

1 **Composition and Abundance of Drifting Fish Eggs on the Upper Reaches of Xijiang**

2 **River, China, after the Formation of the Cascade Reservoirs**

3

4 **Short title: Composition and Abundance of Drifting Fish Eggs in the Upper Reaches of a**

5 **River after Dam Formation**

6 Gao Minghui¹, Wu Zhiqiang^{2,3}, Tan Xichang⁴, Huang Liangliang³, Huang Haibo³ and Liu Hao³

7

8 ¹ College of Life Science and Technology, Guangxi University, Nanning 350000, Guangxi,

9 China

10 ² School of Marine Sciences, Guangxi University, Nanning 350000, Guangxi, China

11 ³ College of Environmental Science and Engineering, Guilin University of Technology, Guilin

12 541000, Guangxi, China.

13 ⁴ ZhuJiang Water Conservancy Bureau, Ministry of Water Resources, Guangzhou 510000,

14 Guangdong, China

15

16 Corresponding Author:

17 Wu Zhiqiang

18 Yanshan Town, Guilin, Guangxi 54100, China

19 Email address: wuzhiqiang@glut.edu.cn

20

21

22 Abstract

23 To develop effective management actions of riverine fisheries, it is important to monitor how
24 fish resources (i.e., eggs) are recruited in the upper reaches of natural rivers, particularly where
25 dams have been constructed, which potentially hinder life-history strategies. Here, we aimed to
26 determine the State of drifting fish eggs resources, and the underlying environmental factors
27 regulating the presence of fish eggs in the upper reaches of a river (Laibin section of Xijiang
28 River, China). Based on surveys conducted over one spawning period (2016), we set out to: (1)
29 describe the composition and abundance of drifting fish eggs in the 150 km Lainbin section
30 under a dam control, and (2) analyze how the composition and distribution of fish eggs was
31 correlated with environmental factors. A total of 15157 eggs belonging to two orders, four
32 families, and 18 species were collected. Comparison of these data with historical records in the
33 same area showed that the community structure of drifting eggs has changed considerably.
34 Previously, the community was dominated by larger-bodied species, rather than the smaller species
35 documented in 2016. Eggs were primarily detected between May and August. In the natural
36 channel, the greatest abundance of eggs occurred during May and June. In comparison, the
37 greatest abundance of eggs downstream of the dam was detected in July. The results of this
38 study provide important information for water conservancy institutions towards managing
39 regions containing dams to maintain the ecology of rivers and protect important fish resources.

40

41

42

43 **Introduction**

44 The diversity of species globally is declining at an alarming rate because of human influences
45 [1]. Global fishery resources are in decline due to many man-induced stressors, such as
46 overfishing, dam construction, biological invasions, and climate change [2]. Aquatic
47 ecosystems have been severely degraded as a result of anthropogenic changes to landscapes
48 [3], with the damming of rivers representing a major anthropogenic factor impacting the ecology
49 of freshwater fish populations. In particular, dams cause habitat loss, affect fish reproductive
50 environments, and cut off migration routes [4]. Globally, 77% of rivers longer than 1000 km
51 no longer flow freely from source to sea, due to obstructions by dams and reservoirs, with up-
52 and downstream fragmentation and flow regulation being the leading contributors to the loss of
53 river connectivity [5]. To develop practical and effective fishery management strategies, it is
54 important to understand the recruitment of fish resources and monitor the status of breeding
55 populations [6].

56 Since the 1980s, 216 fish species have been recorded in the Xijiang Basin in southern China,
57 of which 30 species are endemic [7]. Various studies have shown that the spawning grounds of most
58 fish species of economic importance are distributed in its middle and upper regions of this basin [8,
59 9]. However, the diversity and resources of fishes are under threat from dam construction. Already,
60 the composition of fish species in the upper reaches of Xijiang River has been significantly impacted
61 by the construction of a dam and the consequent creation of the Cascade Reservoirs [10].

62 Specifically, the Xijiang River Basin is rich in hydraulic resources. Eleven dams have been
63 constructed on its upper and middle reaches, with the first being completed in 1980, and plans for
64 the final dam (Datengxia) to be operational by 2020. This final structure will close off the last

65 naturally flowing section in the upper Xijiang Basin. Historically, there were many spawning
66 grounds for fish of economic importance in this section [8]; however, the spawning grounds of these
67 species will be submerged once the dam is completed.

68 Most studies on fish reproductive ecology in Xijiang River have focused on larval fish in
69 the middle and lower reaches [9, 11-13]. These studies have investigated annual dynamics in
70 the abundance of fish larvae and their relationship with variation in hydrology, as well as
71 patterns in their temporal distribution. However, few studies have examined the movement
72 patterns of drifting fish eggs in the upper reaches of rivers [8]. Yet, it is important to monitor
73 how fish resources are recruited in natural rivers, along with the status of breeding populations,
74 to develop practical and effective fisheries management strategies [6, 14]. Studies of fish eggs
75 provide information on ichthyology, environmental inventory, stock monitoring, and fisheries
76 management. Patterns in the drift of fish eggs could provide insights on processes associated
77 with spawning and larval production, as well as estimates of the stock size of spawning adults
78 [15].

79 At present, one section of the upper reaches of Xijiang River remains free of dams (the
80 Laibin section). Thus, here, we aimed to determine the underlying environmental factors
81 regulating the presence of fish eggs in this section of the river. Specifically, we: (1) described
82 the composition and abundance of drifting fish eggs in this section, and (2) analyzed how the
83 composition and distribution of fish eggs was correlated with environmental factors. This
84 information was gathered before this section of river was transformed into Datengxia Reservoir.
85 The results of this study are expected to help inform water conservancy institutions on how to
86 manage such regions to maintain the ecology and protect important fish resources.

