

1 **Intestine-specific deletion of metal transporter Zip14 (Slc39a14) causes brain manganese  
2 overload and locomotor defects of manganism**

3 **Running title:** ZIP14 and intestinal Mn elimination

4

5 Tolunay B. Aydemir<sup>1</sup>, Trista L. Thorn<sup>1</sup>, Courtney H. Ruggiero<sup>2</sup>, Marjory Pompilus<sup>3</sup>, Marcelo  
6 Febo<sup>3</sup>, Robert J. Cousins<sup>2,4</sup>

7

8 <sup>1</sup>Division of Nutritional Sceinces, Cornell University, Ithaca 14853 NY, <sup>2</sup>Food Science and  
9 Human Nutrition Department, Center for Nutritional Sciences, College of Agricultural and Life  
10 Sciences, <sup>3</sup>Department of Psychiatry, McKnight Brain Institute, and <sup>4</sup>Department of Biochemistry  
11 and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32611

12 **Corresponding author:** Tolunay Beker Aydemir, Ph.D.  
13 Cornell University, Division of Nutritional Sciences  
14 Ithaca, NY, 14853  
15 [tb536@cornell.edu](mailto:tb536@cornell.edu)

16  
17 **Number of pages:** 19

18 **Number of figures:** 6

19 **Conflicts of interest:** The authors declare no conflict of interest.

20 **Acknowlegments:** This project was supported by the National Institute of Diabetes and  
21 Digestive and Kidney Diseases 5R01-DK 094244 to RJC and Cornell University Division of  
22 Nutritional Sciences funds to TBA. The authors acknowledge the support from the National High  
23 Magnetic Field Laboratory's Advanced Magnetic Resonance Imaging & Spectroscopy (AMRIS)  
24 Facility (National Science Foundation Cooperative Agreement No. DMR-1157490 and the State  
25 of Florida). Graphical abstract was prepared by Allison A. Stevens, AASarts.com.

26 **Author contributions:** T.B.A., and R.J.C. designed research; T.B.A., T.L.T., C.H.R., and M.P.  
27 performed research; T.B.A., M.F., and R.J.C. analyzed data; T.B.A. and R.J.C. wrote the paper.

28 **Key words:** parkinsonism, transport, neuroinflammation, manganism, detoxification

29

30 **Abstract**

31 Impaired manganese (Mn) homeostasis can result in excess Mn accumulation in specific brain  
32 regions and neuropathology. Maintaining Mn homeostasis and detoxification is dependent on  
33 effective Mn elimination. Specific metal transporters control Mn homeostasis. Human carriers of  
34 mutations in the metal transporter ZIP14 and whole-body *Zip14* KO (WB-KO) mice display  
35 similar phenotypes, including spontaneous systemic and brain Mn overload, and motor  
36 dysfunction. Initially, it was believed that Mn accumulation due to *ZIP14* mutations caused by  
37 impaired hepatobiliary Mn elimination. However, liver-specific *Zip14* KO mice (L-KO) did not  
38 show systemic Mn accumulation or motor deficits. ZIP14 is highly expressed in the small  
39 intestine and is localized to the basolateral surface of enterocytes. Thus we hypothesized that  
40 basolaterally-localized ZIP14 in enterocytes provides another route for elimination of Mn. Using  
41 wild type and intestine-specific ZIP14 KO (I-KO) mice, we have shown that ablation of intestinal  
42 *Zip14* is sufficient to cause systemic and brain Mn accumulation. The lack of intestinal ZIP14-  
43 mediated Mn excretion was compensated for by the hepatobiliary system; however, it was not  
44 sufficient to maintain Mn homeostasis. When supplemented with extra dietary Mn, I-KO mice  
45 displayed some motor dysfunctions, brain Mn accumulation based on both MRI imaging and  
46 chemical analysis, thus demonstrating the importance of intestinal ZIP14 as a route of Mn  
47 excretion. A defect in intestinal *Zip14* expression likely could contribute to the Parkinson-like  
48 Mn accumulation of manganism.

49 **New & Noteworthy**

50 Mn-induced parkinsonism is recognized as rising in frequency due to both environmental factors  
51 and genetic vulnerability, yet currently, there is no cure. We provide evidence in an integrative  
52 animal model that basolaterally localized ZIP14 regulates Mn excretion and detoxification and  
53 that deletion of intestinal ZIP14 leads to systemic and brain Mn accumulation, providing robust  
54 evidence for the indispensable role of intestinal ZIP14 on Mn excretion.

55

56 **Introduction**

57         Accumulation of manganese (Mn) in the brain of rodents produces a neurodegenerative  
58         disease (manganism) with signatures that are similar to those in humans with Parkinson's  
59         disease-like symptoms (parkinsonism) and dystonia (26, 27, 30, 32). Recently, considerable  
60         attention has been given to Mn-induced neurodegeneration and parkinsonism in humans (1, 10,  
61         15, 22, 24). Potential causes of excess Mn accumulation include occupational exposure and  
62         contaminated drinking water (36), vegetarian diets and overconsumption of Mn-containing  
63         dietary supplements (12), chronic liver disease (28, 34), and abuse of amphetamine-like drugs  
64         (13). The deleterious effects of Mn exposure on human health are amplified by the increased  
65         atmospheric levels of Mn from exhaust emissions (8). These numerous potential routes of  
66         chronic Mn exposure, coupled with increased lifespans of humans, have increased the  
67         prevalence of Mn-related neurodegenerative disease (ND) worldwide (9, 11, 18, 29).

68         Mutations in the human metal transporter genes *ZNT10*, *ZIP8*, and *ZIP14* impair Mn  
69         homeostasis (6, 19, 20, 25, 28, 35). Mutations in the *SLC39A14* gene encoding the ZIP14  
70         transporter were found in patients with childhood-onset parkinsonism and dystonia with  
71         systemic and brain Mn accumulation (35). Since that discovery, there have been a number of  
72         case reports of similar symptoms in humans with *ZIP14* mutations (17, 23, 31, 38). Whole-body  
73         *Zip14* KO mice display phenotypes similar to those of human carriers of *ZIP14* mutations,  
74         including spontaneous systemic and brain Mn overload, specifically in the globus pallidus, and  
75         motor dysfunction (3). Hepatic Mn uptake and intestinal Mn elimination were also impaired in  
76         whole-body *Zip14* KO mice compared with WT mice.

77         Mn elimination is crucial for maintaining homeostasis and detoxification; however, very  
78         little is known about how it is regulated. ZIP14 is highly expressed in the small intestine and liver  
79         at steady-state compared with other tissues (21). The main route of Mn excretion is via bile (15).  
80         Thus, Mn accumulation due to ZIP14 mutations in humans was initially believed to be

81 associated with impaired hepatobiliary Mn elimination (35). However, liver-specific Zip14 KO  
82 mice do not show systemic Mn accumulation or motor deficits (37), suggesting that Mn is  
83 eliminated by an alternative route. In enterocytes, ZIP14 has a basolateral orientation (BL) (3,  
84 14). We have previously shown that when administered subcutaneously, <sup>54</sup>Mn levels were lower  
85 in intestinal tissue and the intestinal contents of whole-body *Zip14* KO (WB-KO) mice compared  
86 with WT mice, suggesting that systemic Mn elimination is less effective in the absence of ZIP14  
87 (3). Thus, our working hypothesis centers on BL-localized ZIP14 in enterocytes providing a  
88 route for elimination of Mn. Using comparisons between whole-body and intestine specific *Zip14*  
89 KO mice, we demonstrate here that deletion of intestinal *Zip14* is sufficient to cause systemic  
90 Mn overload and that intestinal ZIP14 is a significant contributor to Mn homeostasis.

