

1 **Comparative primary paediatric nasal epithelial cell culture differentiation and RSV-induced**
2 **cytopathogenesis following culture in two commercial media.**

3 Lindsay Broadbent¹, Sheerien Manzoor¹, Maria Zarcone³, Judit Barabas¹, Mike Shields^{1,2} Sejal Saglani³,
4 Claire M. Lloyd³, Andrew Bush⁴, Adnan Custovic⁵, Peter Ghazal⁶, Mindy Gore³, Ben Marsland⁷, Graham
5 Roberts⁸, Jurgen Schwarze⁹, Steve Turner¹⁰, Ultan F. Power^{1*}.

6

7 ¹Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, UK

8 ²Royal Belfast Hospital for Sick Children, Belfast Health & Social Care Trust, Belfast, UK

9 ³Inflammation, Repair and Development Section, National Heart and Lung Institute, Faculty of Medicine,
10 Imperial College, London, UK

11 ⁴Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, UK

12 ⁵Department of Paediatrics, Imperial College London, London, UK

13 ⁶ Division of Infection and Pathway Medicine, Deanery of Biomedical Sciences, University of Edinburgh
14 Medical School, Edinburgh, UK

15 ⁷ Department of Immunology and Pathology, Monash University, Melbourne, Australia

16 ⁸Clinical and Experimental Sciences and Human Development and Health, Faculty of Medicine, Universiy
17 of Southampton, Southampton, UK

18 ⁹ Child Life and Health and MRC-Centre for Inflammation Research, Queen's Medical Research Institute,
19 University of Edinburgh, Edinburgh, UK

20 ¹⁰ Child Health, University of Aberdeen, Aberdeen, AB25 2ZG, UK

21

22 *Corresponding author

23 Email: u.power@qub.ac.uk (UP)

25 **Abstract**

26 The culture of differentiated human airway epithelial cells allows the study of pathogen-host
27 interactions and innate immune responses in a physiologically relevant *in vitro* model. As the use
28 of primary cell culture has gained popularity the availability of the reagents needed to generate
29 these cultures has increased. In this study we assessed two different media, Promocell and
30 PneumaCult, during the differentiation and maintenance of well-differentiated primary nasal
31 epithelial cell cultures (WD-PNECs). We compared and contrasted the consequences of these
32 media on WD-PNEC morphological and physiological characteristics and their responses to
33 respiratory syncytial virus (RSV) infection. We found that cultures generated using PneumaCult
34 resulted in greater total numbers of smaller, tightly packed, pseudostratified cells. However,
35 cultures from both media resulted in similar proportions of ciliated and goblet cells. There were
36 no differences in RSV growth kinetics, although more ciliated cells were infected in the
37 PneumaCult cultures. There was also significantly more IL-29/IFNλ1 secreted from PneumaCult
38 compared to Promocell cultures. In conclusion, the type of medium used for the differentiation
39 of primary human airway epithelial cells impacts experimental results.

40

41 **Introduction**

42 Eukaryotic cell culture is one of the fundamental techniques used by biomedical researchers. Cell
43 culture techniques are routinely used across most disciplines of life science research. Cell culture
44 has advanced dramatically in recent years with the development of differentiated primary
45 epithelial cell cultures(1,2), organoids(3,4) and organ-on-chip systems(5,6). One of the key

46 aspects of mammalian cell culture is the growth medium. The cell culture medium must provide
47 all of the key nutrients required for cell survival and division, an overview of which is provided by
48 Lodish et al(7). The choice of cell culture medium is dependent on the cell type in culture and the
49 intended use of the cultures, as components of cell culture medium could affect experimental
50 outcomes. Primary cell culture and the development of more complex cellular models requires
51 highly specialised media to support the growth and differentiation of the cells. This study focused
52 on the culture of air-liquid interface differentiated primary airway epithelial cells and their use in
53 virus-host interaction research.

54 Advancements in airway epithelial primary cell culture, including the use of growth factors,
55 hormones and the use of an air-liquid interface(8,9), have led to important discoveries in virology
56 and virus-host interactions(10–14). The main advantage of using well-differentiated primary
57 airway epithelial cell cultures to study respiratory virus-host interactions is the similarity of the
58 cultures to the *in vivo* targets of infection. Well-differentiated primary airway epithelial cell (WD-
59 PAEC) cultures closely mimic the *in vivo* airways, demonstrating pseudostratified morphologies
60 containing ciliated cells, mucus-producing goblet cells and tight junctions(2). Indeed, we
61 previously demonstrated that WD-PAECs recreate several hallmarks of RSV infection *in vivo*,
62 including RSV infection of ciliated cells but not goblet cells, loss of ciliated cells, increased goblet
63 cells numbers, occasional syncytia, and the secretion of pro-inflammatory chemokines(15).
64 WD-PAEC cultures derived from patients with specific airway diseases often retain the features
65 of that disease. Cultures derived from cystic fibrosis patients have been used to investigate the
66 potential for personalised treatment(16). The differentiation of these cultures is essential for

67 measurement of CFTR function. The culture of primary airway epithelial cells has also enhanced
68 the diagnosis of primary ciliary dyskinesia, which is notoriously difficult to diagnose(17).

69 Initially, the choice of media for the culture of WD-PAECs was limited. However, as the use of
70 these culture systems increases in popularity the availability of specific reagents has also
71 increased. Our laboratory has cultured WD-PAECs for over ten years. Our protocols included the
72 use of Promocell Airway Epithelial Cell Growth Medium to differentiate and maintain the
73 cultures(2). Using this method, we achieved over 90% success at differentiating primary airway
74 epithelial cell samples derived from paediatric nasal or bronchial brushes in Transwells. However,
75 for a period of ten months we experienced unexplained repeated failure in culture
76 differentiation, and our success rates decreased to ~50%. This led us to assess another primary
77 cell medium, PneumCult-ALI medium, for use in differentiating paediatric primary airway
78 epithelial cells.

79 In this study, therefore, we evaluated the use of the two media in parallel for the culture and
80 differentiation of airway epithelial cells. We assessed the cultures for the total number of cells,
81 ciliated cells, goblet cells and epithelial integrity. We hypothesised that the choice of
82 differentiation medium would affect the cytopathogenesis and antiviral immune responses of
83 the WD-PNEC cultures to RSV infection.

84

85

86

87 **Materials & Methods**

88 **Cell lines and viruses:** The origin and characterization of the clinical isolate RSV BT2a were
89 previously described (18). RSV titres in biological samples were determined using HEp-2 cells, as
90 previously described(19).

91 **WD-PNEC cultures:** Primary nasal epithelial cells (n=3 donors) were obtained from healthy
92 paediatric patients with full parental consent. The nasal brushes were processed and the
93 monolayer cell cultures were treated as previously described(2). Cells were passaged twice in
94 Promocell Airway Epithelial Cell Growth Medium (C-21160 Promocell) (supplements added as
95 per the manufacturer's instructions with additional penicillin/streptomycin). When ~90%
96 confluent the cells were seeded onto collagen coated Transwell supports (Corning) at 2×10^4 or
97 5×10^4 cells per Transwell. Cultures were submerged in modified Promocell Airway Epithelial Cell
98 Growth Medium (see Table 1) supplemented with retinoic acid until fully confluent. After 4-6
99 days submersion air-liquid interface (ALI) was initiated by removing the apical medium. This is
100 required to trigger differentiation. Thereafter, half of the Transwell cultures were maintained in
101 Promocell medium and half using PneumaCult-ALI medium supplemented with hydrocortisone
102 and heparin. See Table 1 for constituents of the media, where known. Stemcell Technologies, the
103 producer of PneumaCult, did not disclose the ingredients of the supplements provided with the
104 medium. Medium was replaced with 500 μ L of fresh medium in the basolateral compartment
105 every 2 days. Complete differentiation took at least 21 days. Cultures were only used when
106 hallmarks of excellent differentiation were evident, including extensive apical coverage with
107 beating cilia and obvious mucus production. Trans-epithelial electrical resistance (TEER) was
108 measured using an EVOM2 and ENDOHM 6 mm chamber (World Precision Instruments).

109 **Infection**

110 WD-PNECs were infected apically for 2 h at 37°C with 1.4x10⁵ TCID₅₀ RSV BT2a in 50 µL of DMEM
111 (low glucose, no additives). Cultures were then rinsed 4 times with 250 µL DMEM (low glucose,
112 no additives). The fourth wash was retained as the 2 hpi time point. At 24 hpi and every 24 h
113 thereafter until 96 hpi apical washes were undertaken and harvested by adding 250 µL DMEM
114 apically, pipetted up and down gently and aspirated without damaging the cultures, added to
115 cryovials and snap frozen in liquid nitrogen. RSV titres in biological samples were determined by
116 a tissue culture infectious dose 50 (TCID50) assay, as previously described(19).