87 Materials & Methods

88 Study area

89 Xijiang River is the largest tributary of the Pearl River, which is the largest river in south China.

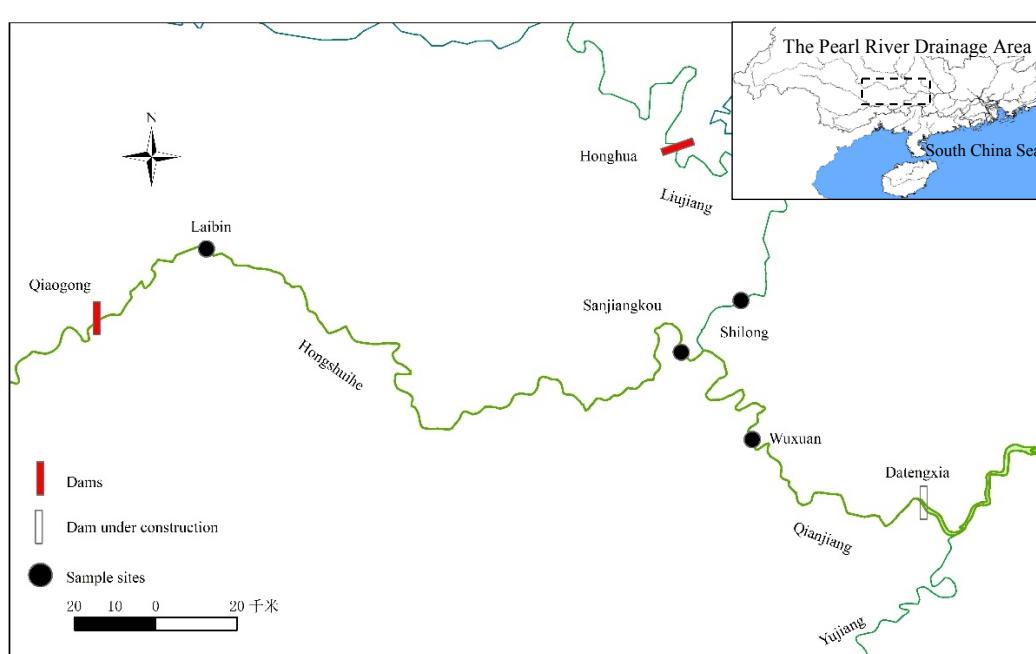
90 Xijiang River is 2214 km long, with a catchment of 353,120 km² and mean annual discharge of 2.24

91 $\times 10^{11}$ m³. The upper reaches of Xijiang River are located in a geotectonically complex karst area,

92 with mountains and valleys on either side. The river is composed of curved channels, beaches,

93 underground streams, and karst caves [8]. The river is located in a region with a subtropical climate,

94 with a mild climate and abundant rainfall. The river has high flow in summer and low flow in spring


95 and winter. Since the 1980s, the landscape and the hydrodynamics of the basin have been

96 modified by the construction of 11 hydroelectric power plants (HEPs). This study was carried

97 out in the Laibin section of the river, which is under the influence of the Qiaogong and Honghua

98 HEPs, spanning approximately 230 km of the upper reaches of Xijiang River (Fig. 1).

99

100 **Fig. 1 Upper reaches of the Xijiang River network, showing the sampling sites and dams.**

102 Sampling and data collection

103 Samples were collected daily during the spawning season (April to August) in 2016. Four
104 sampling sites were set up to collect drifting fish eggs. These sites were located at Laibin (109°
105 14' 31" E, 23° 42' 41" N), Sangjiangkou (109° 32' 6" E, 23° 47' 36" N), Shilong (109° 32' 10"
106 E, 23° 50' 29" N), and Wuxuan (109° 39' 54" E, 23° 36' 22" N). About 150 km separates Laibin
107 from Wuxuan, with the four sampling sites being set at 60 km distances from one another. The
108 four sites fell into three categories: (1) downstream of the dams (Laibin sites, which was
109 downstream of the Qiaogong HEP); (2) at a junction of two rivers (Sangjiangkou and Shilong
110 site, which were at the confluence the Hongshuihe and Liujiang Rivers); and (3) on a
111 conventional channel (Wuxuan site, which was 55 km downstream of the confluence, and
112 approximately 60 km upstream of the Datengxia HEP under construction).

113 Fish eggs samples were collected using Jiang nets (total length 5 m; rectangular iron
114 opening/mouth 1.0 m × 1.5 m, and a mesh net size of 0.5 mm attached to a 0.8 m × 0.4 m × 0.4
115 m filter collection bucket). We selected sections with a width of 200 m and a depth of 12 m for
116 sampling. The nets were deployed in the surface water, 10 m from the shore, to optimize the
117 catch of target species. Sampling duration was 1 h (06:00–07:00), against the current.

118 Fish eggs were counted and sorted to the lowest possible taxonomic level at each station,
119 based on morphological characteristics [16-18]. Eggs that could not be identified were placed in
120 an aerated tank (diameter 30 cm, height 40 cm) at 20–25 °C for at least 1 week, until the species
121 could be identified. Each tank was stocked with 40–50 eggs.

122 Real-time water temperature (WT) and dissolved oxygen (DO) data were collected using
123 a dual input multiparameter digital analyzer (HACH HQ40d, Yiku Industrial Instrument Co.,

124 LTD, Shanghai China). Water transparency (Tra) was measured using a Secchi disk
125 (HENGLING Technology Co., Ltd., Wuhan, China). Data on discharge (Dis), velocity (Vel),
126 and water level (WL) were obtained from the website of the Pearl River Water Conservancy
127 Commission (<http://www.pearlwater.gov.cn.>).

128

129 **Data analysis**

130 The abundance of eggs was expressed as catch per unit effort (CPUE). The dominant species
131 were determined using the Index of Relative Importance (IRI)[19]:

132
$$IRI = N \times 100 \% \times F \times 100 \%$$

133 where $N \times 100 \%$ and $F \times 100 \%$ represent the relative abundance and frequency of occurrence,
134 respectively. The IRI of the dominant species should exceed 100.

135 Spawning site location (L) was calculated as:

136
$$L = V \times T$$

137 where T is the number of hours of development of the fish eggs when captured, based on their
138 developmental stage (Table 1); and V is the water velocity at that moment (km/h).

139 To assess spatiotemporal variation in the distribution of eggs, a two-factor analysis of variance
140 (ANOVA) was applied, in which differences were regarded as significant at 0.05 probability.

141 Canonical correspondence analysis (CCA) is a robust method that directly correlates
142 community data to environmental variables by constraining species ordination to a pattern that
143 is correlated with environmental variables [22]. CCA was used to analyze the correlation
144 between environmental factors and the temporal distribution of fish eggs. Only numerically
145 abundant species were tested to avoid any spurious effects caused by groups of rare species.

146 All maps were drawn using Surfer 8.0. Statistical analyses were performed using SPSS 20

147 (SPSS, IBM, Armonk, NY, USA) and CANOCO 4.5 (<http://www.canoco5.com>).

