

1 **Avid binding by B cells to the *Plasmodium circumsporozoite protein* repeat suppresses**
2 **responses to protective subdominant epitopes**

3

4 Fiona J. Lewis^{*1}, Deepyan Chatterjee^{*1}, Joe Kaczmarski², Xin Gao¹, Yeping Cai¹, Hayley A.
5 McNamara¹, Henry J. Sutton¹, Colin J. Jackson², Ian A. Cockburn^{1†}

6

7 1. Department of Immunology and Infectious Disease, John Curtin School of Medical
8 Research, The Australian National University, Canberra, ACT 2602, Australia.
9 2. Research School of Chemistry, The Australian National University, Canberra, ACT 2602,
10 Australia.

11

12 * these authors contributed equally to this manuscript

13 †To whom correspondence should be addressed: ian.cockburn@anu.edu.au

14

15 **Keywords:** B cells; Immunodominance; *Plasmodium falciparum*; malaria; circumsporozoite
16 protein; vaccines.

17 **Abstract:**

18

19 Antibodies targeting the NANP/NVDP repeat domain of the *Plasmodium falciparum*
20 circumsporozoite protein (CSP_{Repeat}) can confer protection against malaria. However, it has
21 also been suggested that this repeat domain exists as a decoy that distracts the immune
22 system from mounting protective responses targeting other domains of CSP. Here we show
23 that B cell responses to the repeat domain are indeed ~10 fold higher than responses to the N-
24 and C-terminal regions of CSP after sporozoite immunization. We investigated the role of
25 the number of CSP_{Repeat}-specific naïve precursor B cells and high avidity binding by B cells
26 in driving the immunodominance of the CSP_{Repeat}. Using adoptive transfer of germline
27 precursors specific for the CSP_{Repeat}, we found that increasing precursor number did indeed
28 increase the responses to the repeat region, but not to the detriment of responses to other
29 epitopes. To investigate the role of avid binding by B cells to the CSP_{Repeat} in driving
30 immunodominance we generated CSP9: a truncated CSP molecule with just 9 NANP repeats.
31 Compared to near full length CSP molecules, CSP9 induced lower BCR signalling in
32 CSP_{Repeat}-specific cells and induced stronger responses to non-repeat epitopes. Finally, we
33 found mice immunized with CSP9 molecules were strongly protected against mosquito bite
34 challenge. Collectively these data demonstrate that the CSP_{Repeat} does function as an
35 immunodominant decoy and that truncated CSP molecules may be a promising avenue for
36 future malaria vaccines.

37 **Significance Statement**

38

39 Malaria kills approximately 420,000 individuals each year(1). Our best vaccine, RTS,S/AS01
40 is based on the circumsporozoite protein that coats the surface of the parasite. However, this
41 vaccine is only partially protective. Here we show that responses to a repeat region in the
42 circumsporozoite dominate the immune response. However, immunizing with a
43 circumsporozoite protein with a shortened repeat region induces a more diverse immune
44 response, which could be an avenue to make better malaria vaccines.

45 **Introduction**

46

47 Our most advanced malaria vaccine RTS,S/AS01 aims to induce antibodies that target the
48 repeat region of the circumsporozoite protein (CSP), which covers the surface of the
49 *Plasmodium* sporozoite (2-4). The rationale for this approach comes from the observation
50 that immunization with radiation attenuated sporozoites confers sterile protection against
51 malaria, and that the humoral response induced by irradiated sporozoites is dominated by
52 anti-CSP antibodies (5-8). Early studies demonstrated that monoclonal antibodies (mAbs)
53 targeting the repeat regions of the CSP molecule (CSP_{Repeat}) protected mice against challenge
54 with the rodent parasite *P. berghei* (9-11). More recently, human monoclonal antibodies
55 targeting the *P. falciparum* CSP_{Repeat} have also been shown to be protective in preclinical
56 mouse models (12-14).

57

58 Despite the protective capacity of CSP_{Repeat} specific Abs, it has also been argued that the
59 CSP_{Repeat} is an immunodominant “decoy” distracting the immune system from making
60 protective responses against other epitopes within CSP or other proteins on the sporozoite
61 surface (15, 16). Evidence for the immunodominance of the CSP_{Repeat} initially came from
62 early studies which showed that a short (NANP)₃ peptide based on this domain could absorb
63 most sporozoite binding activity of sera from hyperimmune individuals (8). In support of the
64 concept that the responses to CSP_{Repeat} are sub-optimal, large amounts of anti-CSP_{Repeat} mAbs
65 are required for protection in preclinical challenge models, while in RTS,S clinical trials
66 protection requires very high amounts (>50 µg/ml) of anti-CSP_{Repeat} antibody (12-14, 17). In
67 contrast, antibody responses to other regions of CSP are less well understood. One small
68 epidemiological study associated increased levels of antibodies targeting a truncated CSP_{Nterm}
69 peptide with protection from clinical disease (18). Subsequently, a mouse mAb, 5D5,

70 targeting an epitope within the N terminus of CSP was found to be protective against
71 sporozoite challenge (19). More recently, human mAbs targeting the junction between the
72 CSP_{Nterm} and CSP_{Repeat} were found to be protective (12, 13). Antibodies targeting the C-
73 terminal domain CSP (CSP_{Cterm}) have been associated with protection by the RTS,S vaccine
74 in clinical trials (20, 21), though individual mAbs targeting this domain have not been found
75 to confer protection (14).

76

77 There has been increased interest in the factors that drive B cell immunodominance and how
78 these can be manipulated for improved vaccination outcomes. Recent findings in influenza
79 and HIV immunology have revealed the existence of broadly neutralising antibodies (bnAbs),
80 however these target rare subdominant epitopes. In HIV it was recently shown that
81 transferred B cells carrying a germline version of the bnAb VRC01 could be induced to
82 compete successfully in germinal centers (GCs) if the number of naïve precursors was
83 artificially increased or if stimulated with a high polyvalent antigen that bound the B cells
84 with greater avidity (22). For influenza it has been shown that broadly neutralizing responses
85 to the stem regions of haemagglutinin (HA) can be favored over responses to the
86 immunodominant - but highly variable - head region by immunization with stem-only
87 constructs, even if delivered alongside full length HA (23).

88

89 Given the highlighted roles for antigen polyvalency and precursor numbers in driving B cell
90 immunodominance, we investigated whether these factors drive the CSP_{Repeat} to be
91 immunodominant. The finding that CSP_{Repeat} can be bound avidly by B cells from a range of
92 immunoglobulin gene families suggested that there may be high numbers of precursors for
93 this domain (12, 13, 24, 25). More suggestively, we and others have shown that the CSP
94 repeat can be bound by 6 or more specific antibodies (12, 24, 26, 27), and it has been

95 demonstrated that the repeat can crosslink multiple BCRs to enhance B cell signalling (28).
96 Accordingly, we tested the roles of these factors in driving the dominance of the Ab response
97 against the CSP_{Repeat} and determined if we could manipulate the immunodominance hierarchy
98 to develop better vaccination protocols.

99

100 **Results**

101

102 *The circumsporozoite protein repeat domain is immunodominant*

103

104 To formally test the immunodominance of responses to the $\text{CSP}_{\text{Repeat}}$ over the $\text{CSP}_{\text{Nterm}}$ and
105 $\text{CSP}_{\text{Cterm}}$ we immunized mice with irradiated Pb-PfSPZ parasites which carry a full length
106 (4NVDP/38NANP) *P. falciparum* CSP gene in place of the endogenous *P. berghei* CSP (Fig.
107 S1) (29). At days 4, 7, 14 and 28 post-immunization sera were taken for antibody analysis by
108 ELISA with domain-specific peptides, and spleens were taken for cellular analysis by flow
109 cytometry. IgG responses to the $\text{CSP}_{\text{Repeat}}$ were significantly higher than responses to either
110 of the other domains, with a significant response developing to the $\text{CSP}_{\text{Cterm}}$ only after 28
111 days (Fig. 1A).

112

113 One concern is that ELISA measurements of antibody responses to the different domains are
114 not directly comparable. Therefore, we used tetramer probes to track the total numbers of B
115 cells responding to each domain of CSP over time, and their phenotype by flow cytometry
116 (Fig. 1B, Fig. S2A). The response to sporozoites is characterized by an early plasmablast
117 (PB) response that wanes and leaves a prolonged GC reaction (24). Four days after
118 immunization of mice with Pb-PfSPZ, the number of $\text{CSP}_{\text{Repeat}}^+$ CD138^+ PBs was ~10 fold
119 higher than the number of $\text{CSP}_{\text{Nterm}}^+$ or $\text{CSP}_{\text{Cterm}}^+$ PBs (Fig. 1Ci). By day 7, a pronounced GC
120 reaction developed and the number of $\text{CSP}_{\text{Repeat}}^+$ GL7^+ B cells was ~10 fold higher than
121 responses to the other domains, which was sustained until day 28 (Fig 1Cii). We further
122 analyzed the number of IgD $^-$ IgM $^-$ (Switched Ig; SwIg) CD38^+ memory B cells and found
123 that the immunodominance of the response to the $\text{CSP}_{\text{Repeat}}$ response extended into the
124 memory phase (Fig 1Ciii).