117 **Table 1. Known constituents of Promocell and PneumaCult differentiation media**

Promocell Airway Epithelial Cell Growth Medium			PneumaCult-ALI Medium		
Promocell kit supplements	BPE	52 µg/mL	PneumaCult-ALI x10 supplement	Unknown	Unknown
	hEGF	10 ng/mL			
	Insulin	5 µg/mL			
	Hydrocortisone	0.5 µg/mL			
	Epinephrine	0.5 µg/mL			
	Transferrin	10 µg/mL			
User-optimised supplements	BSA	1.5 µg/mL	User-optimised supplements	Hydrocortisone	1x10 ⁻⁶ M
	Retinoic acid	15 ng/mL		Heparin	4 µg/mL
	Penicillin	100 U/mL		Penicillin	100 U/mL
	Streptomycin	100 µg/mL		Streptomycin	100 µg/mL

118

119 **Immunofluorescence:** WD-PNECs were fixed with 200 µL apically and 500 µL basolaterally of 4%
120 PFA (v/v in PBS) for 1 h then permeabilised with 0.1% Triton X-100 (v/v in PBS) for 1 h. Cells were
121 blocked with 0.4% BSA (v/v in PBS) for 30 min. Immunofluorescent staining was performed for
122 Muc5Ac (1:100 dilution, mouse monoclonal; Abcam) (goblet cell marker), β -tubulin (1:200
123 dilution, rabbit polyclonal Cy3 conjugated; Abcam) (ciliated cell marker) and RSV F protein (1:500
124 dilution, 488 conjugated; Millipore). Cultures were mounted using DAPI mounting medium
125 (Vectashield, Vector Labs) and imaged using a Nikon Eclipse 90i or a Leica SP5 confocal
126 microscope. For ZO-1 images cultures were fixed in 4% PFA for 20 min at room temperature,
127 followed by permeabilization (Permeabilization Buffer set, Ebioscience) and blocking with 2% BSA
128 solution (Sigma). Cells were stained with anti-ZO-1 mouse mAb (Thermo-Fischer, Alexa Fluor
129 488). Images were acquired on an inverted laser scanning confocal microscope (SP5, Leica
130 Microsystems).

131 **IFN λ 1/IL-29 ELISA:** The concentration of IFN λ 1/IL-29 was measured in basolateral medium from
132 RSV BT2a- or mock-infected cultures at 96 hpi by ELISA (Thermo Fisher Scientific; BMS2049). The
133 manufacturer's instructions were followed.

134 **Microscopy and image analysis:** For enumeration of cell types, a minimum of 5 fields were
135 captured per condition/well per patient by UV microscopy (Nikon Eclipse 90i). Differential
136 interference contrast (DIC) microscopy was used to capture bright field images of differentiated
137 cultures. Image analysis was carried out using ImageJ software (<http://rsbweb.nih.gov/ij/>).
138 ImageJ was also used to calculate the diameter of cells. The diameter of >40 cells across 5 fields
139 of view per patient were measured.

140 **Statistical analysis:** GraphPad Prism [®] was used to create graphical representations of the data
141 and for statistical analyse. To assess statistical significance results were compared using t tests,
142 except for viral growth kinetics, which were compared by calculating the areas under the curves.

143

144

145 **Results**

146 To determine the effect of Promocell or PneumaCult medium on cell proliferation during
147 differentiation, cells were seeded at two different densities on Transwell supports. Trans-
148 epithelial electrical resistance (TEER), a measure of epithelial integrity, was measured in cultures
149 seeded with 5×10^4 cells. There was a trend towards increased TEERs in PneumaCult cultures but
150 this did not reach significance (Figure 1A). Expression of ZO-1, a marker of tight junctions, was
151 clearly evident in cultures differentiated in both media (Figure 1C). Cultures were trypsinised to
152 determine the total cell count (Figure 1B). The seeding density, either 2×10^4 or 5×10^4 cells per
153 Transwell, did not affect the final number of cells in the cultures. PneumaCult medium resulted
154 in ~3-fold higher cell counts following differentiation than Promocell medium.

155 Fig 1. Primary paediatric nasal epithelial cells were passaged twice then seeded on collagen
156 coated Transwell supports at a seeding density of 2×10^4 or 5×10^4 per Transwell. Cells were
157 maintained in Promocell medium while submerged. Following ALI initiation half of the cultures
158 from each donor were maintained using Promocell and half using Pneumacult. Cultures were
159 differentiated for 21 days. TEER values were measured in the cultures seeded at 5×10^4 (n=5
160 donors) (A). Cultures were trypsinised and a cell count was performed (n=3 donors) (B). Cultures

161 were fixed in 4% PFA and stained for ZO-1 (n=3), representative images (C). Statistical significance
162 was determined using unpaired t-tests. **=p<0.01, ***=p<0.001

163 Cells differentiated in Promocell appeared larger than those in PneumaCult under light and
164 fluorescent microscopy. This was confirmed by imaging the cultures using DIC microscopy and
165 measuring the cell diameters (Figure 2A and 2B). Cells differentiated and maintained in Promocell
166 medium were significantly larger than cells in cultures from the same donors but differentiated
167 using PneumaCult medium. Confocal microscopy revealed that the cells within the PneumaCult
168 cultures appeared more tightly packed (Figure 2C). Orthogonal sections showed a greater degree
169 of stratification of the cultures differentiated in PneumaCult medium compared to Promocell
170 medium.

171 Fig 2. Primary paediatric nasal epithelial cells (n=3 donors) seeded at 5×10^4 per Transwell were
172 differentiated and maintained using either Promocell or Pneumacult medium. Cultures were
173 fixed using 4% paraformaldehyde (PFA) on day 25 post air-liquid interface (ALI) initiation. Images
174 were captured by DIC microscopy at x60 magnification and imageJ was used to determine the
175 diameter of cells (yellow lines) (A). Graphical representation of the average cell diameter in
176 pixels(B). Statistical significance was determined using unpaired t-tests. ***=p<0.001. Cultures
177 were stained for beta-tubulin (red) and DAPI (blue). Z-stacks were obtained using a confocal
178 microscope at x100 magnification (Leica SP5) (C). The number of total, ciliated and goblet cells in
179 fixed cultures differentiated in Promocell or PneumaCult medium were enumerated from *en face*
180 images following fluorescent microscopy of cultures stained for DAPI (nuclei), β -tubulin (cilia) and
181 Muc5Ac (goblet cells), respectively. Representative images of cultures from both media are
182 presented in Figure 3A. Consistent with the data presented in Figure 1B above, the PneumaCult-

183 maintained cultures demonstrated higher numbers of total cells, as well as ciliated and goblet
184 cells (Figure 3B). In all cases, there was a trend towards increased cell numbers in the PneumaCult
185 cultures, although they did not reach significance. When the proportion of ciliated and goblet
186 cells was calculated, however, there was no difference between Promocell- or PneumaCult-
187 maintained cultures (Promocell: 75.3% ciliated and 5.1% goblet cells; PneumaCult: 75.1% ciliated
188 and 4.2% goblet cells) (Figure 3C).

189 Fig 3. WD-PNEC cultures (n=3 donors) with an initial seeding density of 5×10^4 per Transwell
190 were differentiated in Promocell or Pneumacult medium. After 21 days cultures were fixed in
191 4% paraformaldehyde and stained for β -tubulin, a ciliated cell marker; Muc5ac, a goblet cell
192 marker and counterstained for DAPI. Representative images of β -tubulin staining (A). The
193 average number of total, ciliated and goblet cells from 5 fields of view per donor was calculated
194 (B). The percentage of ciliated cells and goblet cells in the culture was calculated (C). Images
195 were acquired using a Nikon Eclipse 90i at x60 magnification.

196 A central theme of research in our laboratory is to study RSV interactions with paediatric airway
197 epithelium. To explore whether the medium used affected RSV growth kinetics or
198 cytopathogenesis, cultures were infected with the low passaged clinical isolate RSV BT2a. The
199 same amount of virus (1.4×10^5 TCID₅₀) was inoculated onto all cultures. At the specified times
200 post infection, apical washes were titrated on HEp-2 cells to determine virus growth kinetics
201 (Figure 4). There was no significant difference in viral growth kinetics between the two initial
202 seeding densities of the cultures or the medium used to differentiate and maintain the cultures.
203 As RSV infects ciliated epithelium and, because of higher ciliated cell numbers, we expected the

204 PneumaCult cultures to reach higher peak viral titres released from them. However, all culture
205 conditions resulted in similar peak viral titres and growth kinetics.

206 Fig 4. Primary paediatric nasal epithelial cells (n=3 donors) seeded on collagen coated Transwell
207 supports at a seeding density of 2×10^4 or 5×10^4 per Transwell. Were maintained in either
208 Promocell or Pneumacult medium for 21 days. Cultures were infected with RSV BT2a 1.4×10^5
209 TCID₅₀. Apical washes were harvested at 2 and 24 hpi and every 24 h thereafter and titrated on
210 HEp-2 cells to determine virus growth kinetics. RSV-infected cultures were fixed at 96 hpi and the
211 total number of cells and the number of ciliated, goblet and RSV-infected cells were enumerated
212 in *en face* IF images (Figure 5). Following infection, the mean number of cells was significantly
213 different between Promocell- and PneumaCult-differentiated cultures, with a 46% and 37%
214 reduction in mean cell numbers, respectively. All cultures demonstrated a similar loss in ciliated
215 cell numbers following RSV infection, 20% and 23% reduction for Promocell and PneumaCult,
216 respectively. There were significantly more RSV-infected cells in the PneumaCult cultures,
217 consistent with higher numbers of ciliated cells in these cultures compared to the Promocell
218 cultures. However, despite the higher numbers of ciliated cells, as previously mentioned (Figure
219 3B), and the greater number of RSV-infected cells (Figure 5B), the viral growth kinetics were not
220 significantly different. The percentage of ciliated, goblet and RSV-infected cells in the cultures did
221 not differ significantly as a function of the culture medium used.