148 **Table 1 Number of development hours of eggs after fertilization for the different**
149 **development stages of five of the sampled species (20–25 °C) [6, 20, 21].**

Development stage	Number of hours of development after fertilization (h)				
	<i>Hypophthalmichthys molitrix</i>	<i>Squaliobatus</i>	<i>Hemiculter</i>	<i>Cryrinus carpio</i>	<i>Rhinogobius Gill</i>
2-Cell stage		0.66		1.12	1.30
4-Cell stage		0.85		1.66	1.80
8-Cell stage	1.33	1.25		2.25	2.30
16-Cell stage	1.75		2.50	2.70	2.80
32-Cell stage	1.95		2.90	3.10	3.50
64-Cell stage	2.50		3.20	3.50	4.10
128-Cell stage	3.83	2.90	3.50		4.70
Morula stage	4.33		3.70		5.50
Early blastula stage	4.92		4.00	6.10	6.30
Mid blastula stage	5.33	4.50	4.50	9.30	7.20
Late blastula stage	6.67		5.00	12.50	8.50
Early gastrula stage	8.67	6.01	5.50	18.20	9.60
Mid gastrula stage	10.25	6.65	6.50	19.40	10.50
Late gastrula stage	12.83	5.51	7.50	20.10	11.30
Neurula stage	14.17	9.45	8.80	21.80	12.30
Closure of blastopore stage	14.75	10.85	9.80		16.30
Appearance of myomere stage	15.33	12.01	10.60	22.50	18.00
Optic rudiment stage	16.25		11.00		19.90
Optic vesicle stage	17.00		11.50	25.00	21.60
Olfactory placode stage	18.42	14.51	12.50	26.30	
Tail bud stage	19.50	16.50	13.50	30.20	24.40
Otic capsule stage	20.75	18.58			25.80
Tail vesicle stage	22.00		14.00		27.50
Appearance of caudal fin stage	22.58		17.00		
Formation of lens stage	23.00		18.50		
Muscular contraction stage	24.42		20.00	36.50	29.50
Rudiment of heart stage	28.00	21.35	22.00		31.50
Appearance of otoliths stage	30.00		25.00	40.30	33.60
Heart pulsation stage	34.25		29.00	42.00	40.00
Hatching stage	38.00	34.75	40.00	50.50	96.60

150

151 **Results**

152 **Species composition of eggs**

153 A total of 485 samples were collected during the surveys. Out of these samples, 15157 individuals
154 were raised in aquaria to the larval or juvenile stage of fish. All specimens belonged to 18 species
155 from four families and two orders, including three genera that could not be identified. The dominant
156 species included *Squalidus argentatus* (30.67%), *Sinogastromyzon wui* (26.30%), and *Botia robusta*
157 (10.50%). Other individuals belonged to the genera *Culter* Basilewsky, *Hemibarbu* Bleeker, and
158 *Rhinogobius* Gill. Unidentified eggs represented 4.75% of all captured eggs (Table 2). Asian carp
159 (*Hypophthalmichthys molitrix*) represented a small proportion of the collected samples. Only 22
160 eggs were found at the Shilong site (tributary sampling site) in July.

161

162

163

164

165

166

167

168

169

170

171

172

173

174 **Table 2 List of species for which fish eggs were collected in the Laibin section of the river**

175 **in 2016, showing the percentage of presence.**

176 **Eg = Early gastrula stage, Ns = Neurula stage, Ov = Optic vesicle stage, Tb = Tail bud stage,**

177 **Fl = Formation of lens stage, Mc = Muscular contraction stage, Rh = Rudiment of heart stage,**

Order	Family	Species	Station & Year				Total number of eggs	Ratio (%)	Development stages
			LB	SJK	SL	WX			
Cypriniformes	Cobitidae	<i>Botia robusta</i>	36	1275	137	144	1592	10.50	Tb - Hs
			4	417	562	48	1031	6.80	Eg - Mc
	Cyprinidae	<i>Squaliobarbus curriculus</i>	1	420	445	65	931	6.14	Tb - Hs
		<i>Pseudolaubuca engraulis</i>			25	12	37	0.24	Fl - Hs
		<i>Sinibrama macrops</i>	88	23	18		129	0.85	Tb - Hs
		<i>Hemiculter leucisculus</i>	59		6	17	82	0.54	Ns - Hp
		<i>Culter Basilewskyi</i>		300	213	18	531	3.50	Tb - Hs
		<i>Hypophthalmichthys molitrix</i>			22		22	0.15	Mc
		<i>Hemibarbus Bleekeri</i>		136		12	148	0.97	Fl - Hs
		<i>Squalidus argentatus</i>	30	2364	1937	318	4649	30.67	Eb - Hp
		<i>Saurogobio dabryi</i>	33	242	276	75	626	4.13	Ns - Hs
		<i>Cirrhinus molitorella</i>		10	43	52	105	0.69	Tb - Hs
		<i>Osteochilus salsburyi</i>		391	139	47	577	3.80	Ov - Rh
		<i>Cyprinus carpio</i>		29	69	13	111	0.73	Mc - Hs
		<i>Carassius auratus</i>		9	49	31	89	0.58	Mc - Hp
	Homalopteridae	<i>Protomyzon sinensis</i>		206	195	67	468	3.08	Eg - Hp
		<i>Sinogastromyzon wui</i>	188	2631	832	335	3986	26.30	Eg - Hp
Perciformes	Gobiidae	<i>Rhinogobius Gill</i>					43	0.28	Mc - Hs
		Total	351	8561	4973	1272	15157	100	
		Number of species	7	15	16	16	18		