125

126 *Increasing anti-CSP precursor B cell number does not suppress responses to other antigens*

127

128 A previous study highlighted the fact that increasing the number of precursors for an antigen

129 led to a concomitant increase in the number of cells entering GCs; the same study also

130 highlighted roles for antigen valency in allowing responses to successfully compete in the GC

131 (22). To investigate the roles of precursor number and antigen valency we developed a

132 system in which we could modulate the number of precursors or the valency of two

133 competing antigens in the context of CSP. We achieved this by conjugating the 4-hydroxy-3-

134 nitrophenyl (NP) acetyl-hapten to recombinant CSP via crosslinking on lysine. Since lysine

135 residues are not found in the CSP repeat region, the NP-hapten would bind exclusively to the

136 N and C terminal domains (Fig. S3A). For these experiments we used a slightly truncated

137 CSP molecule carrying 27 repeats (3NVDP and 24 NANP), designated CSP27 (Fig S1). As

138 proof of principle we found that immunization with CSP27 conjugated to 2 NP moieties

139 (CSP27-NP2) was able to induce strong anti-NP and anti- CSP_{Repeat} IgG responses (Fig. S3).

140 We were then able to modulate the number of precursors for CSP_{Repeat}-specific B cells using

141 Ig knockin Ig^{h2A10} B cells which carry the germline heavy chain of the CSP_{Repeat} specific

142 2A10 antibody (McNamara *et al.* submitted). Similarly, we could modulate the number of

143 NP-specific B cells using the established B1-8^{hi} mouse system (30, 31). Finally, we could

144 alter the valency of the response to NP or the repeat by conjugating more NP molecules per

145 CSP, or by reducing the length of the CSP_{Repeat} domain.

146

147 To determine the role of precursor number in driving immunodominance we adoptively

148 transferred defined numbers of CSP_{Repeat} tetramer⁺, CD45.1 Ig^{h2A10} cells into CD45.2

149 C57BL/6 mice (Fig. S2B). Mice were then immunized with CSP27-NP2, IgG responses were

150 measured 7,14 and 21 days post immunization, and the number of NP and CSP_{Repeat} specific
151 cells were quantified by flow cytometry on day 21 (Fig. 2A). We hypothesized that increased
152 anti-CSP_{Repeat} precursor number would not only increase the response to the CSP_{Repeat} but also
153 suppress the NP immune response. As expected, increasing the number of CSP_{Repeat}-specific
154 precursors increased the total number of CSP_{Repeat} binding B cells and CSP_{Repeat}-specific GC
155 B cells responding to this antigen (Fig. 2B and C). Perhaps surprisingly, the magnitude of the
156 antibody response was unaltered (Fig. 2D). However, there was no concomitant decrease in
157 the overall B cells and GC B cell response to NP (Fig. 2B-C), and the magnitude of the IgG
158 antibody response to NP was also unaffected by the addition of Ig h^{g2A10} cells (Fig. 2E).
159 Finally, because we could distinguish our transferred cells from the endogenous response by
160 the expression of CD45.1, we were able to determine that the endogenous response to CSP
161 was not suppressed by the addition of enhanced number of germline precursors specific for
162 CSP (Fig 2F).

163
164 We also performed the converse experiment and altered the number of anti-NP precursors
165 relative to the number of CSP_{Repeat} specific cells via the addition of B1-8^{hi} cells (Fig. S2C).
166 Notably, B1-8^{hi} cells differ from Ig h^{g2A10} cells not only in their specificity but also because
167 they carry the high affinity mature *Ighv1-72* heavy chain that confers strong binding to NP.
168 Nonetheless, in agreement with the previous experiment, antibody titres to the CSP_{Repeat} were
169 generally unaffected by the transfer of additional naive B-18^{hi} cells (Fig S4A), while
170 increasing the number of NP cells had no significant effect on the number of CSP_{Repeat}
171 specific B cells responding and becoming GC B cells (Figure S5B-D). However, in contrast
172 to the previous experiment, the additional of B1-8^{hi} cells did not increase the overall
173 magnitude of the antigen specific B cell and GC response to NP itself; rather, the transferred
174 high affinity B1-8^{hi} B cells displaced the endogenous cells from the response though this

175 effect rapidly saturated after the transfer of just 1×10^4 B1-8^{hi} cells (Fig S4E). Again, in
176 contrast to the previous experiment, this displacement resulted in higher titres of antibodies
177 targeting NP overall, perhaps due to the high affinity of the transferred cells (Fig. S4F).

178

179 *Reducing the valency of immunodominant antigens allows subdominant responses to expand*
180

181 Given the repeating nature of the CSP_{Repeat} we next tested whether the ability of long CSP
182 molecules to crosslink multiple B cell receptors (BCRs) might drive the immunodominance
183 of this domain. Accordingly, we developed a construct that carried just 9 NANP repeats
184 (CSP9; Fig. S1). Using a surface plasmon resonance saturation experiment, we found that
185 CSP9 could only bind 2-3 2A10 antibodies, compared to the 5-6 bound by CSP27, which is
186 in line with previous structural and biophysical data from our laboratory (Fig. 3A) .

187 Importantly, this reduced binding corresponded to a reduction in BCR signalling as calcium
188 fluxes were lower when Ig^{g2A10} cells were pulsed with CSP9 compared to CSP27 (Fig. 3B-
189 C).

190

191 To test whether the reduction in BCR signalling by CSP9 corresponded to a reduction in
192 immunodominance of the CSP_{Repeat} we compared responses to CSP27-NP2 and NP-
193 haptenated CSP9 (CSP9-NP2). CSP9-NP2 had significantly elevated NP-specific IgG
194 compared to NP2-CSP27, particularly on days 14 and 21 post-immunisation (Fig. 3D).

195 Analysis of the cellular NP and CSP_{Repeat} responses via flow cytometry at day 21 revealed
196 that truncation of the CSP_{Repeat} not only reduced the number of cells responding to the
197 CSP_{Repeat}, but also allowed for a significant increase in the number of NP-specific total B
198 cells and GC cells supporting the increase in antibody titres (Fig. 3E-G). Moreover, the
199 CSP_{Repeat} IgG titres were significantly decreased for NP2-CSP9 immunised mice compared to

200 NP2-CSP27 (Fig. 3H). Overall, this data supports the importance of valency in determining
201 immunodominance as, decreasing the repeat length shifted the response away from the
202 CSP_{Repeat} and towards NP.

203

204 We next performed the converse experiment and compared responses to CSP27, CSP27-NP2,
205 CSP27-NP6 and CSP27-NP10. In these conditions the length of the CSP_{Repeat} antigen is fixed
206 but the valency of NP varies. In agreement with the previous finding, increasing the NP:CSP
207 ratio not only increased the response to NP (Fig S5A) but also decreased the level of
208 antibodies to the CSP_{Repeat} (Fig S5B). Increasing the NP:CSP-ratio resulted in a switch in the
209 immunodominance hierarchy; in mice immunized with CSP27-NP2, the CSP_{Repeat} response
210 was immunodominant, while the NP response dominated the CSP_{Repeat} response upon
211 immunization with CSP27-NP10 (Fig S5C-E). Collectively these data indicate a powerful
212 role for antigen valency in driving the immunodominance of repeating antigens.

213

214 *Repeat-truncated PfCSP molecules induce diverse antibody responses that protect against
215 parasite challenge*

216

217 One prediction of our data is that immunization CSP9 will induce stronger responses to the
218 CSP_{Nterm} and CSP_{Cterm} compared to CSP27. Moreover, if these non-CSP_{Repeat} responses have
219 anti-parasitic effect then immunization with CSP9 should be more protective than
220 immunization with CSP27. Accordingly, we immunized mice 3 times at 5-week intervals
221 with CSP9 and CSP27 formulated in alum before challenging mice with Pb-PfSPZ via
222 mosquito bites 5 weeks after the final immunization (Fig. 4A). We also included an
223 additional group which were immunized with CSP9_{NVDP} - a recombinant protein which also
224 had a 9-mer repeat but included 3 NVDP repeats (Fig. S1) - as it has been suggested that

225 (NANPNVDP)_n binding antibodies might confer superior protection to pure (NANP)_n
226 binding antibodies (13).