222 Figure 5. WD-PNEC cultures (n=3 donors) were differentiated in Promocell or Pneumacult
223 medium. After 21 days cultures were infected with RSV BT2a or mock infected. At 96 hpi the
224 cultures were fixed in 4% paraformaldehyde and stained for β -tubulin, a ciliated cell marker;
225 Muc5ac, a goblet cell marker, RSV F and counterstained for DAPI. Representative images of β -

226 tubulin staining (A). The average number of total, ciliated, goblet and RSV infected cells from 5
227 fields of view per donor was calculated (B). The percentage of ciliated, goblet and RSV infected
228 cells in the culture was calculated (C). Images were acquired using a Nikon Eclipse 90i at x60
229 magnification. Statistical significance was determined by t-test.

230 The secretion of IFNλ1/IL-29, a type-III interferon known to be the main interferon secreted
231 following RSV infection of airway epithelium (20,21), was quantified in the basolateral medium
232 at 96 hpi (Figure 6). There was significantly more IFNλ1/IL-29 secreted from the PneumaCult
233 compared to the Promocell cultures. This may be due to the larger number of cells present in the
234 PneumaCult cultures. However, there are approximately 3x the number of cells in the
235 PneumaCult compared to the Promocell cultures, yet the IFNλ1/IL-29 was >6x that secreted from
236 Promocell cultures. The PneumaCult cultures may respond more robustly to infection but further
237 work, investigating different cytokines/chemokines, would be needed to provide further insights
238 into these differences in innate immune responses to RSV infection.

239 Fig 6. WD-PNEC cultures (n=3 donors) were differentiated in Promocell or Pneumacult medium.
240 After 21 days cultures were infected with RSV BT2a or mock infected. Basolateral medium was
241 harvested and snap frozen every 24 hpi. The concentration of IFNλ1/IL-29 in the basolateral
242 medium at 96 hpi was quantified by ELISA. Statistical significance was determined by t-test.
243 *= $p<0.05$.

244

245

246 **Discussion**

247 In this study we confirmed our hypothesis that the choice of medium affects the resultant
248 cultures. PneumaCult medium resulted in cultures with ~3x more cells than those differentiated
249 using Promocell medium. Interestingly, despite the differences in total cells counts, the
250 proportions of ciliated cells and goblet cells were similar for both culture conditions. Indeed, the
251 proportion of ciliated cells was consistent with the proportion reported in normal healthy human
252 airway epithelium (50-70%) (22,23). The limited evidence available suggests that goblet cells
253 represent up to 25% of cells in adult human airway epithelium(24). The proportions of goblet
254 cells found in our current cultures were considerably lower than this. However, we are unaware
255 of the lower proportion of goblet cells found in normal human paediatric airway epithelium and,
256 therefore, cannot conclude whether or not our cultures are abnormal with respect to goblet cell
257 content. The percent goblet cells that we report here were also lower compared to our previous
258 WD-PNEC cultures derived from newborn and 1-year-old infants(25). Reasons for these
259 discrepancies remain to be elucidated, although they may be due to nasal epithelial cell donor-
260 or culture-specific factors.

261 Ciliated cells, mucus and the airway surface liquid (ASL) are key components of the mucociliary
262 escalator, the primary defence mechanism against inhaled pathogens and foreign particulate
263 material. RSV infection disrupts this by having a detrimental effect on the number of ciliated
264 cells(26). RSV-induced cilia loss was replicated in this WD-PNEC model under both culture
265 conditions, reinforcing the evidence that the WD-PAEC model reliably recreates at least some
266 RSV cytopathogenesis.

267 Another noticeable impact of the different media was the different cell sizes. There is very little
268 published data available on the size of human nasal epithelial cells *in vivo*. Due to experimental

269 differences, it is difficult to compare cultured nasal epithelial cells. However, previous work from
270 our group demonstrated differentiated nasal epithelial cells of ~12 μm in diameter (data not
271 shown). In the present study cells of ~14 μm and ~25 μm diameters from PneumaCult and
272 Promocell differentiation media, respectively, were evident.

273 As we are unaware of the precise constituents of the proprietary PneumaCult medium, it is not
274 possible to determine which components, if any, might be responsible for the differential cell
275 count and size between the cultures. We are aware, however, that Promocell medium contains
276 bovine pituitary extract (BPE) (52 $\mu\text{g}/\text{mL}$), while PneumaCult medium apparently does not. BPE
277 contains components which are needed for differentiation of epithelial cells, including growth
278 factors and hormones(27). As it is derived from animal tissues, the components of BPE can vary
279 between batches. This may explain in part the variable success rates we previously experienced
280 in differentiating WD-PNEC cultures from nasal brushes. However, this remains to be confirmed.
281 BPE-free media, such as PneumaCult, bypass the need for this component by supplementing with
282 a cocktail of hormones and growth factors, allowing for greater reproducibility of the
283 composition of different batches of media.

284 Although the proportion of ciliated cells is the same in both cultures there was an increase in
285 actual numbers of ciliated cells in the PneumaCult cultures. Ciliated cells are the primary target
286 for RSV infection(15,28). As such, following RSV infection there were more RSV infected cells in
287 the PneumaCult compared with the Promocell cultures. Both media resulted in cultures that
288 were successfully infected with RSV with very similar viral growth kinetics to that previously
289 reported (2,15). The difference in cell numbers and, indeed, the difference in the number of RSV+
290 cells in the cultures did not have a significant impact on apically-released virus titres. This

291 indicates that the number of cells within a culture is not a defining factor in viral growth kinetics.
292 The factors affecting viral growth kinetics are not fully understood. Interestingly, much higher
293 concentrations of IFNλ1/IL-29 were secreted from RSV-infected PneumaCult cultures, which may
294 be due to the higher cell density within the culture. We previously demonstrated that IFNλ1/IL-
295 29 was responsible for attenuating RSV growth kinetics in WD-PBECs(21). The higher IFNλ1/IL-29
296 concentrations secreted from the RSV-infected PneumaCult compared to Promocell cultures,
297 therefore, might explain in part the similarities in RSV growth kinetics, despite the higher number
298 of RSV+ cells in the former cultures.

299 In conclusion, both media tested under these conditions result in WD-PAEC cultures that possess
300 several hallmarks of airway epithelium *in vivo*. The choice of medium used to differentiate and
301 maintain primary airway epithelial cell cultures may impact the experimental outcomes and care
302 should be taken in choosing medium for the intended work. However, one should be cognisant
303 of the low donor numbers. It should also be noted that we did not use either media 'off-the-shelf'
304 and extensive optimisation is often needed to achieve the best culturing conditions. As cell
305 culturing techniques advance and become more sophisticated there will undoubtedly be an
306 increase in reagents created specifically for this purpose. As such, it will be imperative that
307 independent comparisons between different reagents, such as media, are undertaken to ensure
308 reliability of the data generated.

309

310 **References.**

311 1. Guo-Parke H, Canning P, Douglas I, Villenave R, Heaney LG, Coyle P V, et al. Relative

312 respiratory syncytial virus cytopathogenesis in upper and lower respiratory tract
313 epithelium. *Am J Respir Crit Care Med* [Internet]. 2013 Oct 1 [cited 2014 Jul
314 30];188(7):842–51. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/23952745>

315 2. Broadbent L, Villenave R, Guo-Parke H, Douglas I, Shields MD, Power UF. *In Vitro*
316 Modeling of RSV Infection and Cytopathogenesis in Well-Differentiated Human Primary
317 Airway Epithelial Cells (WD-PAECs). In: *Methods in molecular biology* (Clifton, NJ)
318 [Internet]. 2016 [cited 2016 Sep 5]. p. 119–39. Available from:
319 <http://www.ncbi.nlm.nih.gov/pubmed/27464691>

320 3. Lancaster MA, Knoblich JA. Organogenesis in a dish: Modeling development and disease
321 using organoid technologies. *Science* (80-) [Internet]. 2014 Jul 18 [cited 2019 Oct
322 18];345(6194):1247125–1247125. Available from:
323 <http://www.ncbi.nlm.nih.gov/pubmed/25035496>

324 4. Rossi G, Manfrin A, Lutolf MP. Progress and potential in organoid research. *Nat Rev*
325 *Genet* [Internet]. 2018 Nov 18 [cited 2019 Oct 18];19(11):671–87. Available from:
326 <http://www.nature.com/articles/s41576-018-0051-9>

327 5. Benam KH, Villenave R, Lucchesi C, Varone A, Hubeau C, Lee H-H, et al. Small airway-on-
328 a-chip enables analysis of human lung inflammation and drug responses in vitro. *Nat*
329 *Methods* [Internet]. 2016 Feb 21 [cited 2019 Oct 18];13(2):151–7. Available from:
330 <http://www.ncbi.nlm.nih.gov/pubmed/26689262>