178 **Hp = Heart pulsation stage, Hs = Hatching stage**

179

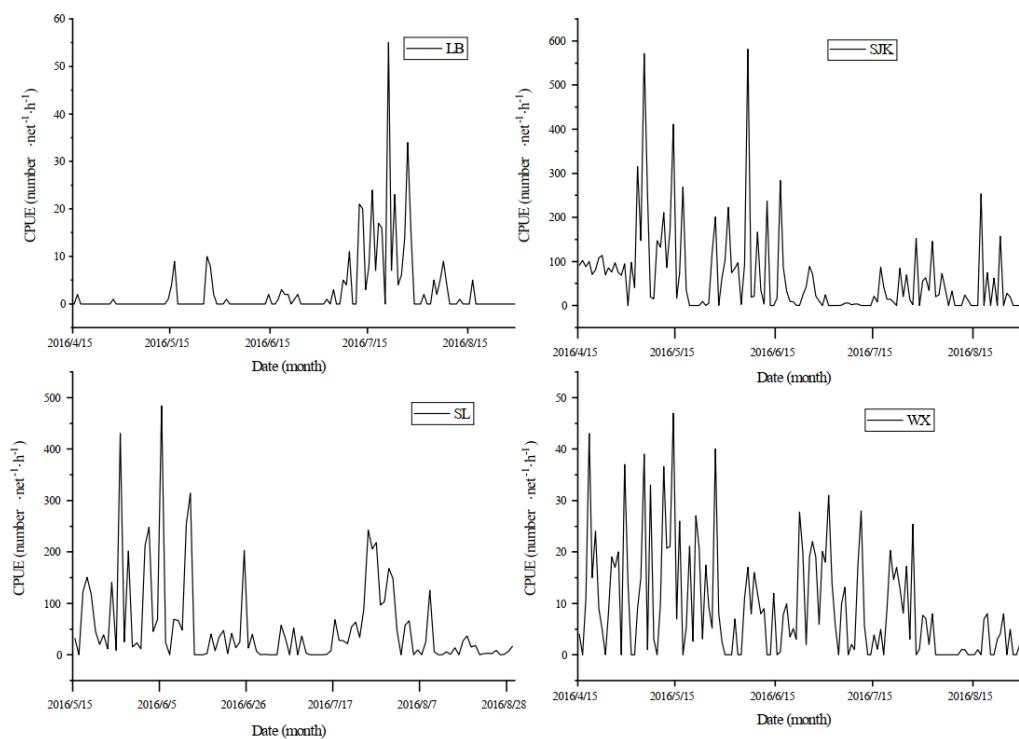
180 **Spatial and temporal variation**

181 The abundance of eggs varied significantly across the three site categories and months of the

182 study period ($P < 0.05$). The greatest relative abundance was observed at the junction of two
183 rivers (Sangjiangkou and Shilong) in June 2016 (77 eggs/net/h). All identified species were
184 detected at this site. The site with the second greatest abundance was the conventional channel
185 (Wuxuan) in June 2016 (45 eggs/net/h), with 16 species being detected. The lowest abundance
186 was detected downstream of Qiaogong HEP (Laibin) in July 2016 (7 eggs /net/h), with nine
187 species being detected (Table 3 and Fig. 2).

188

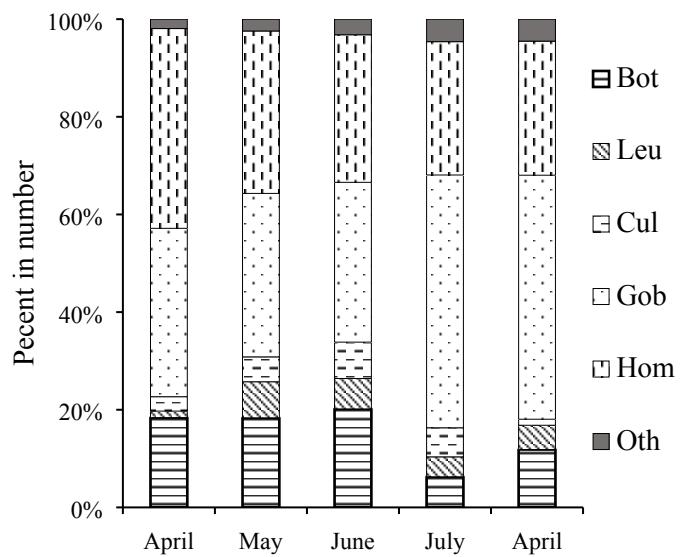
189 **Table 3 ANOVA on the spatio-temporal variation of fish egg distribution at the sampling**
190 **sites. * Significantly different ($p < 0.05$)**


191

	F	P
Site	15.469	*
Month	5.351	*
Site/Month	1.712	No

192

193 Drifting eggs were mainly found between May and July, with several spawning peaks
194 occurring in each year (Fig. 2). The species composition of eggs differed across the sampling
195 months (Fig. 3). The proportions of species belonging to Gobioninae increased from April to
196 August, whereas those belonging to Botiinae and Homalopteridae decreased over the same
197 period.


198

199

200 **Fig. 2 Monthly variation in the CPUE of drifting eggs at the sampling sites in 2016.**

201

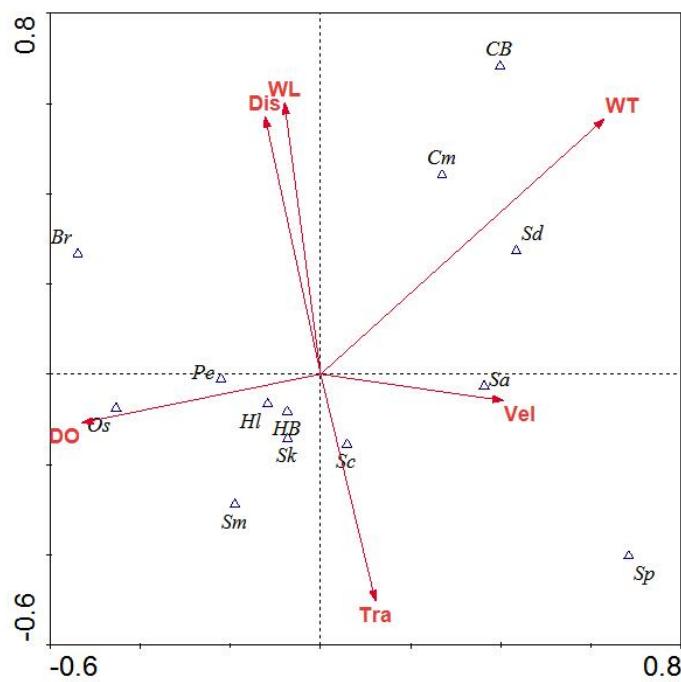
202

203 **Fig. 3 Percentage of eggs from the dominant groups of samples collected from the**
204 **sampling sites from April to April of 2016. Bot, Botiinae; Leu, Lueciscinae; Cul, Cultrinae;**
205 **Gob, Gobioninae; Hom, Homalopteridae; Oth, other.**

206 **CCA analysis**

207 CCA ordination was used to clarify the relationship between environmental factors and the
208 abundance of eggs based on data from 13 species and a set of six environmental factors.
209 Accumulated constrained eigenvalues for the first multivariate axes were 0.109 (CCA1) and
210 0.045 (CCA2), which denoted good species separation along the axis. The first four axes
211 explained 92.85% of total variance. A Monte-Carlo test (Table 4) showed that WT and WL were
212 the key environmental factors affecting assemblages ($P < 0.05$).

