Basal forebrain rhythmicity is modulated by the
exploration phase of novel environments
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Acquaintance to novel environments requires the encoding
of spatial memories and the processing of unfamiliar sen-
sory information in the hippocampus. Cholinergic signaling
promotes the stabilization of hippocampal long-term poten-
tiation (LTP) and contributes to theta-gamma oscillations
balance, which is known to be crucial for learning and mem-
ory. However, the oscillatory mechanisms by which choliner-
gic signals are conveyed to the hippocampus are still poorly
defined. We analyzed local field potentials from the basal
forebrain (BF), a major source of cholinergic projections to
the hippocampus, while rats explored a novel environment,
and compared the modulation of BF theta (4-10Hz) and
gamma (40-80Hz) frequency bands at distinct stages of spa-
tial exploration. We found that BF theta and gamma display
learning stage-related rhythmicity and that theta-gamma
coupling is stronger at the later stages of exploration, a phe-
nomenon previously observed in the hippocampus. Overall,
our results suggest that the BF-hippocampal cholinergic sig-
naling is conveyed via the stereotypical oscillatory patterns
found during mnemonic processes, which questions the ori-
gins of the learning-related rhythmic activity found in the

hippocampus.
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KEY-POINTS

e Basal forebrain theta oscillations decrease their strength in function of exploration time, as observed in the
hippocampus.

e BF gammaripples (bursting events) are longer after learning.

e BF Theta-gamma coupling increases after initial spatial exploration, suggesting BF cross-frequency coupling relation
to the learning stage.

1 | INTRODUCTION

The formation of spatial representations is generally attributed to the hippocampal circuitry where a myriad of cell
types encoding distinct aspects of one’s surroundings allow to decode current position and future trajectories (Nadel,
1991). The hippocampal cognitive-map is thought to be formed via a combination of environmental/sensory and self-
generated analog signals, encoded both in single-unity activity (Moser et al., 2008) and population-level oscillations
(O’'Keefe, 1993), with the end result of serving ongoing navigation and spatial decision-making (Buzsaki and Moser,
2013; Wikenheiser and Redish, 2015). Hippocampal theta and gamma oscillatory activity and synchrony play a role in
learning and memory (Diizel et al., 2010; Tort et al., 2009), and hippocampal theta frequency has been shown to decrease
logarithmically in function of training time, relating theta oscillatory components with the early learning stages (Pan and
McNaughton, 1997). Coincidentally, selective silencing of septal cholinergic neurons (within the basal forebrain) results
in hippocampal theta rhythmicity decreases, which might explain the cognitive anomalies associated with dementia
(Sainsbury and Bland, 1981; Hasselmo, 2000). Indeed, Alzheimer’s disease (AD) patients show neuropathologies such as
degeneration of cholinergic BF neurons, suggesting a relationship between BF cholinergic hypofunction and cognitive
impairments (Auld et al., 2002; Ballinger et al., 2016).

Septal nuclei projections to the hippocampus are known to be a source component of hippocampal theta waves
(Stewart and Fox, 1990). The rhythmic firing of cholinergic and GABAergic septal-hippocampal projections, together
with intra-hippocampal excitation, lead to pronounced hippocampal theta waves (Stewart and Fox, 1990; Colom, 2006).
Furthermore, learned spatial information encoded in the hippocampus was observed to be transmitted to the lateral
septum via theta-dependent neuronal sequences, emphasizing the role of theta waves in mediating hippocampus-BF
communication (Tingley and Buzsaki, 2018). Together with the observations that strong hippocampal theta rhythm
occurs during the early learning stages (Duzel et al., 2010; Sakimoto and Sakata, 2014), it is also known that hippocampal
theta elicits neuronal excitatory postsynaptic potentials (EPSPs) so that it boosts synaptic plasticity (Huerta and Lisman,
1993). In addition, cholinergic projections originating in the BF modulate hippocampal theta and gamma oscillations,
and the excitation-to-frequency transduction (discharge) of basal forebrain cholinergic neurons burst when oscillatory
theta amplitude is maximal (Lee et al., 2005), suggesting that cholinergic signaling is involved in learning and memory
(Dannenberg et al., 2015; Huerta and Lisman, 1993).

