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 36 

ABSTRACT  37 

Human auditory cortex contains neural populations that respond strongly to a wide variety of music 38 

sounds, but much less strongly to sounds with similar acoustic properties or to other real-world sounds. 39 

However, it is unknown whether this selectivity for music is driven by explicit training.  To answer this 40 

question, we measured fMRI responses to 192 natural sounds in 10 people with extensive musical 41 

training and 10 with almost none. Using voxel decomposition (Norman-Haignere et al., 2015) to explain 42 

voxel responses across all 20 participants in terms of a small number of components, we replicated the 43 

existence of a music-selective response component similar in tuning and anatomical distribution to our 44 

earlier report. Critically, we also estimated components separately for musicians and non-musicians 45 

and found that a music-selective component was clearly present even in individuals with almost no 46 

musical training, which was very similar to the music component found in musicians. We also found that 47 

musical genres that were less familiar to our participants (e.g., Mongolian throat singing) produced 48 

strong responses within the music component, as did drum clips with rhythm but little melody. These 49 

data replicate the finding of music selectivity, broaden its scope to include unfamiliar musical genres 50 

and rhythms, and show that it is robustly present in people with almost no musical training. Our findings 51 
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demonstrate that musical training is not necessary for music selectivity to emerge in non-primary 52 

auditory cortex, raising the possibility that music-selective brain responses could be a universal 53 

property of human auditory cortex. 54 

 55 

SIGNIFICANCE STATEMENT 56 

Recent research has revealed populations of neurons in the human brain that respond more to music 57 

than to other sounds. How do these music-selective responses arise, and what range of music do they 58 

respond to? We scanned 10 expert musicians and 10 non-musicians with fMRI while they listened to a 59 

variety of music and other sounds. We found that neural populations specifically responsive to music 60 

exist to a similar degree in non-musicians and musicians alike. We further showed that these neural 61 

populations respond strongly to unfamiliar musical genres (e.g., Mongolian throat singing) and to drum 62 

clips with rhythm but little melody. These results show that neural populations selective for a wide 63 

variety of music can arise without explicit musical training. 64 

 65 

INTRODUCTION 66 

Music is uniquely and universally human (Mehr et al., 2019) and arises early in development (Trehub, 67 

2003). Further, recent evidence has revealed neural populations in nonprimary auditory cortex that 68 

respond selectively to music per se (Norman-Haignere et al., 2015; see also Leaver and Rauschecker, 69 

2010; Rogalsky et al., 2011; Fedorenko et al., 2012; LaCroix et al., 2015; Norman-Haignere et al., 70 

2019).  How do these neural mechanisms for music arise, and what is the role of experience in their 71 

development? Most members of Western societies have received at least some explicit musical training 72 

in the form of lessons or classes. However, most Western individuals, including non-musicians, are 73 

believed to implicitly acquire knowledge of musical structure from a lifetime of exposure to music 74 

(Bigand, 1983; Bigand and Pineau, 1997; Koelsch et al., 2000; Tillmann et al., 2000; Tillmann, 2005; 75 

Bigand and Poulin-Charronnat, 2006), raising the possibility that the music-selective responses in the 76 
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auditory cortex might also not depend strongly on explicit musical training. Here, we directly test 77 

whether music-selective neural responses result from or are modulated by musical training, by 78 

comparing the magnitude, anatomical location, and selectivity of these responses in individuals with 79 

extensive musical training, versus individuals with almost none. 80 

Why might explicit musical training change the response properties of auditory cortex? In 81 

animals, exposure to specific sounds can elicit long-term changes in auditory cortex, such as sharper 82 

tuning of individual neurons (Recanzone et al., 1993; Fritz et al., 2003; Lee and Middlebrooks, 2011) 83 

and expansion of cortical maps (Recanzone et al., 1993; Polley et al., 2006; Bieszczad and 84 

Weinberger, 2010). These changes occur only for behaviorally relevant stimulus features (Ahissar et 85 

al., 1992, 1998; Fritz et al., 2005; Ohl and Scheich, 2005; Polley et al., 2006) related to the intrinsic 86 

reward value of the stimulus (Bakin and Weinberger, 1996; Fritz et al., 2005; David et al., 2012), and 87 

thus are closely linked to the neuromodulatory system (Bao et al., 2001; Kilgard et al., 2001; Blake et 88 

al., 2006). Additionally, the extent of cortical map expansion is correlated with the animal’s subsequent 89 

improvement in behavioral performance (Recanzone et al., 1993; Rutkowski and Weinberger, 2005; 90 

Polley et al., 2006; Bieszczad and Weinberger, 2010, 2012; Reed et al., 2011). Most of this prior work 91 

on experience-driven plasticity in auditory cortex has been done in animals undergoing extensive 92 

training, and it has been unclear how this might generalize to humans in more natural settings. Musical 93 

training provides a unique way to investigate this question, as it meets virtually all of these criteria for 94 

eliciting functional plasticity: playing music requires focused attention, fine-grained sensory-motor 95 

coordination, and is known to engage the neuromodulatory system (Blood and Zatorre, 2001; 96 

Salimpoor et al., 2011, 2013). And expert musicians often begin training at a young age and hone their 97 

skills over many years.  98 

Although many prior studies have measured fMRI responses in musicians and non-musicians 99 

(Ohnishi et al., 2001; Pantev et al., 2001; Shahin et al., 2003; Fujioka et al., 2004, 2005; Besson et al., 100 

2007; Wong et al., 2007; Dick et al., 2011; Lee and Noppeney, 2011; Ellis et al., 2012, 2013; Angulo-101 
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Perkins et al., 2014; Doelling and Poeppel, 2015; Lappe et al., 2016), it remains unclear whether 102 

extensive musical training changes the tuning properties of auditory cortex. Previous studies have 103 

found that fMRI responses to music are larger in musicians compared to non-musicians in posterior 104 

superior temporal gyrus (Ohnishi et al., 2001; Dick et al., 2011; Angulo-Perkins et al., 2014). However, 105 

these responses were not shown to be selective for music, and the increased responses in musicians 106 

could simply reflect increased attention to music, rather than increased neural selectivity for music per 107 

se. 108 

The fact that prior studies have not observed group differences in music selectivity is perhaps 109 

unsurprising, as we have previously found that music selectivity is weak when measured in raw voxel 110 

responses using standard voxel-wise fMRI analyses, due to spatial overlap between music-selective 111 

neural populations and neural populations with other selectivities (e.g. pitch). To overcome these 112 

challenges, Norman-Haignere et al. (2015) introduced a voxel decomposition method that models each 113 

voxel in auditory cortex as a weighted sum of a small number of canonical response profiles 114 

(“components”, each presumably reflecting a distinct neural population) across a large set of natural 115 

sounds. This method makes it possible to disentangle the response of neural populations that overlap 116 

within voxels, and has previously revealed a neural population with clear selectivity for music compared 117 

to both other real-world sounds (Norman-Haignere et al., 2015) and synthetic control stimuli matched in 118 

standard acoustic properties (Norman-Haignere and McDermott, 2018). These results have recently 119 

been confirmed by intracranial recordings, which show individual electrodes with clear selectivity for 120 

music (Norman-Haignere et al., 2019). Although the Norman-Haignere et al. (2015) study did not 121 

include actively practicing musicians (none had musical training in the five years preceding the study), 122 

many of the participants had substantial musical training earlier in their lives.  123 

Our main goal in the current study was to ask whether the music selectivity reported by 124 

Norman-Haignere et al. (2015) is a widespread property of normal human brains, or whether it primarily 125 

arises due to explicit musical training. Using these same methods, we were also able to test whether 126 
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the inferred music-selective neural population responds strongly to less familiar musical genres (e.g. 127 

Balinese gamelan), and to drum clips with rich rhythm but little melody.  128 

 129 

MATERIALS & METHODS 130 

Participants 131 

Norman-Haignere et al. (2015) found a music-selective component in an analysis of ten 132 

participants. However, although these participants were described as “non-musicians,” some of the 133 

participants had substantial musical training. We therefore used stricter inclusion criteria to recruit 10 134 

musicians and 10 non-musicians for the current study, in order to have comparable statistical power 135 

within each group as in our previous study.  136 

Twenty young adults (14 female, mean = 24.7 years) participated in the experiment: 10 137 

musicians (8 female, mean = 23.5 years) and 10 non-musicians (6 female, mean = 25.8 years). 138 

Inclusion criteria for musicians were beginning formal training before the age of seven (Penhune, 139 

2011), and continuing training until the current day. Our sample of ten musicians had an average of 140 

16.30 years of training (ranging from 11-23 years, sd = 2.52). To be classified as a non-musician, 141 

participants were required to have less than two years of total music training, which could not have 142 

occurred either before the age of seven or within the last five years. Out of the ten non-musicians in our 143 

sample, eight had zero years of musical training, one had a single year of musical training (at the age of 144 

20), and one had two years of training (starting at age 10). These training measures do not include any 145 

informal “music classes” included in participants’ required elementary school curriculum.  146 

There were no significant group differences in age, education, or socioeconomic status (t(18) = -147 

0.845, p = 0.409). All participants were native English speakers and had normal hearing (audiometric 148 

thresholds <25 dB HL for octave frequencies 250Hz to 8kHz). The study was approved by MIT’s human 149 

participants review committee (COUHES), and written informed consent was obtained from all 150 

participants. 151 
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 152 

Study design 153 

Each participant underwent a 2-hour behavioral testing session as well as three 2-hour fMRI 154 

scanning sessions. During the behavioral session, participants completed an audiogram, filled out 155 

questionnaires about their musical experience, and completed a series of basic psychoacoustic tasks.  156 

 157 

Behavioral data acquisition & analysis 158 

To validate participants’ self-reported musicianship, we measured participants’ abilities on a 159 

variety of psychoacoustical tasks for which prior evidence suggested that musicians would outperform 160 

non-musicians. For all psychoacoustic tasks, stimuli were presented using Psychtoolbox for Matlab 161 

(Brainard, 1997). Sounds were presented to participants at 70dB SPL over circumaural Sennheiser 162 

HD280 headphones in a soundproof booth (Industrial Acoustics). After each trial, participants were 163 

given feedback about whether or not they had answered correctly. Group differences for each task 164 

were measured using 2-sample t-tests. 165 

 166 

Pure tone frequency discrimination. Because musicians have superior frequency discrimination abilities 167 

when compared to non-musicians (Spiegel and Watson, 1984; Kishon-Rabin et al., 2001; Micheyl et al., 168 

2006), we first measured participants’ pure tone frequency discrimination thresholds using an adaptive 169 

two-alternative forced choice (2AFC) task. In each trial, participants heard two pairs of tones. One of 170 

the tone pairs consisted of two identical 1 kHz tones, while the other tone pair contained a 1 kHz tone 171 

and a second tone of a different frequency. Participants determined which tone interval contained the 172 

frequency change. The magnitude of the frequency difference was varied adaptively using a 1-up 3-173 

down procedure, which continued until 10 reversals had been measured. The frequency difference was 174 

changed initially by a factor of two, which was reduced to a factor of Ö2 after the fourth reversal. 175 
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Multiple threshold estimations were obtained per participant (3 threshold estimations for the first seven 176 

participants, and 5 for the remaining 13 participants), and then averaged.  177 

 178 

Synchronized tapping to an isochronous beat. Sensorimotor abilities are crucial to musicianship, and 179 

finger tapping tasks show some of the most reliable effects of musicianship (Repp, 2005, 2010; Bailey 180 

and Penhune, 2010). Participants were asked to tap along with an isochronous click track. They heard 181 

ten 30-second click blocks, separated by 5 seconds of silence. The blocks varied widely in tempo, with 182 

interstimulus intervals ranging from 200ms to 1 second (tempos of 60 to 300 bpm). Each tempo was 183 

presented twice, and the order of tempi was permuted across participants. We recorded the timing of 184 

participants’ responses using a tapping sensor we constructed and have used in previous studies (e.g. 185 