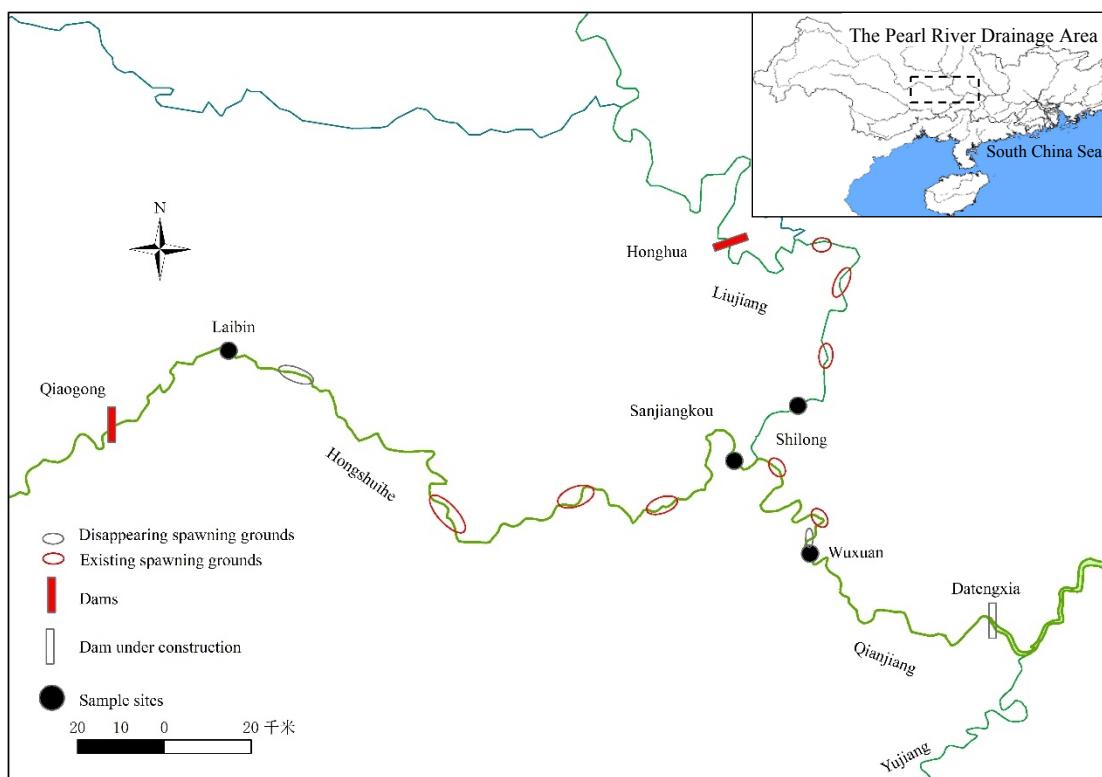
213 The CCA ordination plot of eggs (Fig. 4) showed that the correlation between
214 environmental factors and the abundance of eggs varied with respect to species. *B. robusta* had
215 a strong relationship with water level and dissolved oxygen. *Cirrhinus molitorella*, *Culter*


216

217 **Table 4 Conditional effects and correlations of environmental variables based on the CCA**
218 **axes**

Environmental	P	Axis 1	Axis 2
WT	0.006	0.6294	0.5660
WL	0.002	-0.0799	0.6009
Vel	0.066	0.4052	-0.0583
DO	0.162	-0.5284	-0.1790
Dis	0.486	-0.1228	0.5709
Tra	0.746	0.1218	-0.5029

219


220 Basilewsky, and *Saurogobio dabryi* were positively correlated with water level and temperature,
221 but were less affected by dissolved oxygen and transparency. The presence of *Osteochilus*
222 *salsburyi*, *Protomyzon sinensis*, and *Si. keangsiensi* was positively correlated with dissolved
223 oxygen and transparency, but was less affected by water level and temperature.

224

225 **Fig. 4 Canonical correspondence analysis showing how the eggs of different fish species**
226 **are correlated with environmental variables on the two canonical axes. Vectors represent**
227 **the correlation of environmental factors with the Canonical axes. Key to abbreviations:**
228 **Br = *Botia robusta*, Sp = *Sinibotia pulchra*, Sc = *Siobarbus curriculus*, Pe = *Pseudolaubuca***
229 ***engraulis*, Sm = *Sinibrama macrops*, Hl = *Hemiculter leucisculus*, CB = *Culter Basilewsky*, HB**
230 **= *Hemibarbu* Bleeker, Sa = *Squalidus argentatus*, Sd = *Saurogobio dabryi*, Cm = *Cirrhinus***
231 ***molitorella*, Os = *Osteochilus salsburyi*, Sk = *Sinohomaloptera keangsiensis*.**

232

233

234 **Fig. 5 Distribution of spawning grounds in the upper Xijiang River.**

235

236 Variation in spawning sites

237 The developmental stages of the 18 species captured in this study are presented in Table 2. Based
238 on the data collected in this study, we calculated that the spawning sites of drifting fish eggs were
239 15–89 km upstream of our sampling sites. Three spawning grounds exist upstream of Laibin City,
240 while five exist downstream, with the city being located 40 km downstream of Qiaogong HEP (Fig.
241 5). This finding differs to the forecasts of spawning grounds made before the Qiaogong HEP was
242 completed [8]. Thus, the spawning grounds located upstream of Datengxia HEP will be completely
243 submerged after impoundment. Our findings confirm the presence of spawning grounds in the
244 Laibin section of Xijiang River.