Decreases in rodent hippocampal theta power during learning have been observed in memory retention tasks
(Sakimoto and Sakata, 2014), and human hippocampal fMRI voxel activity decreases at later stages of spatial learning
(Brodt et al., 2016). Similarly, BF beta-frequency oscillations (15-35Hz) strength is modulated over time while rats
perform an associative-reinforcement task (Quinn et al., 2010), with beta peaks displaying a greater amplitude at early
learning stages.

Thus, in light of the relationship between cholinergic signaling, originated within the BF nuclei, and the learning
stages mediating hippocampal rhythmes, it is still unclear what are the oscillatory properties of BF during spatial

exploration. Here, we hypothesize that the hippocampal theta oscillatory strength observed during learning stages is
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accompanied by equally increased theta strength in its cholinergic origins (i.e. Basal forebrain). If that was the case,
learning-related theta waves observed in the hippocampus would indicate a broader communication channel used to
engage the cholinergic pathway. In order to assess if and how BF oscillations are affected by learning, we analyzed a
dataset (Nair et al., 2018a,b) of BF LFPs from rats (n=6) performing spatial navigation within a novel arena at distinct
stages of exploration (with navigational sessions lasting 673+/-48sec, mean/std).
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FIGURE 1 Behavioral and LFP characterization of early and late spatial exploration. A Exploration times for each
individual (grey horizontal lines, 673+/-48 sec, mean/std), and the periods of ‘Early’ and ‘Late’ exploration (light and dark
blue, respectively, 172+/-10 sec, mean/std). B Distribution of movement sensor values during early and late exploration
periods (t-test, **<0.01, ***<0.001). C Power spectral density (Welch) extracted from BF LFPs recorded during the
entire exploration session for each animal (grey lines), and the average PSD (black line). D Strong theta rhythmicity
(lagged coherence) for early (peak=9.0Hz) and late (peak=8.5Hz) exploration phases (4-80Hz frequency interval spaced
at 0.5Hz). E BF spectral power (as in B) for theta (left) and gamma (right) for early and late exploration phases. Note the
increased theta power at early exploration and the increased gamma power at late exploration phases. F Theta power
(instantaneous amplitude) averaged (mean) for each 2-second time window in function of the animal movement
revealed no significant correlation.

2 | RESULTS

Our primary question focused on the oscillatory properties of BF during spatial learning. We split the dataset into

early and late exploration phases by extracting both LFP and behavioral signals from the first and third quartile of the
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FIGURE 2 Theta(4-10Hz) and gamma (40-80Hz) BF spectrum are modulated by the exploration phase and animal
movement. A Theta amplitude is higher during the early exploration phase (p < 0.05% 0.01** 0.001*** T-test). B
Population-level comparison of early (43.97+/-4.05, mean/std) vs late (38.65+/-3.03, mean/std) theta amplitude (T-test
related samples, statistic=7.02, p<0.001, effect size = 1.48). C Theta power extracted from each cycle analytic
amplitude at early (47.09+/-4.01, mean/std) and late (41.89+/-3.87, mean/std) exploration confirmed the power
decreases observed in A and B (T-test related samples, statistic=6.08, p=0.001, effect size=1.31). D Left: Individual
(grey lines) and averaged (black line) normalized theta amplitude along the exploration session, superimposed by a
fictional linear decay (red line). Right: Difference between the linear decay function and the normalized theta power. E
LFP spectrograms for each rat during navigation (6.2min), clipped to 6-10Hz theta band. Decreases in theta power
density (20sec bin averaged) along the exploration session (white line).

exploration duration (172+/-10 sec, mean/std, Fig1-A). As novelty detection and early exploration are thought to be
expressed behaviorally (Lisman and Otmakhova, 2001; Jeewajee et al., 2008; Vago and Kesner, 2008), we analyzed the
movement signal profiles of each animal during early and late phases. Four out of 6 animals displayed higher movement
(displacement in the 3-axis) at early phases (t-test, p<0.05). At the population level, however, we did not observe
a significant difference in the movement signal for early (317 +/-169, mean+/-std) compared with late (278 +/-150,
mean+/-std) exploration phases (Fig1-B).