227

228 Overall, IgG responses to *PfCSP* (as measured via ELISA on CSP27 coated plates) were
229 similar in magnitude across all immunized groups (Fig. 4B). Because differences between
230 immunized mice and control mice are large (as are differences between pre-immune and
231 post-immune sera), but not of particular interest, this group was removed from subsequent
232 analysis as was the pre-immune timepoint to avoid skewing the statistical models.

233 Examination of the specificity of the IgG responses at the domain level revealed significant
234 differences in responses to the different immunogens: CSP9 and CSP9_{NVDP} induced
235 significantly stronger IgG responses to CSP_{Nterm} and CSP_{Cterm} compared to CSP27 while
236 responses to the repeat were similar (Figure 4C and D). We also performed more specific
237 ELISAs with peptides corresponding to the regions bound by 5D5 and the CSP_{Nterm}/CSP_{Repeat}
238 junction (Fig. S6A). We found that the truncated CSP9 and CSP9_{NVDP} induced stronger
239 responses to the 5D5 peptide which lies within the CSP_{Nterm} (Fig S6B) but that responses to
240 the junction peptide were similar across all immunogens (Fig. S6C). Surprisingly, while
241 CSP_{Repeat} specific antibody responses were initially lower in CSP9 immunized mice
242 compared to CSP27 immunized mice, the repeat specific responses were similar after the
243 third dose (Fig. 4E). Nonetheless, the ratio of antibody titres to the CSP_{Nterm} and CSP_{Cterm}
244 domains to the CSP_{Repeat} domains were significantly higher in the CSP9 immunized mice
245 compared to CSP27 immunized mice at the time of challenge (Fig 4F and G).

246

247 Forty-two hours after mosquito bite challenge, livers were excised from the mice and the
248 parasite burden measured by RT-PCR. Both CSP9 and CSP27 induced significant reductions
249 in the mean parasite burden in the liver, whilst CSP9_{NVDP} did not ($p = 0.069$; Fig. 4H).

250 Overall 10/11 (91%) control mice had detectable parasite 18SRNA, compared to only 5/15
251 (33%) CSP9 immunized mice which was statistically significant ($p=0.005$ by Fisher's exact
252 test; Fig. 4I). In both CSP27 and CSP9_{NVDP}, 9/15 (60%) mice had detectable parasite RNA,
253 which was not significantly different the control group ($p=0.17$ by Fisher's exact test; Fig.
254 4I). The failure of CSP9_{NVDP} to induce better protection than the CSP9 was surprising to us,
255 but did not reflect a failure to induce NVDP binding antibodies as these antibodies were
256 significantly higher in both CSP27 (which includes NVDP repeats) and CSP9_{NVDP}
257 immunized mice than in the CSP9 immunized mice (Fig. S6D and E). Overall, these data
258 indicate that strategies which reduce the immunodominance of the CSP repeat can induce
259 more diverse antibody responses and confer superior protection to vaccination strategies
260 which utilise full length or near full length CSP.

261

262 **Discussion**

263

264 Here we show that the primary driver of the immunodominance of the CSP_{Repeat} over other
265 domains within CSP is the avidity of the binding between long repeats and BCRs on the
266 surface of antigen specific B cells. Reducing the valency of the CSP_{Repeat} allows the
267 development of stronger B cell and antibody responses to other epitopes. To demonstrate the
268 importance of this observation for vaccination we used truncated CSP molecules to immunize
269 against malaria in a pre-clinical model. We found that mice immunized with truncated CSP
270 developed stronger responses to the CSP_{Nterm} and CSP_{Cterm} domains, both of which have been
271 associated with protective antibody responses. Moreover, mice immunized with truncated
272 CSP molecules were protected against live parasite challenge, and the magnitude of this
273 protection was greater than in mice immunized with nearly full length CSP, though this
274 difference did not reach statistical significance.

275

276 Our findings shed light on the key drivers of B cell immunodominance. There have been
277 comparatively few studies on B cell immunodominance, but T cell immunodominance
278 studies have highlighted critical roles for TCR-peptide MHC affinity and the number of naïve
279 precursors specific for a particular antigen (reviewed in (32)). A common strategy for
280 enhancing antibody responses is to generate polyvalent antigens, such as virus-like particles,
281 to enhance immunity (33). Accordingly, we investigated how the multivalent nature of the
282 CSP_{Repeat} affects the response to this epitope. Our finding that reducing the length of the CSP
283 repeat allows responses to other antigens to develop suggests that not only does the long
284 repeat drive a large response to this antigen itself, but also allows it to suppress other
285 responses. The discovery of this “immunodomination” effect provides direct support for the
286 decoy hypothesis, though the exact mechanism for this effect is unclear. Our observation that

287 CSP27 drives stronger BCR signalling than CSP9 suggests that this antigen may drive
288 stronger expansion of the B cell response at the outset. An alternative – non-mutually
289 exclusive hypothesis - is that is that CSP molecules carrying long repeats may be readily
290 taken up by CSP_{Repeat} specific B cells, allowing these B cells to outcompete CSP_{Nterm} and
291 CSP_{Cterm} specific B cells for T cell help (34, 35). In agreement with this, it has been
292 previously shown that competition for restricted T cell help can suppress responses to rare or
293 subdominant epitopes (36).

294

295 We also investigated the roles of the number of antigen-specific precursors in determining the
296 magnitude of the resulting immune response. The number of naïve precursors specific for a
297 particular epitope was identified as a possible driver of CD4⁺ and CD8⁺ T cell
298 immunodominance in mice in studies with peptide immunization or vesicular stomatitis virus
299 infection (37, 38). However, other studies in humans (with HIV and hepatitis B virus) and
300 mice (with influenza A virus) have not reported as strong a relationship as initially reported
301 (39-41), perhaps due to compensation by other factors such as the affinity of the T cell
302 receptor-MHC peptide interaction (32). In agreement with a previous study on the
303 relationship between B cell precursor number and the subsequent GC response (22), we
304 found that artificially increasing the number of precursors by transferring knock-in germline
305 B specific for the CSP_{Repeat} cells did increase the magnitude of the GC response to this
306 epitope. However, surprisingly, this enhanced response did not occur at the expense of
307 responses to other epitopes and did not result in a significantly enhanced antibody response.
308 One reason for the lack of immunodomination after the transfer of large numbers of CSP_{Repeat}
309 specific B cells may be that precursor B cells for the competing antigen in this system (NP)
310 are in excess. In agreement with this, NP specific B cells are reported to be present at high

311 frequency (~1/4000) in C57BL/6 mice (42). Thus, it will thus be important to determine if the
312 same effect is seen when the number of precursors for the subdominant epitope is limiting.

313

314 Interest in developing “universal” vaccines for viruses such as influenza and HIV has led to
315 increased focus on manipulating immunodominance hierarchies. This is because responses to
316 conserved influenza epitopes (such as the HA stem) or conserved targets of bnAbs are
317 subdominant. For HIV there is strong interest in developing multivalent immunogens
318 targeting rare bnAb germline precursors to enhance the frequency of these cells (43, 44). For
319 influenza, a possible vaccine strategy is to develop HA immunogens lacking the
320 immunodominant, but variable head domain (23). One approach that might be possible, based
321 upon studies in model systems would be to delete B cells specific for non-protective epitopes
322 by injecting pure epitopes not linked to a T cell epitope (45). For CSP based malaria vaccines
323 it is probably not desirable to remove the responses to the repeat altogether as antibodies
324 targeting this domain are clearly protective, however a rebalancing of the immune response
325 may be desirable. The current RTS,S vaccine may benefit from having a truncated repeat (of
326 only 18 NANP moieties), though – critically - it lacks the CSP_{Nterm} domain and does not have
327 any NVDP repeats (46). Perhaps surprisingly, we did not find that mice which mounted
328 stronger responses to the NANPNVDP repeats were better protected than those which had
329 responses more focussed on pure NANP repeats. This is despite the fact that mAbs that are
330 strongly cross-reactive between both repeat motifs have been shown to protect against
331 *Plasmodium* infection (13).

332

333 Collectively, our results provide insights into the factors that drive the immunodominance of
334 different B cell epitopes; notably, that repeat epitopes can induce larger responses at the
335 expense of subdominant epitopes. Our results suggest that truncated CSP molecules carrying

336 all domains of the protein, may be a promising approach to the generation of a next

337 generation CSP based vaccine.

338

339

340

341 **Materials and Methods**

342

343 Full details of materials and methods used in this study are given in the supplementary
344 information.

345

346 *Ethics statement*

347 All animal procedures were approved by the Animal Experimentation Ethics Committee of
348 the Australian National University (Protocol numbers: A2016/17; 2019/36). All research
349 involving animals was conducted in accordance with the National Health and Medical
350 Research Council's Australian Code for the Care and Use of Animals for Scientific Purposes
351 and the Australian Capital Territory Animal Welfare Act 1992.

