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Cortical music selectivity does not require musical training
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University, CNRS, Paris France

7 Zuckerman Institute for Brain Research, Columbia University, New York NY 10027 USA

ABSTRACT

Human auditory cortex contains neural populations that respond strongly to a wide variety of music
sounds, but much less strongly to sounds with similar acoustic properties or to other real-world sounds.
However, it is unknown whether this selectivity for music is driven by explicit training. To answer this
question, we measured fMRI responses to 192 natural sounds in 10 people with extensive musical
training and 10 with almost none. Using voxel decomposition (Norman-Haignere et al., 2015) to explain
voxel responses across all 20 participants in terms of a small number of components, we replicated the
existence of a music-selective response component similar in tuning and anatomical distribution to our
earlier report. Critically, we also estimated components separately for musicians and non-musicians
and found that a music-selective component was clearly present even in individuals with almost no
musical training, which was very similar to the music component found in musicians. We also found that
musical genres that were less familiar to our participants (e.g., Mongolian throat singing) produced
strong responses within the music component, as did drum clips with rhythm but little melody. These
data replicate the finding of music selectivity, broaden its scope to include unfamiliar musical genres

and rhythms, and show that it is robustly present in people with almost no musical training. Our findings
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demonstrate that musical training is not necessary for music selectivity to emerge in non-primary
auditory cortex, raising the possibility that music-selective brain responses could be a universal

property of human auditory cortex.

SIGNIFICANCE STATEMENT

Recent research has revealed populations of neurons in the human brain that respond more to music
than to other sounds. How do these music-selective responses arise, and what range of music do they
respond to? We scanned 10 expert musicians and 10 non-musicians with fMRI while they listened to a
variety of music and other sounds. We found that neural populations specifically responsive to music
exist to a similar degree in non-musicians and musicians alike. We further showed that these neural
populations respond strongly to unfamiliar musical genres (e.g., Mongolian throat singing) and to drum
clips with rhythm but little melody. These results show that neural populations selective for a wide

variety of music can arise without explicit musical training.

INTRODUCTION

Music is uniquely and universally human (Mehr et al., 2019) and arises early in development (Trehub,
2003). Further, recent evidence has revealed neural populations in nonprimary auditory cortex that
respond selectively to music per se (Norman-Haignere et al., 2015; see also Leaver and Rauschecker,
2010; Rogalsky et al., 2011; Fedorenko et al., 2012; LaCroix et al., 2015; Norman-Haignere et al.,
2019). How do these neural mechanisms for music arise, and what is the role of experience in their
development? Most members of Western societies have received at least some explicit musical training
in the form of lessons or classes. However, most Western individuals, including non-musicians, are
believed to implicitly acquire knowledge of musical structure from a lifetime of exposure to music
(Bigand, 1983; Bigand and Pineau, 1997; Koelsch et al., 2000; Tillmann et al., 2000; Tillmann, 2005;

Bigand and Poulin-Charronnat, 2006), raising the possibility that the music-selective responses in the


https://doi.org/10.1101/2020.01.10.902189
http://creativecommons.org/licenses/by-nd/4.0/

77

78

79

80

81

82

83

84

85

86

87

88

&9

90

91

92

93

94

95

96

97

98

99

100

101

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.10.902189; this version posted January 11, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

auditory cortex might also not depend strongly on explicit musical training. Here, we directly test
whether music-selective neural responses result from or are modulated by musical training, by
comparing the magnitude, anatomical location, and selectivity of these responses in individuals with
extensive musical training, versus individuals with almost none.

Why might explicit musical training change the response properties of auditory cortex? In
animals, exposure to specific sounds can elicit long-term changes in auditory cortex, such as sharper
tuning of individual neurons (Recanzone et al., 1993; Fritz et al., 2003; Lee and Middlebrooks, 2011)
and expansion of cortical maps (Recanzone et al., 1993; Polley et al., 2006; Bieszczad and
Weinberger, 2010). These changes occur only for behaviorally relevant stimulus features (Ahissar et
al.,, 1992, 1998; Fritz et al., 2005; Ohl and Scheich, 2005; Polley et al., 2006) related to the intrinsic
reward value of the stimulus (Bakin and Weinberger, 1996; Fritz et al., 2005; David et al., 2012), and
thus are closely linked to the neuromodulatory system (Bao et al., 2001; Kilgard et al., 2001; Blake et
al., 2006). Additionally, the extent of cortical map expansion is correlated with the animal’s subsequent
improvement in behavioral performance (Recanzone et al., 1993; Rutkowski and Weinberger, 2005;
Polley et al., 2006; Bieszczad and Weinberger, 2010, 2012; Reed et al., 2011). Most of this prior work
on experience-driven plasticity in auditory cortex has been done in animals undergoing extensive
training, and it has been unclear how this might generalize to humans in more natural settings. Musical
training provides a unique way to investigate this question, as it meets virtually all of these criteria for
eliciting functional plasticity: playing music requires focused attention, fine-grained sensory-motor
coordination, and is known to engage the neuromodulatory system (Blood and Zatorre, 2001;
Salimpoor et al., 2011, 2013). And expert musicians often begin training at a young age and hone their
skills over many years.

Although many prior studies have measured fMRI responses in musicians and non-musicians
(Ohnishi et al., 2001; Pantev et al., 2001; Shahin et al., 2003; Fujioka et al., 2004, 2005; Besson et al.,

2007; Wong et al., 2007; Dick et al., 2011; Lee and Noppeney, 2011; Ellis et al., 2012, 2013; Angulo-
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Perkins et al., 2014; Doelling and Poeppel, 2015; Lappe et al., 2016), it remains unclear whether
extensive musical training changes the tuning properties of auditory cortex. Previous studies have
found that fMRI responses to music are larger in musicians compared to non-musicians in posterior
superior temporal gyrus (Ohnishi et al., 2001; Dick et al., 2011; Angulo-Perkins et al., 2014). However,
these responses were not shown to be selective for music, and the increased responses in musicians
could simply reflect increased attention to music, rather than increased neural selectivity for music per
se.

The fact that prior studies have not observed group differences in music selectivity is perhaps
unsurprising, as we have previously found that music selectivity is weak when measured in raw voxel
responses using standard voxel-wise fMRI analyses, due to spatial overlap between music-selective
neural populations and neural populations with other selectivities (e.g. pitch). To overcome these
challenges, Norman-Haignere et al. (2015) introduced a voxel decomposition method that models each
voxel in auditory cortex as a weighted sum of a small number of canonical response profiles
(“components”, each presumably reflecting a distinct neural population) across a large set of natural
sounds. This method makes it possible to disentangle the response of neural populations that overlap
within voxels, and has previously revealed a neural population with clear selectivity for music compared
to both other real-world sounds (Norman-Haignere et al., 2015) and synthetic control stimuli matched in
standard acoustic properties (Norman-Haignere and McDermott, 2018). These results have recently
been confirmed by intracranial recordings, which show individual electrodes with clear selectivity for
music (Norman-Haignere et al., 2019). Although the Norman-Haignere et al. (2015) study did not
include actively practicing musicians (none had musical training in the five years preceding the study),
many of the participants had substantial musical training earlier in their lives.

Our main goal in the current study was to ask whether the music selectivity reported by
Norman-Haignere et al. (2015) is a widespread property of normal human brains, or whether it primarily

arises due to explicit musical training. Using these same methods, we were also able to test whether
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the inferred music-selective neural population responds strongly to less familiar musical genres (e.g.

Balinese gamelan), and to drum clips with rich rhythm but little melody.

MATERIALS & METHODS
Participants

Norman-Haignere et al. (2015) found a music-selective component in an analysis of ten
participants. However, although these participants were described as “non-musicians,” some of the
participants had substantial musical training. We therefore used stricter inclusion criteria to recruit 10
musicians and 10 non-musicians for the current study, in order to have comparable statistical power
within each group as in our previous study.