Afterward, we computed the basal forebrain oscillatory strength of individual frequencies along with the alpha
to gamma range (1-80Hz) and observed the stereotypical theta and gamma frequency bands pronounced density
characteristic of hippocampal LFPs (Fig1-C). A result further confirmed by the strong theta frequency rhythmicity
resulting from lagged coherence analysis (Fig1-D). Moreover, the splitting of BF LFPs in early and late exploration
suggested that theta and gamma frequency bands display a distinct spectral density modulation accordingly with the
learning phase, that is, stronger theta at the early stage and stronger gamma at later stages (Fig1-D and E).

Because hippocampal theta oscillatory components are known to be modulated by the locomotory speed in both
rats (McFarland et al., 1975; Santos-Pata et al., 2017) and humans (Ekstrom et al., 2005), the higher theta (and lower

gamma) amplitude observed in the early exploration phases could be a cofound of higher movement signals observed
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FIGURE 3 Exploration phase modulates gamma activity and theta-gamma coupling A An example of raw LFP trace
(black line) with highlighted segments of gamma (40-80Hz) bursting activity (red lines), computed using the dual
amplitude threshold algorithm (see methods section). B BF gamma amplitude is higher (35.95+/-10.82 mean+/-std) at
later compared to the early (33.05+/-10.50 mean+/-std) stages of exploration (related sample T-test; statistic=-4.38,
p=0.007, effect size=-0.27). C Gamma bursting activity is significantly shorter at early (0.108+/-0.002 mean+/-std) than
late (0.112+/-0.002 mean+/-std) exploration phases (t-test: statistic=-1.86, p=0.002). D Individual bursting duration for
early and late exploration phase (Pearson test; r=0.74, p=0.095). E Example of the averaged gamma power distribution
along with theta phase (one rat, id=2), at early (left) and late (right) exploration phases. F Cross-frequency coupling
computed by the divergence (Kullback-Leibler) score for early (2.5e-3+/-0.4e-3 mean+/-std) and late (2.8e-3+/-0.2e-3
mean+/-std) learning stages (related sample T-test; statistic=-2.77, p=0.03, effect size=-0.81).

also in early exploration (Fig1-B, D and E). As a control for the possible movement-related evoked theta, we analyzed BF
theta oscillatory amplitude in relation to the animal movement signal. None of the six animals revealed a movement-
theta trend surviving the correlation confidence interval threshold (ci=0.1, Pearson-r test, Fig1-F), therefore discarding
the effects of locomotion in modulating BF theta oscillations.

In order to assess how the oscillatory strength of BF theta waves is modulated by the learning stage, we extracted
the instantaneous amplitude of the Hilbert-transformation in the 4-10Hz range for each 2-second time window belong-
ing to early and late exploration phases (Fig2-A). Individually, all six animals presented a stronger theta amplitude at
the early learning phase (t-test, p<0.05), which was confirmed by a population-level analysis where theta amplitude at
early (43.97+/-4.06uV, mean+/-std) and late (38.65+/-3.03uV, mean+/-std) stages were significantly different (t-test,
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statistic=2.35, p=0.04, Fig2-B). The learning phase-dependent theta modulation was further computed using the Hilbert
transformation (filter length of 3 cycles of 4Hz cutoff frequency) and averaged across the individual theta cycles analytic
amplitude (Fig2-C). Again, the averaged cycle analytic theta was higher at early (47.09+/-4.01uV, mean+/-std) compared
to late (41.89+/-3.87uV, mean+/-std) exploration phases and showed a significant decrease in the oscillatory strength
(t-test, statistic=2.26, p=0.04), a result that could not be explained by the relation between the animal locomotory
behavior and theta amplitude (Fig1-F).