Jacoby and McDermott, 2017; Polak et al., 2018). We then calculated the difference between 186 

participants’ response onsets and the actual stimulus onsets. As a measure of sensorimotor 187 

synchronization ability, we took the standard deviation of these asynchronies between corresponding 188 

stimulus and response onsets. 189 

 190 

Melody discrimination. Musicians have also been reported to outperform non-musicians on measures of 191 

melodic contour and interval discrimination (Fujioka et al., 2004; McDermott et al., 2010; McPherson 192 

and McDermott, 2018). In each trial, participants heard two five-note melodies, and were asked to 193 

judge whether the two melodies were the same or different. Melodies were composed of notes that 194 

were randomly drawn from a log uniform distribution of semitone steps from 150Hz to 270Hz. The 195 

second melody was transposed up by half an octave and was either identical to the first melody or 196 

contained a single note had that had been altered either up or down by 1 or 2 semitones. Half of the 197 

trials contained a second melody that was the same as the first melody, while 25% contained a pitch 198 

change that preserved the melodic contour and the remaining 25% contained a pitch change that 199 

violated the melodic contour. There were 20 trials per condition (same/different melody x same/different 200 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902189doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.902189
http://creativecommons.org/licenses/by-nd/4.0/


 9 

contour x 1/2 semitone change), for a total of 160 trials. This task was modified from McPherson and 201 

McDermott (2018). 202 

 203 

“Sour note” detection. To measure participants’ knowledge of Western music, we also measured 204 

participants’ ability to determine whether a melody conforms to the rules of Western music theory. The 205 

melodies used in this experiment were randomly generated from a probabilistic generative model of 206 

Western tonal melodies that creates a melody on a note-by-note basis according to the principles that 207 

(1) melodies tend to be limited to a narrow pitch range, (2) note-to-note intervals tend to be small, and 208 

(3) the notes within the melody conform to a single key (Temperley, 2008). In each trial of this task, 209 

participants heard a 16-note melody and were asked to determine whether the melody contained an 210 

out-of-key (“sour”) note. In half of the trials, one of the notes in the melody was modified so that it was 211 

rendered out of key. The modified notes were always scale degrees 1, 3, or 5 and they were modified 212 

by either 1 or 2 semitones accordingly so that they were out of key (i.e. scale degrees 1 and 5 were 213 

modified by 1 semitone, and scale degree 3 was modified by 2 semitones). Participants judged whether 214 

the melody contained a sour note (explained as a “mistake in the melody”). There were 20 trials per 215 

condition (modified or not x 3 scale degrees), for a total of 120 trials. This task was modified from 216 

McPherson and McDermott (2018). 217 

 218 

Natural sound stimuli for fMRI Experiment 219 

Stimuli consisted of 2-second clips of 192 familiar natural sounds. These sounds included the 220 

165-sound stimulus set used in Norman-Haignere et al. (2015), which was designed to include the most 221 

frequently heard and recognizable sounds in everyday life. Examples can be seen in Figure 1A. This 222 

stimulus set was then supplemented with 27 additional music and drumming clips from a variety of 223 

musical cultures, so that we could examine responses to rhythmic features of music, as well as 224 

comparing responses to more versus less familiar musical genres. Stimuli were normalized (RMS = 225 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902189doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.902189
http://creativecommons.org/licenses/by-nd/4.0/


 10 

0.1) and ramped on and off with a 25ms linear ramp. During scanning, auditory stimuli were presented 226 

over MR-compatible earphones (Sensimetrics S14) at 75 dB SPL. 227 

An online experiment (via Amazon’s Mechanical Turk) was used to assign a semantic category 228 

to each stimulus, in which 180 participants (95 females; mean age = 38.8 years, sd = 11.9 years) 229 

categorized each stimulus into one of fourteen different categories. The categories were taken from 230 

Norman-Haignere et al. (2015), with three additional categories (“non-Western instrumental music,” 231 

“non-Western vocal music,” “drums”) added to accommodate the additional music stimuli used in this 232 

experiment. 233 

A second Amazon Mechanical Turk experiment was run to compare the Western and non-234 

Western music stimuli used in this experiment. In this experiment, 188 participants (75 females; mean 235 

age = 36.6 years, sd = 10.5 years) listened to each of the 62 music stimuli and rated them based on (1) 236 

how “musical” they sounded, (2) how “familiar” they sounded, (3) how much they “liked” the stimulus, 237 

and (4) how “foreign” they sounded. 238 

 239 

fMRI data acquisition and preprocessing 240 
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an2s 2s 2s 2s 2s 2s

3.4s

1s 1s 1s 1s 1s 1s 1s

200ms

“Press the button when you  
hear the softer sound”

A. Stimulus Set of Commonly Heard Natural Sounds

B. Scanning Procedure and Task Structure

1. Man speaking 11. Running water 21. Cellphone vibrating 31. Computer startup 41. Splashing water

2. Flushing toilet 12. Breathing 22. Water dripping 32. Background speech 42. Computerized speech

3. Pouring liquid 13. Keys jangling 23. Scratching 33. Songbird 43. Alarm clock

4. Tooth brushing 14. Dishes clanking 24. Car windows 34. Pouring water 44. Walking with heels

5. Woman speaking 15. Ringtone 25. Telephone ringing 35. Pop song 45. Vacuum

6. Car accelerating 16. Microwave 26. Chopping food 36. Water boiling 46. Wind

7. Biting and chewing 17. Dog barking 27. Telephone dialing 37. Guitar 47. Boy speaking

8. Laughing 18. Walking (hard surface) 28. Girl speaking 38. Coughing 48. Chair rolling

9. Typing 19. Road traffic 29. Car horn 39. Crumpling paper 49. Rock Song

10. Car engine running 20. Zipper 30. Writing 40. Siren 50. Door knocking

…

Figure 1. (A) Fifty examples of the original set of 165 natural sounds used in Norman-Haignere et al. (2015), ordered by how often 
participants’ reported hearing them in daily life. An additional 27 music stimuli were added to this set for the current experiment. (B) 
Scanning paradigm and task structure. Each 2-second sound stimulus was repeated three times, with one repetition (the second or third) 
being 12 dB quieter. Subjects were instructed to press a button when they detected this quieter sound. A sparse scanning sequence was 
used, in which one fMRI volume was acquired in the silent period between stimuli.  
 

Figure 1 
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Similar to the design of Norman-Haignere et al (2015), sounds were presented during scanning 241 

in a “mini-block design,” in which each 2-second natural sound was repeated multiple times in a row. 242 

Each sound was repeated five times in a row in the previous experiment (Norman-Haignere et al., 243 

2015), but due to the additional stimuli used in the current experiment, we repeated each sound three 244 

times in a row (which we have found yields similarly reliable responses in pilot experiments). Each 245 

stimulus was presented in silence, with a single fMRI volume collected between each repetition (i.e. 246 

“sparse scanning,” Hall et al., 1999). To encourage participants to pay attention to the sounds, either 247 

the second or third repetition in each “mini-block” was 12dB quieter (presented at 67 dB SPL), and 248 

participants were instructed to press a button when they heard this quieter sound (Figure 1B). Overall, 249 

participants performed well on this task (musicians: mean = 92.06%, sd = 5.47%; non-musicians: mean 250 

= 91.47%, sd = 5.83%; no participant’s average performance across runs fell below 80%). Each of the 251 

three scanning sessions consisted of sixteen 5.5-minute runs, for a total of 48 functional runs per 252 

participant. Each run consisted of 24 stimulus mini-blocks and five silent blocks during which no sounds 253 

were presented. These silent blocks were the same duration as the stimulus mini-blocks, and were 254 

distributed evenly throughout each run, providing a baseline. Each specific stimulus was presented in 255 

two mini-blocks per scanning session, for a total of six mini-block repetitions per stimulus over the three 256 

scanning sessions. Stimulus order was randomly permuted across runs and across participants. 257 

MRI data were collected at the Athinoula A. Martinos Imaging Center of the McGovern Institute 258 

for Brain Research at MIT, on a 3T Siemens Prisma with a 32-channel head coil. Each volume 259 

acquisition lasted 1 second, and the 2-second stimuli were presented during periods of silence between 260 

each acquisition, with a 200ms buffer of silence before and after stimulus presentation. As a 261 

consequence, one brain volume was collected every 3.4 seconds (1 second + 2 seconds + 0.2*2 262 

seconds) (TR = 3.4s, TA = 1.02s, TE = 33ms, 90 degree flip angle, 4 discarded initial acquisitions). 263 

Each functional acquisition consisted of 48 slices, each slice being 3mm thick and having an in-plane 264 

resolution of 2.1 x 2.1mm (96 x 96 matrix, 0.3mm slice gap). An SMS acceleration factor of 4 was used 265 
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in order to minimize acquisition time (TA = 1.02s). To localize functional activity, a high-resolution 266 

anatomical T1-weighted image was obtained for every participant (TR = 2.53 seconds, voxel size: 267 

1mm3, 176 slices, 256 x 256 matrix).  268 

Preprocessing and data analysis were performed using FSL software and custom Matlab 269 

scripts). Functional volumes were motion-corrected, slice-time-corrected, skull-stripped, linearly 270 

detrended, and aligned to each participant’s anatomical image (using FLIRT and BBRegister; 271 

Jenkinson and Smith, 2001; Greve and Fischl, 2009). Preprocessed data were then resampled to the 272 

cortical surface reconstruction computed by FreeSurfer (Dale et al., 1999), and smoothed on the 273 

surface using a 3mm FWHM kernel to improve SNR. The data were then downsampled to a 2mm 274 

isotropic grid on the FreeSurfer-flattened cortical surface. Next, we estimated the response of this 275 

downsampled data to each of the 192 sound stimuli using a general linear model (GLM) in which each 276 

stimulus was modeled as a boxcar function convolved with the canonical hemodynamic response 277 

function (HRF). This differs from our prior paper (Norman-Haignere et al., 2015), in which signal 278 

averaging was used in place of a GLM. We made this change because responses were made more 279 

reliable using an HRF, potentially due to the use of shorter stimulus blocks causing more overlap 280 

between BOLD responses to different stimuli. 281 

 282 

Voxel decomposition 283 

The first step of this analysis method is to determine which voxels serve as input to the voxel 284 

decomposition algorithm. To select only the most informative voxels, all analyses were carried out on 285 

voxels within a large anatomical constraint region encompassing bilateral superior temporal and 286 

posterior parietal cortex, just as in Norman-Haignere et al. (2015). Within this region, we selected 287 

voxels that displayed a significant (p < .001) response to sound (pooling over all sounds compared to 288 

silence). This consisted of 51.45% of the total number of voxels within our large anatomical constraint 289 

region. We also selected only voxels that produced a reliable response pattern to the stimuli across 290 
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scanning sessions. Note that rather than using a simple correlation to determine reliability, we used the 291 

equation from Norman-Haignere et al. (2015) to measure the reliability across split halves of our data. 292 