Twenty young adults (14 female, mean = 24.7 years) participated in the experiment: 10
musicians (8 female, mean = 23.5 years) and 10 non-musicians (6 female, mean = 25.8 years).
Inclusion criteria for musicians were beginning formal training before the age of seven (Penhune,
2011), and continuing training until the current day. Our sample of ten musicians had an average of
16.30 years of training (ranging from 11-23 years, sd = 2.52). To be classified as a non-musician,
participants were required to have less than two years of total music training, which could not have
occurred either before the age of seven or within the last five years. Out of the ten non-musicians in our
sample, eight had zero years of musical training, one had a single year of musical training (at the age of
20), and one had two years of training (starting at age 10). These training measures do not include any
informal “music classes” included in participants’ required elementary school curriculum.

There were no significant group differences in age, education, or socioeconomic status (t(18) = -
0.845, p = 0.409). All participants were native English speakers and had normal hearing (audiometric
thresholds <25 dB HL for octave frequencies 250Hz to 8kHz). The study was approved by MIT’s human
participants review committee (COUHES), and written informed consent was obtained from all

participants.
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Study design
Each participant underwent a 2-hour behavioral testing session as well as three 2-hour fMRI
scanning sessions. During the behavioral session, participants completed an audiogram, filled out

questionnaires about their musical experience, and completed a series of basic psychoacoustic tasks.

Behavioral data acquisition & analysis

To validate participants’ self-reported musicianship, we measured participants’ abilities on a
variety of psychoacoustical tasks for which prior evidence suggested that musicians would outperform
non-musicians. For all psychoacoustic tasks, stimuli were presented using Psychtoolbox for Matlab
(Brainard, 1997). Sounds were presented to participants at 70dB SPL over circumaural Sennheiser
HD280 headphones in a soundproof booth (Industrial Acoustics). After each trial, participants were
given feedback about whether or not they had answered correctly. Group differences for each task

were measured using 2-sample t-tests.

Pure tone frequency discrimination. Because musicians have superior frequency discrimination abilities

when compared to non-musicians (Spiegel and Watson, 1984; Kishon-Rabin et al., 2001; Micheyl et al.,
2006), we first measured participants’ pure tone frequency discrimination thresholds using an adaptive
two-alternative forced choice (2AFC) task. In each trial, participants heard two pairs of tones. One of
the tone pairs consisted of two identical 1 kHz tones, while the other tone pair contained a 1 kHz tone
and a second tone of a different frequency. Participants determined which tone interval contained the
frequency change. The magnitude of the frequency difference was varied adaptively using a 1-up 3-
down procedure, which continued until 10 reversals had been measured. The frequency difference was

changed initially by a factor of two, which was reduced to a factor of \2 after the fourth reversal.
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Multiple threshold estimations were obtained per participant (3 threshold estimations for the first seven

participants, and 5 for the remaining 13 participants), and then averaged.

Synchronized tapping to an isochronous beat. Sensorimotor abilities are crucial to musicianship, and

finger tapping tasks show some of the most reliable effects of musicianship (Repp, 2005, 2010; Bailey
and Penhune, 2010). Participants were asked to tap along with an isochronous click track. They heard
ten 30-second click blocks, separated by 5 seconds of silence. The blocks varied widely in tempo, with
interstimulus intervals ranging from 200ms to 1 second (tempos of 60 to 300 bpm). Each tempo was
presented twice, and the order of tempi was permuted across participants. We recorded the timing of
participants’ responses using a tapping sensor we constructed and have used in previous studies (e.g.
Jacoby and McDermott, 2017; Polak et al., 2018). We then calculated the difference between
participants’ response onsets and the actual stimulus onsets. As a measure of sensorimotor
synchronization ability, we took the standard deviation of these asynchronies between corresponding

stimulus and response onsets.

Melody discrimination. Musicians have also been reported to outperform non-musicians on measures of

melodic contour and interval discrimination (Fujioka et al., 2004; McDermott et al., 2010; McPherson
and McDermott, 2018). In each trial, participants heard two five-note melodies, and were asked to
judge whether the two melodies were the same or different. Melodies were composed of notes that
were randomly drawn from a log uniform distribution of semitone steps from 150Hz to 270Hz. The
second melody was transposed up by half an octave and was either identical to the first melody or
contained a single note had that had been altered either up or down by 1 or 2 semitones. Half of the
trials contained a second melody that was the same as the first melody, while 25% contained a pitch
change that preserved the melodic contour and the remaining 25% contained a pitch change that

violated the melodic contour. There were 20 trials per condition (same/different melody x same/different
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contour x 1/2 semitone change), for a total of 160 trials. This task was modified from McPherson and

McDermott (2018).

“Sour _note” detection. To measure participants’ knowledge of Western music, we also measured

participants’ ability to determine whether a melody conforms to the rules of Western music theory. The
melodies used in this experiment were randomly generated from a probabilistic generative model of
Western tonal melodies that creates a melody on a note-by-note basis according to the principles that
(1) melodies tend to be limited to a narrow pitch range, (2) note-to-note intervals tend to be small, and
(3) the notes within the melody conform to a single key (Temperley, 2008). In each trial of this task,
participants heard a 16-note melody and were asked to determine whether the melody contained an
out-of-key (“sour”) note. In half of the trials, one of the notes in the melody was modified so that it was
rendered out of key. The modified notes were always scale degrees 1, 3, or 5 and they were modified
by either 1 or 2 semitones accordingly so that they were out of key (i.e. scale degrees 1 and 5 were
modified by 1 semitone, and scale degree 3 was modified by 2 semitones). Participants judged whether
the melody contained a sour note (explained as a “mistake in the melody”). There were 20 trials per
condition (modified or not x 3 scale degrees), for a total of 120 trials. This task was modified from

McPherson and McDermott (2018).

Natural sound stimuli for fMRI Experiment

Stimuli consisted of 2-second clips of 192 familiar natural sounds. These sounds included the
165-sound stimulus set used in Norman-Haignere et al. (2015), which was designed to include the most
frequently heard and recognizable sounds in everyday life. Examples can be seen in Figure 1A. This
stimulus set was then supplemented with 27 additional music and drumming clips from a variety of
musical cultures, so that we could examine responses to rhythmic features of music, as well as

comparing responses to more versus less familiar musical genres. Stimuli were normalized (RMS =
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0.1) and ramped on and off with a 25ms linear ramp. During scanning, auditory stimuli were presented
over MR-compatible earphones (Sensimetrics S14) at 75 dB SPL.

An online experiment (via Amazon’s Mechanical Turk) was used to assign a semantic category
to each stimulus, in which 180 participants (95 females; mean age = 38.8 years, sd = 11.9 years)
categorized each stimulus into one of fourteen different categories. The categories were taken from
Norman-Haignere et al. (2015), with three additional categories (“non-Western instrumental music,”
“non-Western vocal music,” “drums”) added to accommodate the additional music stimuli used in this
experiment.

A second Amazon Mechanical Turk experiment was run to compare the Western and non-
Western music stimuli used in this experiment. In this experiment, 188 participants (75 females; mean
age = 36.6 years, sd = 10.5 years) listened to each of the 62 music stimuli and rated them based on (1)
how “musical”’ they sounded, (2) how “familiar” they sounded, (3) how much they “liked” the stimulus,

and (4) how “foreign” they sounded.