352

353 *Mice and Parasites*

354 C57BL/6 mice, B1-8 mice (31) and Ighg2A10 (McNamara et al. submitted) were bred in-
355 house at the Australian National University. Mice were immunized IV with 5×10^4 irradiated
356 (15kRad) Pb-PfSPZ (29) dissected by hand from the salivary glands of *Anopheles stephensi*
357 mosquitoes.

358

359 *Proteins and Immunizations*

360 For immunization with CSP27, CSP9 or CSP9NVDP, or CSP27-NP conjugates 30 μ g protein
361 (or as described in the relevant figure legend) was emulsified in ImjectTM Alum according to
362 the manufacturer's instructions (ThermoFisher Scientific) and delivered intra-peritoneally.

363

364 *Flow Cytometry*

365 Single cell preparations of lymphocytes were isolated from the spleen of immunized mice
366 and were stained for flow cytometry or sorting by standard procedures. Cells were stained
367 with antibodies as outlined in Table S1 and CSP domain specific tetramers conjugated to PE
368 or APC. Tetramers were prepared in house by mixing biotinylated (NANP)₉ peptide with
369 streptavidin conjugated PE or APC (Invitrogen) in a 4:1 molar ratio. Flow-cytometric data
370 was collected on a BD Fortessa flow cytometer (Becton Dickinson) and analyzed using
371 FlowJo software (FlowJo).

372

373 *ELISA*

374 Binding of 2A10 antibody variants was determined in solid phase ELISA. Briefly, Nunc
375 Maxisorp Plates (Nunc-Nucleon) were coated overnight with 1ug/ml streptavidin followed by
376 binding of biotinylated peptide for 1 hour. After blocking with 1% BSA, serial dilutions of the
377 antibodies were incubated on the plates for 1 hour and after washing, incubated with HRP
378 conjugated anti-IgG antibodies (KPL). For the analysis of sera from immunized mice data were
379 expressed as the area under the curve (AUC).

380

381 *Surface plasmon resonance*

382 Surface plasmon resonance saturation experiments were performed on a Biacore 8K
383 instrument (GE Healthcare) at 25 °C using a Series S Sensor Chip NTA (GE Healthcare).
384 CSP27 and CSP9 were immobilized on separate channels on the sensor chip surface as per
385 the manufacturer's recommendations. A saturating solution of mAb 2A10 was then passed
386 over the chip for 400 s, using a flow rate of 30 µl/min, followed by a 400 s dissociation
387 period. The binding stoichiometry (n , molar ratio of antibody to antigen in the complex under
388 saturating concentrations of mAb 2A10) was estimated as described previously (47).

389

390 *Quantitation of parasite RNA*

391 *P. berghei* 18S rRNA was quantified from the livers of mice 42 hours after challenge via the

392 bites of Pb-PfSPZ infected *Anopheles stephensi* mosquitoes as described previously (48).

393

394 *Statistical analysis*

395 Statistical analysis was performed in GraphPad Prism for simple analyses without blocking

396 factors; all other analyses was performed in R (The R Foundation for Statistical Computing)

397 with details of statistical tests in the relevant figure legends.

398

399 **Acknowledgments:**

400

401 We thank Michael Devoy, Harpreet Vohra and Catherine Gillespie of the Imaging and
402 Cytometry Facility at the John Curtin School of Medical Research for assistance with flow
403 cytometry and multi-photon microscopy. We also thank Theresa Neeman of the ANU
404 statistical consulting unit for assistance with statistical analysis of the data. This work was
405 funded by the Bill and Melinda Gates Foundation (OPP1151018) and the National Health and
406 Medical Research Council (GNT1158404). Authors declare no competing interests; All data
407 is available in the main text or the supplementary materials.

408

409 **Figure Legends**

410

411 **Fig. 1. Responses to the CSP_{Repeat} are immunodominant over responses to other**
412 **domains** C57BL/6 mice were immunized with 5×10^4 irradiated Pb-PfSPZ sporozoites, blood
413 and spleens were taken at 4, 7, 14 and 28 days post-immunization for analysis by ELISA and
414 flow cytometry using probes specific for each domain of CSP (CSP_{Cterm}, CSP_{Repeat} and
415 CSP_{Nterm}). (A) IgG responses to each domain measured by ELISA, data shown as area under
416 the curve. (B) Representative flow cytometry plots from a single mouse at the day 7
417 timepoint showing the gating of PBs, GC B cells and SwIg Mem for antigen specific IgD- B
418 cells identified using tetramers specific for the CSP_{Cterm}, CSP_{Repeat} and CSP_{Nterm}; values are
419 percentages (C) Quantifications of the absolute numbers of IgD- B cells using NANP, R1+
420 and N₈₁₋₉₁ antibody panels. (C) Absolute numbers of (i) Plasmablasts, (ii) GC B cells and (iii)
421 SwIg memory cells in each mouse for each antigen (domain). Data for all panels are
422 represented as mean \pm SD pooled from two independent experiments (n=3-5
423 mice/timepoint/experiment); all data were analyzed via 2-way ANOVA, with experiment and
424 mouse included in the model as fixed factors, ANOVA p values are listed below or adjacent
425 to each graph. Pairwise comparisons were performed using a Tukey post-test and significant
426 pairwise comparisons are represented as symbols; * p<0.05, ** p<0.01, *** p<0.001.
427

428 **Fig. 2. Increasing CSP_{Repeat}-specific precursor number does not alter**

429 **immunodominance.** 0, 1×10^4 , 3×10^4 , or 9×10^4 of CD45.1 Ig g2A10 cells were adoptively
430 transferred into C57Bl/6 mice followed by immunization with 30 μ g CSP27-NP2 in alum.
431 Sera were taken on days 7, 14 and 21 and spleens analyzed 21 days post-immunization. (A)
432 Representative flow cytometry plots showing gating of total IgD- and GC B cells specific for

433 NP or the CSP_{Repeat}; values are percentages (B) Absolute numbers of NP probe⁺ and CSP_{Repeat}
434 tetramer⁺ IgD⁻ B cells. (C) Absolute numbers of NP probe⁺ and CSP_{Repeat} tetramer⁺ GC B
435 cells. (D) Total IgG response to CSP_{Repeat} measured via (NANP)₉ ELISA. (E) Total IgG
436 response to NP measured via NP(14)BSA ELISA. (F) Absolute numbers of CSP_{Repeat}
437 tetramer⁺ CD45.1⁺ Ig^{g2A10} and CD45.1⁻ endogenous cells. Data are represented as mean ±
438 SD pooled from two independent experiments (n≥3 mice/group/experiment); all data were
439 analyzed via 2-way ANOVA, with experiment and mouse included in the model as fixed
440 factors. ANOVA p values are listed below or adjacent to each graph. Pairwise comparisons
441 were performed using a Tukey post-test and significant values are represented as symbols; *
442 p<0.05, ** p<0.01, *** p<0.001.

443

444 **Fig. 3. Decreasing the valency of the CSP_{Repeat} alters the immunodominance hierarchy**
445 Recombinant CSP9 was purified and conjugated to NP at a 1:2 ratio to generate CSP9-NP2,
446 mice were immunized with either CSP9-NP2 (23 µg) or CSP27-NP2 (30 µg) in alum; sera
447 were taken on days 7, 14 and 21 and spleens analyzed 21 days post-immunization. (A)
448 Approximate binding stoichiometry of the 2A10:Ag complex formed when a saturating
449 concentration (2 µM) of mAb 2A10 was passed over immobilized CSP27 or CSP9; data
450 shows mean ± SD of 2 technical replicates (n=2). (B) Calcium flux of sorted Ig^{g2A10} cells
451 incubated with Indo-1 dye and stimulated with CSP27, CSP9 or OVA-HEL, and the Ca²⁺
452 flux measured; near the end of the acquisition Ionomycin was added as a positive control;
453 data shows the mean ± SD of 3 experimental replicates with summary data. (C) Summary
454 data from B analysed via pairwise t-test, mean ± SD shown. (D) Total IgG response to NP
455 measured via NP(14)BSA ELISA. (E) Representative flow cytometry plots showing gating of
456 total IgD⁻ and GC B cells specific for NP or the CSP_{Repeat}; values are percentages. (F)

457 Absolute numbers of NP probe⁺ and CSP_{Repeat} tetramer⁺ IgD⁻ B cells. (G) Absolute numbers
458 of NP probe⁺ and CSP_{Repeat} tetramer⁺ GC B cells. (H) Total IgG response to CSP_{Repeat}
459 measured via (NANP)₉ ELISA. Data for panels D-H are represented as mean ± SD pooled
460 from two independent experiments (n≥4 mice/group/experiment); these data were analyzed
461 via 2-way ANOVA, with experiment and mouse included in the model as fixed factors.
462 ANOVA p values are listed below or adjacent to each graph. Pairwise comparisons were
463 performed using a Tukey post-test and significant values are represented as symbols; *
464 p<0.05, ** p<0.01, *** p<0.001.

