scores were calculated across the datasets. The
588 Integrated-Tissue-BALF dataset is described as the combined proteomic profile of both the lung
589 tissue and BALF datasets.

590 Partial least squares discriminant analysis (PLSDA) and its accompanied variable
591 importance in projection (VIP) scores were calculated using the mixOmics package (v.6.3) in R
592 using both z-scores and delineating 5 components for the discriminant analysis (Rohart *et al.*
593 2017).

594 To separate proteins that are found only in either HDM or Naïve mice from those
595 common to both, we plotted the z-scores from each dataset and assigned a z-score of -4 for any
596 absent value. Statistical Analysis of Microarrays (SAM) was conducted using the SAMR (v2.0)
597 package in R using only proteins common to both HDM & Naive groups across tissue and BALF
598 and Integrated-Tissue-BALF datasets (Tusher *et al.* 2001). Delta values were selected based

599 upon an FDR $\leq 10\%$ after 1,000 permutations. No \log_2 correction or median centering was
600 performed.

601 Univariate analysis was conducted using the LIMMA package (v3.3) in R (Ritchie *et al.*
602 2015). Pathway Analysis was conducted using either InnateDB or Reactome with Benjamini-
603 Hochberg multiple comparison adjustment (Breuer *et al.* 2013). For this analysis, Uniprot ID's
604 alongside z-score fold changes (FC) were used from both the unique to treatment datasets and
605 significantly identified proteins from SAM analysis. Missing values were assigned a value of -4
606 prior to fold change calculation. Fold changes were calculated as the delta z-score (HDM-
607 average Naïve).

608 Protein-protein interaction networks (first order with minimum connections) were
609 identified using the InnateDB informatics source within NetworkAnalyst and accessed in July
610 2019 (Breuer *et al.* 2013; Xia *et al.* 2014). The top 3 most interconnected protein hubs which are
611 unique to either tissue or BALF were selected. Pathway analysis of these top hubs was
612 determined through the open-source Reactome database using only Uniprot ID. Network
613 enrichment analysis was limited to hubs in the Unique-to-Combined (UtC) dataset that have ≥ 5
614 connections (Vallabhajosyula *et al.* 2009). The protein UBC was removed from all protein-
615 protein interaction analysis.

616 All other visual tools were constructed using DataGraph (DataGraph v4.5, Visual Data
617 Tools, Inc., Chapel Hill, NC, USA, <https://www.visualdatatools.com/>).

618 **Acknowledgements**

619 Work for this study was supported in part by the CIHR-Canadian Respiratory Research Network
620 (CRRN), Research Manitoba and the DEVOTION Network, and the Biology of Breathing
621 Group, Children's Hospital Research Institute of Manitoba. THM was supported by studentships
622 from Research Manitoba, CRRN, AllerGen NCE Inc. and Asthma Canada. CDP was supported
623 by a CIHR Banting Fellowship and a Research Manitoba Fellowship. AJ was supported by
624 studentships from Research Manitoba and CRRN. AJH is supported through the Canada
625 Research Chairs Program.

626

627 **Author Contributions**

628 THM performed all proteomics experiments, primary and secondary data analysis and prepared
629 the manuscript draft. CDP provide supervision, guidance and assisted in the completed
630 biostatistics and bioinformatics, design of figures, and editing and writing of the manuscript. AJ
631 and SB were involved with experimental design and completion of animal studies. PE guided
632 sample preparation and performed mass spectrometry. VS contributed to experimental design,
633 primary proteomic data analysis, proteomic data quality control and primary statistics. NM
634 contributed to experimental design and direction, and edited the manuscript. AJH conceived and
635 led design of the study, including scope of biostatistics and bioinformatics, and contributed to
636 writing and editing of the final manuscript.

637

638 **Conflict of Interest**

639 The authors declare no competing or financial interests.

640 References

641 Baarsma HA, Königshoff M, Gosens R (2013) The WNT signaling pathway from ligand
642 secretion to gene transcription: molecular mechanisms and pharmacological targets. *Pharmacol*
643 *Ther* 138: 66–83

644 Breuer K, Foroushani AK, Laird MR, Chen C, Sribnaia A, Lo R, Winsor GL, Hancock RE,
645 Brinkman FS, Lynn DJ (2013) InnateDB: systems biology of innate immunity and beyond--
646 recent updates and continuing curation. *Nucleic Acids Res* 41: D1228–33

647 Burg D, Schofield JPR, Brandsma J, Staykova D, Folisi C, Bansal A, Nicholas B, Xian Y, Rowe
648 A, Corfield J, Wilson S, Ward J, Lutter R, Fleming L, Shaw DE, Bakke PS, Caruso M, Dahlen
649 SE, Fowler SJ, Hashimoto S, Horváth I, Howarth P, Krug N, Montuschi P, Sanak M, Sandström
650 T, Singer F, Sun K, Pandis I, Auffray C, Sousa AR, Adcock IM, Chung KF, Sterk PJ,
651 Djukanović R, Skipp PJ, The U-BSG (2018) Large-Scale Label-Free Quantitative Mapping of
652 the Sputum Proteome. *J Proteome Res* 17: 2072–2091

653 Calderón MA, Linneberg A, Kleine-Tebbe J, De Blay F, Hernandez Fernandez de Rojas D,
654 Virchow JC, Demoly P (2015) Respiratory allergy caused by house dust mites: What do we
655 really know. *J Allergy Clin Immunol* 136: 38–48

656 Chan TK, Loh XY, Peh HY, Tan WNF, Tan WSD, Li N, Tay IJJ, Wong WSF, Engelward BP
657 (2016) House dust mite-induced asthma causes oxidative damage and DNA double-strand breaks
658 in the lungs. *J Allergy Clin Immunol* 138: 84–96.e1

659 Choopong J, Reamtong O, Sookrung N, Seesuay W, Indrawattana N, Sakolvaree Y, Chaicumpa
660 W, Tungtrongchitr A (2016) Proteome, Allergenome, and Novel Allergens of House Dust Mite,
661 Dermatophagoides farinae. *J Proteome Res* 15: 422–430

662 Colombo M, Moita C, van Niel G, Kowal J, Vigneron J, Benaroch P, Manel N, Moita LF, Théry
663 C, Raposo G (2013) Analysis of ESCRT functions in exosome biogenesis, composition and
664 secretion highlights the heterogeneity of extracellular vesicles. *J Cell Sci* 126: 5553–5565

665 Craig R, Beavis RC (2004) TANDEM: matching proteins with tandem mass spectra.

666 *Bioinformatics* 20: 1466–1467

667 Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes

668 cytochrome c-dependent caspase activation by eliminating IAP inhibition. *Cell* 102: 33–42

669 Halayko AJ, Amrani Y (2003) Mechanisms of inflammation-mediated airway smooth muscle

670 plasticity and airways remodeling in asthma. *Respir Physiol Neurobiol* 137: 209–222

671 Jha A, Ryu MH, Oo O, Bews HJ, Carlson JC, Schwartz J, Basu S, Wong CS, Halayko AJ (2018)

672 Prophylactic benefits of systemically delivered simvastatin treatment in a house dust mite

673 challenged murine model of allergic asthma. *Br J Pharmacol* 175: 1004–1016

674 Karim MA, Samyn DR, Mattie S, Brett CL (2018) Distinct features of multivesicular body-

675 lysosome fusion revealed by a new cell-free content-mixing assay. *Traffic* 19: 138–149

676 Koopmans T, Eilers R, Menzen M, Halayko A, Gosens R (2017) β -Catenin Directs Nuclear

677 Factor- κ B p65 Output via CREB-Binding Protein/p300 in Human Airway Smooth Muscle. *Front*

678 *Immunol* 8: 1086

679 Krokhin OV, Spicer V (2009) Peptide retention standards and hydrophobicity indexes in

680 reversed-phase high-performance liquid chromatography of peptides. *Anal Chem* 81: 9522–9530

681 Kulshreshtha A, Ahmad T, Agrawal A, Ghosh B (2013) Proinflammatory role of epithelial cell-

682 derived exosomes in allergic airway inflammation. *J Allergy Clin Immunol* 131: 1194–203,

683 1203.e1

684 O’Neil SE, Sitkauskiene B, Babusyte A, Krisiukeniene A, Stravinskaite-Bieksiene K,

685 Sakalauskas R, Sihlbom C, Ekerljung L, Carlsohn E, Lötvall J (2011) Network analysis of

686 quantitative proteomics on asthmatic bronchi: effects of inhaled glucocorticoid treatment. *Respir*

687 *Res* 12: 124

688 Petta I, Bougarne N, Vandewalle J, Dejager L, Vandevyver S, Ballegeer M, Desmet S, Thommis

689 J, De Cauwer L, Lievens S, Libert C, Tavernier J, De Bosscher K (2017) Glucocorticoid

690 Receptor-mediated transactivation is hampered by Striatin-3, a novel interaction partner of the
691 receptor. *Sci Rep* 7: 8941

692 Piyadasa H, Altieri A, Basu S, Schwartz J, Halayko AJ, Mookherjee N (2016) Biosignature for
693 airway inflammation in a house dust mite-challenged murine model of allergic asthma. *Biol
694 Open* 5: 112–121

695 Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers
696 differential expression analyses for RNA-sequencing and microarray studies. *Nucleic Acids Res
697* 43: e47