Figure 1
A. Stimulus Set of Commonly Heard Natural Sounds
1. Man speaking 11. Running water 21. Cellphone vibrating 31. Computer startup 41. Splashing water
2. Flushing toilet 12. Breathing 22. Water dripping 32. Background speech 42. Computerized speech
3. Pouring liquid 13. Keys jangling 23. Scratching 33. Songbird 43. Alarm clock
4. Tooth brushing 14. Dishes clanking 24. Car windows 34. Pouring water 44. Walking with heels
5. Woman speaking 15. Ringtone 25. Telephone ringing 35. Pop song 45. Vacuum
6. Car accelerating 16. Microwave 26. Chopping food 36. Water boiling 46. Wind
7. Biting and chewing 17. Dog barking 27. Telephone dialing 37. Guitar 47. Boy speaking
8. Laughing 18. Walking (hard surface) 28. Girl speaking 38. Coughing 48. Chair rolling
9. Typing 19. Road traffic 29. Car horn 39. Crumpling paper 49. Rock Song
10. Car engine running 20. Zipper 30. Writing 40. Siren 50. Door knocking

B. Scanning Procedure and Task Structure

i.4s

1s 1s 1s 1s 1s 1s 1s

“Press the button when you

= 2s c 2s c 2s c 2s c 2s c 2s =
hear the softe sound” T e B e R
x X A ~
200ms 41*'} {Lj

Figure 1. (A) Fifty examples of the original set of 165 natural sounds used in Norman-Haignere et al. (2015), ordered by how often
participants’ reported hearing them in daily life. An additional 27 music stimuli were added to this set for the current experiment. (B)
. Scanning paradigm and task structure. Each 2-second sound stimulus was repeated three times, with one repetition (the second or third)
' being 12 dB quieter. Subjects were instructed to press a button when they detected this quieter sound. A sparse scanning sequence was
used, in which one fMRI volume was acquired in the silent period between stimuli.

10
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Similar to the design of Norman-Haignere et al (2015), sounds were presented during scanning
in a “mini-block design,” in which each 2-second natural sound was repeated multiple times in a row.
Each sound was repeated five times in a row in the previous experiment (Norman-Haignere et al.,
2015), but due to the additional stimuli used in the current experiment, we repeated each sound three
times in a row (which we have found yields similarly reliable responses in pilot experiments). Each
stimulus was presented in silence, with a single fMRI volume collected between each repetition (i.e.
“sparse scanning,” Hall et al., 1999). To encourage participants to pay attention to the sounds, either
the second or third repetition in each “mini-block” was 12dB quieter (presented at 67 dB SPL), and
participants were instructed to press a button when they heard this quieter sound (Figure 1B). Overall,
participants performed well on this task (musicians: mean = 92.06%, sd = 5.47%; non-musicians: mean
= 91.47%, sd = 5.83%; no participant’s average performance across runs fell below 80%). Each of the
three scanning sessions consisted of sixteen 5.5-minute runs, for a total of 48 functional runs per
participant. Each run consisted of 24 stimulus mini-blocks and five silent blocks during which no sounds
were presented. These silent blocks were the same duration as the stimulus mini-blocks, and were
distributed evenly throughout each run, providing a baseline. Each specific stimulus was presented in
two mini-blocks per scanning session, for a total of six mini-block repetitions per stimulus over the three
scanning sessions. Stimulus order was randomly permuted across runs and across participants.

MRI data were collected at the Athinoula A. Martinos Imaging Center of the McGovern Institute
for Brain Research at MIT, on a 3T Siemens Prisma with a 32-channel head coil. Each volume
acquisition lasted 1 second, and the 2-second stimuli were presented during periods of silence between
each acquisition, with a 200ms buffer of silence before and after stimulus presentation. As a
consequence, one brain volume was collected every 3.4 seconds (1 second + 2 seconds + 0.2*2
seconds) (TR = 3.4s, TA = 1.02s, TE = 33ms, 90 degree flip angle, 4 discarded initial acquisitions).
Each functional acquisition consisted of 48 slices, each slice being 3mm thick and having an in-plane

resolution of 2.1 x 2.1mm (96 x 96 matrix, 0.3mm slice gap). An SMS acceleration factor of 4 was used

11
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in order to minimize acquisition time (TA = 1.02s). To localize functional activity, a high-resolution
anatomical T1-weighted image was obtained for every participant (TR = 2.53 seconds, voxel size:
1mms3, 176 slices, 256 x 256 matrix).

Preprocessing and data analysis were performed using FSL software and custom Matlab
scripts). Functional volumes were motion-corrected, slice-time-corrected, skull-stripped, linearly
detrended, and aligned to each participant’'s anatomical image (using FLIRT and BBRegister;
Jenkinson and Smith, 2001; Greve and Fischl, 2009). Preprocessed data were then resampled to the
cortical surface reconstruction computed by FreeSurfer (Dale et al., 1999), and smoothed on the
surface using a 3mm FWHM kernel to improve SNR. The data were then downsampled to a 2mm
isotropic grid on the FreeSurfer-flattened cortical surface. Next, we estimated the response of this
downsampled data to each of the 192 sound stimuli using a general linear model (GLM) in which each
stimulus was modeled as a boxcar function convolved with the canonical hemodynamic response
function (HRF). This differs from our prior paper (Norman-Haignere et al., 2015), in which signal
averaging was used in place of a GLM. We made this change because responses were made more
reliable using an HRF, potentially due to the use of shorter stimulus blocks causing more overlap

between BOLD responses to different stimuli.

Voxel decomposition

The first step of this analysis method is to determine which voxels serve as input to the voxel
decomposition algorithm. To select only the most informative voxels, all analyses were carried out on
voxels within a large anatomical constraint region encompassing bilateral superior temporal and
posterior parietal cortex, just as in Norman-Haignere et al. (2015). Within this region, we selected
voxels that displayed a significant (p < .001) response to sound (pooling over all sounds compared to
silence). This consisted of 51.45% of the total number of voxels within our large anatomical constraint

region. We also selected only voxels that produced a reliable response pattern to the stimuli across
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scanning sessions. Note that rather than using a simple correlation to determine reliability, we used the
equation from Norman-Haignere et al. (2015) to measure the reliability across split halves of our data.
This reliability measure assigns high values to voxels that respond consistently to sounds even if their
response does not vary much between sounds, which is the case for many voxels within primary
auditory cortex:

Il v, — proj,, vy 112
Il vy 112

r=1-

v,T
projy, V1 = Vy| ———— V3
2 Il vy II?

where v; and v, indicate the response vector of a single voxel to the 192 sounds measured in two
different scans, and |l |l is the L2 norm. Note that these equations differ slightly from Equations 1 and 2
in Norman-Haignere et al. (2015). This is because the equations previously contained an error (the L2-
norm terms were not squared), which has been corrected here. We used the same reliability cutoff as in
our prior study (r > 0.3). Of the sound-responsive voxels, 54.47% of them also met the reliability criteria.
Using these two selection criteria, a total of 26,792 voxels were selected for analysis (an average of
1,340 voxels per participant).