245

246 Discussion

247 Variation in the community structure of drifting eggs

248 Knowledge remains limited about the composition and abundance of drifting fish eggs in the upper
249 reaches of Xijiang River, southern China. This study demonstrated that assemblages of eggs in this
250 region were mainly composed of species from the families Cobitidae, Cyprinidae, and
251 Homalopteridae. This community has changed considerably compared to historical data [8]. The
252 dominant species spawning in this region previously included *Mylopharyngodon piceus*,
253 *Ctenopharyngodon idellus*, *Hy. molitrix*, *Hy. nobilis*, *Mystus guttatus*, *Squaliobarbus curriculus*,
254 *Cirrhinus molitorella*, and *Cryrinus carpio*. In comparison, only *Sq. curriculus* was detected in the
255 current study, representing 6.14% of all species, with all other dominant species having even smaller
256 percentages. This shift in the structure of the fish community in the upper reaches of Xijiang River
257 is likely due to anthropogenic changes to the hydrodynamics of the river, with the construction of
258 the Cascade Reservoirs being the main driver [23]. In contrast to larger fish species, small-sized
259 species tend to batch spawn small eggs over extended reproductive periods, in addition to parental
260 care and migration being absent [24]. These characteristics might make these species better suited
261 to the current environment of the upper Xijiang River following the development of the Cascade
262 Reservoirs.

263 Asian carp was previously the most economically important taxon in this region (Zhou, 2005);
264 however, we only found *Hy. molitrix* eggs at the Shilong sampling site in the Liujiang River during
265 July 2016. The decline in Asian carp resources is a common phenomenon along the entire length of
266 Xijiang River. The percentage of these species at the larval stage was 46.6% in 1986, but declined
267 to 4.6% by 2008 [9]. These species have specific spawning requirements [25], including large,

268 turbid rivers characterized by high turbulence caused by hard points (complex structure) or tributary
269 confluences [26]. After the Cascade Reservoirs were constructed in the upper reaches of Xijiang
270 River (2008), the flow regime changed markedly, with a decrease in water velocity and fewer
271 periods with major floods (Wang, 2015). This change to the river might have contributed to the
272 decline in spawning activity by Asian carp.

273

274 **Relationship between fish reproduction and environmental 275 factors**

276 Research remains limited on the reproductive patterns of fish in the upper reaches of Xijiang River.
277 Yet, such information is essential for fisheries regulation and management to be effective. Our data
278 showed that the abundance and distribution of drifting eggs of different species exhibited significant
279 temporo-spatial differences. Fish reproduction is directly associated with various environmental
280 factors, with water temperature representing key factor governing the spawning period of freshwater
281 species [27]. Temperature strongly influences the dynamics of fish populations [28], by stimulating
282 the gonads [29] and affecting spawning frequency [30]. Furthermore, flood pulses trigger spawning,
283 especially for fish with drifting eggs [12, 31, 32]. Longer flood durations and greater flow discharge
284 enhance fish production [33]. Our study demonstrated that water temperature was the key
285 environmental factor affecting the assemblages of eggs in the upper reaches of Xijiang River (Table
286 4).

287

288 We confirmed the presence of reproduction at sampling sites located at a river junction and the
289 absence of reproduction at sampling sites located downstream of dams. We also demonstrated that

290 the reproductive peak occurred in May and June at the junction and conventional channel, but in
291 July downstream of the dams. These constricted spawning periods and delayed spawning peaks
292 might be caused by cold water present below dams (Tan, 2010). Hydrodynamic conditions at river
293 junctions tend to be complex, particularly with respect to speed and the direction of currents. These
294 parameters strongly influence the retention and dispersal of eggs. Our results support previous
295 studies, which demonstrated that rheophilic fishes reproduce in such confluent areas [34].

296 The tributary Liujiang River is important in supplementing the fish resources of Xijiang River.
297 Compared with the main stream, the Liujiang tributary contains a greater number of spawning
298 species and has a longer spawning period, which could be explained by the greater abundance of
299 multiple-spawning species, including *Sq. argentatus* and *Si. keangsiensis*. These species are
300 generally classed as sedentary or short-range migratory species that have extended reproductive
301 periods [35].

302

303 **Key threats to the reproduction and persistence of fishery 304 resources**

305 The current study showed that the dominant species that spawn drifting eggs were *Sinogastromyzon*
306 *wui*, *Botia robusta*, *Sinibotia pulchra*, and *Squalidus argentatus* (Table 5). In particular, a significant
307 correlation was detected between the reproduction of these species and water level. Water level was
308 the main influencing factor in our study, and might facilitate the spawning of *Sinogastromyzon wui*,
309 *Botia robusta* and *Sinibotia pulchra* in areas with cobblestones and sandbanks. With the planned
310 operation of Datengxia Dam, the rise in water levels will cause these spawning grounds to become
311 inundated. This phenomenon likely represents the most important potential threat to the spawning

312 of species with floating fish egg resources in this section of the river.

313 The dominant species detected in the current study had extended reproductive seasons,

314 spanning from April to August. At present, fishing is only banned from May until June in Xijiang

315 River each year, failing to encompass the entire reproductive period. The reproductive period of

316 fishes should be completely protected with no interference, especially for rare and threatened

317 species. Conserving rare species by limiting the numbers caught implies that each individual in the

318 population is valuable, with the removal of any individuals potentially causing a further decline in

319 numbers [36]. In particular, the compensatory density dependence is assumed to be very weak in

320 Yangtze River [6]. Consequently, the government has ordered a 10-year fishing ban in the Yangtze

321 River from 2020. We suggest extending the fishing ban season to encompass the entire breeding

322 period to be effective. In addition, the broad free stretches upstream of the reservoir in the tributary

323 (Liujiang), will probably become important spawning grounds for many fishes following the onset

324 of dam operation. For the effective conservation of fish recruitment, the fishery administration

325 should strictly control fishermen's nets and reduce the occurrence of electric fishing.

326

327 **Conclusions**

328 In total, 15157 individuals of 18 species were collected over two surveys in 2016. We detected

329 significant spatial and temporal variation in the number and abundance of the eggs of different

330 species at the sampling sites. Water temperature and water level represented key environmental

331 factors affecting the composition and abundance of eggs during the two survey periods, which

332 contrasted with the results of previous studies. With rapid urbanization, freshwater fisheries and

333 ichthyoplankton resources are noticeably declining. This phenomenon might further exacerbate the

334 trend towards lower biodiversity in the upper reaches of Xijiang River. In conclusion, it is important
335 to protect and continue monitoring fishery resources in Xijiang River to understand and mitigate the
336 impacts of dam operations.