698 Rohart F, Gautier B, Singh A, Lê Cao KA (2017) mixOmics: An R package for ‘omics feature
699 selection and multiple data integration. *PLoS Comput Biol* 13: e1005752

700 Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the
701 ionizing radiation response. *Proc Natl Acad Sci U S A* 98: 5116–5121

702 Vallabhajosyula RR, Chakravarti D, Lufteali S, Ray A, Raval A (2009) Identifying hubs in
703 protein interaction networks. *PLoS One* 4: e5344

704 Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method
705 for proteome analysis. *Nat Methods* 6: 359–362

706 Wu J, Kobayashi M, Sousa EA, Liu W, Cai J, Goldman SJ, Dorner AJ, Projan SJ, Kavuru MS,
707 Qiu Y, Thomassen MJ (2005) Differential proteomic analysis of bronchoalveolar lavage fluid in
708 asthmatics following segmental antigen challenge. *Mol Cell Proteomics* 4: 1251–1264

709 Xia J, Benner MJ, Hancock RE (2014) NetworkAnalyst--integrative approaches for protein-
710 protein interaction network analysis and visual exploration. *Nucleic Acids Res* 42: W167–74

711 **Tables**

712

713 **Table 1:** Proteins enriched in tissue, but diminished in the BALF proteome. Significantly
714 enriched proteins (10) are highlighted in bold. Significance determined using a linear fit model in
715 the R package LIMMA with Benjamini-Hochberg correction. Abbreviations used: log2 fold
716 change (log₂FC), adjusted p-value (p.adj), Uniprot identification number (Uniprot ID).

717

Uniprot	Gene	Description	log ₂ FC	p-value	p.adj
P20065	Tmsb4x	Thymosin beta-4	4.536	9.23E-07	1.25E-05
Q62426	Cstb	Cystatin-B	4.031	9.25E-07	1.25E-05
Q99J08	Sec14l2	SEC14-like protein 2	5.029	8.29E-06	7.46E-05
P51855	Gss	Glutathione synthetase	3.784	1.47E-05	9.37E-05
Q2VLH6	Cd163	Scavenger receptor cysteine-rich type 1 protein M130	2.772	1.73E-05	9.37E-05
P70695	Fbp2	Fructose-1,6-bisphosphatase isozyme 2	3.593	1.03E-04	4.16E-04
P63254	Crip1	Cysteine-rich protein 1	1.419	1.08E-04	4.16E-04
Q9JHW2	Nit2	Omega-amidase NIT2	3.261	2.18E-04	7.34E-04
P15532	Nme1	Nucleoside diphosphate kinase A	1.029	5.68E-03	0.0171
P26883	Fkbp1a	Peptidyl-prolyl cis-trans isomerase FKBP1A	0.659	1.81E-02	0.0488
Q61646	Hp	Haptoglobin	0.806	3.50E-02	0.0818
Q9DBG5	Plin3	Perilipin-3	0.695	3.63E-02	0.0818
Q8VBW6	Nae1	NEDD8-activating enzyme E1 regulatory subunit	0.948	4.41E-02	0.0863
O35381	Anp32a	Acidic leucine-rich nuclear phosphoprotein 32 family member A	0.689	4.48E-02	0.0863
P35505	Fah	Fumarylacetoacetate	0.570	1.32E-01	0.2344
P17751	Tpi1	Triosephosphate isomerase	0.351	1.39E-01	0.2344
P10518	Alad	Delta-aminolevulinic acid dehydratase	0.352	1.58E-01	0.2431
P11352	Gpx1	Glutathione peroxidase 1	0.292	1.62E-01	0.2431
P13597	Icam1	Intercellular adhesion molecule 1	0.372	1.72E-01	0.2440
Q8K183	Pdkx	Pyridoxal kinase	0.499	1.92E-01	0.2591
Q9QYR9	Acot2	Acyl-coenzyme A thioesterase 2, mitochondrial	0.459	2.11E-01	0.2591
Q9CZ42	Carkd	ATP-dependent (S)-NAD(P)H-hydrate dehydratase	0.382	2.09E-01	0.2591
P05213	Tuba1b	Tubulin alpha-1B chain	0.743	2.31E-01	0.2594
P15626	Gstm2	Glutathione S-transferase Mu 2	0.421	2.30E-01	0.2594
P51125	Cast	Calpastatin	0.357	3.94E-01	0.4258
Q8BFZ3	Actbl2	Beta-actin-like protein 2	0.161	6.26E-01	0.6504
Q99J16	Rap1b	Ras-related protein Rap-1b	0.134	7.10E-01	0.7096

718

719 **Table 2:** Proteins enriched in BALF but diminished in the lung tissue proteome. Significantly
 720 enriched proteins (141) are highlighted in bold. Significance determined using a linear fit model
 721 in the R package LIMMA with Benjamini-Hochberg correction. Abbreviations used: log2 fold
 722 change (log₂FC), adjusted p-value (p.adj), Uniprot identification number (Uniprot ID).

Uniprot	Gene	Description	log ₂ FC	p-value	p.adj
Q64475	Hist1h2bb	Histone H2B type 1-B	-7.500	1.00E-09	2.00E-07
P48678	Lmna	Prelamin-A/C	-4.004	5.72E-08	3.82E-06
P62715	Ppp2cb	Serine/threonine-protein phosphatase 2A catalytic subunit beta isoform	-4.003	5.46E-08	3.82E-06
P15508	Sptb	Spectrin beta chain, erythrocytic	-4.851	8.00E-08	4.00E-06
P31725	S100a9	Protein S100-A9	-4.486	1.36E-07	4.25E-06
P15864	Hist1h1c	Histone H1.2	-4.333	1.53E-07	4.25E-06
Q3THE2	Myl12b	Myosin regulatory light chain 12B	-4.228	1.58E-07	4.25E-06
Q8VCW8	Acsf2	Acyl-CoA synthetase family member 2, mitochondrial	-4.052	1.86E-07	4.25E-06
P46638	Rab11b	Ras-related protein Rab-11B	-3.623	1.91E-07	4.25E-06
Q8C1B7	Sept11	Septin-11	-3.926	2.88E-07	5.75E-06
Q8CIB5	Fermt2	Fermitin family homolog 2	-3.941	3.54E-07	6.44E-06
Q61879	Myh10	Myosin-10	-4.212	5.80E-07	9.19E-06
Q8BT60	Cpne3	Copine-3	-4.166	7.19E-07	9.19E-06
Q9WVK4	Ehd1	EH domain-containing protein 1	-3.722	7.32E-07	9.19E-06
P16546	Sptan1	Spectrin alpha chain, non-erythrocytic 1	-3.700	6.37E-07	9.19E-06
Q9EPC1	Parva	Alpha-parvin	-3.486	7.35E-07	9.19E-06
Q99NB1	Acss1	Acetyl-coenzyme A synthetase 2-like, mitochondrial	-3.850	1.08E-06	1.14E-05
P68368	Tuba4a	Tubulin alpha-4A chain	-3.774	1.03E-06	1.14E-05
Q8BHZ0	Fam49a	Protein FAM49A	-2.793	1.02E-06	1.14E-05
Q8K1B8	Fermt3	Fermitin family homolog 3	-3.831	1.19E-06	1.19E-05
O35215	Ddt	D-dopachrome decarboxylase	-4.226	1.37E-06	1.24E-05
P35282	Rab21	Ras-related protein Rab-21	-3.751	1.43E-06	1.24E-05
Q62261	Sptbn1	Spectrin beta chain, non-erythrocytic 1	-3.636	1.40E-06	1.24E-05
P68369	Tuba1a	Tubulin alpha-1A chain	-5.702	1.62E-06	1.29E-05
Q91ZX7	Lrp1	Prolow-density lipoprotein receptor-related protein 1	-3.775	1.67E-06	1.29E-05
Q91YR1	Twf1	Twinfilin-1	-3.641	1.68E-06	1.29E-05
P54071	Idh2	Isocitrate dehydrogenase [NADP], mitochondrial	-3.655	1.84E-06	1.36E-05
Q8CGB6	Tenc1	Tensin-like C1 domain-containing phosphatase	-3.972	1.98E-06	1.36E-05
P12382	Pfk1	ATP-dependent 6-phosphofructokinase, liver type	-3.954	1.95E-06	1.36E-05
Q61425	Hadh	Hydroxylacyl-coenzyme A dehydrogenase, mitochondrial	-3.781	2.09E-06	1.39E-05
Q8BFW7	Lpp	Lipoma-preferred partner homolog	-3.680	2.37E-06	1.48E-05
Q9CZ44	Nsfl1c	NSFL1 cofactor p47	-3.515	2.37E-06	1.48E-05
P10630	Eif4a2	Eukaryotic initiation factor 4A-II	-4.160	2.48E-06	1.50E-05
Q8VI36	Pxn	Paxillin	-3.701	3.11E-06	1.83E-05
P08752	Gnai2	Guanine nucleotide-binding protein G(i) subunit alpha-2	-3.762	3.23E-06	1.85E-05
Q7TSV4	Pgm2	Phosphoglucomutase-2	-3.709	3.56E-06	1.92E-05
P48722	Hspa4l	Heat shock 70 kDa protein 4L	-3.701	3.55E-06	1.92E-05
Q62465	Vat1	Synaptic vesicle membrane protein VAT-1 homolog	-3.820	4.02E-06	2.01E-05
O35955	Psmb10	Proteasome subunit beta type-10	-3.786	3.84E-06	2.01E-05
Q9WUB3	Pygm	Glycogen phosphorylase, muscle form	-3.655	3.99E-06	2.01E-05
P70372	Elavl1	ELAV-like protein 1	-3.904	4.33E-06	2.04E-05
Q9CS42	Prps2	Ribose-phosphate pyrophosphokinase 2	-3.355	4.31E-06	2.04E-05
Q62348	Tsn	Translin	-2.753	4.38E-06	2.04E-05
Q9JJ28	Flii	Protein flightless-1 homolog	-3.753	4.49E-06	2.04E-05
Q8VE70	Pdcd10	Programmed cell death protein 10	-3.831	4.84E-06	2.15E-05
Q8QZT1	Acat1	Acetyl-CoA acetyltransferase, mitochondrial	-3.760	5.84E-06	2.54E-05
Q64331	Myo6	Unconventional myosin-VI	-4.237	6.00E-06	2.54E-05
Q8VIJ6	Sfpq	Splicing factor, proline- and glutamine-rich	-3.654	6.10E-06	2.54E-05
Q8VE97	Srsf4	Serine/arginine-rich splicing factor 4	-3.882	6.25E-06	2.55E-05
Q9WTI7	Myo1c	Unconventional myosin-Ic	-3.517	6.72E-06	2.69E-05
Q8C3J5	Dock2	Dedicator of cytokinesis protein 2	-4.074	8.04E-06	3.03E-05
Q3TCJ1	Fam175b	BRISC complex subunit Abro1	-3.722	7.95E-06	3.03E-05
Q99020	Hnrnpab	Heterogeneous nuclear ribonucleoprotein A/B	-3.650	7.88E-06	3.03E-05
P32067	Ssb	Lupus La protein homolog	-3.664	8.79E-06	3.15E-05
Q9QXZ0	Macf1	Microtubule-actin cross-linking factor 1	-3.656	8.81E-06	3.15E-05
O55234	Psmb5	Proteasome subunit beta type-5	-2.439	8.52E-06	3.15E-05
Q9ZOU1	Tjp2	Tight junction protein ZO-2	-3.737	9.36E-06	3.23E-05
Q9ET54	Palld	Palladin	-3.689	9.44E-06	3.23E-05
Q8BH95	Echs1	Enoyl-CoA hydratase, mitochondrial	-3.642	9.69E-06	3.23E-05
Q8BK64	Ahsa1	Activator of 90 kDa heat shock protein ATPase homolog 1	-3.284	9.57E-06	3.23E-05
Q8BFY9	Tnpo1	Transportin-1	-3.695	1.02E-05	3.34E-05
Q6P1F6	Ppp2r2a	Serine/threonine-protein phosphatase 2A 55 kDa regulatory	-3.396	1.05E-05	3.40E-05