This reliability measure assigns high values to voxels that respond consistently to sounds even if their 293 

response does not vary much between sounds, which is the case for many voxels within primary 294 

auditory cortex:  295 

𝑟 = 1 −	
∥ 𝒗( − 𝑝𝑟𝑜𝑗𝒗,𝒗( ∥

-

∥ 𝒗( ∥-
 296 

 297 

𝑝𝑟𝑜𝑗𝒗,𝒗( = 	𝒗- .
𝒗-/

∥ 𝒗- ∥-
	𝒗(0 298 

where 𝒗( and 𝒗- indicate the response vector of a single voxel to the 192 sounds measured in two 299 

different scans, and ∥	∥	is the L2 norm. Note that these equations differ slightly from Equations 1 and 2 300 

in Norman-Haignere et al. (2015). This is because the equations previously contained an error (the L2-301 

norm terms were not squared), which has been corrected here. We used the same reliability cutoff as in 302 

our prior study (r > 0.3). Of the sound-responsive voxels, 54.47% of them also met the reliability criteria. 303 

Using these two selection criteria, a total of 26,792 voxels were selected for analysis (an average of 304 

1,340 voxels per participant).  305 

The voxel decomposition method approximates the response of each voxel as the weighted 306 

sum of a small number of component response profiles that are shared across voxels (Figure 2A). For 307 

example, the response of the ith voxel would be: 308 

𝒗1 ≈ 3𝒓5𝑤5,1

8

59(

 309 

where 𝒓5 represents the kth component response profile that is shared across all voxels, 𝑤5,1 represents 310 

the voxel-specific weight for that component, and 𝐾 is the total number of components. 311 
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 We concatenated the responses from all participants’ selected voxels into a data matrix 𝑫 (192 312 

sounds × 26,792 voxels). We then approximated the data matrix as the product of two smaller 313 

matrices: (1) a response matrix 𝑹 (192 sounds x 𝐾 components) containing the response profile of all 314 

inferred components to the sound set, and (2) a weight matrix 𝑾 (K components × 26,792 voxels) 315 

containing the contribution of each component response profile to each voxel. Using matrix notation this 316 

yields:  317 

𝑫 ≈ 𝑹𝑾 318 

The method used to infer components has been described in detail in our previous paper 319 

(Norman-Haignere et al., 2015) and the code is available online 320 

(https://github.com/snormanhaignere/nonparametric-ica). The method is similar to standard algorithms 321 

for independent components analysis (ICA) in that it searches amongst the many possible solutions to 322 

the factorization problem for components that have a maximally non-Gaussian distribution of weights 323 

across voxels (the non-Gaussianity of the components inferred in this study can be seen in Figure 2B). 324 

The method differs from most standard ICA algorithms in that it does so by directly minimizing the 325 

entropy of the component weight distributions across voxels (Gaussian variables have maximum 326 

entropy for a given variance), as measured by a histogram (feasible due to the large number of voxels). 327 

The algorithm achieves this goal in two main steps. First, PCA is used to whiten and reduce the 328 

dimensionality of the data matrix. This was implemented using the singular value decomposition: 329 

𝑫 ≈ 𝑼5𝑺5𝑽5 330 

where 𝑼5 are the response profiles of the top 𝐾 principal components (192 sounds × 𝐾 components), 331 

𝑽5 is the whitened weight matrix for these components (𝐾 components × 26,792 voxels), and 𝑺5 is a 332 

diagonal matrix of singular values (𝐾 × 𝐾). The number of components (𝐾) was chosen by measuring 333 

the amount of voxel response variance explained by different numbers of components and the 334 

accuracy of the components in predicting voxel responses in left-out data.  335 
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The principal component weight matrix is then rotated to maximize the negentropy (J) summed 336 

across components:  337 

𝑻C = argmax
𝑻

∑ 𝐽(𝑾[𝑐, : ]),Q
R9(  where 𝑾 = 𝑻𝑽 338 

where 𝑾 is the rotated weight matrix (𝐾 × 26,792), 𝑻 is an orthonormal rotation matrix (𝐾 × 𝐾), and 339 

𝑾[𝑐, : ] is the cth row of 𝑾. We estimated entropy using a histogram-based method (Moddemeijer, 340 

1989) applied to the voxel weight vector for each component (𝑾[𝑐, : ]), and defined negentropy as the 341 

difference in entropy between the empirical weight distribution and a Gaussian distribution of the same 342 

mean and variance: 343 

𝐽(𝒚) = 𝐻U𝒚VWXYYZ 	− 𝐻(𝒚) 344 

Because the order the components inferred using ICA holds no significance, we reordered the 345 

components to optimally match those from Norman-Haignere et al. (2015) using the Hungarian 346 

algorithm (Kuhn, 1955). We carried out this analysis on three different data sets: i) on the data matrix 347 

created using voxel responses from all twenty participants, ii) on the data matrix consisting of data from 348 

the 10 musicians only, and iii) on the data matrix consisting of data from the 10 non-musicians only. 349 

 350 

Power analysis 351 

We ran a power analysis using the data from Norman-Haignere et al. (2015), computing a 352 

measure of the strength of the music component in those 10 participants and then comparing them to a 353 

second population of 10 participants created by sampling participants with replacement and then 354 

shifting their component weights by various amounts, representing various models for how the music 355 

component weights might change in musicians. We quantified the strength of the music component by 356 

selecting the 10% of voxels with the largest music component weights, separately for each participant, 357 

and then using left-out data to measure the median music component weight in those voxels. 358 

Participants’ median weights were averaged separately for each group, and the difference between 359 
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these group averages was computed. The significance of this group difference was assessed by 360 

permuting participant groupings 1,000 times. For each shift amount, we repeated this entire resampling 361 

procedure 1,000 times, and found that we were able to detect a significant group difference 50% of the 362 

time if the two groups’ median weights differed by 32%.  363 

 364 
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B. Non-Gaussianity of Component Weights
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Figure 2 

Figure 2. (A) Diagram depicting the voxel decomposition method, reproduced from Norman-Haignere et al. (2015). The average 
response of each voxel to the 192 sounds is represented as a vector, and the response vector for every voxel from all 20 subjects is 
concatenated into a matrix (192 sounds x 26,792 voxels). This matrix is then factorized into a response profile matrix (192 sounds x N 
components) and a voxel weight matrix (N components x 26,792 voxels). (B) Like ICA, this method searches amongst the many possible 
solutions to the factorization problem for components that have a maximally non-Gaussian distribution of weights across voxels. 
Histograms showing the weight distributions for each component can be seen here, along with their Gaussian fits (red). (C) Skewness 
and log-kurtosis (a measure of sparsity) for each component, illustrating that the inferred components are skewed and sparse compared 
to a Gaussian (red dotted lines). Box-and-whisker plots show central 50% (boxes) and central 95% (whiskers) of the distribution for each 
statistic (via bootstrapping across subjects). For both the weight distribution histograms and analyses of non-Gaussianity, we used 
independent data to infer components (runs 1-24) and to measure the statistical properties of the component weights (runs 25-48).  
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Data analyses 374 

For all weight comparisons of music component weights between musicians and non-musicians, 375 

we used individual participants’ component weights, which were calculated using their individual data 376 

(i.e. voxel responses to the 192 natural sound stimuli) and the pseudoinverse of the response profile 377 

matrix that was defined using the data from all 20 participants. To ensure that all participants had 378 

component weights defined for the same set of voxels, we selected only voxels that passed our 379 

selectivity criteria (sound-responsive, with a reliable response across scanning sessions) at the group 380 

level after averaging across individual participants’ voxel response data. A total of 2,249 voxels met 381 

these criteria, and these are the voxels that are plotted in all figures (Figures 4, 7, 9). 382 

The magnitudes of these individual participant component weights were used to determine (1) 383 

the amount of variance that was accounted for by the music component in each group, and (2) the 384 

strength of the music component. There are many ways to quantify the strength of the music 385 

component, but we reasoned that it seemed most sensible to evaluate the strength of the music 386 

component in the most music-selective neural populations. After all, music-selectivity is typically limited 387 

to a small fraction of voxels, and thus changes in music selectivity might only slightly change the overall 388 

median and variance across all voxels. Following this logic, the measure of component strength that we 389 

report throughout the paper is individual participants’ median weight over the voxels with the top 10% of 390 

component weights, rather than over all voxels. To avoid statistical circularity from the selection 391 

process, we used cross-validation. Specifically, for a given participant, we inferred components using 392 

data from all other participants. Then, one half of the left-out participant’s data (corresponding to runs 1-393 

24, or the first three repetitions of each stimulus) was used to infer weights, and the voxels with the top 394 

10% of weights were selected. Finally, we inferred the left-out participant’s component weights in those 395 

selected voxels using the other half of their data, and calculated the median of those weights. This was 396 

done separately for each participant and each component. The significance of the group difference was 397 

assessed using a nonparametric test permuting participant groupings 10,000 times and recalculating 398 
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the group difference to build up a null distribution against which to measure the observed group 399 

difference. We also repeated all analyses using individual participants’ median component weight over 400 

all 2,249 selected voxels (not using cross-validation), and the results remain the same. 401 

To visualize the anatomical distribution of component weights, individual participants’ 402 

component weights were projected onto the cortical surface of the standard Freesurfer FsAverage 403 

template, and a random effects analysis was conducted separately for musicians and non-musicians. 404 

To correct for multiple comparisons, we adjusted the false discovery rate (FDR, c(V) = 1, q = 0.05) 405 

using the method from Genovese, Lazar, and Nichols (2002).  406 

To get a measure of selectivity for the music components inferred from musicians and non-407 

musicians separately, we used d-prime to calculate the distance between the distribution of component 408 

responses to music stimuli (“Western instrumental,” “Non-Western instrumental,” “Western vocal,” 409 

“Non-Western vocal,” and “drums”) and the distribution of component responses to non-music stimuli. 410 

The significance of the observed group difference was evaluated using a nonparametric test permuting 411 

participant grouping, re-deriving new sets of components for each permuted participant grouping, and 412 

building up a null distribution of d-prime differences. 413 

 414 

RESULTS 415 

Our primary question was whether the organization of auditory cortex, and in particular its selectivity for 416 

music, is present in people with almost no musical training, and whether it differs in expert musicians 417 

compared to non-musicians. To that end, we scanned ten people with extensive musical training and 418 

ten with almost none, and used voxel decomposition (Norman-Haignere et al., 2015) to test whether the 419 

magnitude, anatomical location, or selectivity of music-selective neural populations is influenced by 420 

musical training. 421 

 422 

 423 
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 430 

Musicians outperform non-musicians on psychoacoustical tasks 431 

We first examined participants’ psychoacoustic abilities to determine whether our musicians 432 

showed the commonly observed perceptual markers of highly trained musicians. As expected, 433 

musicians outperformed non-musicians on all behavioral psychoacoustic tasks, replicating prior findings 434 

(Figure 3). Consistent with previous reports (Spiegel and Watson, 1984; Kishon-Rabin et al., 2001; 435 

Micheyl et al., 2006), musicians performed better on the frequency discrimination task (mean 436 

discrimination threshold = 0.50%) than non-musicians (mean discrimination threshold = 0.65%, t = 437 

1.82, p = 0.04, one-tailed t-test, Figure 3A). Musicians were also better able to synchronize their finger 438 

A. Frequency Discrimination B. Sensorimotor Synchronization

C. Melody Discrimination D. “Sour Note” Detection

*
**

** **

Mus. Non-Mus. Mus. Non-Mus.