331 6. Nawroth JC, Barrile R, Conegliano D, van Riet S, Hiemstra PS, Villenave R. Stem cell-based
332 Lung-on-Chips: The best of both worlds? *Adv Drug Deliv Rev*. 2018;

333 7. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J. Growth of Animal
334 Cells in Culture. In: Molecular Cell Biology [Internet]. 4th ed. W. H. Freeman; 2000 [cited
335 2019 Aug 26]. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK21682/#A1384>

336 8. Gruenert DC, Finkbeiner WE, Widdicombe JH. Culture and transformation of human
337 airway epithelial cells. Am J Physiol Cell Mol Physiol [Internet]. 1995 Mar [cited 2019 Aug
338 26];268(3):L347–60. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/7900815>

339 9. Moller PC, Partridge LR, Cox R, Pellegrini V, Ritchie DG. An in vitro system for the study of
340 tracheal epithelial cells. Tissue Cell [Internet]. 1987 Jan [cited 2015 Apr 22];19(6):783–91.
341 Available from: <http://www.ncbi.nlm.nih.gov/pubmed/3438910>

342 10. Stark JM, Huang YT, Carl J, Davis PB. Infection of cultured human tracheal epithelial cells
343 by human parainfluenza virus types 2 and 3. J Virol Methods [Internet]. 1991 Jan [cited
344 2019 Aug 26];31(1):31–45. Available from:
345 <http://www.ncbi.nlm.nih.gov/pubmed/1849915>

346 11. Reiss TF, Gruenert DC, Nadel JA, Jacoby DB. Infection of cultured human airway epithelial
347 cells by influenza A virus. Life Sci [Internet]. 1991 [cited 2019 Aug 26];49(16):1173–81.
348 Available from: <http://www.ncbi.nlm.nih.gov/pubmed/1895875>

349 12. Slepushkin VA, Staber PD, Wang G, McCray PB, Davidson BL. Infection of Human Airway
350 Epithelia with H1N1, H2N2, and H3N2 Influenza A Virus Strains. Mol Ther [Internet]. 2001
351 Mar 1 [cited 2019 Aug 26];3(3):395–402. Available from:
352 <https://linkinghub.elsevier.com/retrieve/pii/S1525001601902771>

353 13. Goris K, Uhlenbruck S, Schwegmann-Wessels C, Köhl W, Niedorf F, Stern M, et al.
354 Differential Sensitivity of Differentiated Epithelial Cells to Respiratory Viruses Reveals
355 Different Viral Strategies of Host Infection. *J Virol* [Internet]. 2009 Feb 15 [cited 2019 Aug
356 26];83(4):1962–8. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/19052091>

357 14. Villenave R, O'Donoghue D, Thavagnanam S, Touzelet O, Skibinski G, Heaney LG, et al.
358 Differential cytopathogenesis of respiratory syncytial virus prototypic and clinical isolates
359 in primary pediatric bronchial epithelial cells. *Virol J* [Internet]. 2011 Jan [cited 2014 Aug
360 18];8(1):43. Available from:
361 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3039598/>&
362 rendertype=abstract

363 15. Villenave R, Thavagnanam S, Sarlang S, Parker J, Douglas I, Skibinski G, et al. In vitro
364 modeling of respiratory syncytial virus infection of pediatric bronchial epithelium, the
365 primary target of infection in vivo. *Proc Natl Acad Sci U S A* [Internet]. 2012 Mar 27 [cited
366 2014 Nov 5];109(13):5040–5. Available from:
367 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3303959/>

368 16. Awatade NT, Uliyakina I, Farinha CM, Clarke LA, Mendes K, Solé A, et al. Measurements
369 of Functional Responses in Human Primary Lung Cells as a Basis for Personalized Therapy
370 for Cystic Fibrosis. *EBioMedicine* [Internet]. 2015 Feb [cited 2019 Oct 18];2(2):147–53.
371 Available from: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC437539>

372 17. Pifferi M, Montemurro F, Cangiotti AM, Ragazzo V, Cicco M Di, Vinci B, et al. Simplified
373 cell culture method for the diagnosis of atypical primary ciliary dyskinesia. *Thorax*

374 [Internet]. 2009 Dec 1 [cited 2019 Oct 18];64(12):1077–81. Available from:
375 <https://thorax.bmjjournals.org/content/64/12/1077>

376 18. Villenave R, O'Donoghue D, Thavagnanam S, Touzelet O, Skibinski G, Heaney LG, et al.
377 Differential cytopathogenesis of respiratory syncytial virus prototypic and clinical isolates
378 in primary pediatric bronchial epithelial cells. *Virol J.* 2011 Jan;8(1):43.

379 19. Power UF, Plotnicky-Gilquin H, Huss T, Robert A, Trudel M, Stahl S, et al. Induction of
380 protective immunity in rodents by vaccination with a prokaryotically expressed
381 recombinant fusion protein containing a respiratory syncytial virus G protein fragment.
382 *Virology.* 1997 Apr;230(2):155–66.

383 20. Okabayashi T, Kojima T, Masaki T, Yokota S-I, Imaizumi T, Tsutsumi H, et al. Type-III
384 interferon, not type-I, is the predominant interferon induced by respiratory viruses in
385 nasal epithelial cells. *Virus Res* [Internet]. 2011 Sep [cited 2014 Aug 29];160(1–2):360–6.
386 Available from: <http://www.ncbi.nlm.nih.gov/pubmed/21816185>

387 21. Villenave R, Broadbent L, Douglas I, Lyons JD, Coyle P V., Teng MN, et al. Induction and
388 Antagonism of Antiviral Responses in Respiratory Syncytial Virus-infected Paediatric
389 Airway Epithelium.

390 22. Jafri HS, Chavez-Bueno S, Mejias A, Gomez AM, Rios AM, Nassi SS, et al. Respiratory
391 syncytial virus induces pneumonia, cytokine response, airway obstruction, and chronic
392 inflammatory infiltrates associated with long-term airway hyperresponsiveness in mice. *J*
393 *Infect Dis* [Internet]. 2004 May 15 [cited 2015 Sep 16];189(10):1856–65. Available from:
394 <http://www.ncbi.nlm.nih.gov/pubmed/15122522>

395 23. Schamberger AC, Staab-Weijnitz CA, Mise-Racek N, Eickelberg O. Cigarette smoke alters
396 primary human bronchial epithelial cell differentiation at the air-liquid interface. *Sci Rep*
397 [Internet]. 2015 Jul 2 [cited 2019 Oct 23];5(1):8163. Available from:
398 <http://www.ncbi.nlm.nih.gov/pubmed/25641363>

399 24. Rogers DF. The airway goblet cell. *Int J Biochem Cell Biol* [Internet]. 2003 Jan 1 [cited
400 2019 Oct 25];35(1):1–6. Available from:
401 <https://www.sciencedirect.com/science/article/pii/S1357272502000833>

402 25. Groves HE, Guo-Parke H, Broadbent L, Shields MD, Power UF. Characterisation of
403 morphological differences in well-differentiated nasal epithelial cell cultures from
404 preterm and term infants at birth and one-year. *PLoS One* [Internet]. 2018 [cited 2019
405 Aug 26];13(12):e0201328. Available from:
406 <http://www.ncbi.nlm.nih.gov/pubmed/30517096>

407 26. Smith CM, Kulkarni H, Radhakrishnan P, Rutman A, Bankart MJ, Williams G, et al. Ciliary
408 dyskinesia is an early feature of respiratory syncytial virus infection. *Eur Respir J*
409 [Internet]. 2014 Feb 1 [cited 2019 Jun 20];43(2):485–96. Available from:
410 <http://www.ncbi.nlm.nih.gov/pubmed/23520320>

411 27. Hintze JM, Tchoukalova YD, Sista R, Shah MK, Zhang N, Lott DG. Development of xeno-
412 free epithelial differentiation media for adherent, non-expanded adipose stromal
413 vascular cell cultures. *Biochem Biophys Res Commun* [Internet]. 2018 Sep 18 [cited 2019
414 Oct 29];503(4):3128–33. Available from:
415 <https://www.sciencedirect.com/science/article/pii/S0006291X18317893?via%3Dihub>

416 28. Zhang L, Peeples ME, Boucher RC, Collins PL, Pickles RJ. Respiratory syncytial virus
417 infection of human airway epithelial cells is polarized, specific to ciliated cells, and
418 without obvious cytopathology. *J Virol* [Internet]. 2002 Jun [cited 2018 Aug
419 20];76(11):5654–66. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/11991994>