91 **Materials and Methods**

92 *Mice.* After weaning, the mice were fed ad libitum a commercial chow diet that contained 93 mg  
93 Mn/kg (Harlan 7012) and tap water and were maintained on a 12/12 h, light/dark cycle. Mice  
94 were used as young adults (8-16 weeks of age). Both sexes were included in all experiments.  
95 Euthanasia was through exsanguination by cardiac puncture under isoflurane anesthesia.  
96 Protocols were approved by the both Cornell University and University of Florida Institutional  
97 Animal Care and Use Committees. *Whole-body Zip14 KO mice:* The design and validation of  
98 the conventional *Zip14* KO (*Zip14*<sup>-/-</sup>) (WB-KO) murine strain has been described previously (2).  
99 The breeding colony has been maintained with backcrosses of the C57BL/6;129S5 background.  
100 The mice used in these experiments were of the F12 generation or later. *Intestine-specific Zip14*  
101 *KO mice:* Floxed *Zip14* mice on the 129Sv background were generated using targeting of  
102 introns 4 and 8. Founder *Zip14*<sup>fl/fl</sup> mice were bred to obtain *Zip14*<sup>fl/fl</sup> (*Zip14*<sup>fl/fl</sup>) mice at the  
103 University of Florida. Following genotype confirmation, *Zip14*<sup>fl/fl</sup> mice were crossed with B6.Cg-  
104 Tg(Vil1-cre)997Gum/J (Jackson Lab stock # 004586) mice to create an intestine-specific *Zip14*

105 KO (I-KO) mouse model with which to evaluate the role of intestinal ZIP14 on Mn absorption  
106 and excretion.

107 *Treatments.* Following four h of morning fasting, mice were administered  $^{54}\text{Mn}$  either via gavage  
108 (5  $\mu\text{Ci}$ ) or subcutaneous injections (3  $\mu\text{Ci}$ ). Four h later, the mice were euthanized via cardiac  
109 puncture to collect blood and tissues. The entire excised small intestine was perfused with a  
110 metal chelating buffer (10 mM EDTA, 10 mM HEPES and 0.9% NaCl2). The  $^{54}\text{Mn}$  content of  
111 tissues was measured by gamma-ray solid scintillation spectrometry and normalized by tissue  
112 weight. *Manganese exposure:* Either control or Mn-supplemented (2mg Mn/L as  $\text{MnCl}_2$ ) water  
113 was provided to the mice for one month. We chose to supplement Mn via the drinking water to  
114 maintain a relatively constant consumption of the diet. *Genotyping.* Genomic DNA was extracted  
115 from mouse tail biopsies using extraction buffer (25mM NaOH / 0.2 mM EDTA) and incubation  
116 at 98°C for 45 min (33). The genotyping protocol for whole body *Zip14* KO mice has been  
117 presented previously (2). Following primer sets were used for genotyping *Zip14*<sup>fl/fl</sup> and Villin-  
118 Cre+ mice: Flox-Forward 5'-AGT GGC CAT GGT AGT TCC TG-3', Flox-Reverse 5'-CCT GGT  
119 GCC TGC ATA TTC TC-3' and Cre- Reverse 5'-CAT GTC CAT CAG GTT CTT GC-3', Cre-  
120 Forward 5'-TTC TCC TCT AGG CTC GTC CA-3', Internal Positive Control Forward 5'-CTA  
121 GGC CAC AGA ATT GAA AGA TCT-3', Internal Positive Control Reverse 5'-GTA GGT GGA  
122 AAT TCT AGC ATC ATC C-3', respectively.

123 *Metal Assays.* To measure Mn concentrations, weighed aliquots of tissue were digested at 95°C  
124 for at least 3 h in  $\text{HNO}_3$ . Whole blood (500 $\mu\text{L}$ ) was dried and then digested for 24 h in  $\text{HNO}_3$ .  
125 The entire excised small intestine was perfused with a metal chelating buffer (10 mM EDTA, 10  
126 mM HEPES and 0.9% NaCl2) (equal volume/intestine), then digested for 24 h in  $\text{HNO}_3$ .  
127 Digested samples were diluted in Milli-Q water. Mn was measured by Microwave Plasma-  
128 Atomic Emission Spectrometry (MP-AES) using 403.076 nm for emission detection.  
129 Normalization was to tissue or body weight (intestinal contents).

130 *ROS assay.* Whole brain tissues were homogenized in lysis buffer (250 mM Sucrose  
131 20 mM HEPES-NaOH, PH: 7.5, 10 mM KCl, 1.5 mM MgCl<sub>2</sub>, 1 mM EDTA, 1 mM EGTA) that  
132 supplemented with protease inhibitors. Following centrifugation at 800 x g for 10 min,  
133 supernatants were incubated with 2,7-Dichlorodihydrofluorescein diacetate (Cayman 4091-99-0)  
134 at 37 °C for an h. The fluorescent signal was measured at 502/523 nm.

135 *Western blot.* Tissue was homogenized in lysis buffer with protease and phosphatase inhibitors  
136 (Thermo Scientific and AGScientific) added along with the PMSF (Sigma-Aldrich) using the  
137 Bullet Blender (Next Advances). Solubilized proteins were separated by 10% SDS-PAGE.  
138 Visualization was by chemiluminescence (SuperSignal, Thermo Fisher) and digital imaging  
139 (Protein Simple). Rabbit anti-mouse ZIP14 antibody was custom made by Genscript. Antibodies  
140 for GAPDH and actin were obtained from Cell Signalling.

141 *Quantitative PCR analyses.* Tissues were homogenized in TRIzol reagent using the Bullet  
142 Blender homogenizer and RNA was isolated. Total RNA was used to measure relative mRNA  
143 abundance by quantitative PCR (qPCR). Primer/probes for iNOS, tnfα, il6, and gapdh were  
144 purchased from Applied Biosystems.

145 *Motor Function.* Motor functions were tested in the light-phase. All tests were performed as in  
146 previous studies (3). *Beam Traversal.* The beam was constructed of four segments of 0.25 m in  
147 length. Each segment was of thinner widths 3.5 cm, 2.5 cm, 1.5 cm, and 0.5 cm; The widest  
148 segment acted as a loading platform for the mice, and the narrowest end was adjacent to the  
149 home cage. After two days of training, on the test day, mice were timed over three trials to  
150 traverse from the loading platform and to the home cage. *Pole Descent.* A pole (0.5 m long, 1  
151 cm in diameter) was placed in the home cage. After two days of training, on the test day, the  
152 time to descend from the top of the pole to the cage floor was measured. *Fecal output.* Mice  
153 were transferred from their home cage to a 12X20 cm translucent cylinder, and fecal pellets  
154 produced over 5 min were counted. The data were generated by using averages of three days

155 of trials. *Inverted grid*. The mice were placed in the center of a 26 by 38 cm screen with 1-cm<sup>2</sup>-  
156 wide mesh. The screen was inverted for 60 s, and the mice were timed until they released their  
157 grip or held on.

158 *Magnetic Resonance Imaging*. The MRI scans were collected in a 4.7T/33 cm horizontal bore  
159 magnet (Magnex Scientific) at the Advanced Magnetic Resonance Imaging and Spectroscopy  
160 facility in the McKnight Brain Institute of the University of Florida. The MR scanner consisted of  
161 a 11.5 cm diameter gradient insert (Resonance Research, Billerica, MA, USA) controlled by a  
162 VnmrJ 3.1 software console (Agilent, Palo Alto, CA, USA). A quadrature transmit/receive  
163 radiofrequency (RF) coil tuned to 200.6 MHz <sup>1</sup>H resonance was used for B1 field excitation and  
164 RF signal detection (airmri; LLC, Holden, MA). On the scanning day, mice were induced using  
165 3-4% isoflurane delivered in medical grade air (70% nitrogen, 30% oxygen; air flow rate 1.5  
166 mL/min). The anesthesia was maintained at 1.0-1.5% isoflurane during MRI scanning. Core  
167 body temperature and spontaneous respiratory rates were continuously recorded during MRI  
168 scanning (SA Instruments, Stony Brook, NY). Mice were maintained at normal body  
169 temperature levels (37– 38 °C) using a warm water recirculation system. The MRI included a  
170 multiple repetition time sequence to calculate parametric T<sub>1</sub> maps for each group using a fast  
171 spin echo sequence with a total of four TR's (0.5, 1.08, 2.33, 5.04 seconds), and TE = 6.02 ms  
172 with the following geometric parameters: 16 x 16 mm<sup>2</sup> in plane, 14 slices at 0.8 mm thickness  
173 per slice, data matrix = 128 x 128 (125 µm in-plane resolution).

174 *MRI Post-Processing and analysis*. Whole brain masks were obtained via automated  
175 segmentation with 3-dimensional pulse-coupled neural networks (PCNN3D) using high-  
176 resolution anatomical scans to remove non-brain voxels. All cropped data were used to create  
177 templates for each cohort using Advanced Normalization Tools (ANTs;  
178 <http://stnava.github.io/ANTs/>). The templates were then registered to an atlas of the mice brain  
179 using the FMRIB Software Library linear registration program flirt. The atlas was then

180 transformed back to each individual data set with the registration matrices from ANTS. To  
181 generate parametric T1 maps, multi-TR images were fit to the equation  $S_{TR}=S_0(1-e^{-TR/T1})$  using  
182 non-linear regression in ImageJ. From T1 maps, the T1 relaxation rate ( $R1$  in  $ms^{-1}$ ) is calculated  
183 and exported from regions of interest.

184 **Statistics.** For all experiments, both sexes of mice were included. Data are presented as means  
185  $\pm$  SD. Significance was assessed by Student's t-test for single comparisons and by  
186 ANOVA/Tukey's test for multiple comparisons. Statistical significance was set at  $P<0.05$ .  
187 Analyses were performed using GraphPad Prism.