Mus. Non-Mus. Mus. Non-Mus.

Figure 3. Musicians outperform non-musicians on psychoacoustic tasks. (A) Participants’ pure tone frequency discrimination thresholds 
were measured using a 1-up 3-down adaptive two-alternative forced choice (2AFC) task, in which participants indicated which of two pairs 
of tones were different in frequency. Note that lower thresholds correspond to better performance. (B) Sensorimotor synchronization 
abilities were measured by instructing participants to tap along with an isochronous beat at various tempos, and comparing the standard 
deviation of the difference between participants’ response onsets and the actual stimulus onsets. (C) Melody discrimination was 
measured using a 2AFC task, in which participants heard two five-note melodies (with the second one transposed up by a tritone) and 
were asked to judge whether the two melodies were the same or different. (D) We measured participants’ ability to determine whether a 
melody conforms to the rules of Western music theory by creating 16-note melodies using a probabilistic generative model of Western 
tonal melodies, and instructing participants to determine whether or not the melody contained an out-of-key (“sour”) note. Mus. = 
musicians, Non-Mus. = non-musicians. * = significant at p < 0.05, one-tailed; ** = significant at p < 0.005, one-tailed. 
 

Figure 3 
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tapping with an isochronous beat, showing significantly less variability than non-musicians in their 439 

response (sd =  24.0ms) than non-musicians (sd = 39.4ms) (t(18) = -3.48, p = 0.0013, one-tailed t-test, 440 

Figure 3B). When presented with musical melodies, musicians were better able to discriminate 441 

between two similar melodies (musician mean ROC area = 0.82 correct, non-musician mean ROC area 442 

= 0.66, t(18)= 4.22, p = 0.0003, one-tailed t-test, Figure 3C), and to detect scale violations within 443 

melodies (musician mean ROC area = 0.89, non-musicians mean ROC area = 0.70, t(18) = 5.27, p = 444 

2.60 x 10-5, one-tailed t-test, Figure 3D). These behavioral effects validate our participants’ self-445 

reported status as trained musicians or non-musicians. 446 

 447 

Replication of music-selective component using voxel decomposition method 448 

Our first question was whether we would replicate the component structure of auditory cortex 449 

reported by Norman-Haignere et al. (2015), especially the music-selective component. We measured 450 

the response of voxels within auditory cortex to 192 natural sounds (responses were averaged across 451 

time because the sounds were short relative to the hemodynamic response). We then modeled the 452 

response of these voxels as the weighted sum of a small set of components, using the voxel 453 

decomposition method depicted in Figure 2A. This method factorizes the voxel responses (D) into two 454 

matrices: one containing the components’ response profiles across the sound set (R), and the second 455 

containing voxel weights specifying the extent to which each component contributes to the response of 456 

each voxel (W). The method searches for components that have maximally non-Gaussian weight 457 

distributions, using a variant of independent components analysis (ICA) that seeks to minimize the 458 

entropy of the component weights. The logic of this approach is that independent non-Gaussian 459 

variables become more Gaussian when they are linearly mixed, and thus non-Gaussianity provides a 460 

statistical signature that can be used to detect the unmixed components. Since the only free parameter 461 

in this analysis is the number of components recovered, two metrics were used to determine the 462 

optimal number of components: (1) the variance of voxel responses the components can explain, and 463 
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(2) the accuracy of the components’ prediction of left-out data. In the previous study (Norman-Haignere 464 

et al., 2015), six components were sufficient to explain over 80% of the reliable variance in voxel 465 

responses. Four of these components captured expected acoustic properties of the sound set (e.g. 466 

frequency, spectrotemporal modulation). The other two components were highly selective for speech 467 

sounds and music sounds, respectively.  468 

 In our previous study (Norman-Haignere et al., 2015), prior to applying the voxel decomposition 469 

algorithm, each participant’s responses were de-meaned across voxels, such that each participant had 470 

the same mean response (across voxels) for a given sound. This normalization was included to prevent 471 

the voxel decomposition algorithm from discovering additional components that were driven by a single 472 

participant (e.g. due to non-replicable sources of noise, such as motion during a scan). However, this 473 

analysis step would also remove any group difference in the average response to certain sounds (e.g. 474 

music stimuli). To prevent this effect from influencing the comparison of the two groups, we ran the 475 

voxel decomposition algorithm without demeaning by individual participants. As expected, this resulted 476 

in a larger number of components, with 8 components being needed to optimally model the data from 477 

all 20 participants, explaining 89.83% of the voxel response variance, after which the amount of 478 

explained variance for each additional component plateaued.  479 

Of the 8 components derived from the non-demeaned data, six of them were each very similar 480 

to one of the 6 components from Norman-Haignere et al. (2015) and accounted for 87.54% of voxel 481 

response variance. Because the order the components inferred using ICA holds no significance, we 482 

first optimally reordered the components to match those of our previous study using the Hungarian 483 

algorithm (Kuhn, 1955). After re-ordering, corresponding pairs of components were found to be highly 484 

correlated, with r-values ranging from 0.7567 to 0.9847 (Figure 4A; see Figure 4B for the response 485 

profiles of the components, and Figure 4C for the profiles averaged within sound categories). The 486 

additional two components were much less correlated with any of the six original components, with the 487 

strongest correlation being r = 0.2752. As expected, the weights of these additional two components 488 
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were concentrated in a small number of participants. For this reason, we omitted these two components 489 

from further analyses and focused on the set of six components that closely match those discussed 490 

previously (Figure 4B-F). The non-Gaussianity of these 6 components can be seen in Figure 2B 491 

(skewness ranging from 1.06 to 2.96, log-kurtosis ranging from 1.70 to 2.79). 492 

As in Norman-Haignere et al. (2015), four of the components were selective for different 493 

acoustic properties of sound (Figure 4D&E), while two components were selective for speech 494 

(component 5) and music respectively (component 6) (Figure 4B&C). The components replicated all of 495 

the functional and anatomical properties from our prior study, which we briefly describe here. 496 

Components 1 and 2 exhibited high correlations between their response profiles and measures 497 

of stimulus energy in either low (component 1) or high frequency bands (component 2) (Figure 4D). 498 

Although we did not measure tonotopy in these subjects, the anatomical weights for components 1 and 499 

2 concentrated in what are typically found to be low and high-frequency regions of primary auditory 500 

cortex (Figure 4F) (Rauschecker et al., 1995; Humphries et al., 2010; Da Costa et al., 2011; Baumann 501 

et al., 2013). Components also showed tuning to spectrotemporal modulations (Figure 4E), with a 502 

tradeoff between selectivity for fine spectral and slow temporal modulation (components 1 and 4) 503 

verses coarse spectral and fast temporal modulation (components 2 and 3) (Singh and Theunissen, 504 

2003; Rodríguez et al., 2010). Component 4, which exhibited selectivity for fine spectral modulation 505 

was concentrated anterior to Heschl’s gyrus (component 4, Figure 4F), similar to prior work that has 506 

identified tone-selective regions in anterolateral auditory cortex in humans (Patterson et al., 2002; 507 

Penagos et al., 2004; Norman-Haignere et al., 2013). Conversely, selectivity for coarse spectral 508 

modulation and fast temporal modulation was concentrated in posterior regions of auditory cortex 509 

(component 3, Figure 4F) (Santoro et al., 2014), consistent with previous studies reporting selectivity 510 

for sound onsets in caudal areas of human auditory cortex (Hamilton et al., 2018). 511 

 512 

 513 
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Figure 4. Independent components inferred from voxel decomposition of auditory cortex, replicating the results of Norman-Haignere et al. 
(2015). (A) Scatterplots showing the correspondence between the components from our previous study (y-axis) and those from the 
current study (x-axis). For the response profiles from the current study, only the 165 sounds that were common between the two studies 
are plotted. Sounds are colored according to their semantic category, as determined by raters on Amazon Mechanical Turk. (B) 
Response profiles of components inferred from all participants (n = 20), showing the full distribution of all 192 sounds. Sounds are colored 
according to their semantic category. Note that “Western Vocal Music” stimuli were sung in English. (C) The same response profiles as 
above, but showing the average response to each sound category. (D) Correlation of component response profiles with stimulus energy in 
different frequency bands. (E) Correlation of component response profiles with spectrotemporal modulation energy in the cochleograms 
for each sound. (F) Spatial distribution of component voxel weights, computed using a random effects analysis of participants’ individual 
component weights. Each map plots the contrast of component weight > 0; p values are logarithmically transformed (-log10[p]). The white 
outline indicates the 2,249 voxels that were included in the analysis. The color scale represents voxels that are significant at FDR q = 
0.05, with this threshold being computed for each component separately. Voxels that do not survive FDR correction are not colored, and 
these values appear as white on the color bar. The left hemisphere (top row) is flipped to make it easier to visually compare weight 
distributions across hemispheres. 
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The weights for the speech-selective component (component 5) were concentrated in the 519 

middle portion of the superior temporal gyrus (midSTG, Figure 4F), as expected (e.g., Scott et al., 520 

2000; Hickok and Poeppel, 2007; Overath et al., 2015). In contrast, the weights for the music-selective 521 

(component 6) were most prominent anterior to PAC in the planum polare, with a secondary cluster 522 

posterior to PAC in the planum temporale (Figure 4F) (Ohnishi et al., 2001; Fedorenko et al., 2012; 523 

Angulo-Perkins et al., 2014; Armony et al., 2015; Norman-Haignere et al., 2015). 524 

These results closely replicate the functional organization of human auditory cortex reported by 525 

Norman-Haignere et al. (2015), including the existence and anatomical location of inferred music-526 

selective neural populations. 527 

 528 
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Figure 5. Power analysis results using the data from Norman-Haignere et al. (2015), in which we computed a measure of the strength of 
the music component in those 10 participants and then compared them to second population of 10 participants created by sampling 
participants with replacement and shifting their component weights by various amounts, representing various models for how the music 
component weights might change in musicians. We quantified the strength of the music component by selecting the 10% of voxels with 
the largest music component weights, separately for each participant, and then using left-out data to measure the median music 
component weight in those voxels. Participants’ median weights were averaged separately for each group, and the difference between 
these group averages was computed. The significance of this group difference was assessed by permuting participant groupings 1,000 
times. For each shift amount (x-axis), we repeated this entire resampling procedure 1,000 times, and plotted the ratio of resamplings in 
which we detected a significant difference (y-axis). The dotted line represents the shift amount in which we were able to detect a 
significant difference in the two groups’ median weights 50% of the time. 
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Music component weights differ only slightly between musicians and non-musicians 538 

 To determine whether musical training affects stimulus selectivity in auditory cortex, we 539 

compared both the magnitude and spatial distribution of the weights of the music-selective component 540 

(inferred from the data of all 20 participants) between expert musicians and non-musicians. To get a 541 

sense for how big of a group difference we would be able to detect, we conducted a power analysis 542 

using the data from Norman-Haignere et al. (2015). We compared the music component weights for his 543 

participants (n = 10) with a second population of 10 participants created by sampling participants with 544 

replacement and then shifting their component weights by various amounts, representing various 545 

models for how the music component weights might change in musicians. The results of this analysis 546 

suggested that we could expect to detect a significant group difference the majority of the time if the 547 

groups’ music component weights differed by just over 30% (Figure 5), which is a small difference 548 

compared to the variability between individual participants.  549 

To compare the magnitude of the music component in musicians versus non-musicians we 550 

used two different measures: (1) the amount of variance that was accounted for by the music 551 

component in each group, and (2) the strength of the music component, quantified as participants’ 552 

median component weight over the top 10% of voxels (see Methods). Group differences were 553 

assessed using a nonparametric test permuting participant grouping (10,000 permutations, two-tailed 554 

tests, not corrected for the six components tested). We found that the music component did not account 555 

for significantly more variance in the voxel responses of musicians (7.56%) than of non-musicians 556 