337 **Table 5 IRI of dominant species at the sampling sites.**

Site	Year	Month	IRI of species (%)										
			Br	Sp	Sc	Hl	CB	HB	Sa	Sd	Os	Ca	Ps
LB	2016	Apr			2.22					4.44			
		May				3.23							1.25
		Jun											
		Jul				4.58				2.74			34.14
		Aug							4.30				7.53
SJK	2016	Apr	5.73	1.4					41.4				43.38
		May	9.59	1.82	1.29			1.1	23.79	1.1			27.81
		Jun	9.78	2.02	1.13		2.12		11.44	2.09			18.55
		Jul							13.96	1.81		2.19	14.86
		Aug	4.16						16.03			5.61	17.31
SL	2016	May		7.12	1.23		3.2		4.32				4.27
		Jun		5.05	4.26				17.63	3.89			17.03
		Jul		1.35	1.45				20.83			4.72	15.43
		Aug							31.33				16.16
WX	2016	Apr	1.62	1.72			2.19		12.53		3.03		8.28
		May	1.31		5.35				16.09	2.87		1.12	12.05
		Jun			11.9							1.15	23.31
		Jul	2.57						16.88	1.88			26.26
		Aug	33.85										

338

339 **Acknowledgements**

340 We thank all the editors and reviewers for providing constructive comments on the present work.
341

342 REFERENCES

343 1. Sandra Díaz JS, Eduardo S. Brondízio, Hien T. Ngo, John Agard, Almut Arneth, Patricia
344 Balvanera, Kate A. Brauman, Stuart H. M. Butchart, Kai M. A. Chan, Lucas A. Garibaldi,
345 Kazuhito Ichii, Jianguo Liu¹⁷, Suneetha M. Subramanian, Guy F. Midgley, Patricia
346 Miloslavich, Zsolt Molnár, David Obura, Alexander Pfaff, Stephen Polasky, Andy Purvis,
347 Jona Razzaque, Belinda Reyers, Rinku Roy Chowdhury, Yunne-Jai Shin, Ingrid Visseren-
348 Hamakers, Katherine J. Willis, Cynthia N. Zayas. Pervasive human-driven decline of life
349 on Earth points to the need for transformative change. *Science*. 2019;366(6471):1327-36.
350 doi: 10.1126/science.aaw3100.

351 2. Sala OE CF, Armesto JJ, Berlow E, Bloomfield J, Dirzo R. Global biodiversity scenarios
352 for the year 2100. *science*. 2000;287(5459):1770-4.

353 3. Midwood JD CJ, Cvetkovic M, King GDW, Taylor D, Suski CD, Cooke, SJ. Diel
354 variability in fish assemblages in coastal wetlands and tributaries of the St. Lawrence River:
355 a cautionary tale for fisheries monitoring. *Aquatic Sciences*. 2015;78(267-277):267. doi:
356 10.1007/s00027-015-0422-7.

357 4. D D. Large-scale hydrological changes in tropical.pdf. *Bioscience*. 2000;50:753-62.

358 5. Grill G, Lehner B, Thieme M, Geenen B, Tickner D, Antonelli F, et al. Mapping the
359 world's free-flowing rivers. *Nature*. 2019;569(7755):215-21. Epub 2019/05/10. doi:
360 10.1038/s41586-019-1111-9. PubMed PMID: 31068722.

361 6. Mu HX LM, Liu HZ, Cao WX. Analysis of fish eggs and larvae flowing into the Three
362 Gorges Reservoir on the Yangtze River, China.pdf. *Fisheries science*. 2014;80:505-15. doi:
363 10.1007/s12562-014-0729-7.

364 7. INVALID CITATION (Li j, 2010; Tan, 2010; ZC, 1989; Zhou J 2006).

365 8. Zhou J LJ, Chen SY, kong B. Investigation on spawning grounds of fish in lower Hongshui

366 River. Aquaculture tecnology Guangxi. 2005;2:174-8.

367 9. Tan X, Li, XH, Lek S, Li, YF, Wang, C, Li, J, Luo, J. Annual dynamics of the abundance

368 of fish larvae and its relationship with hydrological variation in the Pearl River.

369 Environmental Biology of Fishes. 2010;88(3):217-25. doi: 10.1007/s10641-010-9632-y.

370 10. Wang CXS XW, Chang XL, Huang DM. Investigation on fish resources in the mainstream

371 of Hongshuihe River after the formation of the cascade reservoirs. Freshwater

372 Fisheries ,China. 2015;25(2):30-6.

373 11. Li YF LX, Yang JP, Li J, Shuai FM. Status of Elopichthys bambusa recruitment stock

374 after the impoundment of Changzhou Hydro-junction in Pearl River. Journal of Lake

375 Sciences. 2015;27(5):917-25.

376 12. Shuai F, Li X, Li Y, Li J, Yang J, Lek S. Temporal Patterns of Larval Fish Occurrence in

377 a Large Subtropical River. PLoS One. 2016;11(1):441. Epub 2016/01/14. doi:

378 10.1371/journal.pone.0146441. PubMed PMID: 26760762; PubMed Central PMCID:

379 PMCPMC4712017.

380 13. XC T. Spatial and Temporal Distribution of Larval Resources of Fishes in Xijiang R

381 iver. Fresh water Fisheries China. 2007;37(4):37-40.

382 14. Jiang W LH, Duan ZH, Cao WX. Seasonal variation in drifting eggs and larvae in the

383 upper Yangtze, China. Zoolog Sci. 2010;27(3):402-9. Epub 2010/05/07. doi:

384 10.2108/zsj.27.402. PubMed PMID: 20443687.

385 15. Lechner A KH, Schludermann E, Humphries P, McCasker N, Tritthart M. Hydraulic

386 forces impact larval fish drift in the free flowing section of large European river.

387 Ecohydrology. 2014;7:648-58.

388 16. WX C. Fish Resources of Early Life History Stages in Yangtze River. Beijing: China
389 WaterPower Press; 2007. 252 p.

390 17. ZS L. Early development of common fish in the Pearl River. Report of Fishery Resource
391 in the Pearl River. 1985;6:255-95.

392 18. Tan XC LY. Early Morphogenesis and Larval Resources of *Squaliobarbus curriculus* in
393 the Pearl River. Journal of Huazhong Agricultural University. 2009;28(5):609-13. doi:
394 10.13300/j.cnki.

395 19. Zhang H, Xian W, Liu S. Seasonal variations of the ichthyoplankton assemblage in the
396 Yangtze Estuary and its relationship with environmental factors. PeerJ. 2019;7:e6482.
397 Epub 2019/02/28. doi: 10.7717/peerj.6482. PubMed PMID: 30809455; PubMed Central
398 PMCID: PMCPMC6387755.