188 **Results**

189 **Deletion of intestinal *Zip14* causes impaired serosal to mucosal  $^{54}Mn$  transport.**

190 A representative PCR amplification for genotyping was shown in Fig. 1A. Intestine-  
191 specific ablation of *Zip14* was confirmed by western blotting of ZIP14 protein. Tissues from both  
192 VC and fl/fl mice were included as controls. ZIP14 was deleted only in the intestine of the I-KO  
193 mice (Fig. 1B). Western blotting shows expression of ZIP14 between I-KO and WB-KO mice  
194 (Fig. 1C). Absence of ZIP14 from only the intestine of the I-KO mice confirms tissue specificity.  
195 To determine the role of intestinal ZIP14 in Mn clearance, we conducted  $^{54}Mn$  uptake studies  
196 using I-KO mice to ascertain the direction of Mn transport mediated by ZIP14.  $^{54}Mn$  was  
197 administered via two routes, and radioactivity in the intestine was measured. There was no  
198 difference in the amount of radioactivity in the intestine of I-KO, VC, and fl/fl mice when  $^{54}Mn$   
199 was administered via oral gavage (Fig. 1D), indicating that intestinal  $^{54}Mn$  absorption was not  
200 affected by ZIP14 deficiency. However, significantly ( $p<0.001$ ) less radioactivity was detected in  
201 the intestine of *Zip14* I-KO mice when  $^{54}Mn$  was administered via sc injection, indicating that the  
202 intestine-specific deletion of *Zip14* decreased serosal to mucosal transcellular Mn transport. In

203 the following experiments, fl/fl mice were used as controls since we have confirmed that there  
204 was no difference in  $^{54}\text{Mn}$  uptake between fl/fl and VC mice (Fig. 1D).

205 **Deletion of intestinal *Zip14* leads to systemic and brain Mn accumulation.**

206 To test whether impaired intestinal ZIP14-mediated Mn excretion affects systemic Mn  
207 metabolism, we compared systemic  $^{54}\text{Mn}$  distribution between WB-KO and I-KO mice. Our  
208 results revealed that when it was given via s.c. injection, the amount of  $^{54}\text{Mn}$  was significantly  
209 less in the intestines of both WB- and I-KO mice (Fig. 2A). Furthermore, the amount of  $^{54}\text{Mn}$  was  
210 significantly greater in the blood and brain of the WB and I-KO mice when compared to their  
211 controls (Fig. 2B). The magnitude of increase in  $^{54}\text{Mn}$  was less in I-KO mice compared to WB-  
212 KO mice.

213 The key route of Mn elimination is through the hepatobiliary system. To evaluate the  
214 hepatobiliary clearance of Mn, we measured liver  $^{54}\text{Mn}$  uptake. Of note  $^{54}\text{Mn}$  uptake was  
215 impaired in WB-KO and enhanced in I-KO, suggesting that a lack of intestinal ZIP14 was  
216 compensated for in the I-KO mice through increased Mn elimination via the hepatobiliary system  
217 (Fig. 2C). Furthermore,  $^{54}\text{Mn}$  uptake was not different between kidney and pancreas of fl/fl and  
218 I-KO mice, while  $^{54}\text{Mn}$  uptake was higher and lower in pancreas and kidney of WB-KO,  
219 respectively suggesting that ZIP14 might be involved with  $^{54}\text{Mn}$  uptake in the kidney (Fig. 2D).

220 Next, to evaluate the influence of intestinal ZIP14 on brain Mn, we measured Mn  
221 accumulation using MP-AES. The Mn concentration was greater in the blood and brain of both  
222 the WB-KO and I-KO mice compared to their controls (Fig. 3A). As expected, relative  
223 accumulation was less in the I-KO mice. Furthermore, we used MRI analysis to evaluate brain  
224 Mn accumulation between WB-KO and I-KO mice. Signal intensity was greater in the brains of  
225 I-KO when compared to fl/fl. Similar to  $^{54}\text{Mn}$  uptake and MP-AES data, the differences in MRI  
226 signal intensity between the brains of the fl/fl and I-KO were less than that of between the WB-

227 KO and WT mice (Fig. 3B). Nevertheless, the images from the I-KO mice clearly show punctate  
228 regions of increased intensity consistent with Mn accumulation. Of note, the MRI images  
229 reflected endogenous Mn in brains of both genotypes obtained without any enhancement and  
230 were from young adult mice maintained under barrier conditions with normal husbandry. These  
231 data collectively suggest that deletion of intestinal *Zip14* was sufficient to cause systemic Mn  
232 overload and that intestinal ZIP14 is a significant contributor to Mn homeostasis.

233 **Neuroinflammation and motor dysfunction in intestine-specific *Zip14* KO is amplified  
234 with high Mn exposure.**

235 Deletion of intestinal *Zip14* caused systemic and brain Mn overload; however, the  
236 magnitude of increases was less in I-KO compared to WB-KO. Therefore, we have conducted  
237 Mn supplementation studies with I-KO mice to increase exposure. Deletion of intestinal ZIP14  
238 was confirmed by western blot (Fig. 4A). Following Mn-exposure, increased intestinal Mn  
239 concentrations were found in the fl/fl mice, but were not observed in the I-KO mice (Fig. 4A).  
240 Moreover, the Mn concentration of luminal and fecal content of Mn-supplemented I-KO was  
241 significantly less than Mn-supplemented fl/fl mice (Fig. 4B). Mn concentrations were greater in  
242 the liver of I-KO mice compared fl/fl mice in the control group demonstrating greater hepatic Mn  
243 clearance occurs when hepatic ZIP14 is functional and intestinal ZIP14 is not (Fig. 4C).

244 Mn is neurotoxic; thus, we next measured the blood and brain Mn concentrations. Mn  
245 concentrations were greater in blood and brain of I-KO mice compared fl/fl mice in the control  
246 group (Fig. 5A, B). Mn concentrations in Mn-supplemented fl/fl mice were comparable to the I-  
247 KO unsupplemented mice. Mn-supplementation further enhanced the Mn accumulation in blood  
248 and brain of I-KO mice compared to Mn-supplemented fl/fl mice, however. Importantly there was  
249 no change between groups in brain Zn and Fe concentrations (Fig. 5C). Importantly, the Mn-  
250 supplemented I-KO group had the greatest increase in Mn concentrations, further confirming  
251 impaired Mn excretion in I-KO mice occurs via the intestine.

252 To test the physiological consequences of Mn overload, we assessed motor functions  
253 using the inverted grip, balance beam traversal, pole descent test, and fecal output methods.  
254 The Mn-supplemented I-KO mice required significantly more time to cross a balance beam  
255 compared to fl/fl control mice (Fig. 6A) while there was no difference in the time to descend a  
256 pole (data not shown). Furthermore, the total output of fecal pellets was significantly lower in  
257 Mn-supplemented I-KO mice (Fig. 6A). We found no difference in body weight and limb strength  
258 (inverted grid assay) (data not shown). These data collectively showed that at the end of one  
259 month of chronic Mn exposure, I-KO mice developed initial indices of motor dysfunction;  
260 however, the whole spectrum of manganism had not been obtained.

261 To investigate the biochemical and physiological underpinnings of Mn-induced motor  
262 dysfunction, we measured reactive oxygen species (ROS) and cytokine expressions in whole-  
263 brain lysates. Our results revealed an increased amount of ROS in the I-KO and Mn-  
264 supplemented fl/fl mice compared to fl/fl mice (Fig. 6B). The highest increase was found in Mn-  
265 supplemented I-KO mice; the difference was not statistically significant ( $p=0.07$ ). Similarly, the  
266 highest increase for *il6* mRNA was found in Mn-supplemented I-KO mice; the difference was not  
267 statistically significant ( $p=0.07$ ) (Fig. 6C). However, the expression of *iNOS* and *tnfa* mRNAs  
268 was significantly increased in Mn-supplemented I-KO mice when compared to control fl/fl mice  
269 (Fig. 6C) suggesting that Mn-induced increase in ROS and cytokines could be an underlying  
270 cause for the initiation of parkinsonism. and *il6*

271 **Discussion**

272 In the present study, using whole-body and intestine-specific *Zip14* KO mice, we demonstrate  
273 that intestinal ZIP14 is essential for Mn homeostasis. Mice with a deletion of intestinal *Zip14*  
274 displayed a phenotype that included impaired serosal to mucosal Mn transport resulting in  
275 increased liver, blood, and brain Mn accumulation. Mn supplementation greatly enhanced the  
276 brain Mn overload in I-KO mice with early parkinsonism symptoms.