The voxel decomposition method approximates the response of each voxel as the weighted
sum of a small number of component response profiles that are shared across voxels (Figure 2A). For

example, the response of the it voxel would be:

K

v = 2 W,

k=1

where 1, represents the ki" component response profile that is shared across all voxels, w;, ; represents

the voxel-specific weight for that component, and K is the total number of components.
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We concatenated the responses from all participants’ selected voxels into a data matrix D (192
sounds X 26,792 voxels). We then approximated the data matrix as the product of two smaller
matrices: (1) a response matrix R (192 sounds x K components) containing the response profile of all
inferred components to the sound set, and (2) a weight matrix W (K components x 26,792 voxels)

containing the contribution of each component response profile to each voxel. Using matrix notation this

yields:
D ~ RW
The method used to infer components has been described in detail in our previous paper
(Norman-Haignere et al., 2015) and the code is available online

(https://github.com/snormanhaignere/nonparametric-ica). The method is similar to standard algorithms
for independent components analysis (ICA) in that it searches amongst the many possible solutions to
the factorization problem for components that have a maximally non-Gaussian distribution of weights
across voxels (the non-Gaussianity of the components inferred in this study can be seen in Figure 2B).
The method differs from most standard ICA algorithms in that it does so by directly minimizing the
entropy of the component weight distributions across voxels (Gaussian variables have maximum
entropy for a given variance), as measured by a histogram (feasible due to the large number of voxels).
The algorithm achieves this goal in two main steps. First, PCA is used to whiten and reduce the
dimensionality of the data matrix. This was implemented using the singular value decomposition:
D ~ Uksky*

where U* are the response profiles of the top K principal components (192 sounds x K components),
V¥ is the whitened weight matrix for these components (K components x 26,792 voxels), and S is a
diagonal matrix of singular values (K x K). The number of components (K) was chosen by measuring
the amount of voxel response variance explained by different numbers of components and the

accuracy of the components in predicting voxel responses in left-out data.
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The principal component weight matrix is then rotated to maximize the negentropy (J) summed
across components:

T = argmaxYY_,J(W[c,:]), where W =TV
T

where W is the rotated weight matrix (K x 26,792), T is an orthonormal rotation matrix (K x K), and
Wic,:] is the ct" row of W. We estimated entropy using a histogram-based method (Moddemeijer,
1989) applied to the voxel weight vector for each component (W|c,:]), and defined negentropy as the
difference in entropy between the empirical weight distribution and a Gaussian distribution of the same
mean and variance:

JO) = HYgauss) —HO)

Because the order the components inferred using ICA holds no significance, we reordered the
components to optimally match those from Norman-Haignere et al. (2015) using the Hungarian
algorithm (Kuhn, 1955). We carried out this analysis on three different data sets: i) on the data matrix
created using voxel responses from all twenty participants, ii) on the data matrix consisting of data from

the 10 musicians only, and iii) on the data matrix consisting of data from the 10 non-musicians only.

Power analysis

We ran a power analysis using the data from Norman-Haignere et al. (2015), computing a
measure of the strength of the music component in those 10 participants and then comparing them to a
second population of 10 participants created by sampling participants with replacement and then
shifting their component weights by various amounts, representing various models for how the music
component weights might change in musicians. We quantified the strength of the music component by
selecting the 10% of voxels with the largest music component weights, separately for each participant,
and then using left-out data to measure the median music component weight in those voxels.

Participants’ median weights were averaged separately for each group, and the difference between
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these group averages was computed. The significance of this group difference was assessed by
permuting participant groupings 1,000 times. For each shift amount, we repeated this entire resampling
procedure 1,000 times, and found that we were able to detect a significant group difference 50% of the

time if the two groups’ median weights differed by 32%.

Figure 2

A. Voxel Decomposition Procedure
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Figure 2. (A) Diagram depicting the voxel decomposition method, reproduced from Norman-Haignere et al. (2015). The average
response of each voxel to the 192 sounds is represented as a vector, and the response vector for every voxel from all 20 subjects is
concatenated into a matrix (192 sounds x 26,792 voxels). This matrix is then factorized into a response profile matrix (192 sounds x N
components) and a voxel weight matrix (N components x 26,792 voxels). (B) Like ICA, this method searches amongst the many possible
solutions to the factorization problem for components that have a maximally non-Gaussian distribution of weights across voxels.
Histograms showing the weight distributions for each component can be seen here, along with their Gaussian fits (red). (C) Skewness
and log-kurtosis (a measure of sparsity) for each component, illustrating that the inferred components are skewed and sparse compared
to a Gaussian (red dotted lines). Box-and-whisker plots show central 50% (boxes) and central 95% (whiskers) of the distribution for each
statistic (via bootstrapping across subjects). For both the weight distribution histograms and analyses of non-Gaussianity, we used
independent data to infer components (runs 1-24) and to measure the statistical properties of the component weights (runs 25-48).
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Data analyses

For all weight comparisons of music component weights between musicians and non-musicians,
we used individual participants’ component weights, which were calculated using their individual data
(i.e. voxel responses to the 192 natural sound stimuli) and the pseudoinverse of the response profile
matrix that was defined using the data from all 20 participants. To ensure that all participants had
component weights defined for the same set of voxels, we selected only voxels that passed our
selectivity criteria (sound-responsive, with a reliable response across scanning sessions) at the group
level after averaging across individual participants’ voxel response data. A total of 2,249 voxels met
these criteria, and these are the voxels that are plotted in all figures (Figures 4, 7, 9).

The magnitudes of these individual participant component weights were used to determine (1)
the amount of variance that was accounted for by the music component in each group, and (2) the
strength of the music component. There are many ways to quantify the strength of the music
component, but we reasoned that it seemed most sensible to evaluate the strength of the music
component in the most music-selective neural populations. After all, music-selectivity is typically limited
to a small fraction of voxels, and thus changes in music selectivity might only slightly change the overall
median and variance across all voxels. Following this logic, the measure of component strength that we
report throughout the paper is individual participants’ median weight over the voxels with the top 10% of
component weights, rather than over all voxels. To avoid statistical circularity from the selection
process, we used cross-validation. Specifically, for a given participant, we inferred components using
data from all other participants. Then, one half of the left-out participant’s data (corresponding to runs 1-
24, or the first three repetitions of each stimulus) was used to infer weights, and the voxels with the top
10% of weights were selected. Finally, we inferred the left-out participant’s component weights in those
selected voxels using the other half of their data, and calculated the median of those weights. This was
done separately for each participant and each component. The significance of the group difference was

assessed using a nonparametric test permuting participant groupings 10,000 times and recalculating
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the group difference to build up a null distribution against which to measure the observed group
difference. We also repeated all analyses using individual participants’ median component weight over
all 2,249 selected voxels (not using cross-validation), and the results remain the same.

To visualize the anatomical distribution of component weights, individual participants’
component weights were projected onto the cortical surface of the standard Freesurfer FsAverage
template, and a random effects analysis was conducted separately for musicians and non-musicians.
To correct for multiple comparisons, we adjusted the false discovery rate (FDR, c(V) = 1, q = 0.05)
using the method from Genovese, Lazar, and Nichols (2002).

To get a measure of selectivity for the music components inferred from musicians and non-
musicians separately, we used d-prime to calculate the distance between the distribution of component
responses to music stimuli (“Western instrumental,” “Non-Western instrumental,” “Western vocal,”
“Non-Western vocal,” and “drums”) and the distribution of component responses to non-music stimuli.
The significance of the observed group difference was evaluated using a nonparametric test permuting
participant grouping, re-deriving new sets of components for each permuted participant grouping, and

building up a null distribution of d-prime differences.

RESULTS

Our primary question was whether the organization of auditory cortex, and in particular its selectivity for
music, is present in people with almost no musical training, and whether it differs in expert musicians
compared to non-musicians. To that end, we scanned ten people with extensive musical training and
ten with almost none, and used voxel decomposition (Norman-Haignere et al., 2015) to test whether the
magnitude, anatomical location, or selectivity of music-selective neural populations is influenced by

musical training.
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426 Figure 3. Musicians outperform non-musicians on psychoacoustic tasks. (A) Participants’ pure tone frequency discrimination thresholds

were measured using a 1-up 3-down adaptive two-alternative forced choice (2AFC) task, in which participants indicated which of two pairs
of tones were different in frequency. Note that lower thresholds correspond to better performance. (B) Sensorimotor synchronization
427 abilities were measured by instructing participants to tap along with an isochronous beat at various tempos, and comparing the standard
deviation of the difference between participants’ response onsets and the actual stimulus onsets. (C) Melody discrimination was
measured using a 2AFC task, in which participants heard two five-note melodies (with the second one transposed up by a tritone) and

428 were asked to judge whether the two melodies were the same or different. (D) We measured participants’ ability to determine whether a
melody conforms to the rules of Western music theory by creating 16-note melodies using a probabilistic generative model of Western
429 tonal melodies, and instructing participants to determine whether or not the melody contained an out-of-key (“sour”) note. Mus. =

musicians, Non-Mus. = non-musicians. * = significant at p < 0.05, one-tailed; ** = significant at p < 0.005, one-tailed.