Having assessed the changes in theta strength from early to late exploration phases, we next asked how are such
amplitude decreases reflected along the entire exploration time (673+/-48 sec, mean/std). To assess the decay profile of
theta strength throughout exploration, we re-computed the power spectral density (Welch's method) of BF LFPs in
the theta range (4-10Hz) and averaged it in 20 seconds time bins along with the first three quartiles of the exploration
session (Fig2-D and E). Visual inspection of the oscillatory spectrogram in the high theta range (6-10Hz) for each animal
depicted a linear trend in the decay function of oscillatory strength over time (Fig2-E). Indeed, the normalized theta
amplitude was significantly anti-correlated with exploration time (Pearson-R test, r=-0.99, p<0.001, confidence interval:
min=-0.996, max=-0.975; Polynomial coefficients degree-one fit = -0.1307x + 0.8562, Fig2-D left). We observed,
however, a stairs-shaped trend along the exploration time when computing the difference between a linear decrease
function and the normalized theta amplitude for each animal, suggesting a resistance against zero strength pronounced
after 2.5min of exploration (Fig2-D right), which might be informative of the temporal dynamics of learning during early
exploration.

It has been previously seen that hippocampal gamma power increases with memory load (van Vugt et al., 2010)
and that those same increases contribute to memory consolidation immediately after learning (Pu et al., 2018). Thus, if
BF theta waves reflect aspects of cognition, higher frequencies of the same local field should also participate in spatial
learning. Similarly to those hippocampal observations, we also found a significant increase from BF gamma amplitude at
early (33.05+/-10.8, mean/std) to late (35.95+/-10.50, mean/std) exploration phases (t-test, statistic=-4.38, p=0.007,
effect size = -0.27), suggesting that BF gamma waves are also modulated by the learning stage (Fig3-B).

The role of BF oscillatory bursting in the beta-band (15-30Hz) has been linked with associative memory (Quinn
et al., 2010) and the duration of hippocampal gamma ripples has been recently observed to prolongate in tasks involving
spatial memory (Fernandez-Ruiz et al., 2019). To answer whether BF gamma bursting duration is also related to the
distinct learning stages, we quantified BF gamma bursting duration at early and late exploration phases by applying a
dual amplitude threshold algorithm to BF LFPs (Cole et al., 2019). Burst identification was set with a cutoff threshold
interval of 1-1.5std of the normalized (z-scored) LFP signal filtered in the low gamma band (40-60Hz) and event duration
was extracted by the time interval between the upward crossing of 1.5std until the downwards crossing of 1std (Fig3-A).
Interestingly, gamma burst events duration at an early stage (0.108+/-0.002sec, mean/std) were significantly shorter
than the ones found during the late stage (0.113+/-0.002sec, mean/std) (t-test; statistic=-5.75; p=0.002, effect size
=-1.86, Fig3-C), a small but sufficiently longer burst prolongation to include an extra high-frequency oscillatory cycle,
characteristic of hippocampal sharp-wave ripples (Fernandez-Ruiz et al., 2019). Notably, the exploration period did not
greatly affect each animal BF bursting, but rather slightly modulated burst event duration (Fig3-D).