277                   Manganese metabolism is homeostatically maintained through limited absorption by the  
278                   small intestine with elimination occurring via hepatobiliary, pancreatic, and urinary (minimally)  
279                   excretions (7). The plethora of transporters with proposed roles in manganese metabolism has  
280                   been documented (15). The list includes divalent metal transporter 1 (DMT1), transferrin  
281                   receptor (TfR), calcium channels, Park9/ATP13A2, NCX, SPCA1, and ferroportin (FPN).  
282                   However, the precise molecular mechanisms that underlie Mn homeostasis are poorly  
283                   understood. ZIP14/SLC39A14 is a ZIP family transmembrane protein that regulates intracellular  
284                   levels of zinc (Zn), Mn, and iron (Fe). Although occupational and environmental Mn exposures  
285                   are known sources of Mn toxicity, genetic mutations in metal transporters, including ZIP14, also  
286                   cause Mn-induced parkinsonism. Mutations in the *SLC39A14* gene encoding the ZIP14  
287                   transporter were found in patients with childhood-onset parkinsonism and dystonia with  
288                   systemic and brain Mn accumulation (35). Deletion of *Zip14* expression in zebrafish  
289                   recapitulated the human brain Mn accumulation phenotype of ZIP14 mutation carriers (35).  
290                   However, Mn concentration in the abdominal viscera of WT and mutant zebrafish was not  
291                   different. Using whole-body *Zip14* KO mice we have previously shown that WB-*Zip14* KO mice  
292                   displayed phenotypes similar to those of human carriers of *ZIP14* mutations, including  
293                   spontaneous systemic and brain Mn overload with motor dysfunction and impaired hepatic Mn  
294                   uptake (3). Our findings with *Zip14* KO mice were confirmed by two independent research  
295                   groups (16, 37) collectively supporting the use of *Zip14* KO mouse models as a relevant model  
296                   system with which to further investigate the organ/tissue-specific role of ZIP14-mediated Mn  
297                   transport in Mn homeostasis.

298                   The early studies with <sup>54</sup>Mn revealed that hepatobiliary system was a major route for Mn  
299                   elimination from the body (5). However, using liver-specific *Zip14* KO mice, Xin et al. showed  
300                   that there was no Mn accumulation in the brain or other tissues of L-KO mice, which have  
301                   considerably lower hepatic Mn levels. This finding supports our hypothesis that there are other

302 highly efficient Mn elimination routes in the body. We previously showed that ZIP14 is localized  
303 at the basolateral site of the enterocytes (3, 14). Furthermore, intestinal Mn elimination was  
304 impaired in WB *Zip14* KO mice. Therefore we generated I-KO mice to explore the specific role  
305 of intestinal *Zip14* in Mn elimination/detoxification. We found that Mn transport in the serosal to  
306 mucosal direction was impaired and importantly Mn accumulated in the blood and and brain at  
307 steady state. This novel finding suggests that deletion of intestinal *Zip14* is sufficient to cause  
308 systemic Mn overload and that intestinal ZIP14 is a significant contributor to Mn homeostasis.

309 The known Mn elimination routes are hepatobiliary (major), pancreatic, and urinary  
310 (minimally) excretion (7). Therefore, we compared <sup>54</sup>Mn transport in these tissues of WB- and I-  
311 KO mice. Pancreatic <sup>54</sup>Mn uptake was impaired, and <sup>54</sup>Mn uptake by kidney was enhanced in  
312 WB-*Zip14* KO. In contrast, we have not observed any changes in pancreas and kidney of I-KO  
313 mice compared to fl/fl control mice. However, there was a significant increase in the liver <sup>54</sup>Mn  
314 uptake and Mn accumulation. This suggests there is an activation of a hepatic compensation  
315 mechanism. These novel differences in tissue <sup>54</sup>Mn uptake and Mn accumulation in I-KO mice  
316 are providing new aspects for the paths of systemic Mn detoxification.

317 Impaired manganese (Mn) homeostasis results in excess Mn and neurotoxicity;  
318 however, the underlying molecular mechanisms have not been clearly defined. It has been  
319 suggested that oxidative stress and associated neuroinflammation lead to neurodegeneration  
320 and parkinsonism (motor dysfunction) (26, 27, 30, 32). Our results revealed that ROS and  
321 cytokine expressions were highly upregulated in the brain of Mn-supplemented I-KO mice.  
322 Notably, only Mn (but not zinc or iron) levels in the brains of I-KO and Mn-supplemented mice  
323 were greater proving evidence for the specific effect of Mn on neuroinflammation. The main site  
324 of Mn-induced inflammation in the brain remains to be elucidated.

325 In conclusion, we show here the role of intestinal ZIP14 on Mn elimination and  
326 homeostasis at the organism level. Mn elimination by intestinal ZIP14 is essential to maintain

327 Mn homesatosis since the hepatic compensation mechanism is not sufficient to prevent Mn  
328 overload and subsequent neurotoxicity.

329 **References**

330 1- Aboud, A. A., Tidball, A. M., Kumar, K. K., Neely, M. D., Ess, K. C., Erikson, K. M., &  
331 Bowman, A. B. (2012). Genetic risk for Parkinson's disease correlates with alterations in  
332 neuronal manganese sensitivity between two human subjects. *Neurotoxicology*, 33(6),  
333 1443–1449.

334 2- Aydemir, T. B., Chang, S.-M., Guthrie, G. J., Maki, A. B., Ryu, M.-S., Karabiyik, A., &  
335 Cousins, R. J. (2012). Zinc transporter ZIP14 functions in hepatic zinc, iron and glucose  
336 homeostasis during the innate immune response (endotoxemia). *PLoS One*, 7(10), e48679.

337 3-Aydemir, T. B., Kim, M.-H., Kim, J., Colon-Perez, L. M., Banan, G., Mareci, T. H., ... Cousins,  
338 R. J. (2017). Metal Transporter Zip14 ( *Slc39a14* ) Deletion in Mice Increases Manganese  
339 Deposition and Produces Neurotoxic Signatures and Diminished Motor Activity. *The  
340 Journal of Neuroscience*, 37(25), 5996–6006.

341 4- Aydemir, T. B., Sitren, H. S., & Cousins, R. J. (2012). The Zinc Transporter Zip14 Influences  
342 c-Met Phosphorylation and Hepatocyte Proliferation During Liver Regeneration in Mice.  
343 *Gastroenterology*, 142(7), 1536-1546.e5.

344 5- Bertinchamps, A. J., Miller, S. T., & Cotzias, G. C. (1966). Interdependence of routes  
345 excreting manganese. *The American Journal of Physiology*, 211(1), 217–224.

346 6- Boycott, K. M., Beaulieu, C. L., Kernohan, K. D., Gebril, O. H., Mhanni, A., Chudley, A. E., ...  
347 Abou Jamra, R. (2015). Autosomal-Recessive Intellectual Disability with Cerebellar Atrophy  
348 Syndrome Caused by Mutation of the Manganese and Zinc Transporter Gene SLC39A8.  
349 *American Journal of Human Genetics*, 97(6), 886–893.

350 7- Buchman AL. (2014). Manganese. Ross AC. (Ed.), *Modern nutrition in health and disease*  
351 (11th ed., pp. 238–244). Philadelphia:Wolters Kluwer Health/Lippincott Williams & Wilkins.

352 8- Carmona, A., Roudeau, S., Perrin, L., Veronesi, G., & Ortega, R. (2014). Environmental  
353 manganese compounds accumulate as Mn(II) within the Golgi apparatus of dopamine  
354 cells: relationship between speciation, subcellular distribution, and cytotoxicity.  
355 *Metallomics* □: *Integrated Biometal Science*, 6(4), 822–832.

356 9- Caudle, W. M. (2017). *Occupational Metal Exposure and Parkinsonism*.  
357 [https://doi.org/10.1007/978-3-319-60189-2\\_7](https://doi.org/10.1007/978-3-319-60189-2_7)

358 10- Chen, P., Bornhorst, J., & Aschner, M. (2018). Manganese metabolism in humans. *Frontiers*  
359 *in Bioscience (Landmark Edition)*, 23, 1655–1679.

360 11- Chen, P., Miah, M. R., & Aschner, M. (2016). Metals and Neurodegeneration.  
361 *F1000Research*, 5, 366.

362 12- Freeland-Graves, J. H., Mousa, T. Y., & Kim, S. (2016). International variability in diet and  
363 requirements of manganese: Causes and consequences. *Journal of Trace Elements in*  
364 *Medicine and Biology*, 38, 24–32.

365 13- Guilarte, T. R., & Gonzales, K. K. (2015). Manganese-Induced Parkinsonism Is Not  
366 Idiopathic Parkinson's Disease: Environmental and Genetic Evidence. *Toxicological*  
367 *Sciences*□: An Official Journal of the Society of Toxicology, 146(2), 204–212.