430

431  Musicians outperform non-musicians on psychoacoustical tasks

432 We first examined participants’ psychoacoustic abilities to determine whether our musicians
433  showed the commonly observed perceptual markers of highly trained musicians. As expected,
434  musicians outperformed non-musicians on all behavioral psychoacoustic tasks, replicating prior findings
435  (Figure 3). Consistent with previous reports (Spiegel and Watson, 1984; Kishon-Rabin et al., 2001;
436  Micheyl et al., 2006), musicians performed better on the frequency discrimination task (mean
437  discrimination threshold = 0.50%) than non-musicians (mean discrimination threshold = 0.65%, t =

438  1.82, p = 0.04, one-tailed t-test, Figure 3A). Musicians were also better able to synchronize their finger
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tapping with an isochronous beat, showing significantly less variability than non-musicians in their
response (sd = 24.0ms) than non-musicians (sd = 39.4ms) (1(18) = -3.48, p = 0.0013, one-tailed t-test,
Figure 3B). When presented with musical melodies, musicians were better able to discriminate
between two similar melodies (musician mean ROC area = 0.82 correct, non-musician mean ROC area
= 0.66, t(18)= 4.22, p = 0.0003, one-tailed t-test, Figure 3C), and to detect scale violations within
melodies (musician mean ROC area = 0.89, non-musicians mean ROC area = 0.70, t(18) = 5.27, p =
2.60 x 10-5, one-tailed t-test, Figure 3D). These behavioral effects validate our participants’ self-

reported status as trained musicians or non-musicians.

Replication of music-selective component using voxel decomposition method

Our first question was whether we would replicate the component structure of auditory cortex
reported by Norman-Haignere et al. (2015), especially the music-selective component. We measured
the response of voxels within auditory cortex to 192 natural sounds (responses were averaged across
time because the sounds were short relative to the hemodynamic response). We then modeled the
response of these voxels as the weighted sum of a small set of components, using the voxel
decomposition method depicted in Figure 2A. This method factorizes the voxel responses (D) into two
matrices: one containing the components’ response profiles across the sound set (R), and the second
containing voxel weights specifying the extent to which each component contributes to the response of
each voxel (W). The method searches for components that have maximally non-Gaussian weight
distributions, using a variant of independent components analysis (ICA) that seeks to minimize the
entropy of the component weights. The logic of this approach is that independent non-Gaussian
variables become more Gaussian when they are linearly mixed, and thus non-Gaussianity provides a
statistical signature that can be used to detect the unmixed components. Since the only free parameter
in this analysis is the number of components recovered, two metrics were used to determine the

optimal number of components: (1) the variance of voxel responses the components can explain, and
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(2) the accuracy of the components’ prediction of left-out data. In the previous study (Norman-Haignere
et al.,, 2015), six components were sufficient to explain over 80% of the reliable variance in voxel
responses. Four of these components captured expected acoustic properties of the sound set (e.g.
frequency, spectrotemporal modulation). The other two components were highly selective for speech
sounds and music sounds, respectively.

In our previous study (Norman-Haignere et al., 2015), prior to applying the voxel decomposition
algorithm, each participant’s responses were de-meaned across voxels, such that each participant had
the same mean response (across voxels) for a given sound. This normalization was included to prevent
the voxel decomposition algorithm from discovering additional components that were driven by a single
participant (e.g. due to non-replicable sources of noise, such as motion during a scan). However, this
analysis step would also remove any group difference in the average response to certain sounds (e.g.
music stimuli). To prevent this effect from influencing the comparison of the two groups, we ran the
voxel decomposition algorithm without demeaning by individual participants. As expected, this resulted
in a larger number of components, with 8 components being needed to optimally model the data from
all 20 participants, explaining 89.83% of the voxel response variance, after which the amount of
explained variance for each additional component plateaued.

Of the 8 components derived from the non-demeaned data, six of them were each very similar
to one of the 6 components from Norman-Haignere et al. (2015) and accounted for 87.54% of voxel
response variance. Because the order the components inferred using ICA holds no significance, we
first optimally reordered the components to match those of our previous study using the Hungarian
algorithm (Kuhn, 1955). After re-ordering, corresponding pairs of components were found to be highly
correlated, with r-values ranging from 0.7567 to 0.9847 (Figure 4A; see Figure 4B for the response
profiles of the components, and Figure 4C for the profiles averaged within sound categories). The
additional two components were much less correlated with any of the six original components, with the

strongest correlation being r = 0.2752. As expected, the weights of these additional two components

21


https://doi.org/10.1101/2020.01.10.902189
http://creativecommons.org/licenses/by-nd/4.0/

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.10.902189; this version posted January 11, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

were concentrated in a small number of participants. For this reason, we omitted these two components
from further analyses and focused on the set of six components that closely match those discussed
previously (Figure 4B-F). The non-Gaussianity of these 6 components can be seen in Figure 2B
(skewness ranging from 1.06 to 2.96, log-kurtosis ranging from 1.70 to 2.79).

As in Norman-Haignere et al. (2015), four of the components were selective for different
acoustic properties of sound (Figure 4D&E), while two components were selective for speech
(component 5) and music respectively (component 6) (Figure 4B&C). The components replicated all of
the functional and anatomical properties from our prior study, which we briefly describe here.

Components 1 and 2 exhibited high correlations between their response profiles and measures
of stimulus energy in either low (component 1) or high frequency bands (component 2) (Figure 4D).
Although we did not measure tonotopy in these subjects, the anatomical weights for components 1 and
2 concentrated in what are typically found to be low and high-frequency regions of primary auditory
cortex (Figure 4F) (Rauschecker et al., 1995; Humphries et al., 2010; Da Costa et al., 2011; Baumann
et al., 2013). Components also showed tuning to spectrotemporal modulations (Figure 4E), with a
tradeoff between selectivity for fine spectral and slow temporal modulation (components 1 and 4)
verses coarse spectral and fast temporal modulation (components 2 and 3) (Singh and Theunissen,
2003; Rodriguez et al., 2010). Component 4, which exhibited selectivity for fine spectral modulation
was concentrated anterior to Heschl’s gyrus (component 4, Figure 4F), similar to prior work that has
identified tone-selective regions in anterolateral auditory cortex in humans (Patterson et al., 2002;
Penagos et al., 2004; Norman-Haignere et al., 2013). Conversely, selectivity for coarse spectral
modulation and fast temporal modulation was concentrated in posterior regions of auditory cortex
(component 3, Figure 4F) (Santoro et al., 2014), consistent with previous studies reporting selectivity

for sound onsets in caudal areas of human auditory cortex (Hamilton et al., 2018).
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Figure 4. Independent components inferred from voxel decomposition of auditory cortex, replicating the results of Norman-Haignere et al.
515 (2015). (A) Scatterplots showing the correspondence between the components from our previous study (y-axis) and those from the
current study (x-axis). For the response profiles from the current study, only the 165 sounds that were common between the two studies
are plotted. Sounds are colored according to their semantic category, as determined by raters on Amazon Mechanical Turk. (B)
516 Response profiles of components inferred from all participants (n = 20), showing the full distribution of all 192 sounds. Sounds are colored
according to their semantic category. Note that “Western Vocal Music” stimuli were sung in English. (C) The same response profiles as
above, but showing the average response to each sound category. (D) Correlation of component response profiles with stimulus energy in