465

466 **Fig. 4. Immunization with CSP9 induces more diverse antibody responses and confers**
467 **protection against sporozoite challenge.** C57BL/6 mice were immunized three times at 5
468 weekly intervals with 30 µg CSP9, CSP9_{NVDP}, CSP27 or alum only control, mice were
469 challenged via mosquito bite with Pb-PfSPZ sporozoites and parasite burden measured by
470 RT-PCR; blood was drawn prior to each immunization and challenge for analysis of the
471 antibody response. (A) Schematic of the experiment. (B) Overall IgG responses to CSP27.
472 (C) Overall IgG responses to CSP_{Nterm}. (D) Overall IgG responses to CSP_{Repeat}. (E) Overall
473 IgG responses to CSP_{Cterm}. Data in B-E was from experiments with 5 mice/experiment/group,
474 analysed via 2-way ANOVA with experiment and mouse as blocking factors, ANOVA p
475 values are listed below or adjacent to each graph; pairwise comparisons between groups
476 (averaged over time) were performed using a Tukey post-test and significant values are
477 represented as symbols; * p<0.05, ** p<0.01, *** p<0.001. (F) Ratio of the IgG response to
478 CSP_{Nterm}:CSP_{Repeat} at week 15 for the different immunized groups. (G) Ratio of the IgG
479 response to CSP_{Cterm}:CSP_{Repeat} at week 15 for the different immunized groups. Data for
480 panels F and G were analyzed via one-way ANOVA with experiment and mouse as

481 blocking factors. (H) Parasite 18S RNA in the livers of mice 42 hours post challenge; data
482 pooled from 3 experiments with 3-5 mice/experiment/group and analysed via Kruskal-Wallis
483 test with Dunn's multiple comparisons test. (I) Proportion of mice from (H) with no
484 detectable parasite RNA in each group, pairwise comparisons were made via Fisher's exact
485 test.

486 **References and notes:**

487 1. W. H. Organization (2017) World Malaria Report 2017. (World Health Organization,
488 Geneva).

489 2. A. Olotu *et al.*, Seven-Year Efficacy of RTS,S/AS01 Malaria Vaccine among Young
490 African Children. *N Engl J Med* **374**, 2519-2529 (2016).

491 3. S. C. T. P. Rts, Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a
492 booster dose in infants and children in Africa: final results of a phase 3, individually
493 randomised, controlled trial. *Lancet* **386**, 31-45 (2015).

494 4. S. C. T. P. Rts *et al.*, A phase 3 trial of RTS,S/AS01 malaria vaccine in African
495 infants. *N Engl J Med* **367**, 2284-2295 (2012).

496 5. A. S. Ishizuka *et al.*, Protection against malaria at 1 year and immune correlates
497 following PfSPZ vaccination. *Nature medicine* **22**, 614-623 (2016).

498 6. R. S. Nussenzweig, J. Vanderberg, H. Most, C. Orton, Protective immunity produced
499 by the injection of x-irradiated sporozoites of plasmodium berghei. *Nature* **216**, 160-
500 162 (1967).

501 7. R. A. Seder *et al.*, Protection against malaria by intravenous immunization with a
502 nonreplicating sporozoite vaccine. *Science* **341**, 1359-1365 (2013).

503 8. F. Zavala *et al.*, Rationale for development of a synthetic vaccine against Plasmodium
504 falciparum malaria. *Science* **228**, 1436-1440 (1985).

505 9. A. Ferreira, T. Morimoto, R. Altszuler, V. Nussenzweig, Use of a DNA probe to
506 measure the neutralization of Plasmodium berghei sporozoites by a monoclonal
507 antibody. *J Immunol* **138**, 1256-1259 (1987).

508 10. P. Potocnjak, N. Yoshida, R. S. Nussenzweig, V. Nussenzweig, Monovalent
509 fragments (Fab) of monoclonal antibodies to a sporozoite surface antigen (Pb44)
510 protect mice against malarial infection. *The Journal of experimental medicine* **151**,
511 1504-1513 (1980).

512 11. N. Yoshida, R. S. Nussenzweig, P. Potocnjak, V. Nussenzweig, M. Aikawa,
513 Hybridoma produces protective antibodies directed against the sporozoite stage of
514 malaria parasite. *Science* **207**, 71-73 (1980).

515 12. N. K. Kisalu *et al.*, A human monoclonal antibody prevents malaria infection by
516 targeting a new site of vulnerability on the parasite. *Nature medicine*
517 10.1038/nm.4512 (2018).

518 13. J. Tan *et al.*, A public antibody lineage that potently inhibits malaria infection through
519 dual binding to the circumsporozoite protein. *Nature medicine* 10.1038/nm.4513
520 (2018).

521 14. G. Triller *et al.*, Natural Parasite Exposure Induces Protective Human Anti-Malarial
522 Antibodies. *Immunity* **47**, 1197-1209 e1110 (2017).

523 15. L. Schofield, The circumsporozoite protein of Plasmodium: a mechanism of immune
524 evasion by the malaria parasite? *Bull World Health Organ* **68 Suppl**, 66-73 (1990).

525 16. L. Schofield, P. Uadia, Lack of Ir gene control in the immune response to malaria. I.
526 A thymus-independent antibody response to the repetitive surface protein of
527 sporozoites. *J Immunol* **144**, 2781-2788 (1990).

528 17. M. T. White *et al.*, Immunogenicity of the RTS,S/AS01 malaria vaccine and
529 implications for duration of vaccine efficacy: secondary analysis of data from a phase
530 3 randomised controlled trial. *The Lancet. Infectious diseases* 10.1016/S1473-
531 3099(15)00239-X (2015).

532 18. S. E. Bongfen *et al.*, The N-terminal domain of *Plasmodium falciparum*
533 circumsporozoite protein represents a target of protective immunity. *Vaccine* **27**, 328-
534 335 (2009).

535 19. D. A. Espinosa *et al.*, Proteolytic Cleavage of the *Plasmodium falciparum*
536 Circumsporozoite Protein Is a Target of Protective Antibodies. *The Journal of*
537 *infectious diseases* **212**, 1111-1119 (2015).

538 20. C. Dobano *et al.*, Concentration and avidity of antibodies to different
539 circumsporozoite epitopes correlate with RTS,S/AS01E malaria vaccine efficacy. *Nat*
540 *Commun* **10**, 2174 (2019).

541 21. I. Ubillos *et al.*, Baseline exposure, antibody subclass, and hepatitis B response
542 differentially affect malaria protective immunity following RTS,S/AS01E vaccination
543 in African children. *BMC Med* **16**, 197 (2018).

544 22. R. K. Abbott *et al.*, Precursor Frequency and Affinity Determine B Cell Competitive
545 Fitness in Germinal Centers, Tested with Germline-Targeting HIV Vaccine
546 Immunogens. *Immunity* **48**, 133-146 e136 (2018).

547 23. D. Angeletti *et al.*, Outflanking immunodominance to target subdominant broadly
548 neutralizing epitopes. *Proc Natl Acad Sci U S A* **116**, 13474-13479 (2019).

549 24. C. R. Fisher *et al.*, T-dependent B cell responses to *Plasmodium* induce antibodies
550 that form a high-avidity multivalent complex with the circumsporozoite protein. *PLoS*
551 *pathogens* **13**, e1006469 (2017).

552 25. R. Murugan *et al.*, Clonal selection drives protective memory B cell responses in
553 controlled human malaria infection. *Science immunology* **3** (2018).

554 26. D. Oyen *et al.*, Cryo-EM structure of *P. falciparum* circumsporozoite protein with a
555 vaccine-elicited antibody is stabilized by somatically mutated inter-Fab contacts. *Sci*
556 *Adv* **4**, eaau8529 (2018).

557 27. D. Oyen *et al.*, Structural basis for antibody recognition of the NANP repeats in
558 *Plasmodium falciparum* circumsporozoite protein. *Proc Natl Acad Sci U S A* **114**,
559 E10438-E10445 (2017).

560 28. K. Imkeller *et al.*, Antihomotypic affinity maturation improves human B cell
561 responses against a repetitive epitope. *Science* **360**, 1358-1362 (2018).

562 29. D. A. Espinosa *et al.*, Robust antibody and CD8(+) T-cell responses induced by *P.*
563 *falciparum* CSP adsorbed to cationic liposomal adjuvant CAF09 confer sterilizing
564 immunity against experimental rodent malaria infection. *NPJ vaccines* **2** (2017).

565 30. T. A. Shih, E. Meffre, M. Roederer, M. C. Nussenzweig, Role of BCR affinity in T
566 cell dependent antibody responses in vivo. *Nat Immunol* **3**, 570-575 (2002).