368 14- Guthrie, G. J., Aydemir, T. B., Troche, C., Martin, A. B., Chang, S.-M., & Cousins, R. J.  
369 (2015). Influence of ZIP14 (slc39A14) on intestinal zinc processing and barrier function.  
370 *American Journal of Physiology. Gastrointestinal and Liver Physiology*, 308(3), G171-8.

371 15- Horning, K. J., Caito, S. W., Tipps, K. G., Bowman, A. B., & Aschner, M. (2015). Manganese  
372 Is Essential for Neuronal Health. *Annual Review of Nutrition*, 35(1), 71–108.

373 16- Jenkitkasemwong, S., Akinyode, A., Paulus, E., Weiskirchen, R., Hojyo, S., Fukada, T., ...  
374 Knutson, M. D. (2018). SLC39A14 deficiency alters manganese homeostasis and excretion  
375 resulting in brain manganese accumulation and motor deficits in mice. *Proceedings of the*  
376 *National Academy of Sciences*, 115(8), E1769–E1778.

377 17- Juneja, M., Shamim, U., Joshi, A., Mathur, A., Uppili, B., Sairam, S., ... Faruq, M. (2018). A  
378 novel mutation in SLC39A14 causing hypermanganesemia associated with infantile onset  
379 dystonia. *The Journal of Gene Medicine*, 20(4), e3012.

380 18- Kwakye, G. F., Paoliello, M. M. B., Mukhopadhyay, S., Bowman, A. B., & Aschner, M.  
381 (2015). Manganese-Induced Parkinsonism and Parkinson's Disease: Shared and  
382 Distinguishable Features. *International Journal of Environmental Research and Public*  
383 *Health*, 12(7), 7519–7540.

384 19- Leyva-Illades, D., Chen, P., Zogzas, C. E., Hutchens, S., Mercado, J. M., Swaim, C. D., ...  
385 Mukhopadhyay, S. (2014). SLC30A10 Is a Cell Surface-Localized Manganese Efflux

386 Transporter, and Parkinsonism-Causing Mutations Block Its Intracellular Trafficking and  
387 Efflux Activity. *Journal of Neuroscience*, 34(42), 14079–14095.

388 20- Lin, W., Vann, D. R., Doulias, P.-T., Wang, T., Landesberg, G., Li, X., ... Rader, D. J.  
389 (2017). Hepatic metal ion transporter ZIP8 regulates manganese homeostasis and  
390 manganese-dependent enzyme activity. *The Journal of Clinical Investigation*, 127(6),  
391 2407–2417.

392 21- Liuzzi, J. P., Aydemir, F., Nam, H., Knutson, M. D., & Cousins, R. J. (2006). Zip14  
393 (Slc39a14) mediates non-transferrin-bound iron uptake into cells. *Proceedings of the  
394 National Academy of Sciences of the United States of America*, 103(37), 13612–13617.

395 22- Lucchini, R. G., Aschner, M., Landrigan, P. J., & Cranmer, J. M. (2018). Neurotoxicity of  
396 manganese: Indications for future research and public health intervention from the  
397 Manganese 2016 conference. *NeuroToxicology*, 64, 1–4.

398 23- Marti-Sanchez, L., Ortigoza-Escobar, J. D., Darling, A., Villaronga, M., Baide, H., Molero-  
399 Luis, M., ... Dueñas, P. (2018). Hypermanganesemia due to mutations in SLC39A14:  
400 further insights into Mn deposition in the central nervous system. *Orphanet Journal of Rare  
401 Diseases*, 13(1), 28.

402 24- O'Neal, S. L., & Zheng, W. (2015). Manganese Toxicity Upon Overexposure: a Decade in  
403 Review. *Current Environmental Health Reports*, 2(3), 315–328.

404 25- Park, J. H., Hogrebe, M., Grüneberg, M., DuChesne, I., von der Heiden, A. L., Reunert, J.,  
405 ... Marquardt, T. (2015). SLC39A8 Deficiency: A Disorder of Manganese Transport and  
406 Glycosylation. *American Journal of Human Genetics*, 97(6), 894–903.

407 26- Peres, T. V., Schettinger, M. R. C., Chen, P., Carvalho, F., Avila, D. S., Bowman, A. B., &  
408 Aschner, M. (2016). "Manganese-induced neurotoxicity: a review of its behavioral  
409 consequences and neuroprotective strategies." *BMC Pharmacology and Toxicology*, 17(1),  
410 57.

411 27- Pfalzer, A. C., & Bowman, A. B. (2017). Relationships Between Essential Manganese  
412 Biology and Manganese Toxicity in Neurological Disease. *Current Environmental Health  
413 Reports*, 4(2), 223–228.

414 28- Quadri, M., Federico, A., Zhao, T., Breedveld, G. J., Battisti, C., Delnooz, C., ... Bonifati, V.  
415 (2012). Mutations in SLC30A10 cause parkinsonism and dystonia with

416        hypermanganesemia, polycythemia, and chronic liver disease. *American Journal of Human*  
417        *Genetics*, 90(3), 467–477.

418        29- Racette, B. A. (2014). Manganism in the 21st century: The Hanninen lecture.  
419        *NeuroToxicology*, 45, 201–207.

420        30- Racette, B. A., Aschner, M., Guilarte, T. R., Dydak, U., Criswell, S. R., & Zheng, W. (2012).  
421        Pathophysiology of manganese-associated neurotoxicity. *NeuroToxicology*, 33(4), 881–  
422        886.

423        31- Rodan, L. H., Hauptman, M., D'Gama, A. M., Qualls, A. E., Cao, S., Tuschl, K., ... Agrawal,  
424        P. B. (2018). Novel founder intronic variant in SLC39A14 in two families causing  
425        Manganism and potential treatment strategies. *Molecular Genetics and Metabolism*,  
426        124(2), 161–167.

427        32- Roth, J. A. (2014). *Chapter 9. Mutual Neurotoxic Mechanisms Controlling Manganism and*  
428        *Parkisonism*. <https://doi.org/10.1039/9781782622383-00221>

429        33- Truett, G. E. (2000). Preparation of PCR-quality mouse genomic dna with hot sodium  
430        hydroxide and tris (HotSHOT). *BioTechniques*, 29(1), 52–54.

431        34- Tuschl, K., Clayton, P. T., Gospe, S. M., Gulab, S., Ibrahim, S., Singhi, P., ... Mills, P. B.  
432        (2012). Syndrome of hepatic cirrhosis, dystonia, polycythemia, and hypermanganesemia  
433        caused by mutations in SLC30A10, a manganese transporter in man. *American Journal of*  
434        *Human Genetics*, 90(3), 457–466.

435        35- Tuschl, K., Meyer, E., Valdivia, L. E., Zhao, N., Dadswell, C., Abdul-Sada, A., ... Wilson, S.  
436        W. (2016). Mutations in SLC39A14 disrupt manganese homeostasis and cause childhood-  
437        onset parkinsonism-dystonia. *Nature Communications*, 7, 11601.

438        36- Wasserman, G. A., Liu, X., Parvez, F., Ahsan, H., Levy, D., Factor-Litvak, P., ... Graziano,  
439        J. H. (2005). Water Manganese Exposure and Children's Intellectual Function in Araihazar,  
440        Bangladesh. *Environmental Health Perspectives*, 114(1), 124–129.

441        37- Xin, Y., Gao, H., Wang, J., Qiang, Y., Imam, M. U., Li, Y., ... Wang, F. (2017). Manganese  
442        transporter Slc39a14 deficiency revealed its key role in maintaining manganese  
443        homeostasis in mice. *Cell Discovery*, 3, 17025.

444        38- Zeglam, A., Abugrara, A., & Kabuka, M. (2018). Autosomal-recessive iron deficiency  
445        anemia, dystonia and hypermanganesemia caused by new variant mutation of the

446 manganese transporter gene SLC39A14. *Acta Neurologica Belgica*.

447 <https://doi.org/10.1007/s13760-018-1024-7>

448

449

450

451

452

453 **Figure Legends**

454 **Figure 1.**  $^{54}$ Mn elimination is impaired in intestine-specific *Zip14* KO mice. A)

455 Representative genotype B) Representative western analyses are showing ZIP14 protein levels.

456 B) ZIP14 protein levels in liver, brain, and intestine of the villin-cre (VC), floxed *Zip14* (fl/fl) and

457 intestine-specific conditional *Zip14* KO (I-KO) mice C) Comparison of ZIP14 protein levels

458 between whole-body and intestine-specific *Zip14* KO. D) Mice were administered  $^{54}$ Mn via either

459 gavage or subcutaneous injection. Four h later, intestinal 54Mn absorption and elimination were

460 measured in floxed *Zip14* (fl/fl) and intestine-specific *Zip14* KO (I-KO) mice. Values are means

461  $\pm$  SD; n = 8 (both female and male mice were included). Student's t test for fl/fl vs. I-KO

462 comparison.