Q9JHU4	Dync1h1	subunit B alpha isoform			
P84084	Arf5	Cytoplasmic dynein 1 heavy chain 1	-3.791	1.18E-05	3.74E-05
P26231	Ctnna1	ADP-ribosylation factor 5	-3.657	1.29E-05	4.03E-05
P33267	Cyp2f2	Catenin alpha-1	-3.328	1.35E-05	4.15E-05
P35278	Rab5c	Cytochrome P450 2F2	-4.277	1.40E-05	4.23E-05
Q01730	Rsu1	Ras-related protein Rab-5C	-3.161	1.87E-05	5.57E-05
Q9DBR7	Ppp1r12a	Ras suppressor protein 1	-3.466	2.06E-05	6.05E-05
Q9WTQ5	Akap12	Protein phosphatase 1 regulatory subunit 12A	-3.784	2.32E-05	6.71E-05
P28660	Nckap1	A-kinase anchor protein 12	-3.878	2.51E-05	7.14E-05
O35737	Hnrnph1	Nck-associated protein 1	-3.545	2.53E-05	7.14E-05
Q9D8T2	Gsdmdc1	Heterogeneous nuclear ribonucleoprotein H	-4.026	2.66E-05	7.38E-05
Q62219	Tgfb1i1	Gasdermin-D	-2.587	3.34E-05	9.16E-05
Q9Z0P5	Twf2	Transforming growth factor beta-1-induced transcript 1 protein	-3.833	3.45E-05	9.29E-05
Q64514	Tpp2	Twinfilin-2	-3.217	3.49E-05	9.29E-05
Q9D358	Acp1	Tripeptidyl-peptidase 2	-3.674	3.99E-05	1.05E-04
Q99L45	Eif2s2	Low molecular weight phosphotyrosine protein phosphatase	-3.384	4.13E-05	1.07E-04
O88544	Cops4	Eukaryotic translation initiation factor 2 subunit 2	-3.200	4.34E-05	1.11E-04
Q60994	Adipoq	COP9 signalosome complex subunit 4	-3.369	4.82E-05	1.22E-04
Q6URW6	Myh14	Adiponectin	-2.786	5.36E-05	1.34E-04
Q9R1T2	Sae1	Myosin-14	-3.386	5.60E-05	1.38E-04
Q9QXS1	Plec	SUMO-activating enzyme subunit 1	-3.455	5.73E-05	1.40E-04
Q8BH61	F13a1	Plectin	-3.131	5.92E-05	1.43E-04
Q8BYA0	Tbcd	Coagulation factor XIII A chain	-2.444	6.01E-05	1.43E-04
Q9JLV1	Bag3	Tubulin-specific chaperone D	-2.024	8.51E-05	2.00E-04
Q61838	A2m	BAG family molecular chaperone regulator 3	-3.280	8.97E-05	2.09E-04
P35123	Usp4	Alpha-2-macroglobulin	-1.743	1.08E-04	2.49E-04
P26043	Rdx	Ubiquitin carboxyl-terminal hydrolase 4	-2.167	1.10E-04	2.49E-04
Q9CQD1	Rab5a	Radixin	-1.453	1.11E-04	2.49E-04
Q3UDE2	Ttl12	Ras-related protein Rab-5A	-3.723	1.13E-04	2.51E-04
Q9JM14	Nt5c	Tubulin--tyrosine ligase-like protein 12	-2.927	1.19E-04	2.61E-04
Q61151	Ppp2r5e	5'(3')-deoxyribonucleotidase, cytosolic type	-1.335	1.21E-04	2.62E-04
		Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit epsilon isoform	-2.475	1.29E-04	2.78E-04
P28665	Mug1	Murinoglobulin-1	-1.768	1.74E-04	3.70E-04
P70335	Rock1	Rho-associated protein kinase 1	-3.247	1.82E-04	3.83E-04
Q99JI1	Mustn1	Musculoskeletal embryonic nuclear protein 1	-2.387	1.98E-04	4.14E-04
Q00623	Apoa1	Apolipoprotein A-I	-1.449	2.16E-04	4.45E-04
E9PV24	Fga	Fibrinogen alpha chain	-1.722	2.48E-04	5.07E-04
P07309	Ttr	Transthyretin	-1.336	3.49E-04	7.05E-04
Q8BGD9	Eif4b	Eukaryotic translation initiation factor 4B	-3.433	3.56E-04	7.11E-04
Q80TM9	Nisch	Nischarin	-2.752	4.07E-04	8.05E-04
Q8VCM7	Fgg	Fibrinogen gamma chain	-1.256	4.18E-04	8.19E-04
Q99JW4	Lims1	LIM and senescent cell antigen-like-containing domain protein 1	-1.242	6.39E-04	0.0012
O88456	Capns1	Calpain small subunit 1	-1.277	6.92E-04	0.0013
Q6P069	Sri	Sorcin	-1.454	7.38E-04	0.0014
P08249	Mdh2	Malate dehydrogenase, mitochondrial	-1.168	7.87E-04	0.0015
P00329	Adh1	Alcohol dehydrogenase 1	-1.144	1.43E-03	0.0027
P32261	Serpinc1	Antithrombin-III	-1.208	1.48E-03	0.0027
A2ASS6	Ttn	Titin	-1.049	1.52E-03	0.0028
Q07076	Anxa7	Annexin A7	-1.162	2.02E-03	0.0037
P26039	Tln1	Talin-1	-0.981	2.06E-03	0.0037
Q3UH68	Limch1	LIM and calponin homology domains-containing protein 1	-1.402	2.20E-03	0.0039
P63087	Ppp1cc	Serine/threonine-protein phosphatase PP1-gamma catalytic subunit	-0.984	2.43E-03	0.0043
Q8K0E8	Fgb	Fibrinogen beta chain	-1.311	2.48E-03	0.0043
Q9DC07	Neb1	LIM zinc-binding domain-containing Nebulette	-1.119	2.74E-03	0.0048
P52430	Pon1	Serum paraoxonase/arylesterase 1	-0.878	3.32E-03	0.0057
P97333	Nrp1	Neuropilin-1	-1.362	3.67E-03	0.0063
P48036	Anxa5	Annexin A5	-0.806	4.08E-03	0.0069
Q08879	Fbln1	Fibulin-1	-1.766	4.27E-03	0.0072
Q9WV60	Gsk3b	Glycogen synthase kinase-3 beta	-2.109	5.17E-03	0.0086
Q9EPK7	Xpo7	Exportin-7	-1.200	5.30E-03	0.0088
P58871	Tnks1bp1	182 kDa tankyrase-1-binding protein	-1.284	5.44E-03	0.0089
P47738	Aldh2	Aldehyde dehydrogenase, mitochondrial	-1.011	5.78E-03	0.0094
Q92111	Tf	Serotransferrin	-0.806	6.48E-03	0.0105
Q91VC7	Ppp1r14a	Protein phosphatase 1 regulatory subunit 14A	-1.136	7.74E-03	0.0124
P24270	Cat	Catalase	-0.675	7.80E-03	0.0124
P97447	Fhl1	Four and a half LIM domains protein 1	-0.678	9.59E-03	0.0151
P40936	Inmt	Indolethylamine N-methyltransferase	-0.793	1.04E-02	0.0163
P68033	Actc1	Actin, alpha cardiac muscle 1	-2.423	1.09E-02	0.0168
P62204	Calm1	Calmodulin	-0.785	1.08E-02	0.0168
Q91X72	Hpx	Hemopexin	-0.684	1.22E-02	0.0187
P51174	Acadl	Long-chain specific acyl-CoA dehydrogenase, mitochondrial	-0.696	1.24E-02	0.0189
Q61RU2	Tpm4	Tropomyosin alpha-4 chain	-0.737	1.30E-02	0.0195
P60766	Cdc42	Cell division control protein 42 homolog	-0.715	1.34E-02	0.0199
Q9CZY3	Ube2v1	Ubiquitin-conjugating enzyme E2 variant 1	-0.693	1.33E-02	0.0199