567 31. T. A. Shih, M. Roederer, M. C. Nussenzweig, Role of antigen receptor affinity in T
568 cell-independent antibody responses in vivo. *Nat Immunol* **3**, 399-406 (2002).

569 32. D. C. Tscharke, N. P. Croft, P. C. Doherty, N. L. La Gruta, Sizing up the key
570 determinants of the CD8(+) T cell response. *Nat Rev Immunol* **15**, 705-716 (2015).

571 33. M. K. Slifka, I. J. Amanna, Role of Multivalency and Antigenic Threshold in
572 Generating Protective Antibody Responses. *Front Immunol* **10**, 956 (2019).

573 34. F. D. Batista, M. S. Neuberger, B cells extract and present immobilized antigen:
574 implications for affinity discrimination. *EMBO J* **19**, 513-520 (2000).

575 35. P. C. Cheng, C. R. Steele, L. Gu, W. Song, S. K. Pierce, MHC class II antigen
576 processing in B cells: accelerated intracellular targeting of antigens. *J Immunol* **162**,
577 7171-7180 (1999).

578 36. M. C. Woodruff, E. H. Kim, W. Luo, B. Pulendran, B Cell Competition for Restricted
579 T Cell Help Suppresses Rare-Epitope Responses. *Cell Rep* **25**, 321-327 e323 (2018).

580 37. J. J. Moon *et al.*, Naive CD4(+) T cell frequency varies for different epitopes and
581 predicts repertoire diversity and response magnitude. *Immunity* **27**, 203-213 (2007).

582 38. J. J. Obar, K. M. Khanna, L. Lefrancois, Endogenous naive CD8+ T cell precursor
583 frequency regulates primary and memory responses to infection. *Immunity* **28**, 859-
584 869 (2008).

585 39. M. C. Iglesias *et al.*, Immunodominance of HLA-B27-restricted HIV KK10-specific
586 CD8(+) T-cells is not related to naive precursor frequency. *Immunol Lett* **149**, 119-
587 122 (2013).

588 40. N. L. La Gruta *et al.*, Primary CTL response magnitude in mice is determined by the
589 extent of naive T cell recruitment and subsequent clonal expansion. *J Clin Invest* **120**,
590 1885-1894 (2010).

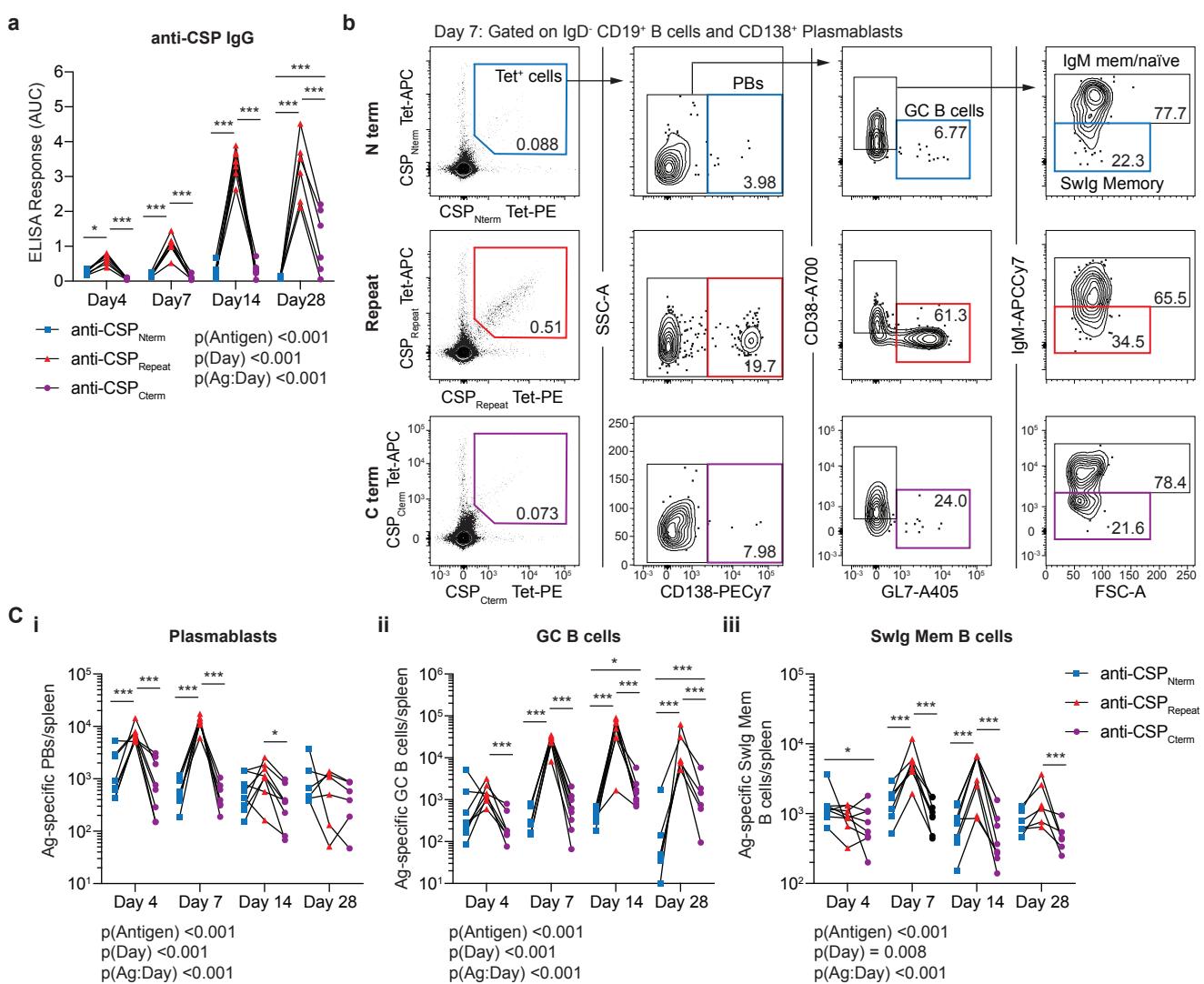
591 41. J. Schmidt *et al.*, Rapid antigen processing and presentation of a protective and
592 immunodominant HLA-B*27-restricted hepatitis C virus-specific CD8+ T-cell
593 epitope. *PLoS pathogens* **8**, e1003042 (2012).

594 42. F. J. Weisel, G. V. Zuccarino-Catania, M. Chikina, M. J. Shlomchik, A Temporal
595 Switch in the Germinal Center Determines Differential Output of Memory B and
596 Plasma Cells. *Immunity* **44**, 116-130 (2016).

597 43. J. Jardine *et al.*, Rational HIV immunogen design to target specific germline B cell
598 receptors. *Science* **340**, 711-716 (2013).

599 44. A. T. McGuire *et al.*, Engineering HIV envelope protein to activate germline B cell
600 receptors of broadly neutralizing anti-CD4 binding site antibodies. *The Journal of
601 experimental medicine* **210**, 655-663 (2013).

602 45. M. Silva *et al.*, Targeted Elimination of Immunodominant B Cells Drives the
603 Germinal Center Reaction toward Subdominant Epitopes. *Cell Rep* **21**, 3672-3680
604 (2017).


605 46. S. Casares, T. D. Brumeanu, T. L. Richie, The RTS,S malaria vaccine. *Vaccine* **28**,
606 4880-4894 (2010).

607 47. M. Oda, T. Azuma, Reevaluation of stoichiometry and affinity/avidity in interactions
608 between anti-hapten antibodies and mono- or multi-valent antigens. *Mol Immunol* **37**,
609 1111-1122 (2000).

610 48. O. Bruna-Romero *et al.*, Detection of malaria liver-stages in mice infected through the
611 bite of a single Anopheles mosquito using a highly sensitive real-time PCR. *Int J*
612 *Parasitol* **31**, 1499-1502 (2001).