420

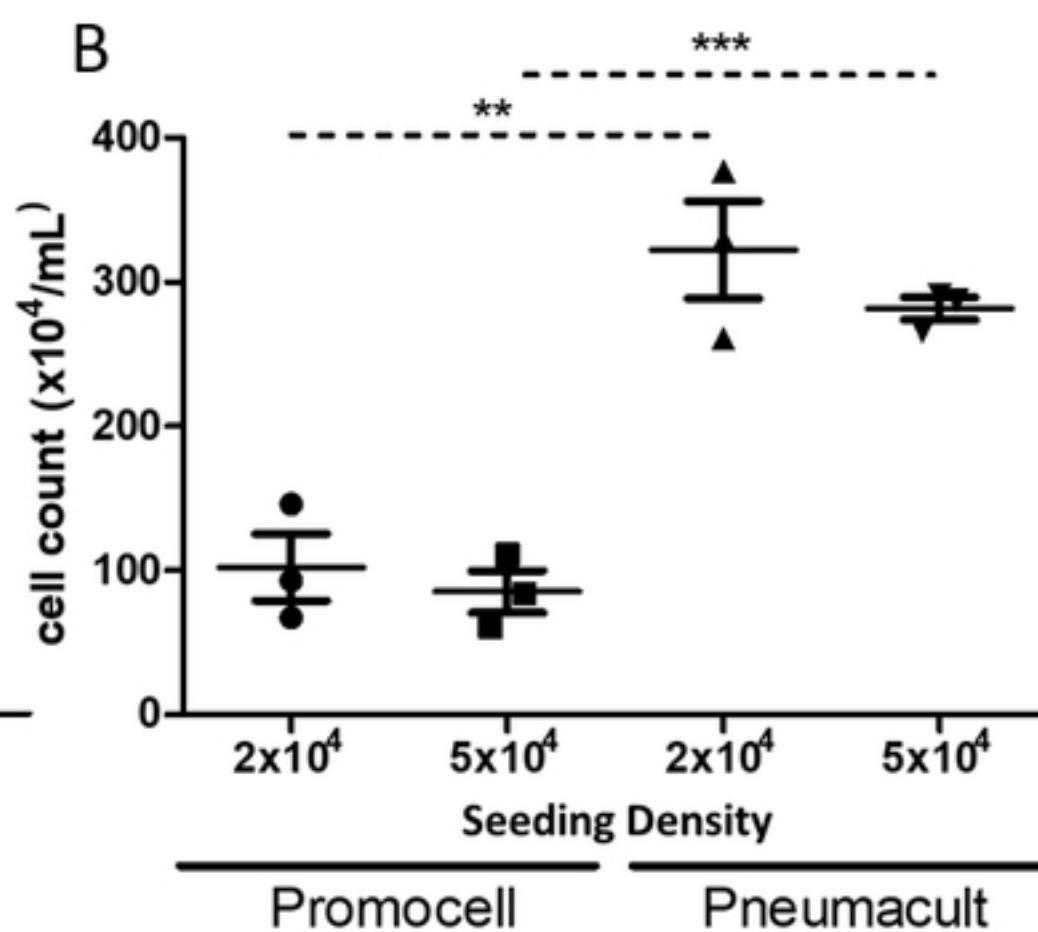
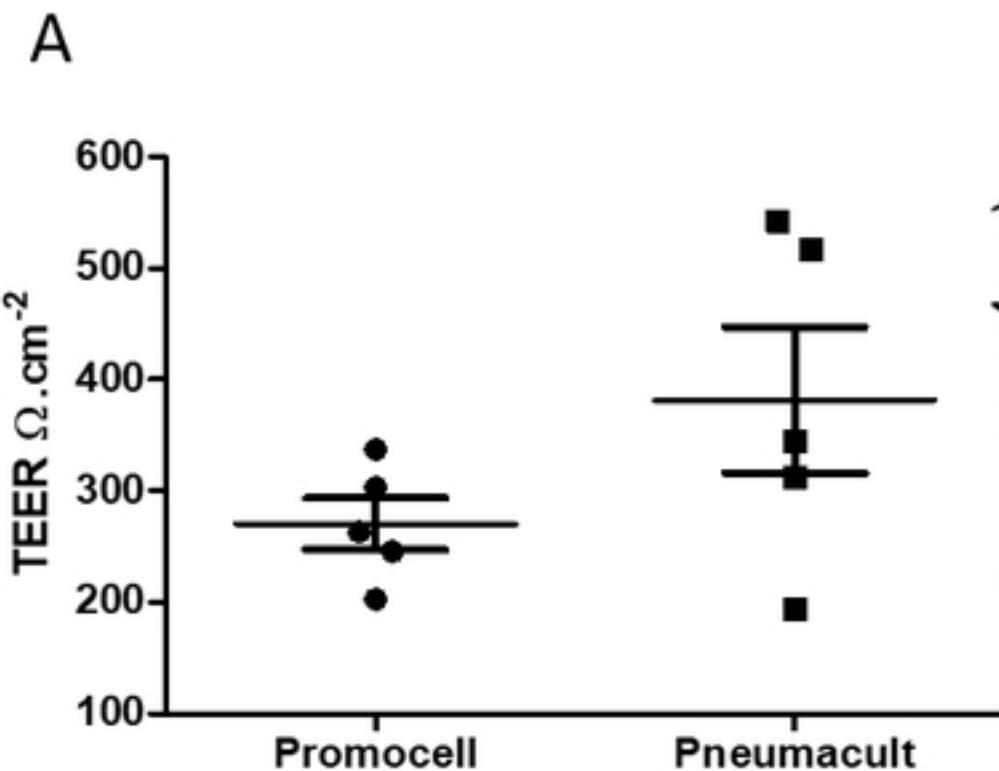
421