(5.45%) (p = 0.2066), and that the median weight over the top 10% of voxels with the highest music 557 

component weights did not differ significantly by group (component 6, Figure 6, p = 0.1019). There was 558 

also no significant group difference for the other five components (components 1-5, Figure 6, all p’s > 559 

0.12). Results were similar if we instead used participants’ median weight over all 2,249 voxels as a 560 

measure of the strength of the music component, rather than the median over the top 10% of voxels. 561 

 562 
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 563 

 564 

 565 

The analysis described above finds no significant group difference in music component weights 566 

when pooled across voxels from all over auditory cortex, but does not rule out the possibility that 567 

musicians and non-musicians might show different anatomical distributions of the music component 568 

weights. To examine this possibility, we conducted a random effects analysis on individual participants’ 569 

music component weight matrices that had been projected to the cortical surface. First, we performed a 570 

random effects analysis separately for musicians and non-musicians in order to visualize which voxels 571 

showed significant music component weights in each group separately (Figure 7). The resulting weight 572 

maps show a general anatomical correspondence between the weight maps for the two groups. A 573 

random effects analysis directly comparing the two groups supported this impression, showing very 574 

little difference between the weight magnitudes of musicians and non-musicians, with not a single voxel 575 

surviving FDR correction (q = 0.05). Similar comparisons between mismatching components (e.g. non-576 

musicians’ music component and musicians’ other components) resulted in significant differences over 577 

large swaths of auditory cortex (not shown), suggesting that the lack of an observed group difference 578 

for the music component weight maps is not due to a lack of power. 579 

Rather than grouping participants as either “musicians” or “non-musicians,” another way to 580 

examine the effect of musical training is to look at the relationship between various aspects of individual 581 

participants’ musical training and the strength of their individual component. As part of their participation 582 

in the experiment, participants had completed a detailed questionnaire about their musical experience 583 
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Figure 6. Comparison of musicians’ (blue) and non-musicians’ (green) component weights. We quantified the strength of the music 
component in each participant by selecting the 10% of voxels with the largest music component weights, separately for each participant, 
and then using left-out data to measure the participant’s median music component weight in those voxels. Black horizontal line indicates 
the mean across participants within each group. Mus. = musicians, Non-Mus. = non-musicians. 
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     584 

 585 

 586 

 587 

and training, as well as their music listening behaviors (e.g. average number of hours of music listening 588 

per day). We correlated these musical behavior metrics with participants’ median component weights 589 

over the top 10% of voxels, and while a few questionnaire items were found to correlate with individual 590 

components, none of the correlations surpassed the Bonferroni-corrected p-level for six tests (p = 591 

0.05/6 = 0.0083). Note that one of the questionnaire measures was participants’ self-reported amount 592 

of music listening per day, which we did not find to be correlated with participants’ music component 593 

weights (r = -0.0412, p = 0.8629). However, because many these questionnaire metrics were highly 594 

correlated (e.g. number of years of formal training, number of years of private lessons, number of years 595 

of daily practice), we used principal component analysis (PCA) to extract the first PC as a single 596 

composite measure of each participants’ musical training (accounting for 84.1507% of the total 597 

variance). The correlation between this measure of musical training and the median weight of the music 598 

2.40 4.81
Significance of Component Weight [-log10(p)]

Non-Musicians

Musicians

Music Component Weights

Figure 7: Voxel weights for the music component inferred from the full set of 20 participants, shown separately for musicians and non-
musicians. First, individual participant component weights were inferred using the component response profiles and individual participant 
voxel responses to the 192-sound stimulus set. Then, to visualize group data, a random effects analysis tested whether component 
weights were significantly greater than zero across participants at each voxel. This analysis was performed separately for the 10 
musicians (top) and 10 non-musicians (bottom). Each map plots the contrast of component weight > 0; p values are logarithmically 
transformed (-log10[p]). The white outline indicates the 2,249 voxels that were included in the analysis. The color scale represents voxels 
that are significant at FDR q = 0.05. 
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component did not reach significance (r = -0.4160, p = 0.0681), and was not close to significance given 599 

Bonferroni correction. The same was true for all other components (all p’s > 0.09). These results hold 600 

when considering only musician participants, for both the raw questionnaire responses (all p’s > 0.13) 601 

and with the first PC of musicians’ questionnaire responses (r = -0.1477, p = 0.6840). 602 

 603 

Separate voxel decomposition analyses on musicians and non-musicians reveal similar 604 

component structures 605 

 Because the components inferred in the previous analysis were defined using the data from all 606 

20 participants, and because the algorithm seeks to infer components that explain responses across all 607 

participants, meaningful group differences in the response components themselves, rather than the 608 

component weights, might not be detected. We therefore next ran the voxel decomposition analysis 609 

separately on the musicians and non-musicians. This analysis allows us to determine whether different 610 

canonical response profiles underlie the functional organization of auditory cortex of musicians and 611 

non-musicians. 612 

 For these separate group analyses, each participant’s responses were de-meaned across 613 

voxels (as in Norman-Haignere et al., 2015), such that each participant had the same mean response 614 

across voxels to each sound. Measures of explained variance indicated that the optimal number of 615 

components from the voxel decomposition analysis was six for both musicians and non-musicians, 616 

explaining 88.09% and 88.56% of participants’ voxel response variance, respectively. 617 

 The set of six components inferred from the separate groups were very similar to each other 618 

(Figure 8A). After optimally reordering the components using the Hungarian algorithm, pairs of 619 

corresponding components (between those derived from the musicians, and those derived from the 620 

non-musicians) were highly correlated (r values between 0.7735 to 0.9904; r = 0.9018 for the music-621 

selective component) (Figure 8B). These results indicate that similar component structures underlie 622 

auditory cortical responses in musicians and non-musicians. Additionally, these two sets of components 623 
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were very similar to those derived from the whole-group analysis of all 20 participants, with the 624 

corresponding components from the two sets having correlations ranging from 0.89 to 0.99 for 625 

musicians, and from 0.67 to 0.99 for non-musicians. Moreover, the music component was similarly 626 

selective in both groups (Figure 8C&D), as measured by the difference in means between music and 627 

non-music sounds, divided by their standard deviation (Figure 8D; d-prime; musicians d’ = 1.59, non-628 

musicians’ d’ = 1.21; not significantly different, p = 0.19; 1,000 permutations). We note that the mean 629 

response magnitude of the music-selective component was higher in non-musicians (note different 630 

axes in Figure 8A & Figure 8C), but we have found such additive response profile “offsets” to occur 631 

occasionally as an unstable feature of the voxel decomposition algorithm. For example, discarding a 632 

scan of data from the analysis caused the mean of the music component to fluctuate, but not the 633 

response pattern.  The critical result thus appears to be the separability of music and non-music in the 634 

component, which is similar for musicians and non-musicians. 635 

 636 

Comparing musicians and non-musicians using standard methods 637 

 All of the analyses described above are based on the voxel decomposition method from 638 

Norman-Haignere et al. (2015). As a complementary analysis, we conducted a standard group random 639 

effects analysis, contrasting responses to music vs. non-music sound stimuli. Many brain regions 640 

responded significantly more to music sounds than non-music sounds, presumably because these 641 

sound sets differ both in low-level acoustic properties and higher-order category-specific properties 642 

(Norman-Haignere and McDermott, 2018) (Figure 9A). In particular, the music-preferring voxels 643 

overlapped both the music-selective component and the “pitch-selective” component (component 4), 644 

consistent with the fact that both of these components responded preferentially to music. In agreement 645 

with our findings comparing music component weights between groups, the distribution of music-646 

preferring voxels was similar in musicians and non-musicians (Figure 9B). A direct comparison 647 

between groups (Figure 9C) revealed a few voxels that survived FDR correction (q = 0.05) with the 648 
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 649 

 650 

 651 

 652 

 653 

primary cluster being located in the very anterior tip of left planum polare. A further ROI analysis of this 654 

region using independent data indicates that it is not music-selective (even though the difference 655 

between music and non-music stimuli is slightly greater in musicians), and in fact seems to respond to 656 

speech and song more than any other stimulus category. This finding provides additional support for 657 

our conclusion that musicians and non-musicians do not differ substantially in their cortical music 658 

selectivity. 659 
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Figure 8. (A) Scatterplots showing the correspondence between the components inferred from musicians (x-axis) and non-musicians (y-axis). 
Sounds are colored according to their semantic category, as determined by raters on Amazon Mechanical Turk. Note that to allow the 
comparison of component response profiles regardless of any positive offset (which is an unstable artifact of the voxel decomposition algorithm), 
the axes differ between groups. (B) Correlation matrix depicting relationships between component response profiles inferred from musicians (x-
axis) and non-musicians (y-axis) separately. The Pearson correlation coefficient is included for values on the diagonal. (C) Response profiles of 
music components inferred from musicians (n = 10, left) and non-musicians (n = 10, right), averaged over sound categories. Note the different 
axis limits for the two groups. (D) Distributions of music stimuli (blue shading) and non-music stimuli (green shading) within the music component 
response profiles inferred from musicians (n = 10, left) and non-musicians (n = 10, right), with the mean for each stimulus group indicated by the 
horizontal black line. The d-prime reflecting the distance between music and non-music stimuli for each group is shown above each plot. Sounds 
are colored according to their semantic category. We note that the positive offset in the response profile inferred from non-musicians (right) had 
only a small, non-significant effect on the d-prime between music and non-music stimuli. 
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Figure 9. Significance maps of group random effects analysis on raw fMRI responses (not components). (A) Main effect of music stimuli 
> non-music stimuli, computed as a random effects analysis over all participants. (B) Same as above, but computed separately for 
musicians (top) and non-musicians (bottom). (C) Group difference, which is equivalent to the stimulus (music vs. non-music) by group 
(musician vs. non-musician) interaction. Each map plots logarithmically transformed p-values (-log10[p]), signed such that positive values 
indicate positive weights, and is thresholded at -log10[p] > 3 (p < 0.001), uncorrected. The color scale represents voxels that are significant 
at FDR q = 0.05. The white outline indicates the 2,249 voxels that were included in the analysis. 
 