P97315	Csrp1	Cysteine and glycine-rich protein 1	-0.731	1.67E-02	0.0245
Q6A028	Swap70	Switch-associated protein 70	-0.790	1.93E-02	0.0282
P63260	Actg1	Actin, cytoplasmic 2	-3.539	2.26E-02	0.0328
P08226	Apoe	Apolipoprotein E	-0.528	2.82E-02	0.0406
Q08857	Cd36	Platelet glycoprotein 4	-0.732	3.06E-02	0.0437
Q01339	Apoh	Beta-2-glycoprotein 1	-0.654	3.08E-02	0.0437
Q9WVH9	Fbln5	Fibulin-5	-0.667	3.76E-02	0.0530
Q64471	Gstt1	Glutathione S-transferase theta-1	-0.683	3.85E-02	0.0538
O55222	Ilk	Integrin-linked protein kinase	-0.773	3.93E-02	0.0545
Q9JJU8	Sh3bgrl	SH3 domain-binding glutamic acid-rich-like protein	-0.610	4.39E-02	0.0606
Q61147	Cp	Ceruloplasmin	-0.496	4.79E-02	0.0657
Q9CPU0	Glo1	Lactoylglutathione lyase	-0.487	5.45E-02	0.0741
Q06890	Clu	Clusterin	-0.452	5.73E-02	0.0774
O55135	Eif6	Eukaryotic translation initiation factor 6	-0.614	6.25E-02	0.0838
P14602	Hspb1	Heat shock protein beta-1	-0.721	6.92E-02	0.0923
P51885	Lum	Lumican	-0.475	7.10E-02	0.0941
Q9JLJ2	Aldh9a1	4-trimethylaminobutyraldehyde dehydrogenase	-0.719	7.18E-02	0.0945
P35235	Ptpn11	Tyrosine-protein phosphatase non-receptor type 11	0.374	8.48E-02	0.1109
Q6PDN3	Mylk	Myosin light chain kinase, smooth muscle	-0.702	9.13E-02	0.1186
P34884	Mif	Macrophage migration inhibitory factor	-0.414	9.40E-02	0.1212
Q61171	Prdx2	Peroxiredoxin-2	-0.532	9.77E-02	0.1253
P00920	Ca2	Carbonic anhydrase 2	-0.467	9.90E-02	0.1261
O35639	Anxa3	Annexin A3	-0.382	9.99E-02	0.1264
P68510	Ywhah	14-3-3 protein eta	-0.351	1.03E-01	0.1292
P01942	Hba	Hemoglobin subunit alpha	-0.713	1.04E-01	0.1304
Q9D0J8	Ptms	Parathymosin	-0.406	1.06E-01	0.1317
P62806	Hist1h4a	Histone H4	-0.582	1.16E-01	0.1433
P70202	Lxn	Latexin	-0.458	1.17E-01	0.1433
Q8BPB5	Efemp1	EGF-containing fibulin-like extracellular matrix protein 1	-0.495	1.22E-01	0.1492
Q64727	Vcl	Vinculin	-0.376	1.24E-01	0.1509
Q9DC11	Plxdc2	Plexin domain-containing protein 2	0.394	1.54E-01	0.1858
Q62000	Ogn	Mimecan	-0.660	1.59E-01	0.1895
P24549	Aldh1a1	Retinal dehydrogenase 1	-0.431	1.59E-01	0.1895
P27546	Map4	Microtubule-associated protein 4	-0.355	1.67E-01	0.1976
P60710	Actb	Actin, cytoplasmic 1	-0.836	1.76E-01	0.2075
P23953	Ces1c	Carboxylesterase 1C	-0.405	1.83E-01	0.2136
P02089	Hbb-b2	Hemoglobin subunit beta-2	-0.580	1.99E-01	0.2300
Q8CG76	Akr7a2	Aflatoxin B1 aldehyde reductase member 2	-0.392	1.98E-01	0.2300
Q99KJ8	Dctn2	Dynactin subunit 2	-0.367	2.10E-01	0.2410
O09164	Sod3	Extracellular superoxide dismutase [Cu-Zn]	-0.275	2.12E-01	0.2419
P17563	Selenbp1	Selenium-binding protein 1	-0.260	2.38E-01	0.2708
P14152	Mdh1	Malate dehydrogenase, cytoplasmic	-0.270	2.41E-01	0.2716
P63330	Ppp2ca	Serine/threonine-protein phosphatase 2A catalytic subunit alpha isoform	-0.266	2.42E-01	0.2716
O08677	Kng1	Kininogen-1	-0.432	2.46E-01	0.2735
P13020	Gsn	Gelsolin	-0.283	2.46E-01	0.2735
Q99K51	Pls3	Plastin-3	-0.228	2.66E-01	0.2941
P08228	Sod1	Superoxide dismutase [Cu-Zn]	-0.239	2.83E-01	0.3109
Q9WVA4	Tagln2	Transgelin-2	-0.226	2.95E-01	0.3221
P02088	Hbb-b1	Hemoglobin subunit beta-1	-0.477	3.16E-01	0.3434
Q60854	Serpina6	Serpin B6	-0.214	3.24E-01	0.3502
P50396	Gdi1	Rab GDP dissociation inhibitor alpha	-0.202	3.26E-01	0.3506
P22599	Serpina1b	Alpha-1-antitrypsin 1-2	-0.266	3.93E-01	0.4205
Q99K30	Eps8l2	Epidermal growth factor receptor kinase substrate 8-like protein 2	-0.401	4.06E-01	0.4317
P30416	Fkbp4	Peptidyl-prolyl cis-trans isomerase FKBP4	-0.421	4.09E-01	0.4325
O08709	Prdx6	Peroxiredoxin-6	-0.163	4.32E-01	0.4551
Q06770	Serpina6	Corticosteroid-binding globulin	-0.377	4.41E-01	0.4619
O08553	Dpysl2	Dihydropyrimidinase-related protein 2	-0.144	5.03E-01	0.5240
Q9DBF1	Aldh7a1	Alpha-aminoacidic semialdehyde dehydrogenase	-0.117	5.63E-01	0.5834
P58389	Ppp2r4	Serine/threonine-protein phosphatase 2A activator	-0.138	5.67E-01	0.5849
P19221	F2	Prothrombin	-0.209	6.14E-01	0.6294
P49443	Ppm1a	Protein phosphatase 1A	-0.237	6.26E-01	0.6388
P63101	Ywhaz	14-3-3 protein zeta/delta	-0.099	6.68E-01	0.6785
Q8BH64	Ehd2	EH domain-containing protein 2	-0.144	6.72E-01	0.6785
P06728	Apoa4	Apolipoprotein A-IV	-0.085	7.44E-01	0.7477
P20918	Plg	Plasminogen	-0.053	8.79E-01	0.8790

724 **Figure Legends**

725 **Figure 1:** Characterization of the distinct proteomic signatures of the lung tissue and BALF. **A)**
726 Venn Diagram showing distribution of unique protein ID's for the lung tissue and BALF across
727 both naïve and HDM exposed mice. **B)** PLSDA of the proteomes from the tissue, BALF and
728 Integrated-Tissue-BALF datasets as influenced by HDM treatment. **C)** Variance in Projection
729 (VIP) score for the PLSDA shown in B identifies the top proteins that discriminate the
730 proteomes of the tissue, BALF and Integrated-Tissue-BALF proteomes. Z-scores are shown on
731 the right-hand side to show individual contributions from each proteomic dataset. Abbreviations
732 used: Partial Least Squares Discriminant Analysis (PLSDA), House Dust Mite (HDM), BALF
733 (B), tissue (T), Integrated-Tissue-BALF (I).