517 different frequency bands. (E) Correlation of component response profiles with spectrotemporal modulation energy in the cochleograms
for each sound. (F) Spatial distribution of component voxel weights, computed using a random effects analysis of participants’ individual
518 component weights. Each map plots the contrast of component weight > 0; p values are logarithmically transformed (-logso[p]). The white

outline indicates the 2,249 voxels that were included in the analysis. The color scale represents voxels that are significant at FDR q =
0.05, with this threshold being computed for each component separately. Voxels that do not survive FDR correction are not colored, and
these values appear as white on the color bar. The left hemisphere (top row) is flipped to make it easier to visually compare weight
distributions across hemispheres.
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The weights for the speech-selective component (component 5) were concentrated in the
middle portion of the superior temporal gyrus (midSTG, Figure 4F), as expected (e.g., Scott et al.,
2000; Hickok and Poeppel, 2007; Overath et al., 2015). In contrast, the weights for the music-selective
(component 6) were most prominent anterior to PAC in the planum polare, with a secondary cluster
posterior to PAC in the planum temporale (Figure 4F) (Ohnishi et al., 2001; Fedorenko et al., 2012;
Angulo-Perkins et al., 2014; Armony et al., 2015; Norman-Haignere et al., 2015).

These results closely replicate the functional organization of human auditory cortex reported by
Norman-Haignere et al. (2015), including the existence and anatomical location of inferred music-

selective neural populations.

Figure 5

o
P
.

0.00
0.05
0.10 [«
015
0.20 -
0.25

Figure 5. Power analysis results using the data from Norman-Haignere et al. (2015), in which we computed a measure of the strength of
the music component in those 10 participants and then compared them to second population of 10 participants created by sampling
participants with replacement and shifting their component weights by various amounts, representing various models for how the music
component weights might change in musicians. We quantified the strength of the music component by selecting the 10% of voxels with
the largest music component weights, separately for each participant, and then using left-out data to measure the median music
component weight in those voxels. Participants’ median weights were averaged separately for each group, and the difference between
these group averages was computed. The significance of this group difference was assessed by permuting participant groupings 1,000
times. For each shift amount (x-axis), we repeated this entire resampling procedure 1,000 times, and plotted the ratio of resamplings in
which we detected a significant difference (y-axis). The dotted line represents the shift amount in which we were able to detect a
significant difference in the two groups’ median weights 50% of the time.
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Music component weights differ only slightly between musicians and non-musicians

To determine whether musical training affects stimulus selectivity in auditory cortex, we
compared both the magnitude and spatial distribution of the weights of the music-selective component
(inferred from the data of all 20 participants) between expert musicians and non-musicians. To get a
sense for how big of a group difference we would be able to detect, we conducted a power analysis
using the data from Norman-Haignere et al. (2015). We compared the music component weights for his
participants (n = 10) with a second population of 10 participants created by sampling participants with
replacement and then shifting their component weights by various amounts, representing various
models for how the music component weights might change in musicians. The results of this analysis
suggested that we could expect to detect a significant group difference the majority of the time if the
groups’ music component weights differed by just over 30% (Figure 5), which is a small difference
compared to the variability between individual participants.

To compare the magnitude of the music component in musicians versus non-musicians we
used two different measures: (1) the amount of variance that was accounted for by the music
component in each group, and (2) the strength of the music component, quantified as participants’
median component weight over the top 10% of voxels (see Methods). Group differences were
assessed using a nonparametric test permuting participant grouping (10,000 permutations, two-tailed
tests, not corrected for the six components tested). We found that the music component did not account
for significantly more variance in the voxel responses of musicians (7.56%) than of non-musicians
(5.45%) (p = 0.2066), and that the median weight over the top 10% of voxels with the highest music
component weights did not differ significantly by group (component 6, Figure 6, p = 0.1019). There was
also no significant group difference for the other five components (components 1-5, Figure 6, all p’s >
0.12). Results were similar if we instead used participants’ median weight over all 2,249 voxels as a

measure of the strength of the music component, rather than the median over the top 10% of voxels.
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Figure 6. Comparison of musicians’ (blue) and non-musicians’ (green) component weights. We quantified the strength of the music
component in each participant by selecting the 10% of voxels with the largest music component weights, separately for each participant,
and then using left-out data to measure the participant’s median music component weight in those voxels. Black horizontal line indicates
the mean across participants within each group. Mus. = musicians, Non-Mus. = non-musicians.

The analysis described above finds no significant group difference in music component weights
when pooled across voxels from all over auditory cortex, but does not rule out the possibility that
musicians and non-musicians might show different anatomical distributions of the music component
weights. To examine this possibility, we conducted a random effects analysis on individual participants’
music component weight matrices that had been projected to the cortical surface. First, we performed a
random effects analysis separately for musicians and non-musicians in order to visualize which voxels
showed significant music component weights in each group separately (Figure 7). The resulting weight
maps show a general anatomical correspondence between the weight maps for the two groups. A
random effects analysis directly comparing the two groups supported this impression, showing very
little difference between the weight magnitudes of musicians and non-musicians, with not a single voxel
surviving FDR correction (q = 0.05). Similar comparisons between mismatching components (e.g. non-
musicians’ music component and musicians’ other components) resulted in significant differences over
large swaths of auditory cortex (not shown), suggesting that the lack of an observed group difference
for the music component weight maps is not due to a lack of power.

Rather than grouping participants as either “musicians” or “non-musicians,” another way to
examine the effect of musical training is to look at the relationship between various aspects of individual
participants’ musical training and the strength of their individual component. As part of their participation

in the experiment, participants had completed a detailed questionnaire about their musical experience
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Figure 7

Music Component Weights
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Figure 7: Voxel weights for the music component inferred from the full set of 20 participants, shown separately for musicians and non-
musicians. First, individual participant component weights were inferred using the component response profiles and individual participant
voxel responses to the 192-sound stimulus set. Then, to visualize group data, a random effects analysis tested whether component
weights were significantly greater than zero across participants at each voxel. This analysis was performed separately for the 10
musicians (top) and 10 non-musicians (bottom). Each map plots the contrast of component weight > 0; p values are logarithmically
transformed (-logqo[p]). The white outline indicates the 2,249 voxels that were included in the analysis. The color scale represents voxels
that are significant at FDR q = 0.05.

and training, as well as their music listening behaviors (e.g. average number of hours of music listening
per day). We correlated these musical behavior metrics with participants’ median component weights
over the top 10% of voxels, and while a few questionnaire items were found to correlate with individual
components, none of the correlations surpassed the Bonferroni-corrected p-level for six tests (p =
0.05/6 = 0.0083). Note that one of the questionnaire measures was participants’ self-reported amount
of music listening per day, which we did not find to be correlated with participants’ music component
weights (r = -0.0412, p = 0.8629). However, because many these questionnaire metrics were highly
correlated (e.g. number of years of formal training, number of years of private lessons, number of years
of daily practice), we used principal component analysis (PCA) to extract the first PC as a single
composite measure of each participants’ musical training (accounting for 84.1507% of the total

variance). The correlation between this measure of musical training and the median weight of the music
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component did not reach significance (r = -0.4160, p = 0.0681), and was not close to significance given
Bonferroni correction. The same was true for all other components (all p’s > 0.09). These results hold
when considering only musician participants, for both the raw questionnaire responses (all p’s > 0.13)

and with the first PC of musicians’ questionnaire responses (r = -0.1477, p = 0.6840).