463

464 **Figure 2. Comparison of percent  $^{54}$ Mn uptake between whole-body and intestine-specific**

465 ***Zip14* KO.** Mice were administered  $^{54}$ Mn via subcutaneous injection, and 4 h later radioactivity

466 was measured in intestine (A), blood and brain (B), liver (C), and pancreas and kidney (D).

467 Values are reported as the mean $\pm$ SD. N=7–14 (both female and male mice were included) .

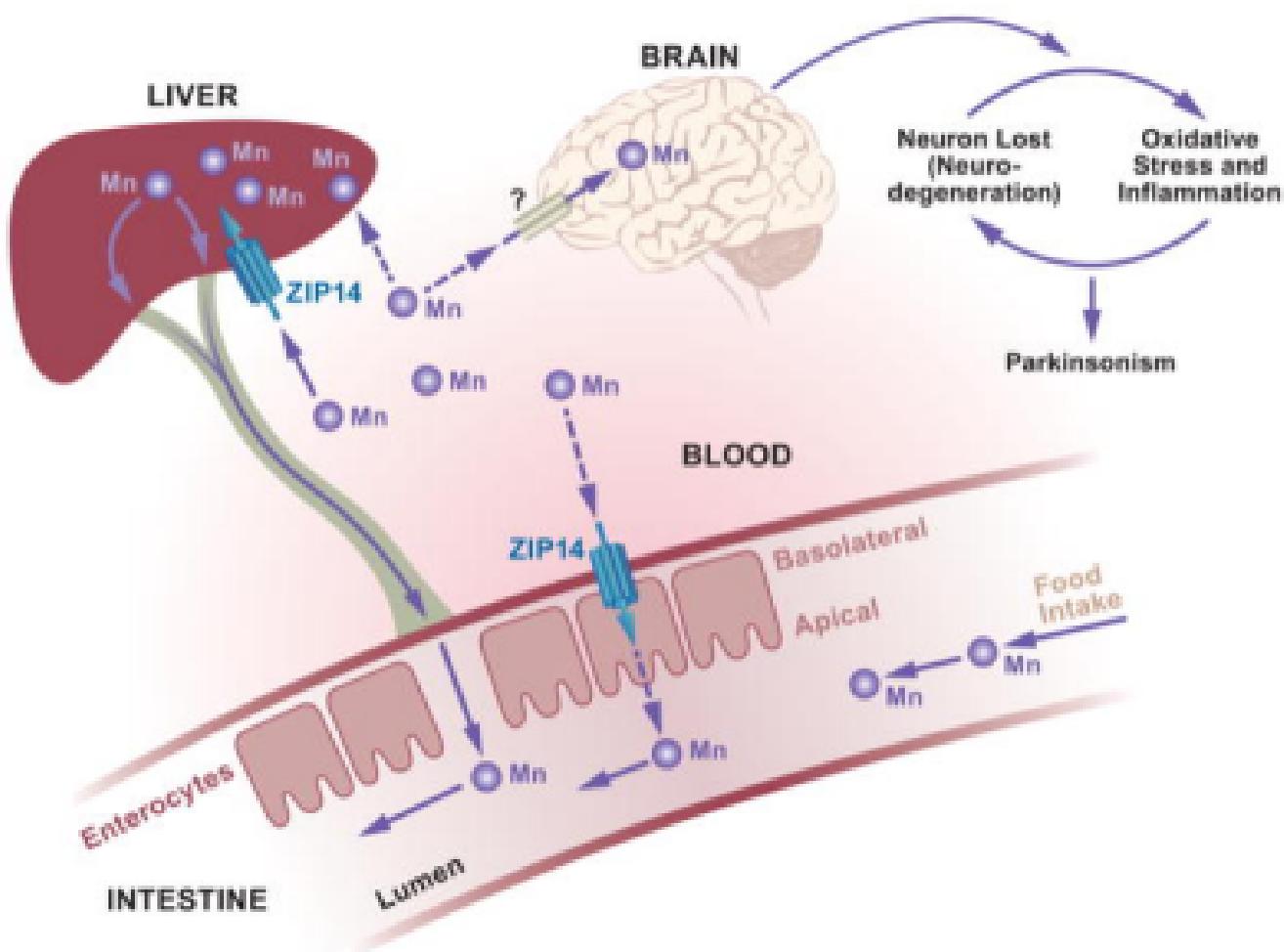
468 Student's t test for WT vs WB-KO and fl/fl vs I-KO comparison.

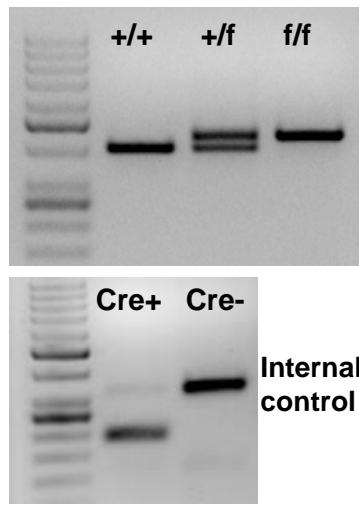
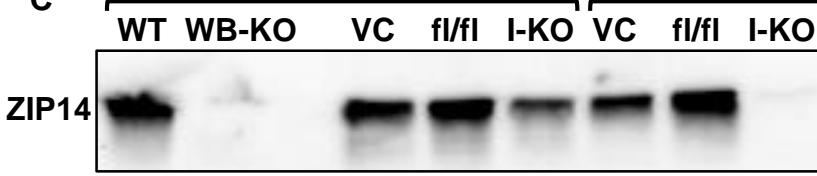
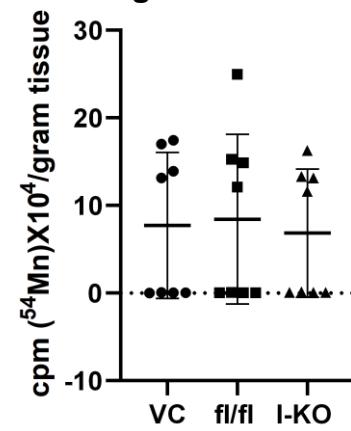
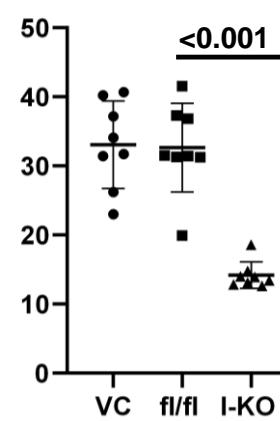
469

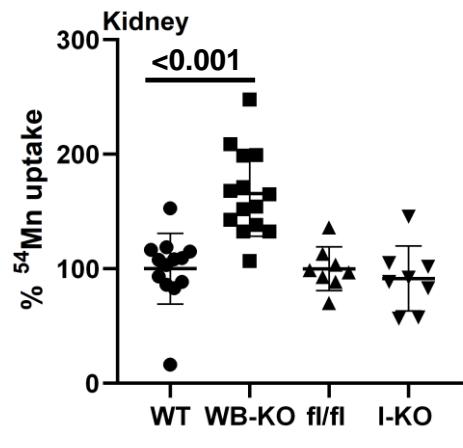
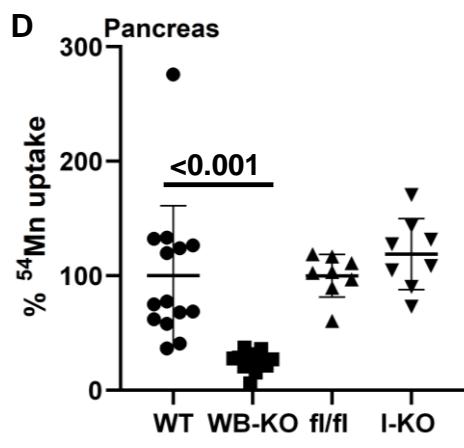
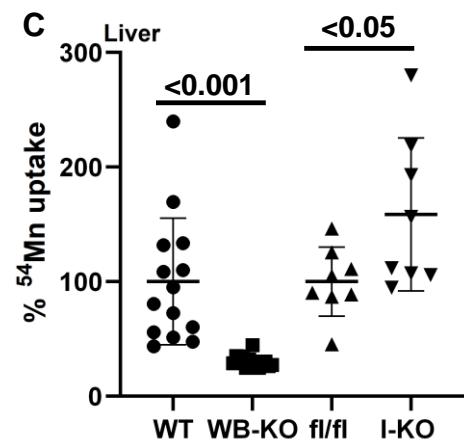
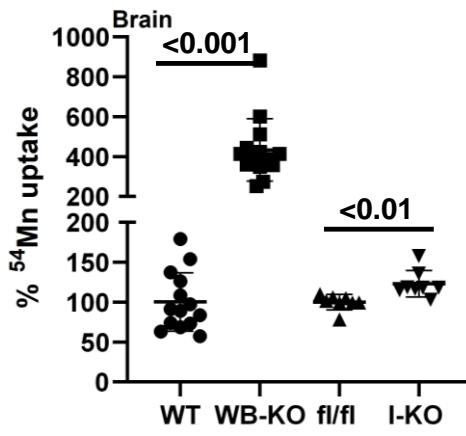
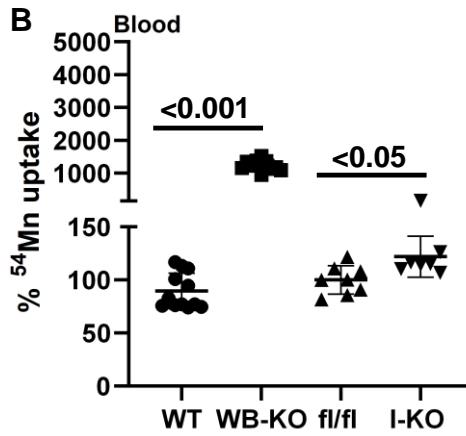
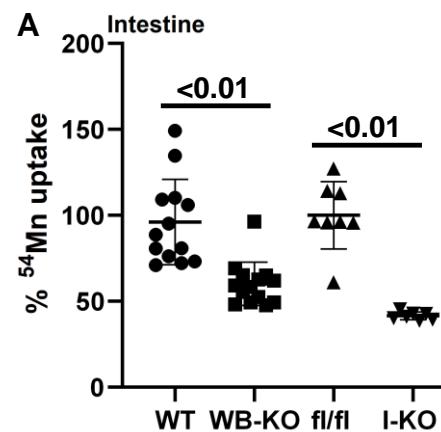
470 **Figure 3. Deletion of intestinal *Zip14* leads to manganism in mice.** A) Mn concentrations in  
471 blood and brain were measured by Microwave Plasma-Atomic Emission Spectrometer (MP-  
472 AES). B) Representative MR images with a quantitative map of R1 relaxation rates (inverse of  
473 T1 values). Values are reported as the mean+/-SD. N=7-14 (both female and male mice were  
474 included). Student's t test for WT vs WB-KO and fl/fl vs I-KO comparison.