Figure 9 
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New insights into music selectivity: Music-selective regions of auditory cortex show high 665 

responses to drum stimuli and unfamiliar musical genres 666 

Because our experiment utilized a broader stimulus set that the original study (Norman-667 

Haignere et al., 2015), we were able to use voxel decomposition to gain new insights into the nature of 668 

cortical music selectivity in addition to examining the effect of explicit training on these populations. The 669 

set of natural sounds used in this study included a total of 62 music stimuli, spanning a variety of 670 

instruments, genres, and cultures. Using this diverse set of music stimuli, we can begin to address the 671 

questions of (1) whether music selectivity is specific to the music of one’s own culture, and (2) whether 672 

music selectivity is driven solely by features related to pitch, like the presence of a melody. 673 

To expand beyond the original stimulus set from Norman-Haignere et al. (2015), which 674 

contained music exclusively from traditionally Western genres and artists, we selected additional music 675 

clips from several non-Western musical cultures that varied in tonality and rhythmic complexity (e.g. 676 

Indian raga, Balinese gamelan, Chinese opera, Mongolian throat singing, Jewish klezmer, Ugandan 677 

lamellophone music) (Figure 10A). These non-Western music stimuli were rated by American 678 

participants as being similarly musical (p = 0.37) but less familiar (p < 1.0e-5) than typical Western 679 

music. Despite this difference in familiarity, the magnitude of non-Western music stimuli within the 680 

music component was only slightly smaller than the magnitude of Western music stimuli (Figure 10B). 681 

A nonparametric test permuting music stimulus labels shows that the observed separation between the 682 

responses to Western and non-Western music stimuli was small (d-prime = 0.45), though it approached 683 

significance (p = 0.056, 10,000 permutations). However, the magnitudes of both Western and non-684 

Western music stimuli were both much higher than non-music stimuli. Indeed, both the separability 685 

between Western music stimuli and non-music stimuli (d-prime = 2.68) as well as that between non-686 

Western music stimuli and non-music stimuli (d-prime = 2.01) were large and highly significant (p < 687 

0.0001; 10,000 permutations). Taken together, these results suggest that music selectivity does not 688 

depend upon detailed familiarity with structure of a particular culture’s music. 689 
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 Which stimulus features drive music selectivity? One of the most obvious distinctions is melody 690 

and rhythm. While music typically involves both melody and rhythm, when assembling our music stimuli 691 

we made an attempt to pick clips that varied in the prominence and complexity of their melodic and 692 

rhythmic content. In particular, we included 13 stimuli consisting of drumming from a variety of genres 693 

and cultures, because drum music mostly isolates the rhythmic features of music while minimizing 694 

(though not completely eliminating) melodic features. Whether music-selective auditory cortex would 695 

respond highly to these drum stimuli was largely unknown, partially because the Norman-Haignere et 696 

al. (2015) study only included two drum stimuli, one of which was just a stationary snare drum roll. 697 

However, the drum stimuli in our study ranked relatively high in the music component response profile, 698 

averaging only slightly below the other instrumental and vocal music category responses (d-prime = 699 

1.08), and considerably higher than the other non-music stimulus categories (d-prime = 1.90) (Figure 700 

10B). This finding suggests that the music component is not simply tuned to melodic information, but is 701 

also responsive to rhythm. 702 

 703 

DISCUSSION  704 

In this study, we tested whether cortical music selectivity depends upon explicit musical training. 705 

Our results show a clear music component in people with almost no musical training. Indeed, all of the 706 

key response patterns that characterize the functional organization of human auditory cortex are 707 

robustly present in both musicians and non-musicians, suggesting that explicit training does not 708 

substantially alter the functional organization of auditory cortex. The small group difference in the music 709 

component weights did not reach statistical significance. These results demonstrate that passive 710 

exposure to music is sufficient for the existence of music selectivity in auditory cortex, which is not 711 

dependent on or strongly modified by extensive explicit musical training. 712 

 713 

 714 
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 715 

 716 

 717 

 718 

Despite the lack of an effect of explicit training observed here, our study leaves open the 719 

possibility that music selectivity might instead reflect implicit knowledge of musical structure (Bigand, 720 

1983; Bigand and Pineau, 1997; Koelsch et al., 2000; Tillmann et al., 2000; Tillmann, 2005; Bigand and 721 

Poulin-Charronnat, 2006) gleaned from a lifetime of passive exposure to music. We did not find a 722 

significant correlation between participants’ self-reported amount of music listening per day, but it may 723 

be that everyone in our sample had enough (or nearly enough) passive exposure to music to develop 724 

neural selectivity to music, and that additional exposure does not strengthen that selectivity. Indeed, 725 

behavioral studies of non-industrialized societies who lack electricity and much contact with western 726 

culture show pronounced differences in many aspects of music perception (McDermott et al., 2016; 727 
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Figure 10. (A) Close-up of the response profile for the music component inferred from all participants (n = 20), with example stimuli 
labeled. Note that there are a few “non-music” stimuli (categorized as such by Amazon Mechanical Turk raters) with high component 
rankings, but that these are all somewhat melodic (e.g. wind chimes, ringtone). Similarly, “music” stimuli with low component rankings 
(e.g. “drumroll” and “cymbal crash”) do not contain salient melody or rhythm, despite being classified as “music” by human listeners. (B) 
Response profiles of components inferred from all participants (n = 20), averaged over sound categories, reproduced from Figure 4C. 
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Jacoby and McDermott, 2017; Jacoby et al., 2019). It is therefore possible that the brains of people 728 

from these cultures with less extensive musical exposure would not display such pronounced music 729 

selectivity. Thus, our data do not show that music selectivity in the brain is independent of experience. 730 

Rather, these results show that normal exposure to music (by the standards of modern Western 731 

culture) is sufficient for music selectivity, and that this selectivity is not greatly modified by extensive 732 

and explicit training. 733 

We note that our musician participants had substantial explicit musical training, and our non-734 

musicians virtually none, thus maximizing our chance of detecting a difference if one was present. And 735 

as expected, our musician participants showed better behavioral performance across several 736 

psychoacoustic tests that are associated with expert musicians. Of course, it remains possible that a 737 

meaningful difference between music selectivity in musicians and non-musicians exists, but was too 738 

small to be detected in our study. Our experiment was well powered to detect moderate differences 739 

between groups (~30% increases in weights), but scanning a much larger number of participants could 740 

enable detection of a smaller group difference in music selectivity. We note that our study required 741 

collecting 60 scan sessions across 20 participants, each 2 hours in duration, so collecting substantially 742 

more data would be a non-trivial enterprise. Regardless, our results indicate that any stable group 743 

difference, if present, is small.  744 

The fact that we observed no clear group differences in music-selective neural responses within 745 

auditory cortex raises the question of what constitutes the neural basis of music expertise. Perhaps 746 

musical expertise alters neural responses at finer spatial or temporal scales than can be resolved with 747 

fMRI. Alternatively, musical training could modify neural responses exclusively outside of auditory 748 

cortex, such as within frontal or parietal regions involved in decision making or attention (Strait and 749 

Kraus, 2011; Harris and De Jong, 2015; Alluri et al., 2017; Puschmann et al., 2018), or in motor or 750 

limbic regions (Janata and Grafton, 2003; Baumann et al., 2007; Chen et al., 2008; Grahn and Rowe, 751 

2009; Luo et al., 2012; Alluri et al., 2015; Saari et al., 2018; de Aquino et al., 2019). There is also 752 
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evidence that musical training can alter the anatomical structure of auditory (Schneider et al., 2002, 753 

2005; Bermudez et al., 2009; Foster and Zatorre, 2010), motor (Elbert et al., 1995; Gaser and Schlaug, 754 

2003; Bermudez and Zatorre, 2005; Bermudez et al., 2009; Bashwiner et al., 2016), or limbic regions 755 

like the hippocampus (Teki et al., 2012). Another possibility is that musical expertise may influence the 756 

strength of anatomical (Imfeld et al., 2009; Halwani et al., 2011; de Manzano and Ullén, 2017) or 757 

functional (Chen et al., 2008; Grahn and Rowe, 2009; Luo et al., 2012; Alluri et al., 2015; Palomar-758 

García et al., 2016) connections between auditory and other cortical or subcortical regions. Finally, it 759 

could still be the case that the commencement of musical training as a child is associated with auditory 760 

cortical plasticity, but that these changes are transient and fade over time. Some precedent for this 761 

possibility is found in animal research: auditory cortical map expansion is associated with the degree of 762 

perceptual learning, but the cortical map can revert back to its default organization without a 763 

corresponding decrement in behavioral performance (e.g. Reed et al., 2011). 764 

Another possibility is that differences between musicians and non-musicians would emerge 765 

during more challenging musical tasks. While the participants in this study were instructed to listen 766 

carefully to the sound clips while they were in the scanner, they were performing a very simple task 767 

intentionally designed to be easy for all participants (detecting a change in sound intensity) in order to 768 

gauge whether participants were alert and paying attention. Perhaps differences in music-selective 769 

responses would emerge if participants were given a more attentionally-demanding task or asked to 770 

make judgements about certain aspects of musical stimuli. Indeed, neurophysiological experiments in 771 

animals have found that top-down task-dependent influences can powerfully modulate the response 772 

properties of auditory cortical neurons (e.g. Polley et al., 2006), and that actively engaging in a task 773 

increases the sharpness of tuning compared to passive listening (Lee and Middlebrooks, 2011).  774 

Many open questions remain about cortical music selectivity. A more thorough understanding of 775 

what the observed tuning for music is actually selective for could help explain why we did not observe a 776 

difference between musicians and non-musicians in this study. For example, musicians and non-777 
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musicians could differ in their responses to certain features of music that are not captured by the music 778 

selective component that is isolated using our methodology, such as metrical structure that unfolds over 779 

time. Further experiments using longer musical clips and/or neuroimaging methods with better temporal 780 

resolution, such as EEG and/or MEG, could help address this question.  781 

The lack of a significant difference in cortical music selectivity between non-musicians and 782 

highly trained musicians suggests that music selectivity in the auditory cortex does not rely on the 783 

formal knowledge of musical structure that is acquired through years of explicit musical training, and 784 

instead may reflect the implicit musical knowledge that listeners gain through casual exposure to music. 785 

It is also possible that cortical music selectivity does not reflect experience at all, and instead could be 786 

present from birth. These hypotheses could be further tested by scanning a wider range of people from 787 

different cultures. We could also potentially learn more about how music selectivity arises in 788 

development by scanning infants and children, or by testing populations of people whose lifetime 789 

perceptual experience with music is limited in some way (e.g., people with musical anhedonia, children 790 

of deaf adults). Because the voxel decomposition technique (Norman-Haignere et al., 2015) enables us 791 

to isolate music-selective neural populations using fMRI, it provides a new avenue for exploring the 792 

origins of the quintessentially human ability for music.  793 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902189doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.902189
http://creativecommons.org/licenses/by-nd/4.0/


 38 

ACKNOWLEDGEMENTS 794 

This work was supported by NSF grant BCS-1634050 to J.M. and NIH grant DP1HD091947 to N.K.  795 

 796 

REFERENCES 797 

Ahissar E, Abeles M, Ahissar M, Haidarliu S, Vaadia E (1998) Hebbian-like functional plasticity in the 798 

auditory cortex of the behaving monkey. Neuropharmacology 37:633–655. 799 

Ahissar E, Vaadia E, Ahissar M, Bergman H, Arieli A, Abeles M (1992) Dependence of cortical plasticity 800 

on correlated activity of single neurons and on behavioral context. Science 257:1412–1415. 801 

Alluri V, Brattico E, Toiviainen P, Burunat I, Bogert B, Numminen J, Kliuchko M (2015) Musical 802 

expertise modulates functional connectivity of limbic regions during continuous music listening. 803 

Psychomusicology Music Mind, Brain 25:443–454. 804 

Alluri V, Toiviainen P, Burunat I, Kliuchko M, Vuust P, Brattico E (2017) Connectivity patterns during 805 

music listening: Evidence for action-based processing in musicians. Hum Brain Mapp 38:2955–806 