Having found changes in the rhythmicity of both theta and gamma waves, we next focused on their interaction.
Theories of hippocampal cross-frequency coupling highlight the role of theta waves in carrying item related information
expressed in the form of gamma cycles, which has been related to working memory and cognitive load (Lisman and
Jensen, 2013). In light of such a coding scheme, together with the findings that hippocampal gamma amplitude is more
strongly modulated by the theta oscillatory phase at later stages of learning (Tort et al., 2009), we asked whether
also BF theta-gamma coupling is affected by the exploration stage. We extracted the instantaneous theta-phase and

gamma-amplitude of each 2-second time window belonging to early and late exploration phases and calculated the
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cross-frequency coupling against a uniform distribution using the Kullback-Leibler divergence score (see methods).
Concurrently with the hippocampal observations, we also found a significant increase in the theta-gamma modulatory
index from early (0.0025+/-0.0004, mean/std) to late (0.0029+/-0.0002, mean/std) exploration phases (t-test; statistic=-
2.77; p=0.03, effect size =-0.82), which supports the idea that BF cross-frequency coupling also plays a role in mnemonic
processes (Fig3-E and F).

3 | DISCUSSION

Great emphasis has been put on the functional role of the hippocampus in spatial learning, memory and novelty
detection. At the physiological level, hippocampal theta and gamma oscillations have been analyzed in the context of
sensory encoding, associative learning and spatio-temporal representations at multiple scales (e.g. phase precession
(O’'Keefe and Recce, 1993)). The responses of different frequency bands along the learning stages has led to the
general agreement that the hippocampus is actively involved in setting the oscillatory components needed to facilitate
learning. However, at the neuromodulatory level, it is known that basal forebrain cholinergic projections to the
hippocampus facilitate neural plasticity (Dannenberg et al., 2015; Huerta and Lisman, 1993; Lee et al., 2005) and
that the cognitive deficits manifested in AD (often associated with hippocampal damage) originate in the BF due to
cholinergic hypofunction (Auld et al., 2002). Thus, we questioned whether the oscillatory specifics of learning originate
in the hippocampus or, instead, are already present in presynaptic sites of the cholinergic system, such as BF populations.
To answer this question, we analyzed local field potentials of rats during novel-environment exploration and assessed BF
oscillatory properties at distinc exploration phases. Analogous with the spectral density seen in the rodent hippocampus
during active navigation, we also observed a strong oscillatory amplitude in theta (4-10Hz) and gamma (40-80Hz)
frequency bands in the basal forebrain of rats exploring a novel environment (Fig1-C-E). Interestingly, we did not find a
relation between the locomotory speed and theta strength as found in the hippocampus, suggesting that BF oscillations
are agnostic to overt locomotory behavior (Fig1-F).

With respect to learning, our results indicate that both BF theta and gamma waves manifest their amplitude profiles
distinctly in early and late exploration phases (Fig1A-C and Fig2-C and D), proposing that BF actively participates in the
spatial learning circuitry. Moreover, we quantified the decay rate of theta and observed a linear, rather than abrupt,
decrease in the oscillatory amplitude as the animal explores a novel environment, which argues in favor of continual
assessment of the animal’s learning (Fig2-D and E). A piece of accompanying evidence supporting the notion that BF
oscillations carry spatially-related information was the observation that gamma oscillatory bursts tend to have a longer
duration at later stages of learning (Fig 3-C), a phenomenon previously quantified in the hippocampus of rats during
spatial memory tasks (Fernandez-Ruiz et al., 2019; Santos-Pata et al., 2019). Furthermore, we evaluated whether
phase-amplitude cross-frequency (theta-gamma) coupling had a functional relevance for learning as it is expected
from hippocampal oscillations (Fig3-E) (Tort et al., 2009). Unexpectedly, we observed that the amplitude of gamma
was strongly carried (modulated) by theta phase at later stages of exploration, suggesting that BF theta-gamma code
plays a role in spatial learning (Fig3-F). Altogether, our results highlight the engagement of BF in mediating learning
and strengthen the hypothesis that cholinergic signaling to the hippocampus is conveyed via learning stage-related
oscillatory patterns. The oscillatory profile of BF waves during spatial learning raises the hypothesis that BF integrates
the hippocampal-cortical circuitry involved in spatial representations and contributing to overt behavior both in rodent
and human navigation (Redish, 2016; Santos-Pata and Verschure, 2018). A remaining question, however, is that of
how do BF and hippocampal theta oscillations interact with each other during learning. One option would be that