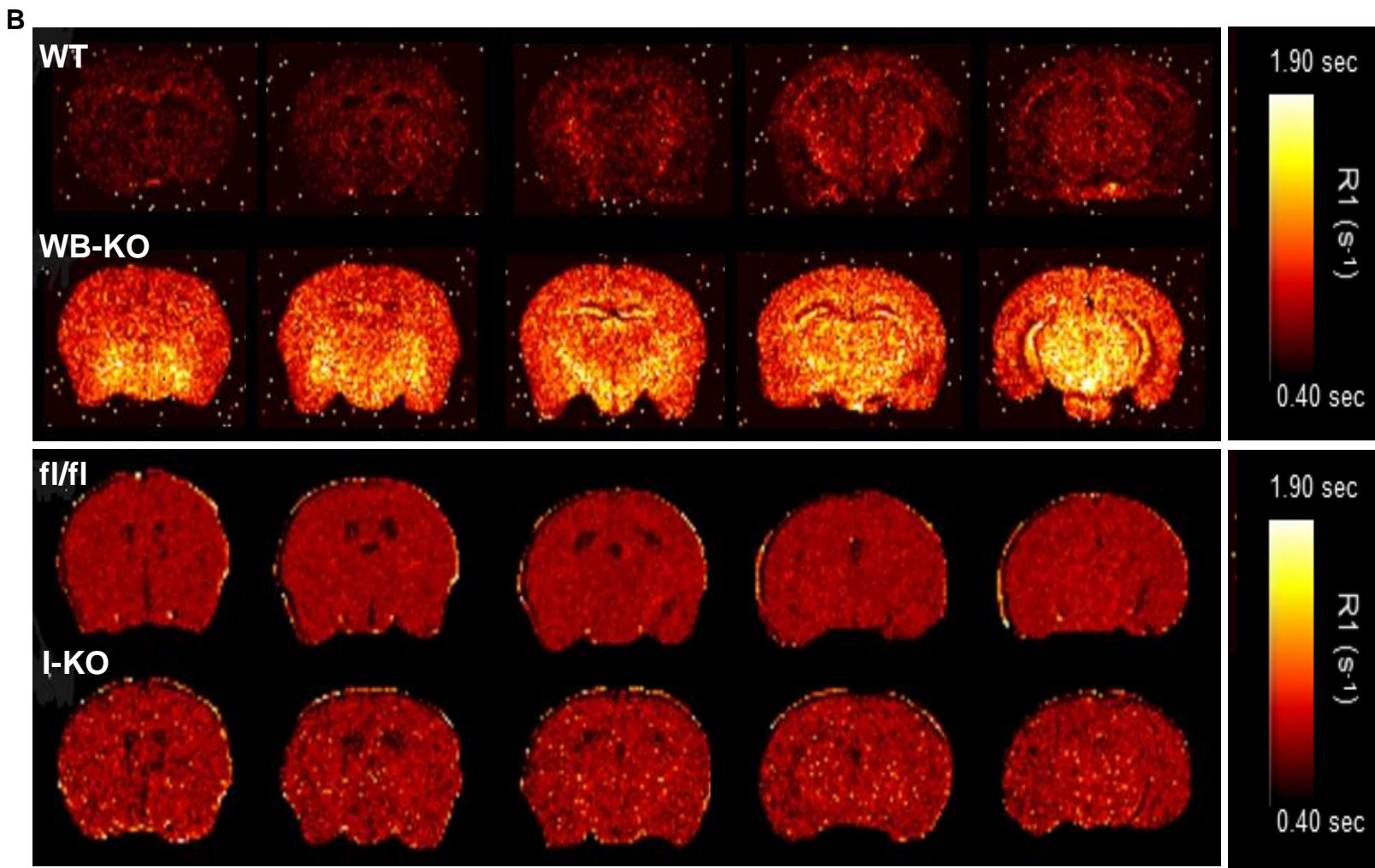
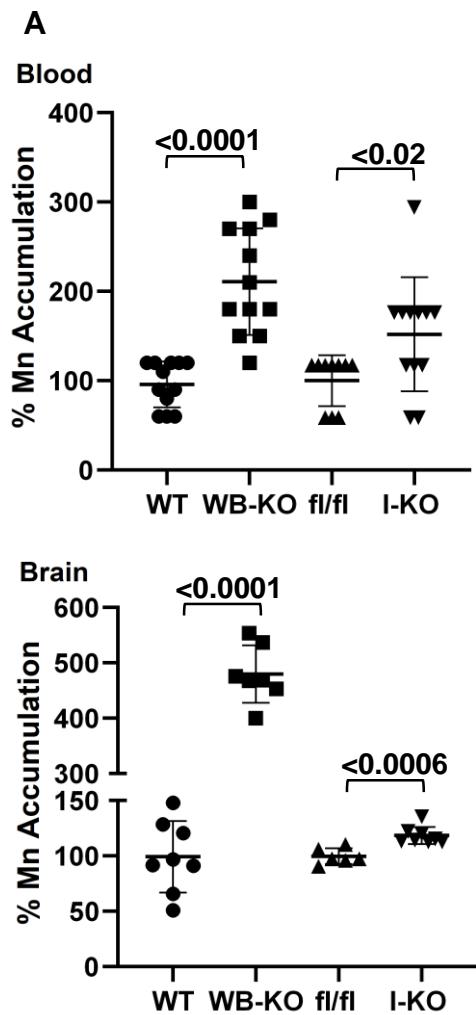
475