2970. 807 

Angulo-Perkins A, Aubé W, Peretz I, Barrios FA, Armony JL, Concha L (2014) Music listening engages 808 

specific cortical regions within the temporal lobes: Differences between musicians and non-809 

musicians. Cortex 59:126–137. 810 

Armony JL, Aubé W, Angulo-Perkins A, Peretz I, Concha L (2015) The specificity of neural responses 811 

to music and their relation to voice processing: An fMRI-adaptation study. Neurosci Lett 593:35–812 

39. 813 

Bailey JA, Penhune VB (2010) Rhythm synchronization performance and auditory working memory in 814 

early- and late-trained musicians. Exp Brain Res 204:91–101. 815 

Bakin JS, Weinberger NM (1996) Induction of a physiological memory in the cerebral cortex by 816 

stimulation of the nucleus basalis. Proc Natl Acad Sci U S A 93:11219–11224. 817 

Bao S, Chan VT, Merzenich MM (2001) Cortical remodelling induced by activity of ventral tegmental 818 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902189doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.902189
http://creativecommons.org/licenses/by-nd/4.0/


 39 

dopamine neurons. Nature 412:92–95. 819 

Bashwiner DM, Wertz CJ, Flores RA, Jung RE (2016) Musical Creativity “Revealed” in Brain Structure: 820 

Interplay between Motor, Default Mode, and Limbic Networks. Sci Rep 6:1–8. 821 

Baumann S, Koeneke S, Schmidt CF, Meyer M, Lutz K, Jancke L (2007) A network for audio-motor 822 

coordination in skilled pianists and non-musicians. Brain Res 1161:65–78. 823 

Baumann S, Petkov CI, Griffiths TD (2013) A unified framework for the organisation of the primate 824 

auditory cortex. Front Syst Neurosci 7:1–19. 825 

Bermudez P, Lerch JP, Evans AC, Zatorre RJ (2009) Neuroanatomical correlates of musicianship as 826 

revealed by cortical thickness and voxel-based morphometry. Cereb Cortex 19:1583–1596. 827 

Bermudez P, Zatorre RJ (2005) Differences in gray matter between musicians and nonmusicians. Ann 828 

N Y Acad Sci 1060:395–399. 829 

Besson M, Schön D, Moreno S, Santos A, Magne C (2007) Influence of musical expertise and musical 830 

training on pitch processing in music and language. Restor Neurol Neurosci 25:399–410. 831 

Bieszczad KM, Weinberger NM (2010) Learning strategy trumps motivational level in determining 832 

learning-induced auditory cortical plasticity. Neurobiol Learn Mem 93:229–239. 833 

Bieszczad KM, Weinberger NM (2012) Extinction reveals that primary sensory cortex predicts 834 

reinforcement outcome. Eur J Neurosci 35:598–613. 835 

Bigand E (1983) Perceiving Musical Stability: The Effect of Tonal Structure, Rhythm, and Musical 836 

Expertise. J Exp Psychol Hum Percept Perform 23:808–822. 837 

Bigand E, Pineau M (1997) Global context effects on musical expectancy. Percept Psychophys 838 

59:1098–1107. 839 

Bigand E, Poulin-Charronnat B (2006) Are we “experienced listeners”? A review of the musical 840 

capacities that do not depend on formal musical training. Cognition 100:100–130. 841 

Blake DT, Heiser MA, Caywood M, Merzenich MM (2006) Experience-Dependent Adult Cortical 842 

Plasticity Requires Cognitive Association between Sensation and Reward. Neuron 52:371–381. 843 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902189doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.902189
http://creativecommons.org/licenses/by-nd/4.0/


 40 

Blood AJ, Zatorre RJ (2001) Intensely pleasurable responses to music correlate with activity in brain 844 

regions implicated in reward and emotion. Proc Natl Acad Sci U S A 98:11818–11823. 845 

Brainard DH (1997) The Psychophysics Toolbox. Spat Vis 10:433–436. 846 

Chen JL, Penhune VB, Zatorre RJ (2008) Moving on Time: Brain Network for Auditory–Motor 847 

Synchronization is Modulated by Rhythm Complexity and Musical Training. J Cogn Neurosci 848 

20:226–239. 849 

Da Costa S, Van Der Zwaag W, Marques JP, Frackowiak RSJ, Clarke S, Saenz M (2011) Human 850 

Primary Auditory Cortex Follows the Shape of Heschl’s Gyrus. J Neurosci 31:14067–14075. 851 

Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis: I. Segmentation and surface 852 

reconstruction. Neuroimage 9:179–194. 853 

David S V., Fritz JB, Shamma SA (2012) Task reward structure shapes rapid receptive field plasticity in 854 

auditory cortex. Proc Natl Acad Sci U S A 109:2144–2149. 855 

de Aquino MPB, Verdejo-Román J, Pérez-García M, Pérez-García P (2019) Different role of the 856 

supplementary motor area and the insula between musicians and non-musicians in a controlled 857 

musical creativity task. Sci Rep 9:1–13. 858 

de Manzano Ö, Ullén F (2017) Same Genes, Different Brains: Neuroanatomical Differences Between 859 

Monozygotic Twins Discordant for Musical Training. Cereb Cortex:1–8. 860 

Dick F, Ling Lee H, Nusbaum H, Price CJ (2011) Auditory-Motor Expertise Alters “‘Speech Selectivity’” 861 

in Professional Musicians and Actors. Cereb Cortex 21:938–948. 862 

Doelling KB, Poeppel D (2015) Cortical entrainment to music and its modulation by expertise. Proc Natl 863 

Acad Sci 112:E6233-42. 864 

Elbert T, Pantev C, Wienbruch C, Rockstroh B, Taub E (1995) Increased cortical representation of the 865 

fingers of the left hand in string players. Science 270:305–307. 866 

Ellis RJ, Bruijn B, Norton AC, Winner E, Schlaug G (2013) Training-mediated leftward asymmetries 867 

during music processing: A cross-sectional and longitudinal fMRI analysis. Neuroimage 75:97–868 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902189doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.902189
http://creativecommons.org/licenses/by-nd/4.0/


 41 

107. 869 

Ellis RJ, Norton AC, Overy K, Winner E, Alsop DC, Schlaug G (2012) Differentiating maturational and 870 

training influences on fMRI activation during music processing. Neuroimage 60:1902–1912. 871 

Fedorenko E, McDermott JH, Norman-Haignere S V., Kanwisher NG (2012) Sensitivity to musical 872 

structure in the human brain. J Neurophysiol 108:3289–3300. 873 

Foster NE V, Zatorre RJ (2010) Cortical structure predicts success in performing musical 874 

transformation judgments. Neuroimage 53:26–36. 875 

Fritz J, Elhilali M, Shamma S (2005) Active listening: Task-dependent plasticity of spectrotemporal 876 

receptive fields in primary auditory cortex. Hear Res 206:159–176. 877 

Fritz J, Shamma S, Elhilali M, Klein D (2003) Rapid task-related plasticity of spectrotemporal receptive 878 

fields in primary auditory cortex. Nat Neurosci 6:1216–1223. 879 

Fujioka T, Trainor LJ, Ross B, Kakigi R, Pantev C (2004) Musical training enhances automatic 880 

encoding of melodic contour and interval structure. J Cogn Neurosci 16:1010–1021. 881 

Fujioka T, Trainor LJ, Ross B, Kakigi R, Pantev C (2005) Automatic encoding of polyphonic melodies in 882 

musicians and nonmusicians. J Cogn Neurosci 17:1578–1592. 883 

Gaser C, Schlaug G (2003) Grey Matter Differences between Musicians and Nonmusicians. Ann N Y 884 

Acad Sci 999:514–517. 885 

Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging 886 

using the false discovery rate. Neuroimage 15:870–878. 887 

Grahn JA, Rowe JB (2009) Feeling the Beat: Premotor and Striatal Interactions in Musicians and 888 

Nonmusicians during Beat Perception. J Neurosci 29:7540–7548. 889 

Greve DN, Fischl B (2009) Accurate and robust brain image alignment using boundary-based 890 

registration. Neuroimage 48:63–72. 891 

Hall DA, Haggard MP, Akeroyd MA, Palmer AR, Summerfield AQ, Elliott MR, Gurney EM, Bowtell RW 892 

(1999) “Sparse” temporal sampling in auditory fMRI. Hum Brain Mapp 7:213–223. 893 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902189doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.902189
http://creativecommons.org/licenses/by-nd/4.0/


 42 

Halwani GF, Loui P, Rüber T, Schlaug G (2011) Effects of practice and experience on the arcuate 894 

fasciculus: comparing singers, instrumentalists, and non-musicians. Front Psychol 2:156. 895 

Hamilton LS, Edwards E, Chang EF (2018) A Spatial Map of Onset and Sustained Responses to 896 

Speech in the Human Superior Temporal Gyrus. Curr Biol 28:1860–1871. 897 

Harris R, De Jong BM (2015) Differential parietal and temporal contributions to music perception in 898 

improvising and score-dependent musicians, an fMRI study. Brain Res 1624:253–264. 899 

Hickok G, Poeppel D (2007) The cortical organization of speech processing. Nat Rev Neurosci 8:393–900 

402. 901 

Humphries C, Liebenthal E, Binder JR (2010) Tonotopic organization of human auditory cortex. 902 

Neuroimage 50:1202–1211. 903 

Imfeld A, Oechslin MS, Meyer M, Loenneker T, Jancke L (2009) White matter plasticity in the 904 

corticospinal tract of musicians : A diffusion tensor imaging study. Neuroimage 46:600–607. 905 

Jacoby N, McDermott JH (2017) Integer Ratio Priors on Musical Rhythm Revealed Cross-culturally by 906 

Iterated Reproduction. Curr Biol 27:359–370. 907 

Jacoby N, Undurraga EA, McPherson MJ, Valdés J, Ossandón T, McDermott JH (2019) Universal and 908 

Non-universal Features of Musical Pitch Perception Revealed by Singing. Curr Biol 29:3229–3243. 909 

Janata P, Grafton ST (2003) Swinging in the brain: Shared neural substrates for behaviors related to 910 

sequencing and music. Nat Neurosci 6:682–687. 911 

Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. 912 

Med Image Anal 5:143–156. 913 

Kilgard MP, Pandya PK, Vazquez J, Gehi A, Schreiner CE, Merzenich MM (2001) Sensory input directs 914 

spatial and temporal plasticity in primary auditory cortex. J Neurophysiol 86:326–338. 915 

Kishon-Rabin L, Amir O, Vexler Y, Zaltz Y (2001) Pitch discrimination: Are professional musicians 916 

better than non-musicians? J Basic Clin Physiol Pharmacol 12:125–144. 917 

Koelsch S, Gunter T, Friederici AD, Èger ES (2000) Brain Indices of Music Processing: 918 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902189doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.902189
http://creativecommons.org/licenses/by-nd/4.0/


 43 

“Nonmusicians’’’ are Musical.” J Cogn Neurosci 12:520–541. 919 

Kuhn HW (1955) The Hungarian Method for the Assignment Problem. Nav Res Logist Q 2:83–97. 920 

LaCroix AN, Diaz AF, Rogalsky C (2015) The relationship between the neural computations for speech 921 

and music perception is context-dependent: an activation likelihood estimate study. Front Psychol 922 