734 **Figure 2:** Differential expression analysis identifies both unique and significantly enriched
735 proteins from tissue, BALF and Integrated-Tissue-BALF proteomes during HDM challenge. **A,**
736 **B, C)** Insets: z-score plots from HDM treated and naïve mice. Proteins exclusive to either HDM
737 or naïve samples are represented by assigning a z-score of -4 to the missing values. Proteins
738 found in both HDM and naïve mice were used for SAM analysis and represented as volcano
739 plots. Significance was taken at $p \leq 0.05$ after False Discovery Rate (FDR) correction. Proteins
740 unique to the tissue or BALF proteomes are coloured red and blue respectively (A,B). Proteins
741 unique to lung tissue or BALF proteomes when examined in isolation are colored in green (C).
742 **D)** Proteins that are found in both lung tissue and BALF but are differentially enriched. **E-F)**
743 Pathway analysis (top 10) using significantly enriched lung tissue proteins (diminished in BALF;
744 E) and proteins that are enriched in BALF (diminished in tissue; F). Pathway analysis was
745 conducted using InnateDB with an adjusted p-value by Benjamini-Hochberg multiple
746 comparison. Vertical lines (E,F) indicate statistical significance ($p.\text{adj } p = 0.05$).

747 **Figure 3:** Individually, lung tissue or BALF proteomes do not recapitulate the biology of the
748 Integrated-Tissue-BALF proteome. **A, B)** Significantly enriched pathways activated by HDM
749 exposure for the lung tissue (A), and BALF proteomes (B). **C)** Pathways that are enriched in the
750 tissue and the Integrated-Tissue-BALF proteome ($p.\text{adj} \leq 0.05$) but not the BALF proteome
751 ($p.\text{adj} > 0.05$). **D)** Pathways that are enriched in the BALF and the Integrated-Tissue-BALF
752 proteome ($p.\text{adj} \leq 0.05$) but not the lung tissue ($p.\text{adj} > 0.05$). **E)** Pathways that are enriched in
753 the Integrated-Tissue-BALF proteome ($p.\text{adj} \leq 0.05$) but are not enriched in either the lung tissue
754 or BALF proteomes ($p.\text{adj} > 0.05$). Pathway analysis was conducted using InnateDB using
755 Uniprot Protein IDs. Vertical black line indicates significance ($p.\text{adj} \leq 0.05$) after Benjamini-
756 Hochberg multiple comparison correction.

757 **Figure 4:** Protein-Protein interaction networks that drive the lung tissue, BALF and Integrated-
758 Tissue-BALF proteome biology are distinct. **A)** Top 3 most connected protein hubs (protein-
759 protein interactions) that are unique to the lung tissue dataset (Hdac1, Ctnnb1, Smarca4). **B)** Top
760 3 most connected protein hubs that are unique to the BALF dataset (Csf1r, Dnm1, Akt1). **C)** The
761 Integrated-Tissue-BALF protein-protein interaction network using the top 3 hubs identified from
762 either the lung tissue or BALF datasets (Hdac1, Ctnnb1, Smarca4, Csf1r, Dnm1, Akt1). The
763 most significantly enriched biological associations ($p.\text{adj} \leq 0.05$) determined using the Reactome
764 module of NetworkAnalyst for each interactome is shown on the right-hand side of panel. Hubs
765 are coloured to identify direct protein-protein interactions.

766

767 **Figure 5:** Integrating proteomes not only enrich protein-protein interactions but also connects
768 otherwise separate proteomes together. **(A)** Interactome map based on proteins that are unique to
769 tissue **(B)** Interactome map based on proteins that are unique to BALF. **(C)** Interactome map on
770 unique to-lung tissue and -BALF protein hubs in the UtC dataset. The most significantly
771 enriched biological associations ($p.\text{adj} \leq 0.05$) determined using the Reactome module of
772 NetworkAnalyst for each interactome is shown on the right hand side of panel. Hubs are
773 coloured to identify direct protein-protein interactions. Black lines signify interactions between
774 different protein hubs. Proteins which have split colouration are connected to two independent
775 protein hubs.

776 **Table 3A:** Lung tissue protein hub enrichment in the Unique-to Combined dataset. We identified
777 the protein interaction hubs that are unique to lung tissue and become enriched in the Unique-to-
778 Combined dataset. For simplicity, the Unique-to-Combined dataset was filtered to have ≥ 5
779 connections and only the top 10 protein hubs (by % enrichment) are shown. Proteins in bold
780 were selected for further analysis.

Unique to	Uniprot ID	Gene	# of Interactions		Protein Hub Enrichment in the Unique-to-Combined Dataset (%)
			Tissue	Unique-to-Combined	
Tissue	Q99LI8	Hgs	6	8	33.33
Tissue	Q9ES28	Arhgef7	8	10	25.00
Tissue	Q9DBR0	Akap8	4	5	25.00
Tissue	Q9CQU3	Rer1	5	6	20.00
Tissue	Q9Z2N8	Actl6a	5	6	20.00
Tissue	Q80TH2	Erbb2ip	6	7	16.67
Tissue	P09242	Alpl	6	7	16.67
Tissue	Q9Z277	Baz1b	6	7	16.67
Tissue	P70452	Stx4a	6	7	16.67
Tissue	Q68FF6	Git1	7	8	14.29

781

782

783 **Table 3B:** BALF Protein hub enrichment in the Unique-to-Combined dataset. We identified the
784 protein interaction hubs that are unique to BALF and become enriched in the Unique-to-
785 Combined dataset. For simplicity, the Unique-to-Combined dataset was filtered to have ≥ 5
786 connections and only the top 10 protein hubs (by % enrichment) are shown. Proteins in bold
787 were selected for further analysis.

Unique to	Uniprot ID	Gene	# of Interactions		Protein Hub Enrichment in the Unique-to-Combined Dataset (%)
			BALF	Unique-to-Combined	
BALF	P97864	Casp7	7	13	85.71
BALF	P83940	Tceb1	3	5	66.67
BALF	P10923	Spp1	4	6	50.00
BALF	P39053	Dnm1	14	21	50.00
BALF	O70456	Sfn	5	7	40.00
BALF	P31750	Akt1	14	19	35.71
BALF	Q01279	Egfr	13	17	30.77
BALF	P33175	Kif5a	8	10	25.00
BALF	P97797	Sirpa	8	10	25.00
BALF	P68134	Acta1	8	9	12.50

788

789

790 **Supplementary Information (Expanded View)**

791

792 **Supplemental 1:** Experimental Workflow. Six mice were split into two groups and exposed to
793 either HDM (House Dust Mite) or PBS (naïve) for two weeks. On day 14, mice were
794 anesthetized and lung function data was collected using a small animal ventilator. Bronchial
795 Alveolar Lavage Fluid (BALF) was collected, spun down to collect immune cells and flash
796 frozen in liquid nitrogen. Post-BAL lung tissue was portioned into 5 equal segments and flash
797 frozen in liquid nitrogen. Lung tissue was washed in PBS to remove excess blood and
798 subsequently homogenized. Samples were processed using FASP (Filter Assisted Sample
799 Preparation), trypsinized, desalted by 1D HPLC and quantified using an online LC-MS/MS
800 proteomic system. Protein ID's were identified using our X!Tandem informatic pipeline and
801 subsequent bioinformatic analysis was conducted on the data. On a per sample basis, log2
802 normalized protein abundance was converted to z-scores and then normalized to HDM exposure.
803 Using these normalized datasets, the Tissue, BALF and the Integrated-Tissue-BALF and
804 Unique-to-Combined datasets were used as inputs to assess the differences between the BALF
805 and tissue datasets across multiple levels of analysis including proteins, pathways and networks.

806 **Supplemental 2:** HDM exposure induces altered lung function and increased inflammatory cell
807 counts. **A)** Lung mechanics were measured 48 h after last HDM treatment using a flexivent small
808 animal ventilator. Increasing doses of methacholine (3-50 mg/mL) intranasally administered to
809 measure changes in airway resistance, tissue resistance and tissue elastance. **B)** Differential
810 immune cell counts from Bronchial Alveolar Lavage Fluid (BALF) of naïve and HDM exposed
811 mice. Each value is representative of the mean and SEM of three biological replicates. Statistical
812 significance was determined by a two-way nested ANOVA with Tukey's post-hoc test for lung
813 function and unpaired t-test with welch's correction for cell counts. FDR corrected p-values are
814 reported. *(p.adj ≤ 0.05), **(p.adj ≤ 0.01), ****(p.adj ≤ 0.0001).

815 **Supplemental 3:** Summary of MS/MS analysis from X!Tandem informatic pipeline.

816 **A)** Distribution of spectra, non-redundant peptides and quantified protein IDs are significantly

817 enriched in tissue compared to BALF samples. An EV cutoff of -1.5 and a minimum of two

818 peptides were needed for each peptide and protein ID. **B)** Summary of MS/MS data. Unpaired

819 one-way t-test with welch's correction and FDR adjustment was used for statistical analysis.

820 Abbreviations used: Mouse (In House Mouse ID), number of spectra (SPEC), number of

821 peptides (PEPS), number of non-pedundant peptides (NR-PEPS), number of proteins (PROTS),

822 number of quantified proteins (QPROT), number of quantified peptides (QPEPS), Mean and

823 Standard Deviation of Log₂ MS/MS Intensity (MEAN & SD), Bronchial Alveolar Lavage Fluid

824 (BALF), House Dust Mite (HDM). *(p.adj ≤ 0.05), ****(p.adj ≤ 0.0001).