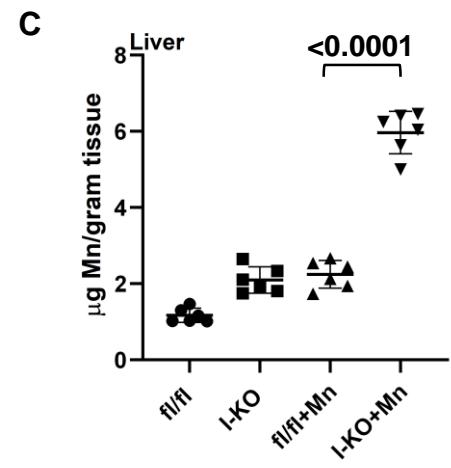
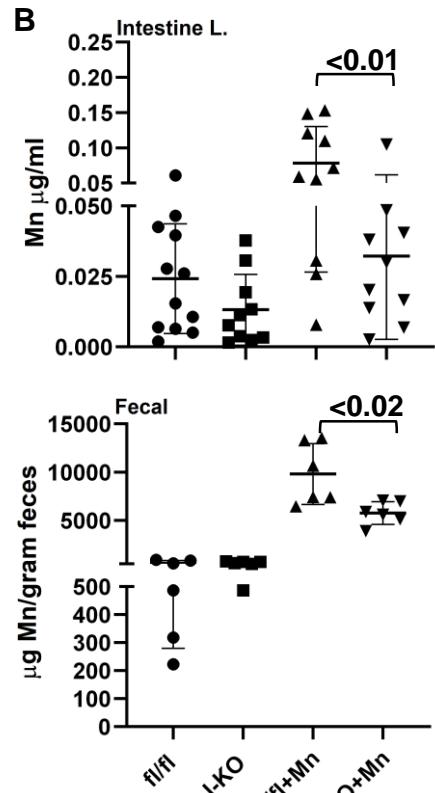
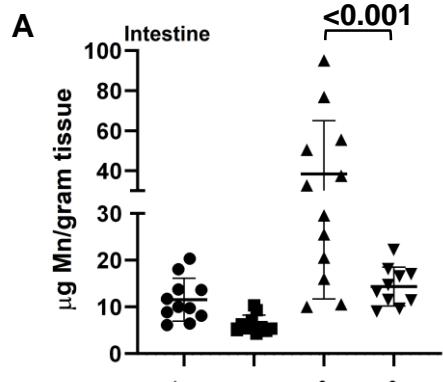
476 **Figure 4. Comparison of Mn concentration between control and Mn-supplemented**  
477 **intestine-specific *Zip14* KO.** A) Representative western blot images showing the absence of  
478 ZIP14 in I-KO intestines. Mn concentrations in the intestine (A), intestine luminal and fecal  
479 content (B) and liver (C) were measured by MP-AES. Values are means+/- SD. n=6-12 (both  
480 female and male mice were included). Significance was assessed by One-way ANOVA.

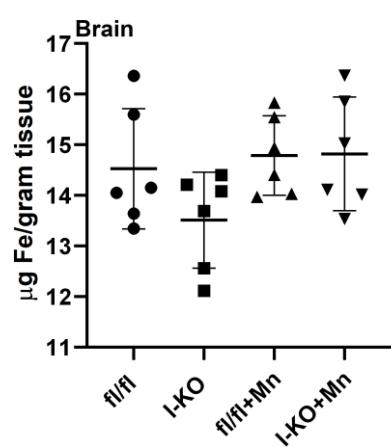
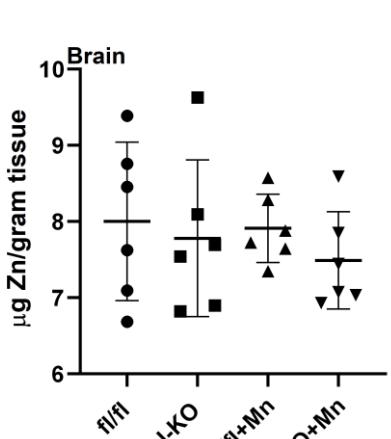
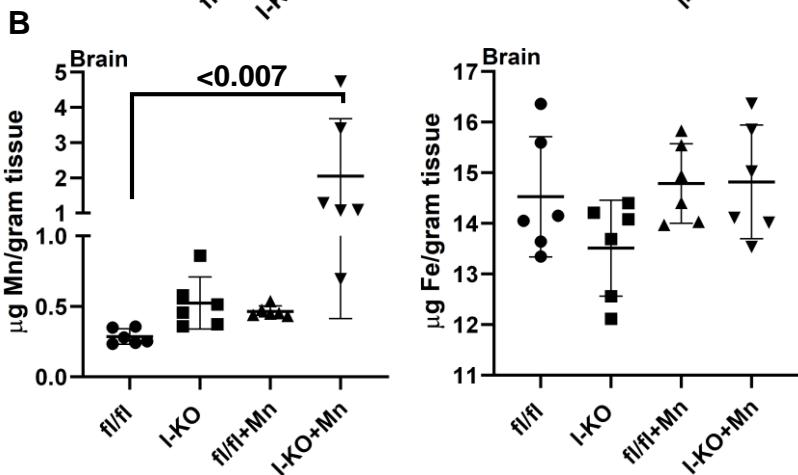
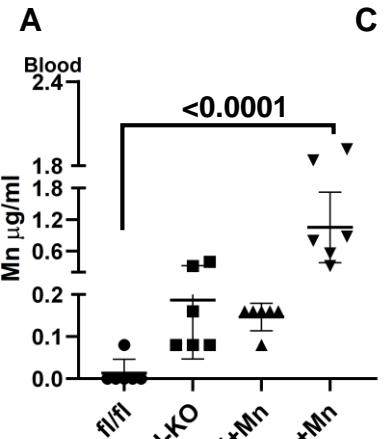

481

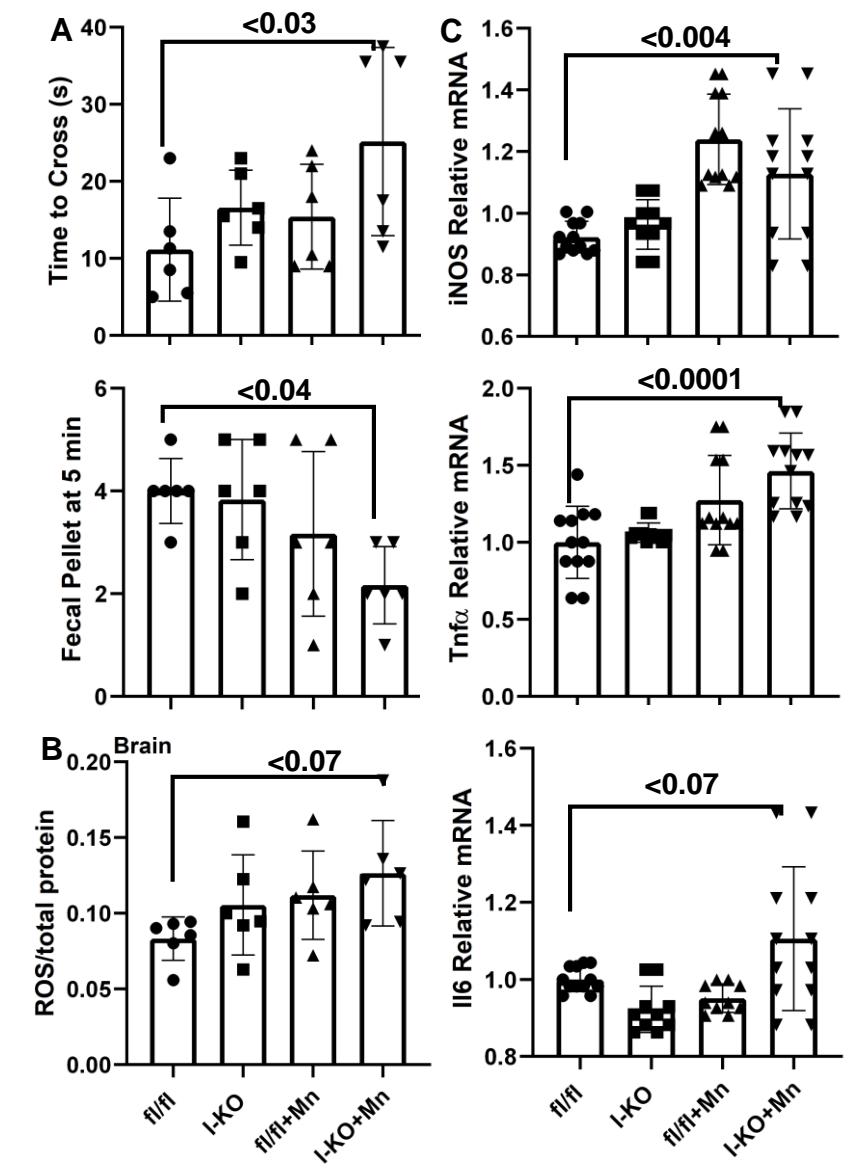




482 **Figure 5. Comparison of metal concentrations between control and Mn-supplemented**  
483 **intestine-specific *Zip14* KO.** Mn concentrations in blood (A) and brain (B), and Zn and Fe  
484 concentrations in the brain (C) were measured by MP-AES. Values are means+/- SD. n=6 (both  
485 female and male mice were included). Significance was assessed by One-way ANOVA.







486



487 **Figure 6. Comparison of motor functions between control and Mn-supplemented**  
488 **intestine-specific *Zip14* KO.** A) Time to cross the balance beam and fecal output were  
489 counted. ROS (B) and cytokine expressions (C) were measured. Values are means+/- SD. n=6  
490 (both female and male mice were included). Significance was assessed by One-way ANOVA.




491



**A GENOTYPE****B Liver Brain Intestine****C Liver Intestine****D Gavage****Intestine****Subcutaneous Inj.**