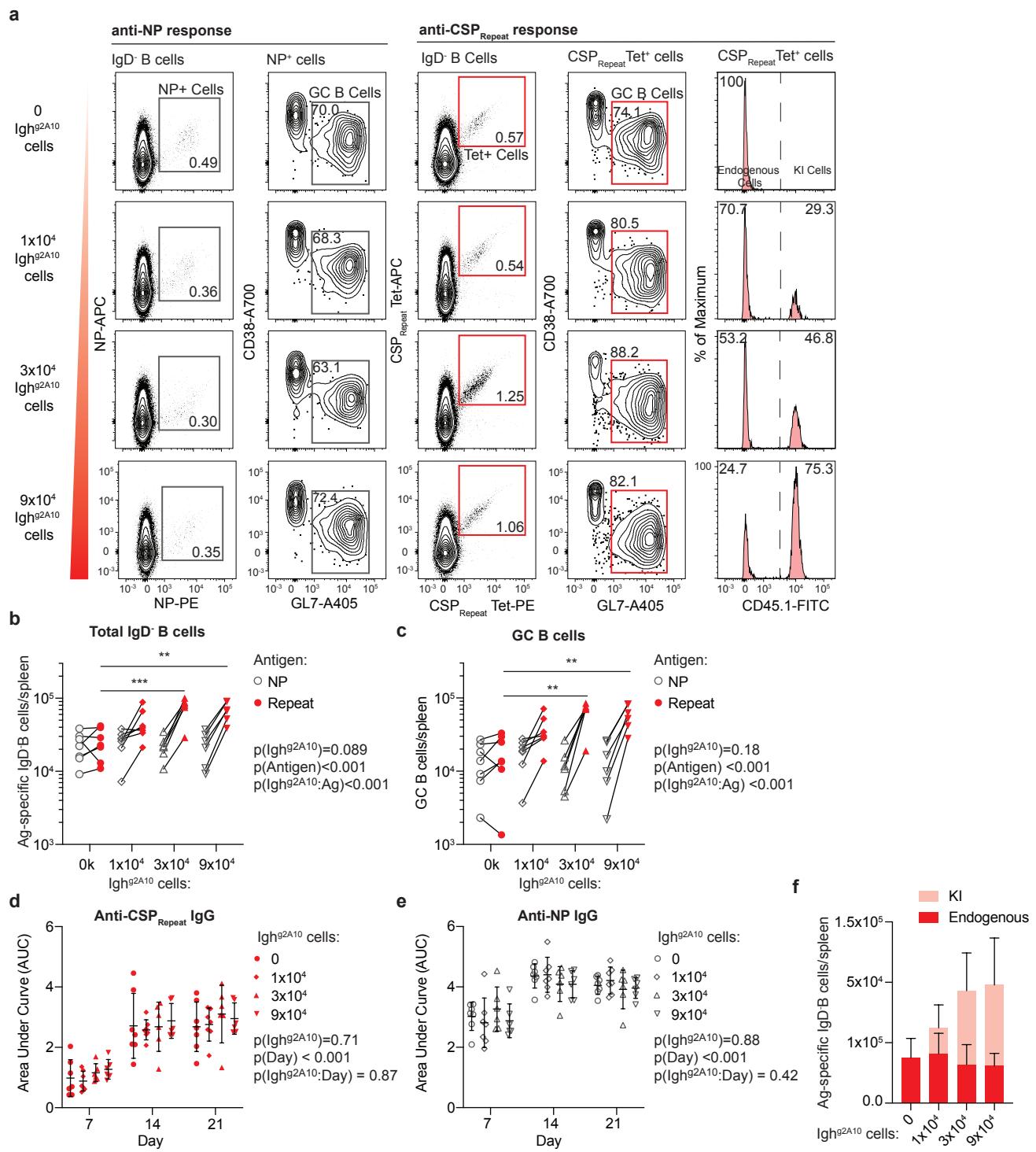

613

Figure 1

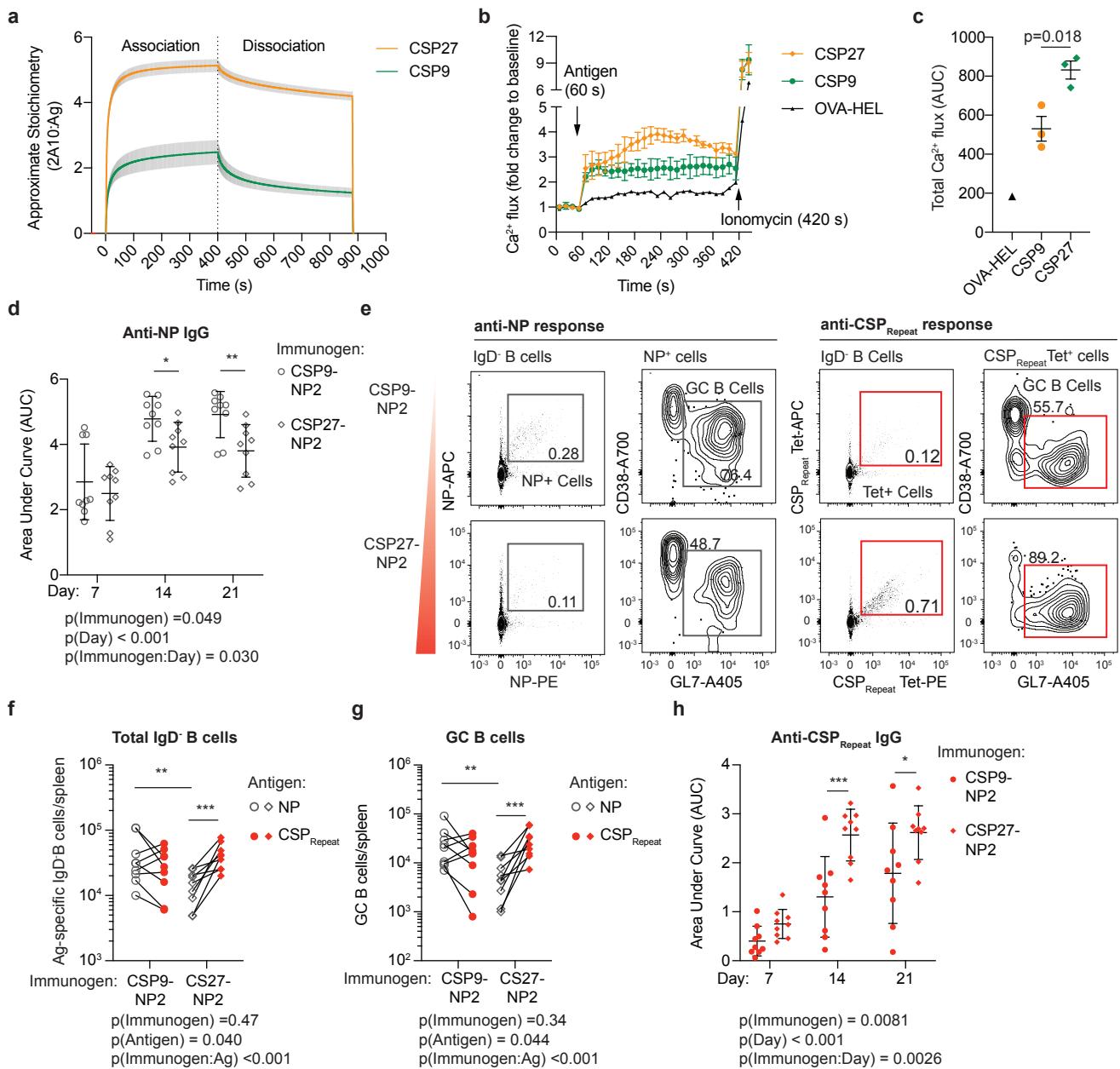

Fig. 1. Responses to the CSP_{Repeat} are immunodominant over responses to other domains C57BL/6 mice were immunized with 5×10^4 irradiated Pb-PfSPZ sporozoites, blood and spleens were taken at 4, 7, 14 and 28 days post-immunization for analysis by ELISA and flow cytometry using probes specific for each domain of CSP (CSP_{Cterm}, CSP_{Repeat} and CSP_{Nterm}). (A) IgG responses to each domain measured by ELISA, data shown as area under the curve. (B) Representative flow cytometry plots from a single mouse at the day 7 timepoint showing the gating of PBs, GC B cells and Swlg Mem for antigen specific IgD⁺ B cells identified using tetramers specific for the CSP_{Cterm}, CSP_{Repeat} and CSP_{Nterm}; values are percentages (C) Quantifications of the absolute numbers of IgD⁺ B cells using NANP, R1+ and N₈₁₋₉₁ antibody panels. (C) Absolute numbers of (i) Plasmablasts, (ii) GC B cells and (iii) Swlg memory cells in each mouse for each antigen (domain). Data for all panels are represented as mean \pm SD pooled from two independent experiments ($n=3-5$ mice/timepoint/experiment); all data were analyzed via 2-way ANOVA, with experiment and mouse included in the model as fixed factors, ANOVA p values are listed below or adjacent to each graph. Pairwise comparisons were performed using a Tukey post-test and significant pairwise comparisons are represented as symbols; * $p<0.05$, ** $p<0.01$, *** $p<0.001$.