825 **Supplemental 4:** Proteomic quality control and reproducibility tests indicate proteomic
826 variability resides in biological and not technical replicates. **A,B)** Representative SDS-PAGE
827 gels stained for total protein loading with coomassie blue of tissue and BALF protein
828 homogenates (20 μ g loading for tissue, 7 μ g for BALF). Each lane represents a different mouse.
829 **C,D)** Technical replicate assessment of Log_2 MS/MS intensities from mouse BALF. **E,F)**
830 Biological replicate assessment of Log_2 MS/MS intensities from mouse BALF. Deviations from
831 the plot origin indicate variability (C,E). Red line indicates linear goodness of fit (D,F).

Figure 1

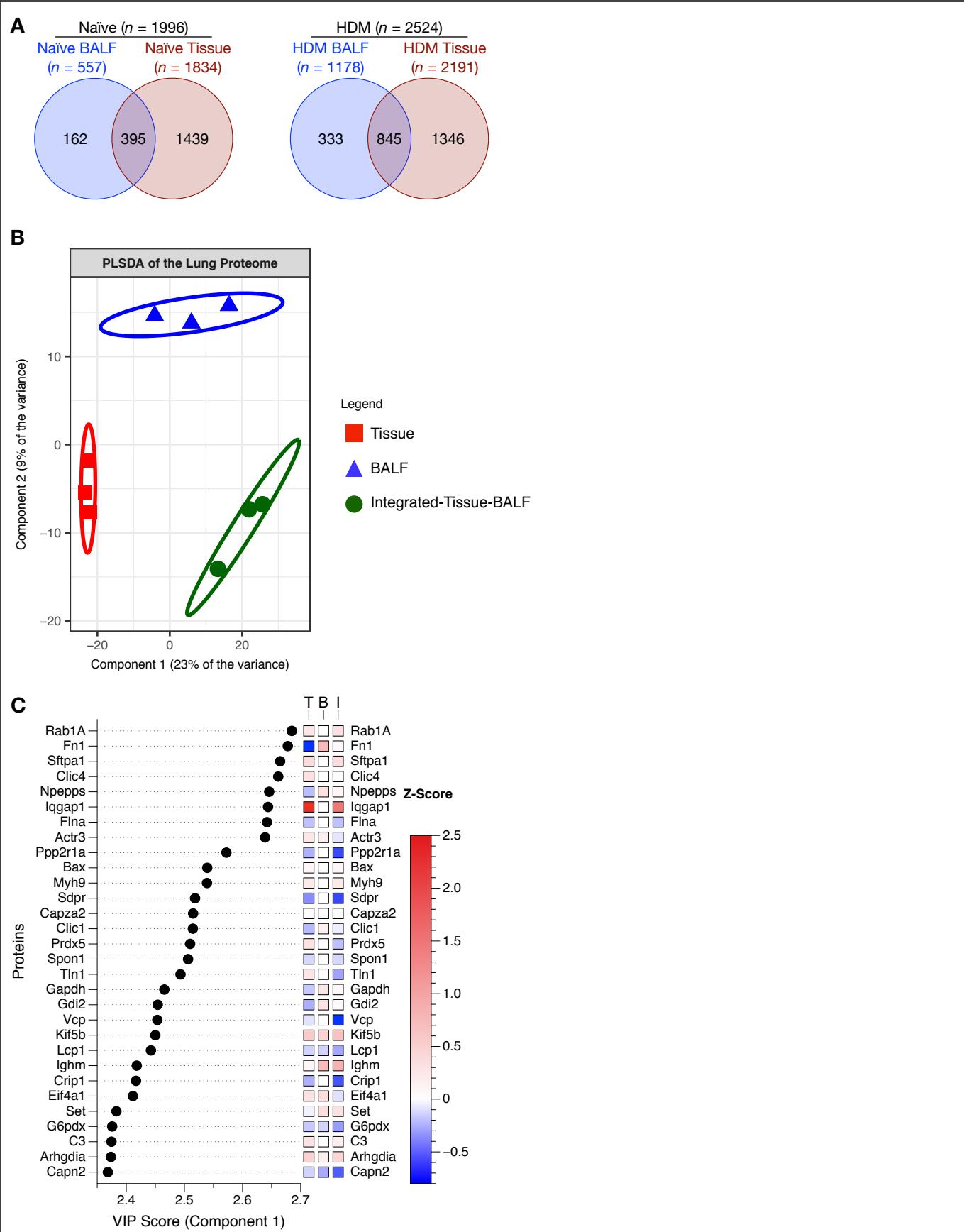
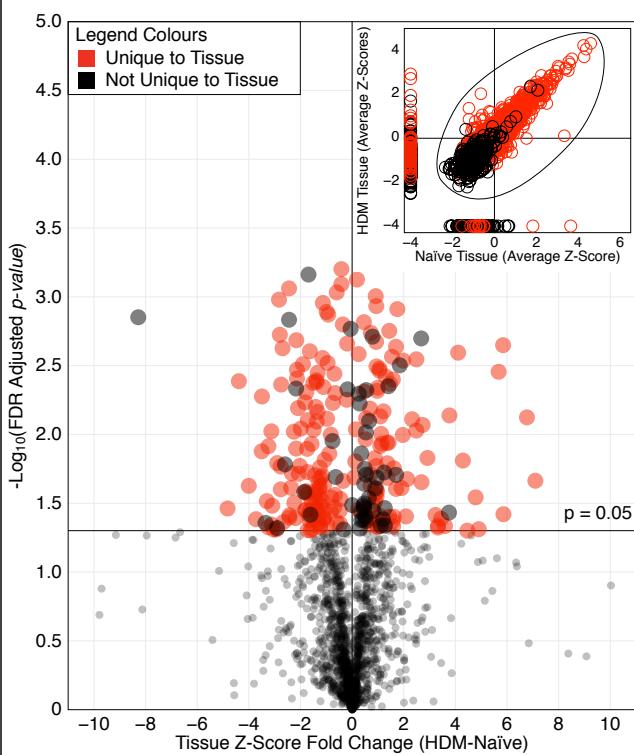
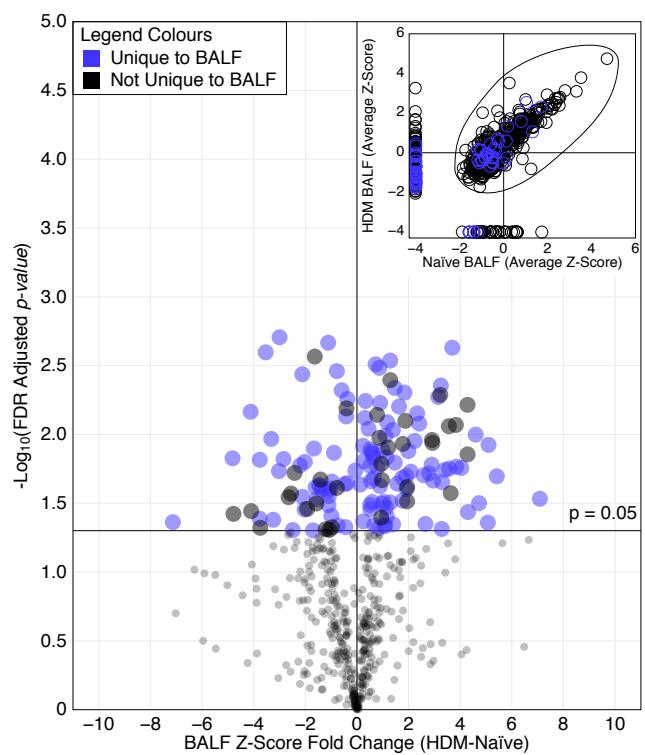