Separate voxel decomposition analyses on musicians and non-musicians reveal similar
component structures

Because the components inferred in the previous analysis were defined using the data from all
20 participants, and because the algorithm seeks to infer components that explain responses across all
participants, meaningful group differences in the response components themselves, rather than the
component weights, might not be detected. We therefore next ran the voxel decomposition analysis
separately on the musicians and non-musicians. This analysis allows us to determine whether different
canonical response profiles underlie the functional organization of auditory cortex of musicians and
non-musicians.

For these separate group analyses, each participant’s responses were de-meaned across
voxels (as in Norman-Haignere et al., 2015), such that each participant had the same mean response
across voxels to each sound. Measures of explained variance indicated that the optimal number of
components from the voxel decomposition analysis was six for both musicians and non-musicians,
explaining 88.09% and 88.56% of participants’ voxel response variance, respectively.

The set of six components inferred from the separate groups were very similar to each other
(Figure 8A). After optimally reordering the components using the Hungarian algorithm, pairs of
corresponding components (between those derived from the musicians, and those derived from the
non-musicians) were highly correlated (r values between 0.7735 to 0.9904; r = 0.9018 for the music-
selective component) (Figure 8B). These results indicate that similar component structures underlie

auditory cortical responses in musicians and non-musicians. Additionally, these two sets of components

28


https://doi.org/10.1101/2020.01.10.902189
http://creativecommons.org/licenses/by-nd/4.0/

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.10.902189; this version posted January 11, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

were very similar to those derived from the whole-group analysis of all 20 participants, with the
corresponding components from the two sets having correlations ranging from 0.89 to 0.99 for
musicians, and from 0.67 to 0.99 for non-musicians. Moreover, the music component was similarly
selective in both groups (Figure 8C&D), as measured by the difference in means between music and
non-music sounds, divided by their standard deviation (Figure 8D; d-prime; musicians d’ = 1.59, non-
musicians’ d’ = 1.21; not significantly different, p = 0.19; 1,000 permutations). We note that the mean
response magnitude of the music-selective component was higher in non-musicians (note different
axes in Figure 8A & Figure 8C), but we have found such additive response profile “offsets” to occur
occasionally as an unstable feature of the voxel decomposition algorithm. For example, discarding a
scan of data from the analysis caused the mean of the music component to fluctuate, but not the
response pattern. The critical result thus appears to be the separability of music and non-music in the

component, which is similar for musicians and non-musicians.

Comparing musicians and non-musicians using standard methods

All of the analyses described above are based on the voxel decomposition method from
Norman-Haignere et al. (2015). As a complementary analysis, we conducted a standard group random
effects analysis, contrasting responses to music vs. non-music sound stimuli. Many brain regions
responded significantly more to music sounds than non-music sounds, presumably because these
sound sets differ both in low-level acoustic properties and higher-order category-specific properties
(Norman-Haignere and McDermott, 2018) (Figure 9A). In particular, the music-preferring voxels
overlapped both the music-selective component and the “pitch-selective” component (component 4),
consistent with the fact that both of these components responded preferentially to music. In agreement
with our findings comparing music component weights between groups, the distribution of music-
preferring voxels was similar in musicians and non-musicians (Figure 9B). A direct comparison

between groups (Figure 9C) revealed a few voxels that survived FDR correction (q = 0.05) with the
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Figure 8. (A) Scatterplots showing the correspondence between the components inferred from musicians (x-axis) and non-musicians (y-axis).
Sounds are colored according to their semantic category, as determined by raters on Amazon Mechanical Turk. Note that to allow the
comparison of component response profiles regardless of any positive offset (which is an unstable artifact of the voxel decomposition algorithm),
the axes differ between groups. (B) Correlation matrix depicting relationships between component response profiles inferred from musicians (x-
axis) and non-musicians (y-axis) separately. The Pearson correlation coefficient is included for values on the diagonal. (C) Response profiles of
music components inferred from musicians (n = 10, left) and non-musicians (n = 10, right), averaged over sound categories. Note the different
axis limits for the two groups. (D) Distributions of music stimuli (blue shading) and non-music stimuli (green shading) within the music component
response profiles inferred from musicians (n = 10, left) and non-musicians (n = 10, right), with the mean for each stimulus group indicated by the
horizontal black line. The d-prime reflecting the distance between music and non-music stimuli for each group is shown above each plot. Sounds
are colored according to their semantic category. We note that the positive offset in the response profile inferred from non-musicians (right) had
only a small, non-significant effect on the d-prime between music and non-music stimuli.

primary cluster being located in the very anterior tip of left planum polare. A further ROI analysis of this
region using independent data indicates that it is not music-selective (even though the difference
between music and non-music stimuli is slightly greater in musicians), and in fact seems to respond to
speech and song more than any other stimulus category. This finding provides additional support for
our conclusion that musicians and non-musicians do not differ substantially in their cortical music

selectivity.
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Figure 9. Significance maps of group random effects analysis on raw fMRI responses (not components). (A) Main effect of music stimuli
> non-music stimuli, computed as a random effects analysis over all participants. (B) Same as above, but computed separately for
musicians (top) and non-musicians (bottom). (C) Group difference, which is equivalent to the stimulus (music vs. non-music) by group
(musician vs. non-musician) interaction. Each map plots logarithmically transformed p-values (-logso[p]), signed such that positive values
indicate positive weights, and is thresholded at -logo[p] > 3 (p < 0.001), uncorrected. The color scale represents voxels that are significant
at FDR q = 0.05. The white outline indicates the 2,249 voxels that were included in the analysis.
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New insights into music selectivity: Music-selective regions of auditory cortex show high
responses to drum stimuli and unfamiliar musical genres

Because our experiment utilized a broader stimulus set that the original study (Norman-
Haignere et al., 2015), we were able to use voxel decomposition to gain new insights into the nature of
cortical music selectivity in addition to examining the effect of explicit training on these populations. The
set of natural sounds used in this study included a total of 62 music stimuli, spanning a variety of
instruments, genres, and cultures. Using this diverse set of music stimuli, we can begin to address the
questions of (1) whether music selectivity is specific to the music of one’s own culture, and (2) whether
music selectivity is driven solely by features related to pitch, like the presence of a melody.

To expand beyond the original stimulus set from Norman-Haignere et al. (2015), which
contained music exclusively from traditionally Western genres and artists, we selected additional music
clips from several non-Western musical cultures that varied in tonality and rhythmic complexity (e.g.
Indian raga, Balinese gamelan, Chinese opera, Mongolian throat singing, Jewish klezmer, Ugandan
lamellophone music) (Figure 10A). These non-Western music stimuli were rated by American
participants as being similarly musical (p = 0.37) but less familiar (p < 1.0e-5) than typical Western
music. Despite this difference in familiarity, the magnitude of non-Western music stimuli within the
music component was only slightly smaller than the magnitude of Western music stimuli (Figure 10B).
A nonparametric test permuting music stimulus labels shows that the observed separation between the
responses to Western and non-Western music stimuli was small (d-prime = 0.45), though it approached
significance (p = 0.056, 10,000 permutations). However, the magnitudes of both Western and non-
Western music stimuli were both much higher than non-music stimuli. Indeed, both the separability
between Western music stimuli and non-music stimuli (d-prime = 2.68) as well as that between non-
Western music stimuli and non-music stimuli (d-prime = 2.01) were large and highly significant (p <
0.0001; 10,000 permutations). Taken together, these results suggest that music selectivity does not

depend upon detailed familiarity with structure of a particular culture’s music.
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Which stimulus features drive music selectivity? One of the most obvious distinctions is melody
and rhythm. While music typically involves both melody and rhythm, when assembling our music stimuli
we made an attempt to pick clips that varied in the prominence and complexity of their melodic and
rhythmic content. In particular, we included 13 stimuli consisting of drumming from a variety of genres
and cultures, because drum music mostly isolates the rhythmic features of music while minimizing
(though not completely eliminating) melodic features. Whether music-selective auditory cortex would
respond highly to these drum stimuli was largely unknown, partially because the Norman-Haignere et
al. (2015) study only included two drum stimuli, one of which was just a stationary snare drum roll.
However, the drum stimuli in our study ranked relatively high in the music component response profile,
averaging only slightly below the other instrumental and vocal music category responses (d-prime =
1.08), and considerably higher than the other non-music stimulus categories (d-prime = 1.90) (Figure
10B). This finding suggests that the music component is not simply tuned to melodic information, but is

also responsive to rhythm.