6:1–19. 923 

Lappe C, Lappe M, Pantev C (2016) Differential processing of melodic, rhythmic and simple tone 924 

deviations in musicians -an MEG study. Neuroimage 124:898–905. 925 

Leaver AM, Rauschecker JP (2010) Cortical representation of natural complex sounds: effects of 926 

acoustic features and auditory object category. J Neurosci 30:7604–7612. 927 

Lee CC, Middlebrooks JC (2011) Auditory cortex spatial sensitivity sharpens during task performance. 928 

Nat Neurosci 14:108–116. 929 

Lee H, Noppeney U (2011) Long-term music training tunes how the brain temporally binds signals from 930 

multiple senses. Proc Natl Acad Sci 108. 931 

Luo C, Guo Z wei, Lai Y xiu, Liao W, Liu Q, Kendrick KM, Yao D zhong, Li H (2012) Musical training 932 

induces functional plasticity in perceptual and motor networks: Insights from resting-state fMRI. 933 

PLoS One 7:1–10. 934 

Margulis EH, Mlsna LM, Uppunda AK, Parrish TB, Wong PCM (2009) Selective neurophysiologic 935 

responses to music in instrumentalists with different listening biographies. Hum Brain Mapp 936 

30:267–275. 937 

McDermott JH, Keebler M V., Micheyl C, Oxenham AJ (2010) Musical intervals and relative pitch: 938 

Frequency resolution, not interval resolution, is special. J Acoust Soc Am 128:1943–1951. 939 

McDermott JH, Schultz AF, Undurraga EA, Godoy RA (2016) Indifference to dissonance in native 940 

Amazonians reveals cultural variation in music perception. Nature 535:547–550. 941 

McPherson MJ, McDermott JH (2018) Diversity in pitch perception revealed by task dependence. Nat 942 

Hum Behav 2:52–66. 943 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902189doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.902189
http://creativecommons.org/licenses/by-nd/4.0/


 44 

Mehr SA, Singh M, Knox D, Ketter DM, Pickens-jones D, Atwood S, Lucas C, Egner A, Jacoby N, 944 

Hopkins EJ, Howard M, Donnell TJO, Pinker S, Krasnow MM, Glowacki L (2019) Universality and 945 

diversity in human song. Science 366. 946 

Micheyl C, Delhommeau K, Perrot X, Oxenham AJ (2006) Influence of musical and psychoacoustical 947 

training on pitch discrimination. Hear Res 219:36–47. 948 

Moddemeijer R (1989) On estimation of entropy and mutual information of continuous distributions. 949 

Signal Processing 16:233–248. 950 

Norman-Haignere S, Feather J, Brunner P, Ritaccio A, McDermott JH, Schalk G, Kanwisher N (2019) 951 

Intracranial recordings from human auditory cortex reveal a neural population selective for musical 952 

song. bioRxiv. 953 

Norman-Haignere S V., Kanwisher NG, McDermott JH (2013) Cortical pitch regions in humans respond 954 

primarily to resolved harmonics and are located in specific tonotopic regions of anterior auditory 955 

cortex. J Neurosci 33:19451–19469. 956 

Norman-Haignere S V., Kanwisher NG, McDermott JH (2015) Distinct Cortical Pathways for Music and 957 

Speech Revealed by Hypothesis-Free Voxel Decomposition. Neuron 88:1281–1296. 958 

Norman-Haignere S V, McDermott JH (2018) Neural responses to natural and model-matched stimuli 959 

reveal distinct computations in primary and nonprimary auditory cortex. PLoS Biol 16. 960 

Ohl FW, Scheich H (2005) Learning-induced plasticity in animal and human auditory cortex. Curr Opin 961 

Neurobiol 15:470–477. 962 

Ohnishi T, Matsuda H, Asada T, Aruga M, Hirakata M, Nishikawa M, Katoh A, Imabayashi E (2001) 963 

Functional Anatomy of Musical Perception in Musicians. Cereb Cortex 11:754–760. 964 

Overath T, Mcdermott JH, Zarate JM, Poeppel D (2015) The cortical analysis of speech-specific 965 

temporal structure revealed by responses to sound quilts. Nat Neurosci 18:903–911. 966 

Palomar-García M-Á, Zatorre RJ, Ventura-Campos N, Bueichekú E, Ávila C (2016) Modulation of 967 

Functional Connectivity in Auditory–Motor Networks in Musicians Compared with Nonmusicians. 968 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902189doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.902189
http://creativecommons.org/licenses/by-nd/4.0/


 45 

Cereb Cortex:1–11. 969 

Pantev C, Larry Roberts CE, Schulz M, Engelien A, Ross B (2001) Timbre-specific enhancement of 970 

auditory cortical representations in musicians. Neuroreport 12:959–4965. 971 

Patterson RD, Uppenkamp S, Johnsrude IS, Griffiths TD (2002) The processing of temporal pitch and 972 

melody information in auditory cortex. Neuron 36:767–776. 973 

Penagos H, Melcher JR, Oxenham AJ (2004) A neural representation of pitch salience in nonprimary 974 

human auditory cortex revealed with functional magnetic resonance imaging. J Neurosci 24:6810–975 

6815. 976 

Penhune VB (2011) Sensitive periods in human development: evidence from musical training. Cortex 977 

47:1126–1137. 978 

Polak R, Jacoby N, Fischinger T, Goldberg D, Holzapfel A, London J (2018) Rhythmic prototypes 979 

across cultures: A comparative study of tapping synchronization. Music Percept 36:1–23. 980 

Polley DB, Steinberg EE, Merzenich MM (2006) Perceptual Learning Directs Auditory Cortical Map 981 

Reorganization through Top-Down Influences. J Neurosci 26:4970–4982. 982 

Puschmann S, Baillet S, Zatorre RJ (2018) Musicians at the Cocktail Party: Neural Substrates of 983 

Musical Training During Selective Listening in Multispeaker Situations. Cereb Cortex:1–13. 984 

Rauschecker JP, Tian B, Hauser M (1995) Processing of Complex Sounds in the Macaque Nonprimary 985 

Auditory Cortex. Science 268:111–114. 986 

Recanzone GH, Schreiner CE, Merzenich MM (1993) Plasticity in the Frequency Representation of 987 

Primary Auditory Cortex following Discrimination Training in Adult Owl Monkeys. J Neurosci 988 

13:87–103. 989 

Reed A, Riley J, Carraway R, Carrasco A, Perez C, Jakkamsetti V, Kilgard MP (2011) Cortical Map 990 

Plasticity Improves Learning but Is Not Necessary for Improved Performance. Neuron 70:121–131. 991 

Repp BH (2005) Sensorimotor synchronization: A review of the tapping literature. Psychon Bull Rev 992 

12:969–992. 993 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902189doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.902189
http://creativecommons.org/licenses/by-nd/4.0/


 46 

Repp BH (2010) Sensorimotor synchronization and perception of timing: Effects of music training and 994 

task experience. Hum Mov Sci 29:200–213. 995 

Rodríguez FA, Read HL, Escabí MA (2010) Spectral and Temporal Modulation Tradeoff in the Inferior 996 

Colliculus. J Neurophysiol 103:887–903. 997 

Rogalsky C, Rong F, Saberi K, Hickok G (2011) Functional Anatomy of Language and Music 998 

Perception: Temporal and Structural Factors Investigated Using Functional Magnetic Resonance 999 

Imaging. J Neurosci 31:3843–3852. 1000 

Rutkowski RG, Weinberger NM (2005) Encoding of learned importance of sound by magnitude of 1001 

representational area in primary auditory cortex. Proc Natl Acad Sci U S A 102:13664–13669. 1002 

Saari P, Burunat I, Brattico E, Toiviainen P (2018) Decoding Musical Training from Dynamic Processing 1003 

of Musical Features in the Brain. Sci Rep 8. 1004 

Salimpoor VN, Benovoy M, Larcher K, Dagher A, Zatorre RJ (2011) Anatomically distinct dopamine 1005 

release during anticipation and experience of peak emotion to music. Nat Neurosci 14:257–264. 1006 

Salimpoor VN, Van Den Bosch I, Kovacevic N, McIntosh AR, Dagher A, Zatorre RJ (2013) Interactions 1007 

between the nucleus accumbens and auditory cortices predict music reward value. Science 1008 

340:216–219. 1009 

Santoro R, Moerel M, De Martino F, Goebel R, Ugurbil K, Yacoub E, Formisano E (2014) Encoding of 1010 

Natural Sounds at Multiple Spectral and Temporal Resolutions in the Human Auditory Cortex. 1011 

PLoS Comput Biol 10. 1012 

Schneider P, Scherg M, Dosch HG, Specht HJ, Gutschalk A, Rupp A (2002) Morphology of Heschl’s 1013 

gyrus reflects enhanced activation in the auditory cortex of musicians. Nat Neurosci 5:688–694. 1014 

Schneider P, Sluming V, Roberts N, Scherg M, Goebel R, Specht HJ, Dosch HG, Bleeck S, Stippich C, 1015 

Rupp A (2005) Structural and functional asymmetry of lateral Heschl’s gyrus reflects pitch 1016 

perception preference. Nat Neurosci 8:1241–1247. 1017 

Scott SK, Blank CC, Rosen S, Wise RJS (2000) Identification of a pathway for intelligible speech in the 1018 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902189doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.902189
http://creativecommons.org/licenses/by-nd/4.0/


 47 

left temporal lobe. Brain 123:2400–2406. 1019 

Shahin A, Bosnyak DJ, Trainor LJ, Roberts LE (2003) Enhancement of neuroplastic P2 and N1c 1020 

auditory evoked potentials in musicians. J Neurosci 23:5545–5552. 1021 

Singh NC, Theunissen FE (2003) Modulation spectra of natural sounds and ethological theories of 1022 

auditory processing. Cit J Acoust Soc Am 114:3394. 1023 

Spiegel MF, Watson CS (1984) Performance on frequency-discrimination tasks by musicians and 1024 

nonmusicians. J Acoust Soc Am 76:1690–1695. 1025 

Strait DL, Kraus N (2011) Can You Hear Me Now? Musical Training Shapes Functional Brain Networks 1026 

for Selective Auditory Attention and Hearing Speech in Noise. Front Psychol 2:10. 1027 

Teki S, Kumar S, von Kriegstein K, Stewart L, Rebecca Lyness C, Moore BCJ, Capleton B, Griffiths TD 1028 

(2012) Navigating the auditory scene: An expert role for the hippocampus. J Neurosci 32:12251–1029 

12257. 1030 

Temperley D (2008) A probabilistic model of melody perception. Cogn Sci 32:418–444. 1031 

Tierney A, Dick F, Deutsch D, Sereno M (2013) Speech versus Song: Multiple Pitch-Sensitive Areas 1032 

Revealed by a Naturally Occurring Musical Illusion. Cereb Cortex 23:249–254. 1033 

Tillmann B (2005) Implicit investigations of tonal knowledge in nonmusician listeners. Ann N Y Acad Sci 1034 

1060:100–110. 1035 

Tillmann B, Bigand E, Bharucha JJ (2000) Implicit Learning of Tonality: A Self-Organizing Approach. 1036 

Psychol Rev 107:885–913. 1037 

Trehub SE (2003) The developmental origins of musicality. Nat Neurosci 6:669–673. 1038 

Wong PCM, Skoe E, Russo NM, Dees T, Kraus N (2007) Musical experience shapes human brainstem 1039 

encoding of linguistic pitch patterns. Nat Neurosci 10:420–422. 1040 

 1041 

 1042 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902189doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.902189
http://creativecommons.org/licenses/by-nd/4.0/