422

423

424

425



426

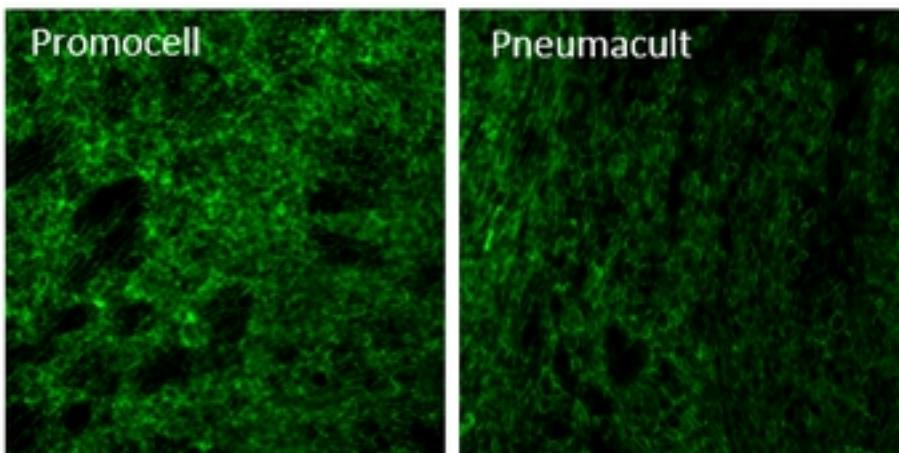
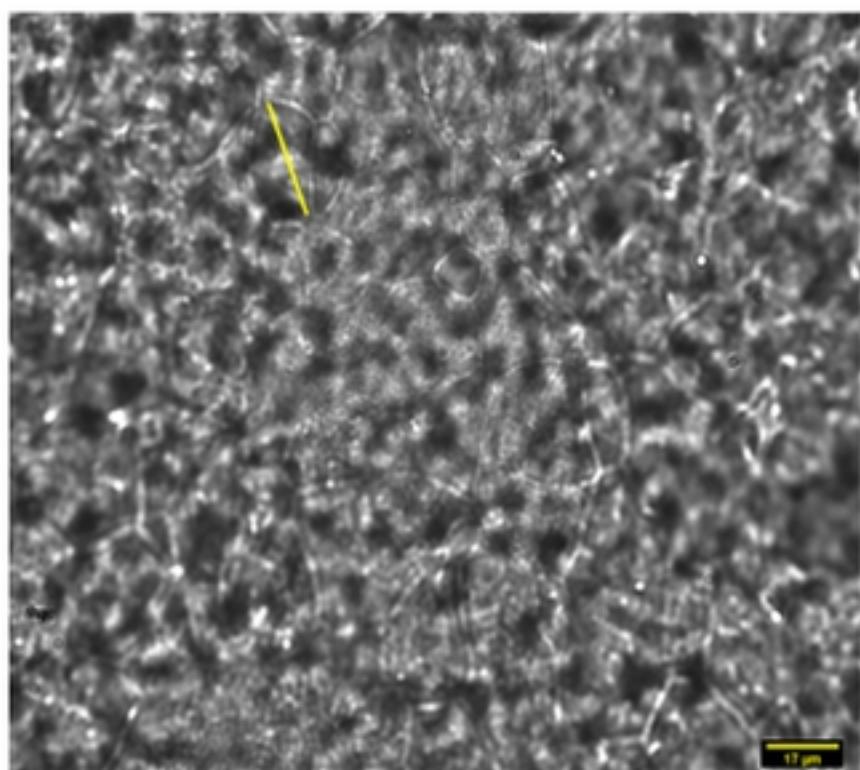
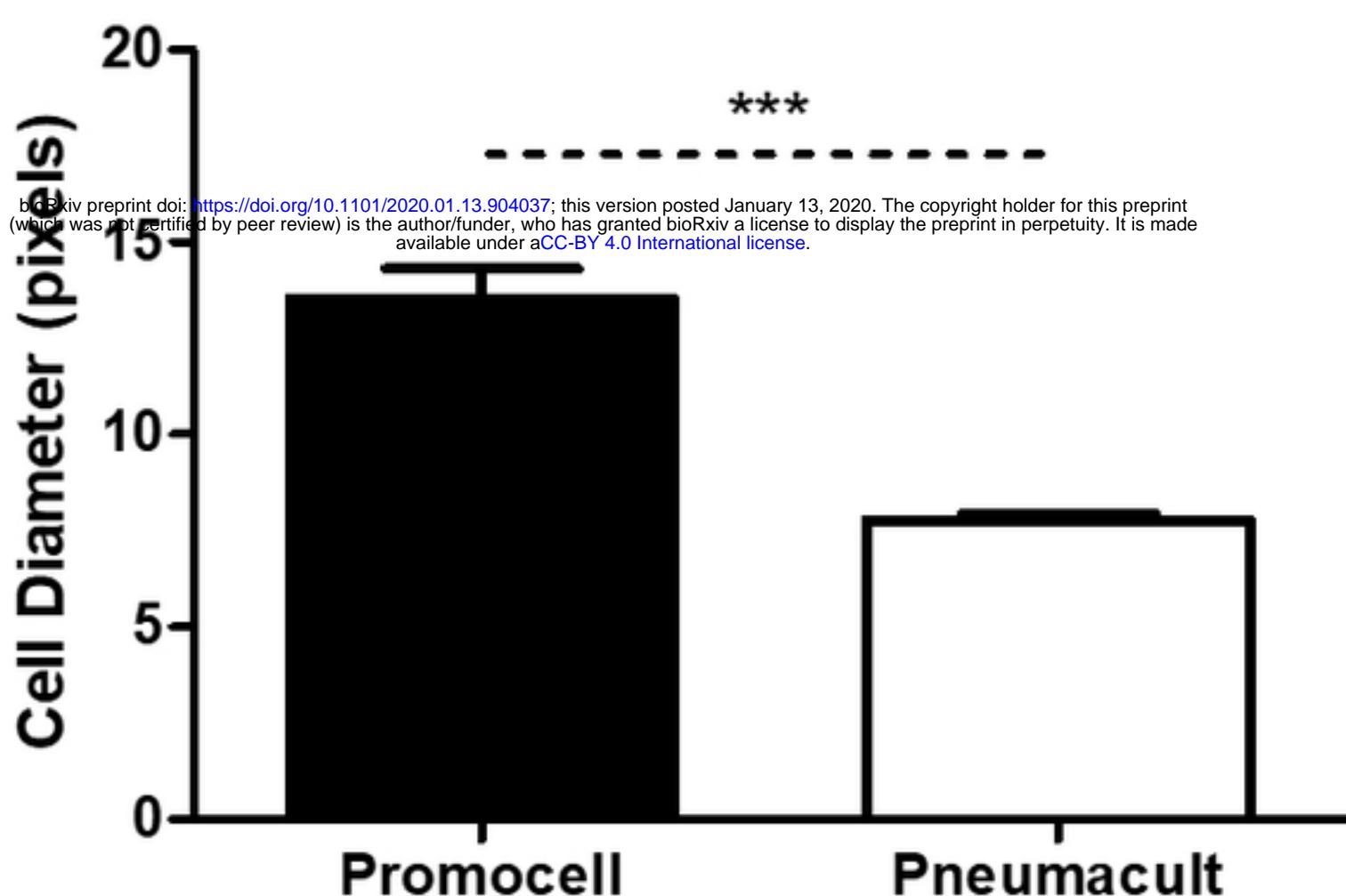
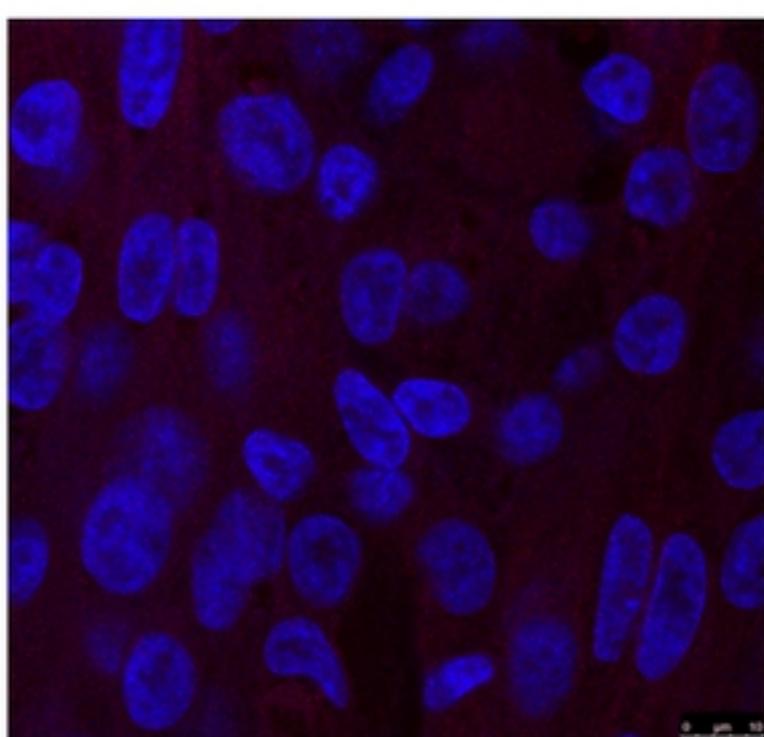
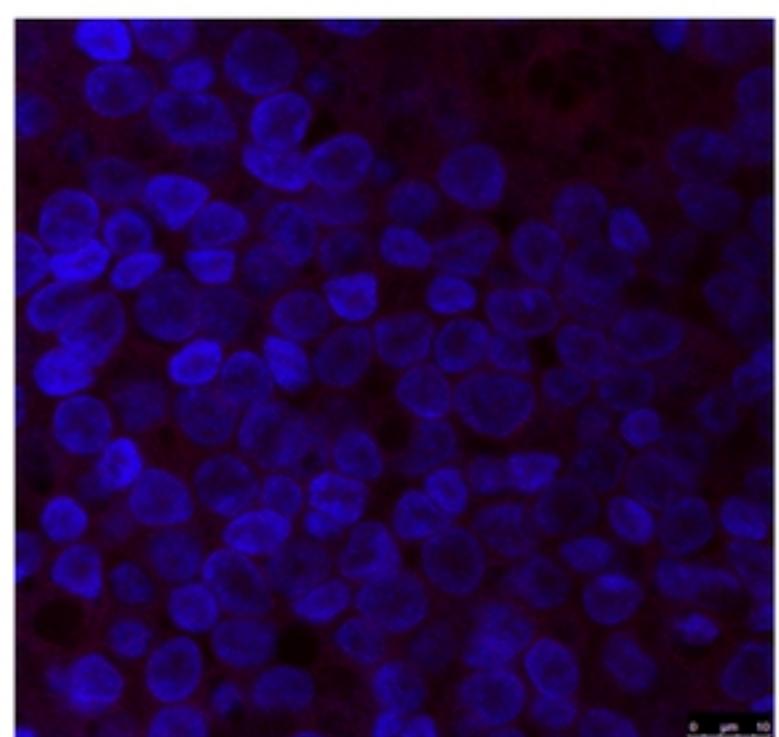
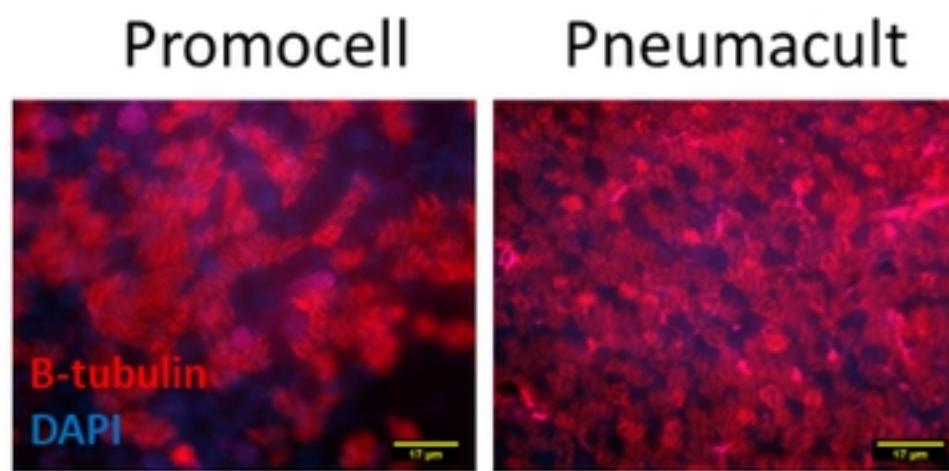
427