Figure 2

A

B

C

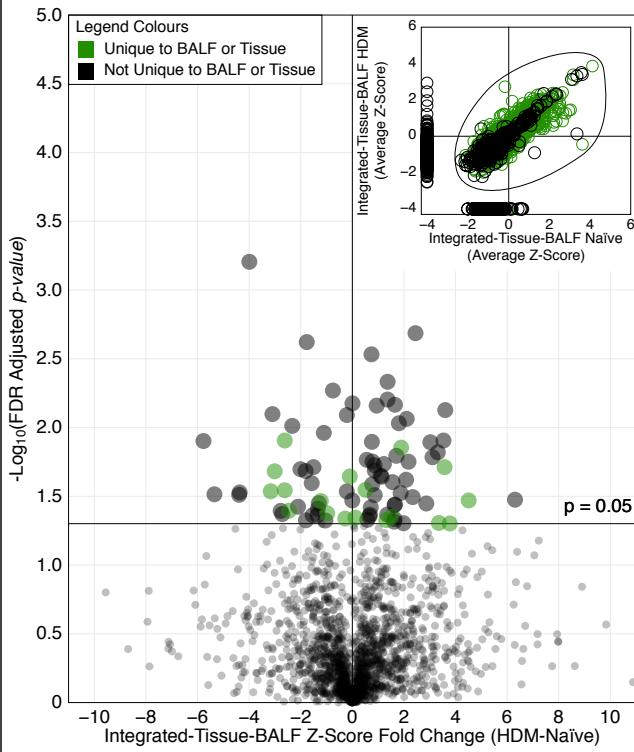


Figure 2...continued

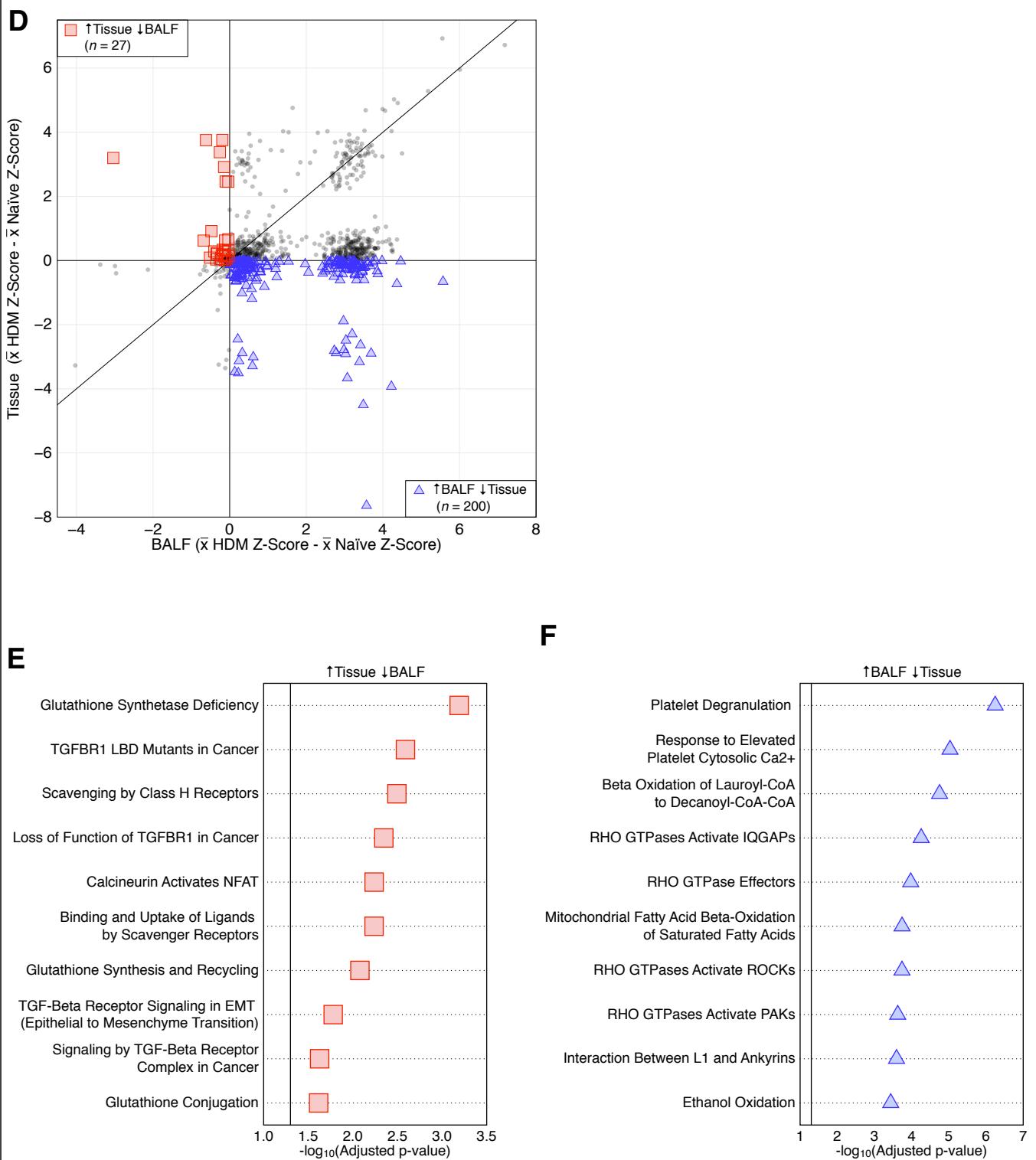


Figure 3

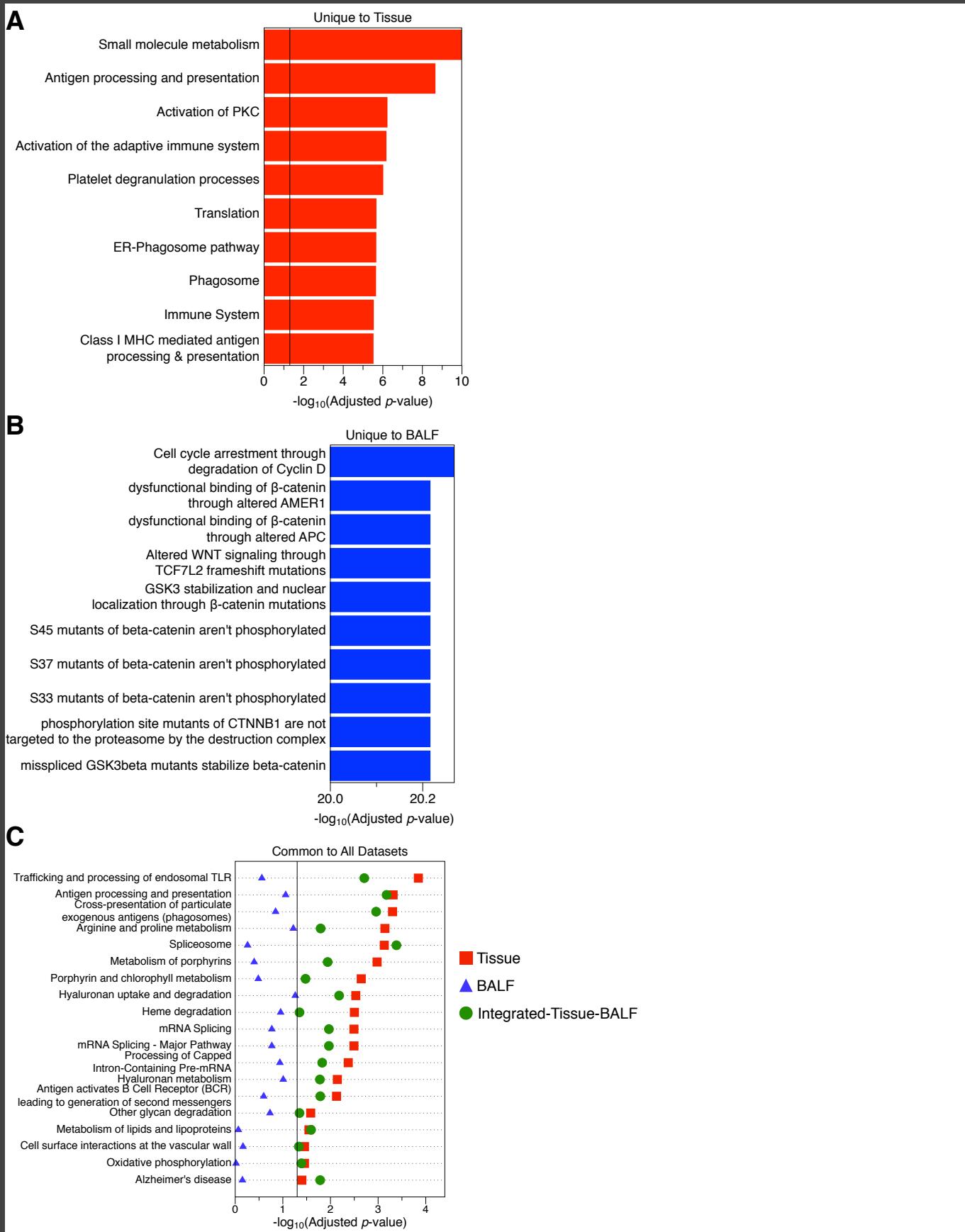
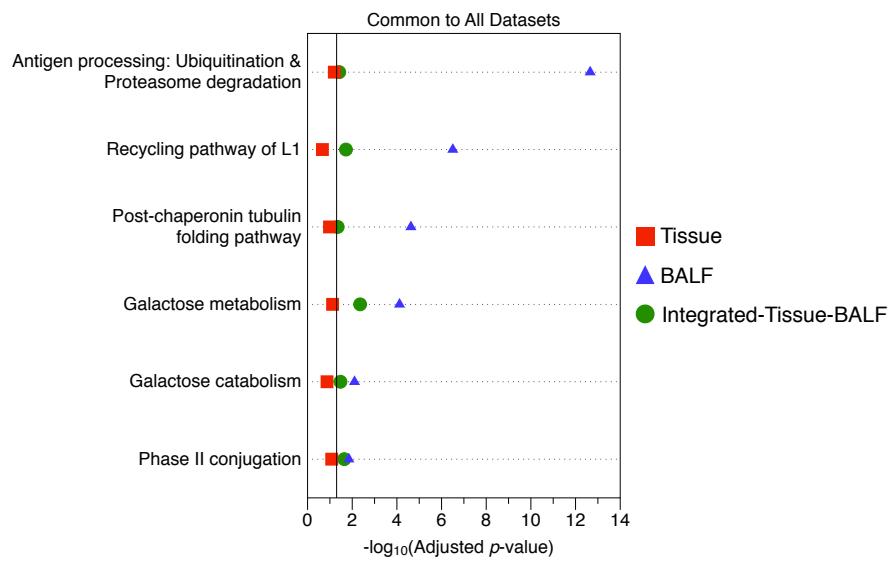