learning-related theta strength in both areas is modulated via a common driver, and they are an echo of the biophysical
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interactions during learning. Another possibility is that hippocampal and BF theta waves have a strong lagged-coherence
in their oscillatory phase, with the phase of BF preceding the one of the hippocampus. Such synchronization would be a
solution to increase the EPSPs slope of CA1 principal cells right before the income of sensory signals expressed through
gamma peaks embedded within theta cycles (Lisman and Jensen, 2013).

4 | METHODS

| Task and participants

We analyzed BF local field potentials (LFPs) of rats (n=6) during spatial exploration of a novel environment (673+/-48
sec, mean/std) (Nair et al., 2018a,b). In order to account for learning phases, displacement (movement) and BF LFPs
were grouped in earlier (first quartile) or later (third quartile) stages of exploration (172+/-10 sec, mean/std) (Fig1-B).
The animal movement was extracted from a movement sensor signal, averaged for every 2-second window (see (Nair
et al., 2018a) methods section). All analyses were performed using common Python packages for signal processing and

statistical analyses.

| BF Local field potentials and frequency bands

Basal forebrain LFPs were obtained from chronically implanted tungsten electrodes using a wireless data logger (400Hz
sampling rate) (see (Nair et al., 2018a)). Power spectral density (PSD) was computed using the ‘Welch’ method. Each
animal PSD was computed for each 2-second time window and then averaged (Fig1-A). Unless otherwise stated, all
analyses were performed using the NEURODSP python library (Cole et al., 2019). Analysis of theta strength decay along
exploration time took into account the first 10 minutes of exploration (so that every time-bin from all animals could
be included, Fig2-D). Theta and gamma oscillatory bands were chosen in the 4-10Hz and 40-80Hz range, respectively
(unless otherwise specified). Theta strength modulation with respect to a linear decay function was assessed by
averaging the theta band amplitude resulted from the PSD analysis for each segment along the 10 minutes (averaged
and resampled in 28 bins)(Fig2-C). Next, each animal theta strength was normalized (min=0, max=1) and subtracted
from a representative linear decay function (28 bins). Lagged coherence was computed using the lagged coherence
function from Neurodsp (number of cycl/es = 3) and served us to confirm the strong oscillatory theta component
observed with the PSD analysis (Fransen et al., 2015). Theta average analytic amplitude was extracted from each theta
cycle, using the Bycycle python package (Cole and Voytek, 2019). Cycle features thresholding was set for the main
oscillatory components (amplitude consistency = 0.6; periodic consistency=0.75, monotonicity= 0.8).

| Bursting activity

Oscillatory bursting events were detected using the dual-threshold burst detection function included in the Neurodsp
python library (Cole et al., 2019). In short, each 2-second segment from LFPs belonging to either the early or late
exploration phase was (bandpass) filtered in the low gamma band (40-60Hz) and z-scored normalized. A cutoff interval
was set with a minimum (1std) and a maximum (1.5std) threshold. Bursting periods were identified by marking the
moments in which the normalized filtered signal raised above the maximum cutoff threshold and maintained a sustained

activity above the minimum threshold for a minimum of 3 cycles of the filtered signal (Fig3-A).
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| Cross-frequency coupling

Phase-amplitude coupling was computed for each 2-second segment of LFPs in both exploration stages by extracting the
instantaneous phase of theta (4-10Hz) and the instantaneous amplitude of gamma (40-80Hz). Next, we computed the
statistic (mean) distribution of gamma amplitude along with the theta phase (bins=20). The modulatory index reflecting
the theta (carrier) - gamma (carried) modulation was then computed using the Kullback-Leibler score as presented in
(Tort et al., 2009). The averaged modulatory indexes per each animal at early and late exploration were then used for
statistical analysis (Fig3-E and F).
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