DISCUSSION

In this study, we tested whether cortical music selectivity depends upon explicit musical training.
Our results show a clear music component in people with almost no musical training. Indeed, all of the
key response patterns that characterize the functional organization of human auditory cortex are
robustly present in both musicians and non-musicians, suggesting that explicit training does not
substantially alter the functional organization of auditory cortex. The small group difference in the music
component weights did not reach statistical significance. These results demonstrate that passive
exposure to music is sufficient for the existence of music selectivity in auditory cortex, which is not

dependent on or strongly modified by extensive explicit musical training.
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Figure 10. (A) Close-up of the response profile for the music component inferred from all participants (n = 20), with example stimuli
labeled. Note that there are a few “non-music” stimuli (categorized as such by Amazon Mechanical Turk raters) with high component
rankings, but that these are all somewhat melodic (e.g. wind chimes, ringtone). Similarly, “music” stimuli with low component rankings
(e.g. “drumroll” and “cymbal crash”) do not contain salient melody or rhythm, despite being classified as “music” by human listeners. (B)
Response profiles of components inferred from all participants (n = 20), averaged over sound categories, reproduced from Figure 4C.

Despite the lack of an effect of explicit training observed here, our study leaves open the
possibility that music selectivity might instead reflect implicit knowledge of musical structure (Bigand,
1983; Bigand and Pineau, 1997; Koelsch et al., 2000; Tillmann et al., 2000; Tillmann, 2005; Bigand and
Poulin-Charronnat, 2006) gleaned from a lifetime of passive exposure to music. We did not find a
significant correlation between participants’ self-reported amount of music listening per day, but it may
be that everyone in our sample had enough (or nearly enough) passive exposure to music to develop
neural selectivity to music, and that additional exposure does not strengthen that selectivity. Indeed,
behavioral studies of non-industrialized societies who lack electricity and much contact with western

culture show pronounced differences in many aspects of music perception (McDermott et al., 2016;
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Jacoby and McDermott, 2017; Jacoby et al., 2019). It is therefore possible that the brains of people
from these cultures with less extensive musical exposure would not display such pronounced music
selectivity. Thus, our data do not show that music selectivity in the brain is independent of experience.
Rather, these results show that normal exposure to music (by the standards of modern Western
culture) is sufficient for music selectivity, and that this selectivity is not greatly modified by extensive
and explicit training.

We note that our musician participants had substantial explicit musical training, and our non-
musicians virtually none, thus maximizing our chance of detecting a difference if one was present. And
as expected, our musician participants showed better behavioral performance across several
psychoacoustic tests that are associated with expert musicians. Of course, it remains possible that a
meaningful difference between music selectivity in musicians and non-musicians exists, but was too
small to be detected in our study. Our experiment was well powered to detect moderate differences
between groups (~30% increases in weights), but scanning a much larger number of participants could
enable detection of a smaller group difference in music selectivity. We note that our study required
collecting 60 scan sessions across 20 participants, each 2 hours in duration, so collecting substantially
more data would be a non-trivial enterprise. Regardless, our results indicate that any stable group
difference, if present, is small.

The fact that we observed no clear group differences in music-selective neural responses within
auditory cortex raises the question of what constitutes the neural basis of music expertise. Perhaps
musical expertise alters neural responses at finer spatial or temporal scales than can be resolved with
fMRI. Alternatively, musical training could modify neural responses exclusively outside of auditory
cortex, such as within frontal or parietal regions involved in decision making or attention (Strait and
Kraus, 2011; Harris and De Jong, 2015; Alluri et al., 2017; Puschmann et al., 2018), or in motor or
limbic regions (Janata and Grafton, 2003; Baumann et al., 2007; Chen et al., 2008; Grahn and Rowe,

2009; Luo et al., 2012; Alluri et al., 2015; Saari et al., 2018; de Aquino et al., 2019). There is also
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evidence that musical training can alter the anatomical structure of auditory (Schneider et al., 2002,
2005; Bermudez et al., 2009; Foster and Zatorre, 2010), motor (Elbert et al., 1995; Gaser and Schlaug,
2003; Bermudez and Zatorre, 2005; Bermudez et al., 2009; Bashwiner et al., 2016), or limbic regions
like the hippocampus (Teki et al., 2012). Another possibility is that musical expertise may influence the
strength of anatomical (Imfeld et al., 2009; Halwani et al., 2011; de Manzano and Ullén, 2017) or
functional (Chen et al., 2008; Grahn and Rowe, 2009; Luo et al., 2012; Alluri et al., 2015; Palomar-
Garcia et al., 2016) connections between auditory and other cortical or subcortical regions. Finally, it
could still be the case that the commencement of musical training as a child is associated with auditory
cortical plasticity, but that these changes are transient and fade over time. Some precedent for this
possibility is found in animal research: auditory cortical map expansion is associated with the degree of
perceptual learning, but the cortical map can revert back to its default organization without a
corresponding decrement in behavioral performance (e.g. Reed et al., 2011).

Another possibility is that differences between musicians and non-musicians would emerge
during more challenging musical tasks. While the participants in this study were instructed to listen
carefully to the sound clips while they were in the scanner, they were performing a very simple task
intentionally designed to be easy for all participants (detecting a change in sound intensity) in order to
gauge whether participants were alert and paying attention. Perhaps differences in music-selective
responses would emerge if participants were given a more attentionally-demanding task or asked to
make judgements about certain aspects of musical stimuli. Indeed, neurophysiological experiments in
animals have found that top-down task-dependent influences can powerfully modulate the response
properties of auditory cortical neurons (e.g. Polley et al., 2006), and that actively engaging in a task
increases the sharpness of tuning compared to passive listening (Lee and Middlebrooks, 2011).

Many open questions remain about cortical music selectivity. A more thorough understanding of
what the observed tuning for music is actually selective for could help explain why we did not observe a

difference between musicians and non-musicians in this study. For example, musicians and non-
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musicians could differ in their responses to certain features of music that are not captured by the music
selective component that is isolated using our methodology, such as metrical structure that unfolds over
time. Further experiments using longer musical clips and/or neuroimaging methods with better temporal
resolution, such as EEG and/or MEG, could help address this question.

The lack of a significant difference in cortical music selectivity between non-musicians and
highly trained musicians suggests that music selectivity in the auditory cortex does not rely on the
formal knowledge of musical structure that is acquired through years of explicit musical training, and
instead may reflect the implicit musical knowledge that listeners gain through casual exposure to music.
It is also possible that cortical music selectivity does not reflect experience at all, and instead could be
present from birth. These hypotheses could be further tested by scanning a wider range of people from
different cultures. We could also potentially learn more about how music selectivity arises in
development by scanning infants and children, or by testing populations of people whose lifetime
perceptual experience with music is limited in some way (e.g., people with musical anhedonia, children
of deaf adults). Because the voxel decomposition technique (Norman-Haignere et al., 2015) enables us
to isolate music-selective neural populations using fMRI, it provides a new avenue for exploring the

origins of the quintessentially human ability for music.
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