399 20. WANG Qian-Qian WJ-M, ZHANG Fu-Tie, WANG Jian-Wei. Early Development and
400 Starvation Tolerance of the Larva of *Squalidus argentatus* in Chishui River. Chinese
401 Journal of Zoology. 2010;45(3):11-22. doi: 10.13859/j.cjz.2010.03.027.

402 21. Sophie Archambeault EN, Lyle Rapp, David Cerino, Bradford Bourque, Tessa Solomon-
403 Lane MSG, Andrew Rhyne, Karen Crow. Reproduction, larviculture and early
404 development of the Bluebanded goby, *Lythrypnus dalli*, an emerging model organism for
405 studies in evolutionary developmental biology and sexual plasticity. Aquaculture
406 Research. 2016;47:1899-916. doi: 10.1111/are.12648.

407 22. Ter B CJ. Canonical correspondence analysis: a new eigenvector technique for

408 multivariate direct gradient analysis. *Ecology*. 1986;67:1167-79.

409 23. DM WCXSXWCXH. Investigation on fish resources in the mainstream of Hongshuihe
410 River after the formation of the cascade reservoirs. *Freshwater Fisheries* ,China.
411 2015;45(2):30-6. doi: 10.13721/j.cnki.dsyy.20141217.013.

412 24. Reynalte-Tataje DA AA, Bialetzki A, Hermes-Silva S, Fernandes R, Evoy ZF. Spatial and
413 temporal variation of the ichthyoplankton in a subtropical river in Brazil. *Environmental
414 Biology of Fishes*. 2011;94:403-19. doi: 10.1007/s10641-011-9955-3.

415 25. Joseph E DD, Chapman BM. Location and timing of Asian carp spawning in the Lower
416 Missouri River.pdf. *Environ Biol Fish*. 2013;96:617-29. doi: 10.1007/s10641-012-0052-
417 z.

418 26. Yi BL YZ, Liang Z, Sujuan S, Xu Y, Chen J, He M, Liu Y, Hu Y, Deng Z, Huang S, Sun
419 J, Liu R, Xiang Y The distribution, natural conditions, and breeding production of the
420 spawning ground of four famous freshwater fishes on the main stream of the Yangtze
421 River. Wuhan: Hubei Science and Technology Press; 1988. 46 p.

422 27. A S. Environmental regulations of reproductive cycles in teleosts. *Bulletin of Fisheries
423 Research and Development Agency Suppl.* 2006;4:1-12.

424 28. Martins EG HS, Patterson DA, Hague MJ, Cooke SJ, Miller KM. High river temperature
425 reduces survival of sockeye salmon (*Oncorhynchus nerka*) approaching spawning grounds
426 and exacerbates female mortality. *Can J Fish Aquatic Sci*. 2012;69:330-42.

427 29. Fincham JI RA, Engelhard GH. Shifts in the timing of spawning in sole linked to warming
428 sea temperatures. *J Sea Res*. 2013;75:79-86.

429 30. Kurita Y FY, Amano M. The effect of temperature on the duration of spawning markers-

430 migratory-nucleus and hydrated oocytes and postovulatory follicles-in the multiple-batch

431 spawner Japanese flounder (*Paralichthys olivaceus*). *Fish bulletin*. 2011;109:79-89.

432 31. KO W. Patterns of variation in life history among South American fishes in seasonal

433 environments. *Oecologia* 1989;81:225-41.

434 32. Humphries P KA, Koehn JD. Fish, flows and floodplains: links between freshwater fish

435 and their environment in the Murray–Darling River system, Australia. *Environ Biol Fish*.

436 1999;56:129-51.

437 33. Qin X CJ, Xiang F. Impact of Cascaded Hydroelectric on Reproduction of Fish with

438 Pelagic Eggs in Middle and Lower Reaches of Hanjiang River. *Environmental Science &*

439 *Technology*. 2014;37(120):501-6.

440 34. Hermes SS RT, Zaniboni FE. Spatial and temporal distribution of ichthyoplankton in the

441 upper Uruguay River, Brazil. *Braz Arch Biol Technol*. 2009;52:933-44.

442 35. Suzuki HI AA, Winemiller KO. Relationship between oocyte morphology and

443 reproductive strategy in loricariid catfishes of the Parana' River, Brazil. *Journal of Fish*

444 *Biology*. 2000;57:791-807. doi: 10.1006/jfbi.2000.1352.

445 36. KO W. Life history strategies, population regulation, and implications for fisheries

446 management. *Can J Fish Aquatic Sciences*. 2005;62:872-85.

447

448

449 **Additional information and declarations**

450 **Funding**

451 This work was supported by the National Natural Science Foundation of China (No.51379038,
452 No.51509042), the Natural Science Foundation of Guangxi (2016GXNSFAA380104), and the
453 Bagui Fellowship from Guangxi Province of China. The funders had no role in study design, data
454 collection and analysis, decision to publish, or preparation of the manuscript.

455

456 **Grant Disclosures**

457 The following grant information was disclosed by the authors:
458 National Natural Science Foundation of China: 51379038 and 51509042.
459 Natural Science Foundation of Guangxi: 2016GXNSFAA380104.
460 Bagui Fellowship from Guangxi Province of China.

461

462 **Competing Interests**

463 The authors declare there are no competing interests.

464

465 **Author Contributions**

466 All authors conceived and designed the experiments; MG performed the experiments; MG analyzed
467 the data; MG and ZW contributed reagents/materials/analysis tools; MG prepared figures and/or
468 tables; all authors wrote and reviewed drafts of the manuscript, and approved the final version.

469

470 • Minghui Gao conceived and designed the experiments, performed the experiments, analyzed the

471 data, contributed reagents/materials/analysis tools, prepared figures and/or tables, authored and

472 reviewed drafts of the paper, approved the final draft.

473 • Zhiqiang Wu conceived and designed the experiments, contributed reagents/materials/-analysis

474 tools, authored and reviewed drafts of the paper, approved the final draft.

475 • Xichang Tan conceived and designed the experiments, authored and reviewed drafts of the paper,

476 approved the final draft.

477 • Liangliang Huang conceived and designed the experiments, authored and reviewed drafts of the

478 paper, approved the final draft.

479