Figure 2

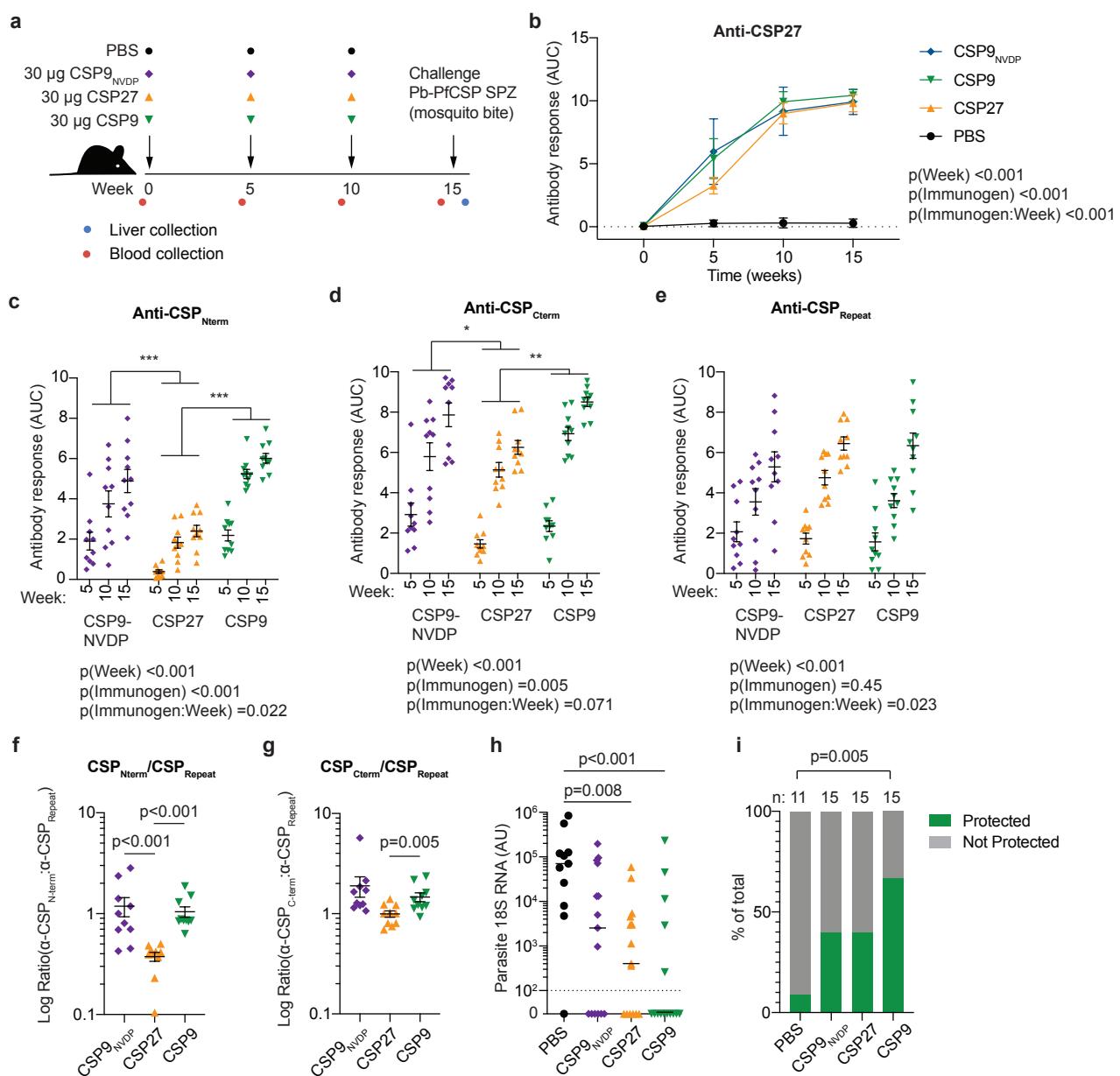

Fig. 2. Increasing CSP_{Repeat}-specific precursor number does not alter immunodominance. 0, 1x10⁴, 3x10⁴, or 9x10⁴ of CD45.1 Ig h^{92A10} cells were adoptively transferred into C57Bl/6 mice followed by immunization with 30 μ g CSP27-NP2 in alum. Sera were taken on days 7, 14 and 21 and spleens analyzed 21 days post-immunization. (A) Representative flow cytometry plots showing gating of total IgD⁻ and GC B cells specific for NP or the CSP_{Repeat}; values are percentages (B) Absolute numbers of NP probe⁺ and CSP_{Repeat} tetramer⁺ IgD⁻ B cells. (C) Absolute numbers of NP probe⁺ and CSP_{Repeat} tetramer⁺ GC B cells. (D) Total IgG response to CSP_{Repeat} measured via (NANP)₉ ELISA. (E) Total IgG response to NP measured via NP(14)BSA ELISA. (F) Absolute numbers of CSP_{Repeat} tetramer⁺ CD45.1⁺ IgD⁻ B cells and CD45.1⁻ endogenous cells. Data are represented as mean \pm SD pooled from two independent experiments ($n\geq 3$ mice/group/experiment); all data were analyzed via 2-way ANOVA, with experiment and mouse included in the model as fixed factors. ANOVA p values are listed below or adjacent to each graph. Pairwise comparisons were performed using a Tukey post-test and significant values are represented as symbols; * $p<0.05$, ** $p<0.01$, *** $p<0.001$.

Figure 3

Fig. 3. Decreasing the avidity of the CSP_{Repeat} alters the immunodominance hierarchy Recombinant CSP9 was purified and conjugated to NP at a 1:2 ratio to generate CSP9-NP2, mice were immunized with either CSP9-NP2 (23 µg) or CSP27-NP2 (30 µg) in alum; sera were taken on days 7, 14 and 21 and spleens analyzed 21 days post-immunization. (A) Approximate binding stoichiometry of the 2A10:Ag complex formed when a saturating concentration (2 µM) of mAb 2A10 was passed over immobilized CSP27 or CSP9; data shows mean ± SD of 2 technical replicates (n=2). (B) Calcium flux of sorted Ig h^{g2A10} cells incubated with Indo-1 dye and stimulated with CSP27, CSP9 or OVA-HEL, and the Ca $^{2+}$ flux measured; near the end of the acquisition Ionomycin was added as a positive control; data shows the mean ± SD of 3 experimental replicates with summary data. (C) Summary data from B analysed via pairwise t-test, mean ± SD shown. (D) Total IgG response to NP measured via NP(14)BSA ELISA. (E) Representative flow cytometry plots showing gating of total IgD $^+$ and GC B cells specific for NP or the CSP_{Repeat}; values are percentages. (F) Absolute numbers of NP probe $^+$ and CSP_{Repeat} tetramer $^+$ IgD $^+$ B cells. (G) Absolute numbers of NP probe $^+$ and CSP_{Repeat} tetramer $^+$ GC B cells. (H) Total IgG response to CSP_{Repeat} measured via (NANP)₉ ELISA. Data for panels D-H are represented as mean ± SD pooled from two independent experiments (n≥4 mice/group/experiment); these data were analyzed via 2-way ANOVA, with experiment and mouse included in the model as fixed factors. ANOVA p values are listed below or adjacent to each graph. Pairwise comparisons were performed using a Tukey post-test and significant values are represented as symbols; * p<0.05, ** p<0.01, *** p<0.001.

Figure 4

Fig. 4. Immunization with CSP9 induces more diverse antibody responses and confers protection against sporozoite challenge. C57BL/6 mice were immunized with three times at 5 weekly intervals with 30 μ g CSP9, CSP9_{NVPD}, CSP27 or Alum only control, mice were challenged via mosquito bite with PbPfSPZ sporozoites and parasite burden measured by RT-PCR; blood was drawn prior to each immunization and challenge for analysis of the antibody response. (A) Schematic of the experiment. (B) Overall IgG responses to CSP27. (C) Overall IgG responses to CSP_{Nterm}. (D) Overall IgG responses to CSP_{Cterm}. (E) Overall IgG responses to CSP_{Repeat}. Data from B-E was from experiments with 5 mice/experiment/group, analysed via 2-way ANOVA with experiment and mouse as blocking factors, ANOVA p values are listed below or adjacent to each graph; pairwise comparisons between groups (averaged over time) were performed using a Tukey post-test and significant values are represented as symbols; * p < 0.05, ** p < 0.01, *** p < 0.001. (F) Ratio of the IgG response to CSP_{Nterm}:CSP_{Repeat} at week 15 for the different immunized groups. (G) Ratio of the IgG response to CSP_{Cterm}:CSP_{Repeat} at week 15 for the different immunized groups. Data for figure F and G was analyzed via one-way ANOVA with experiment and mouse as blocking factors. (H) Parasite 18S RNA in the livers of mice 42 hours post challenge; data pooled from 3 experiments with 3-5 mice/experiment/group and analysed via Kruskal-Wallis test with Dunn's multiple comparisons test. (I) Proportion of mice from (H) with no detectable parasite RNA in each group, pairwise comparisons were made via Fisher's exact test.