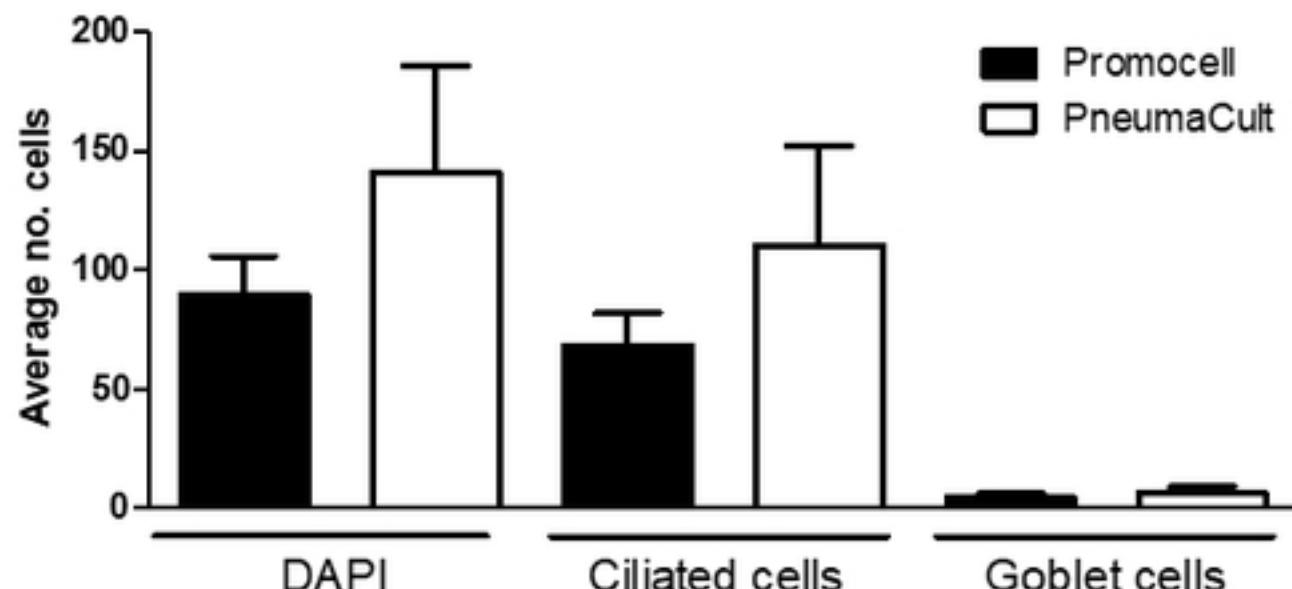
428

429

430

C


Figure 1

A**Promocell****Pneumacult****B****C****Promocell****PneumaCult****Figure 2**

A

B

C

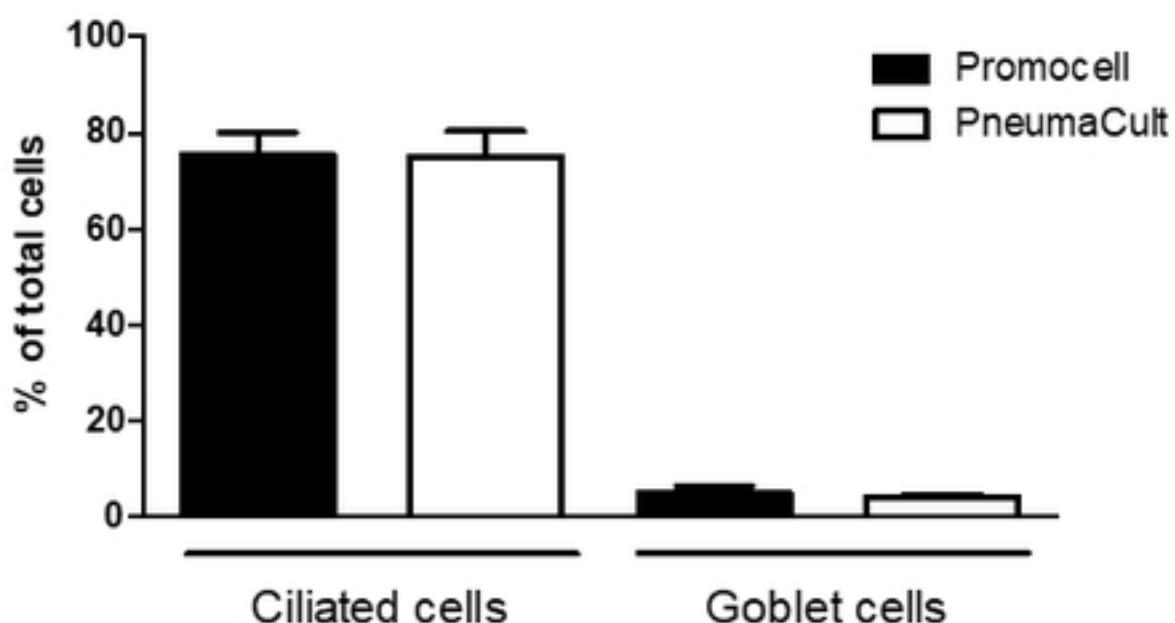
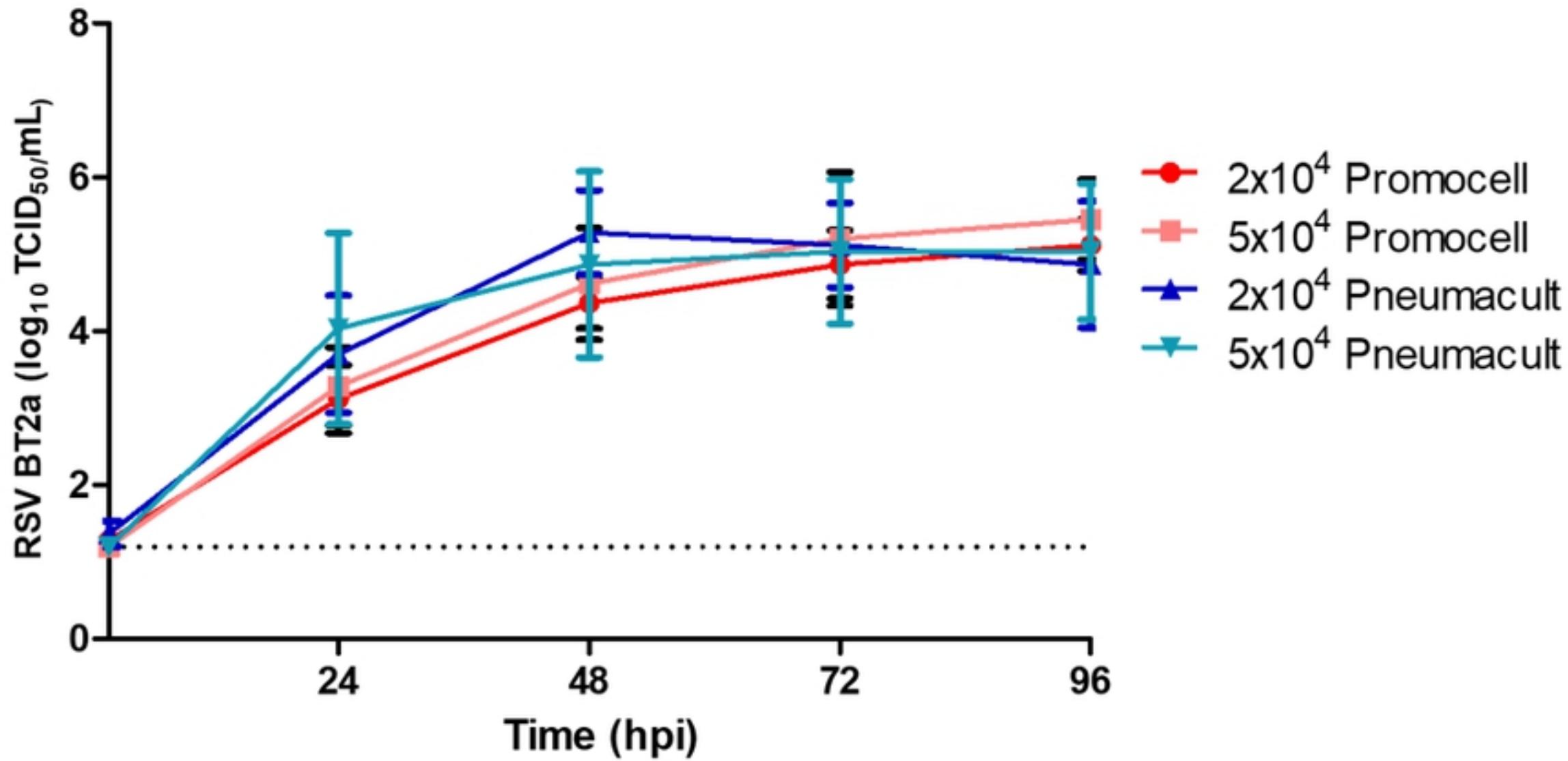
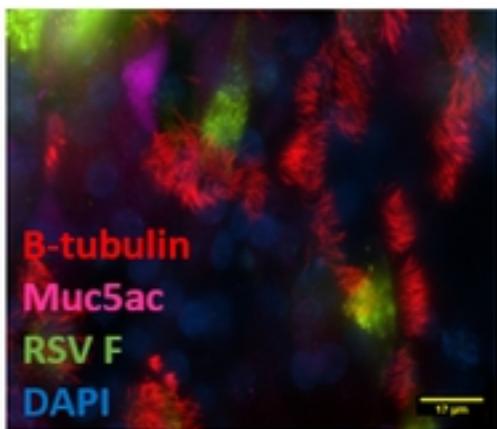
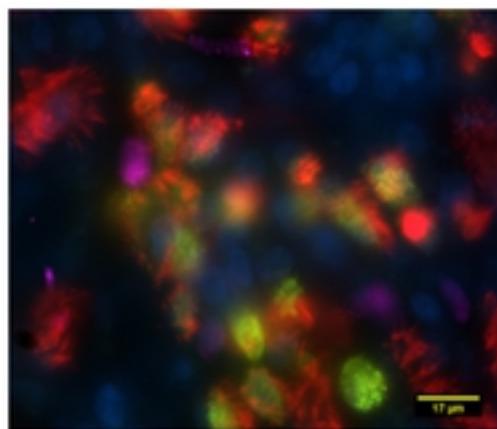
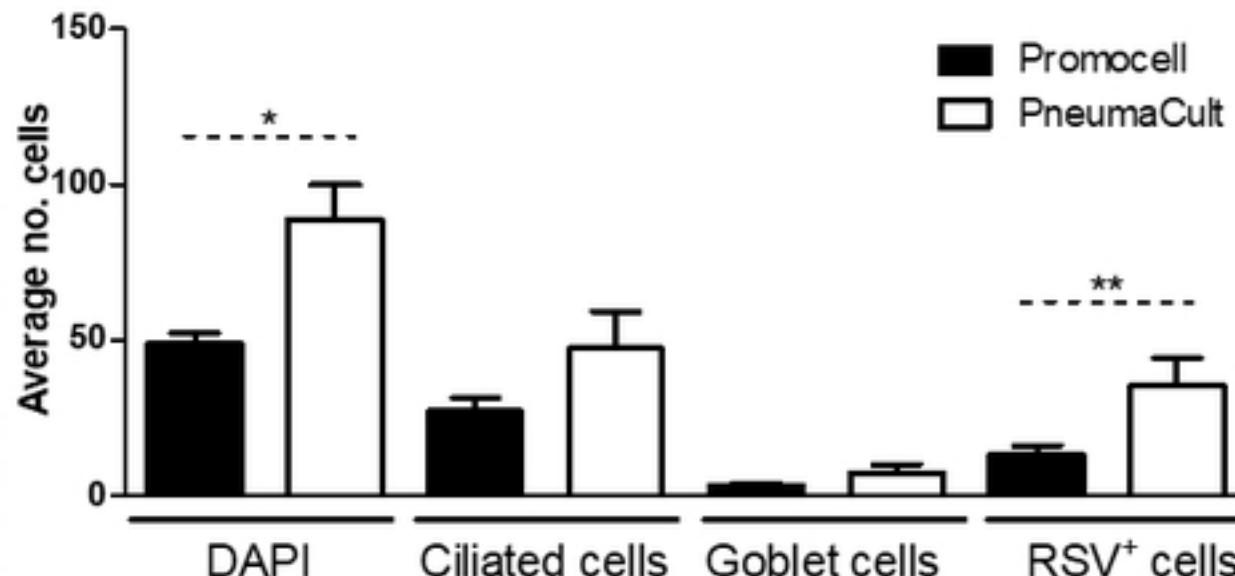