Figure 3...continued

D

E

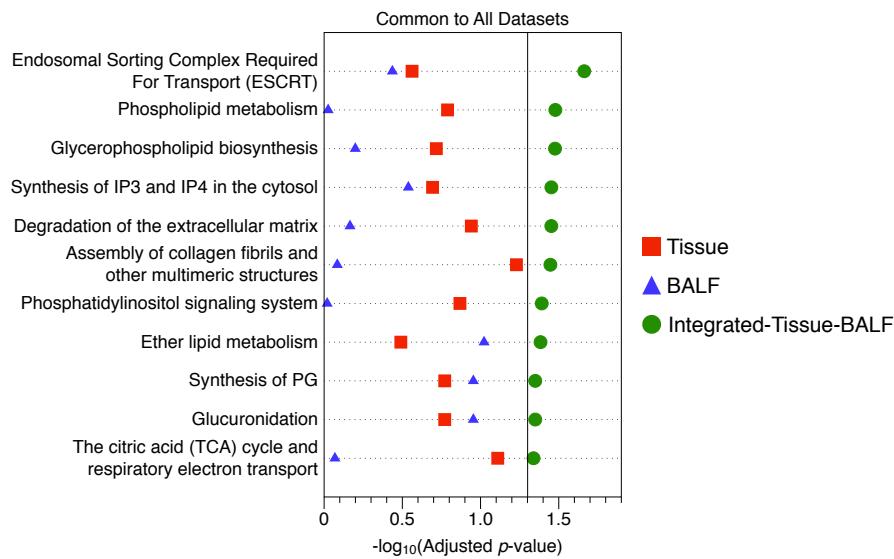


Figure 4

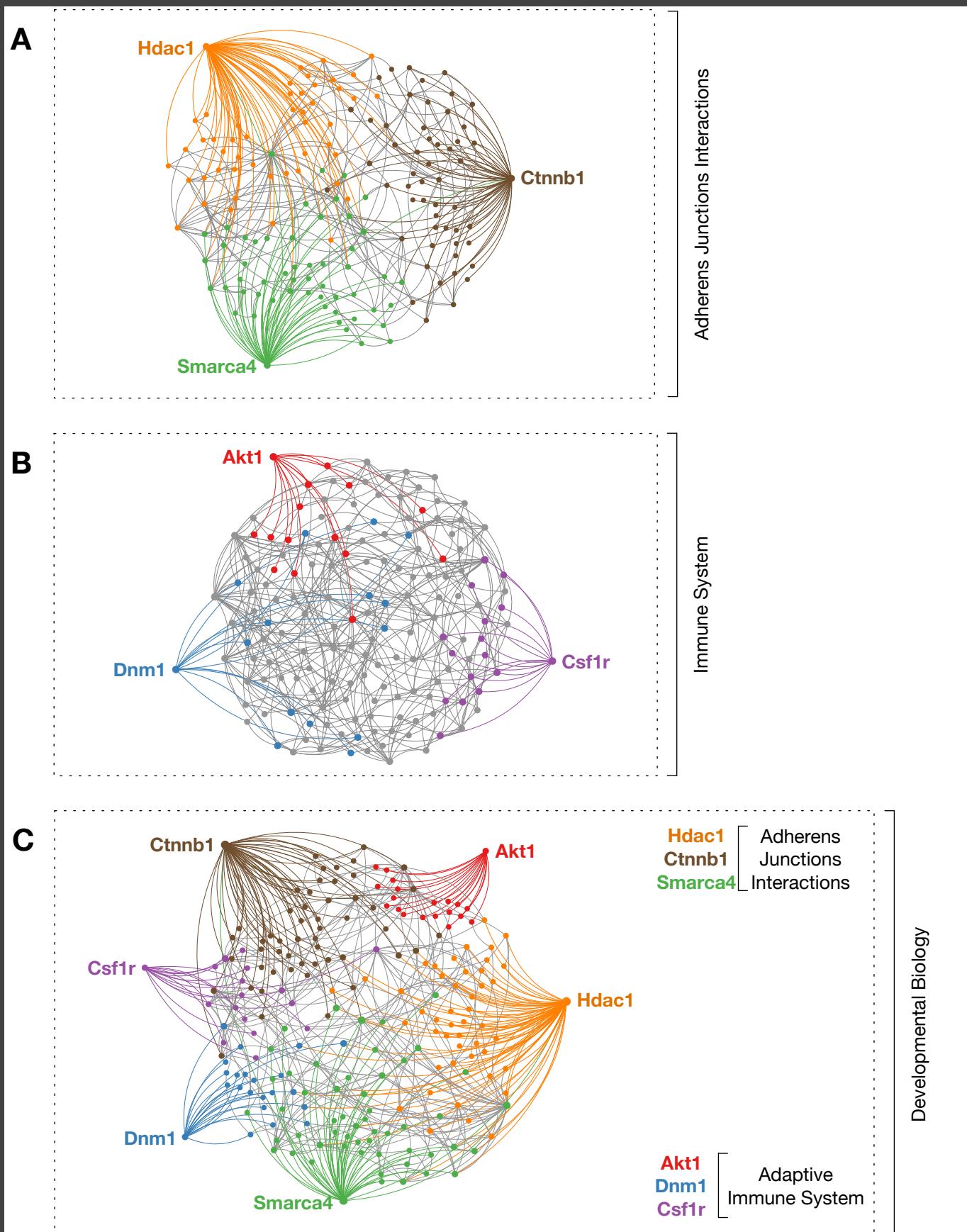
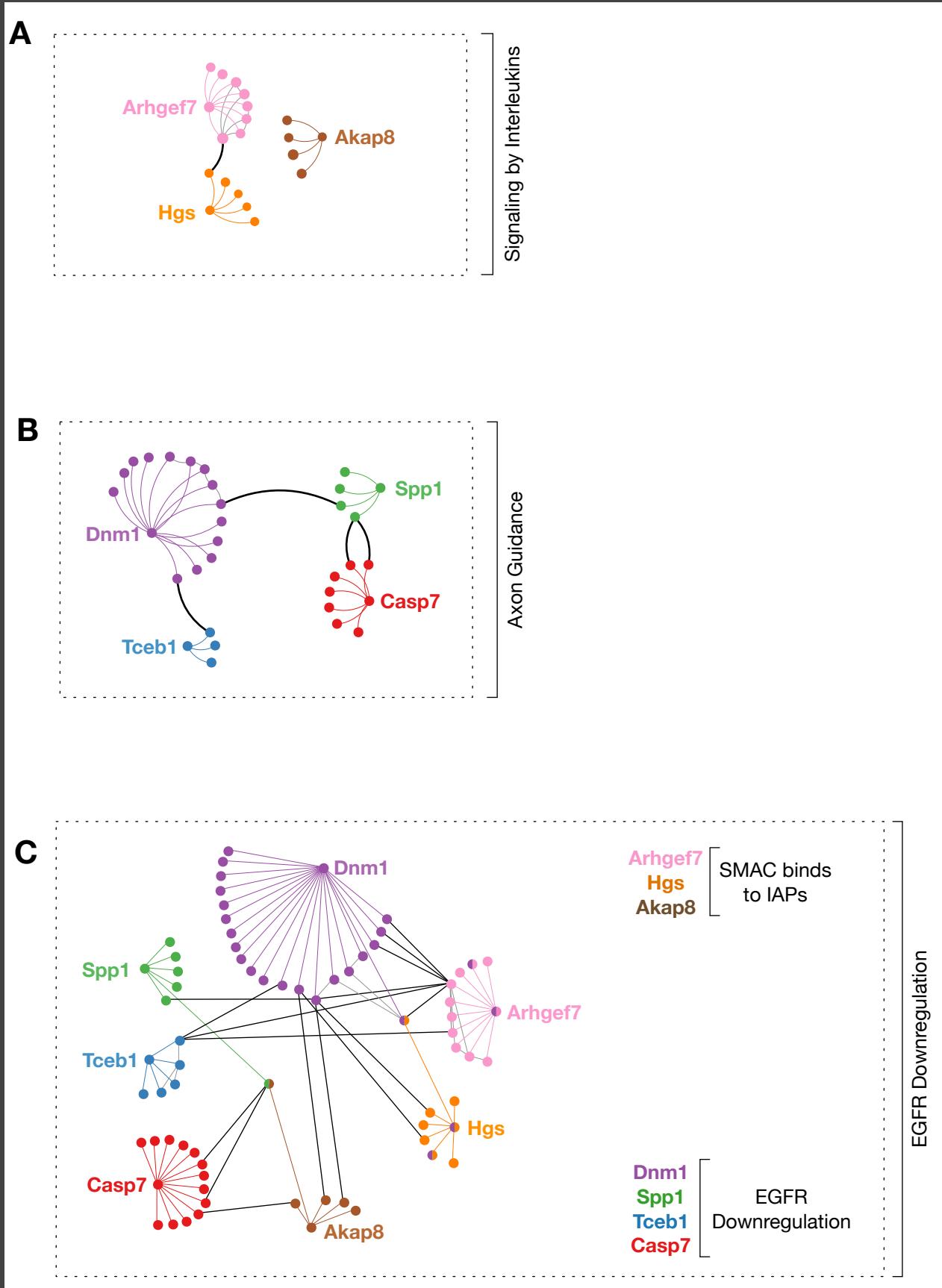



Figure 5