Figure 3


Figure 4

A


Promocell

Pneumacult

B

C

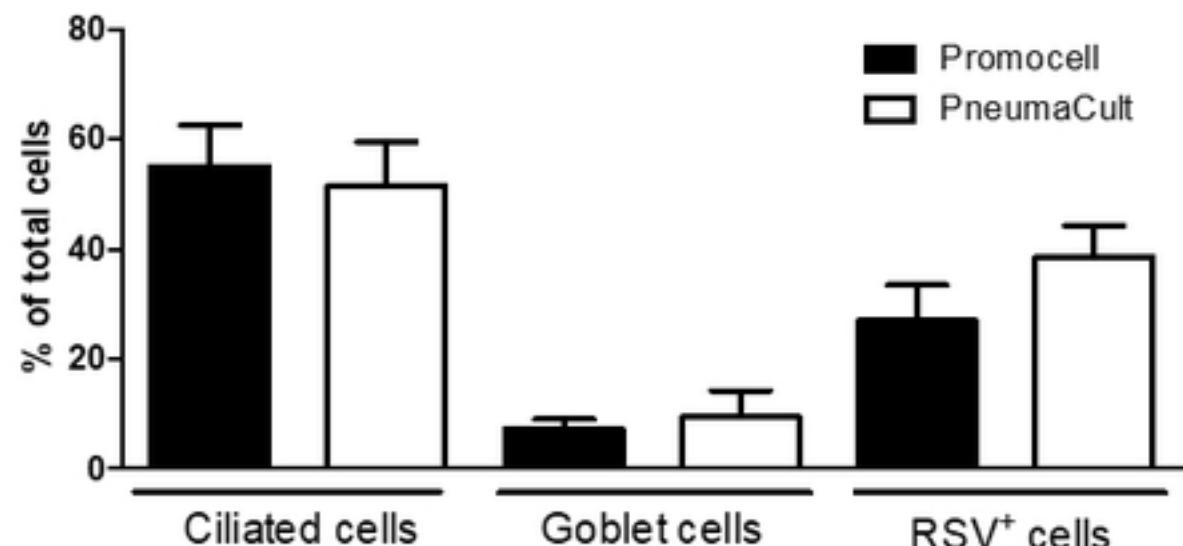


Figure 5

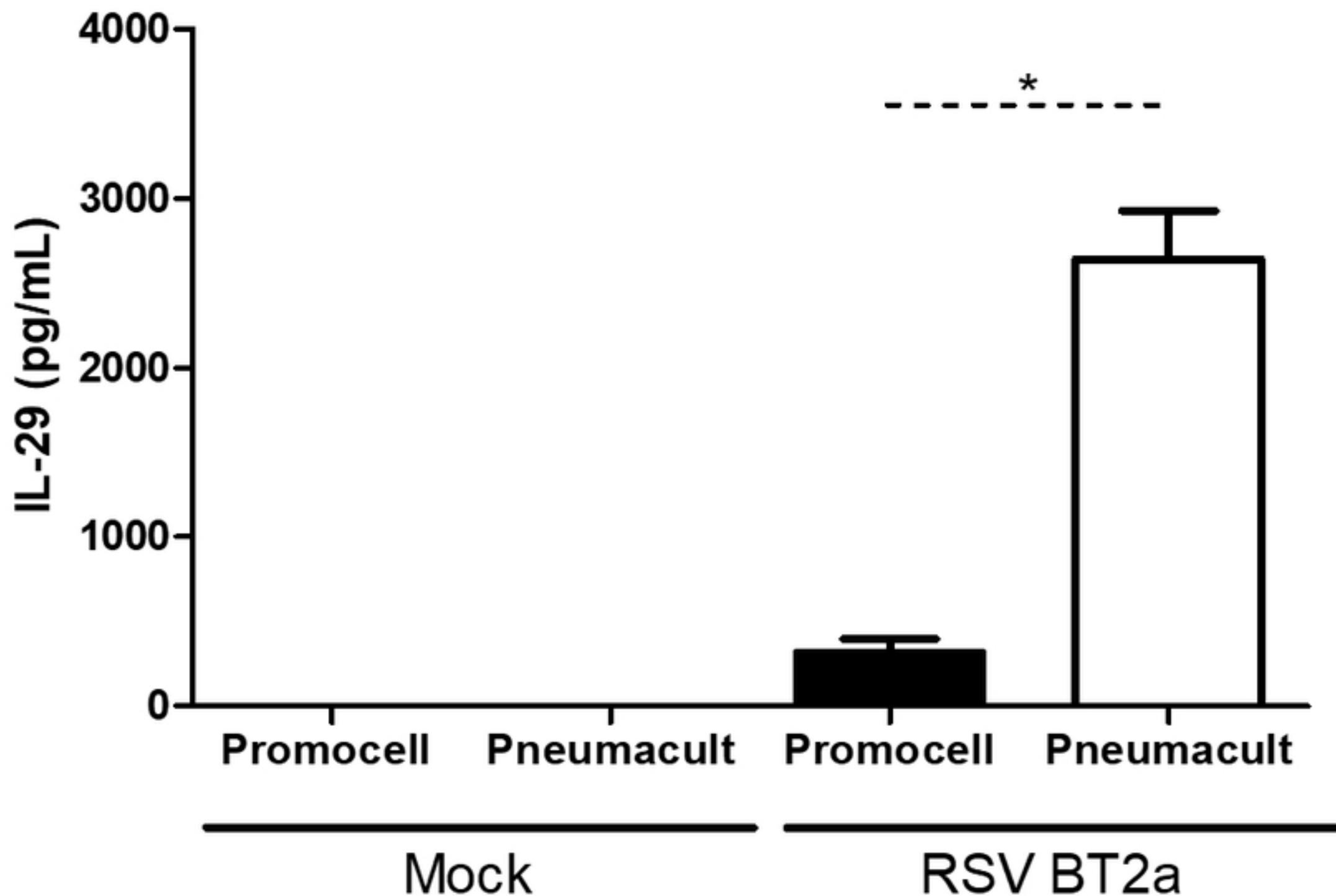


Figure 6