

Differential risk of incident cancer

in patients with heart failure

: A nationwide population-based cohort study

Soongu Kwak¹, Soonil Kwon¹, Seo-Young Lee¹, Seokhun Yang¹,

Hyun-Jung Lee¹, Heesun Lee^{1,2}, Jun-Bean Park¹,

Kyungdo Han³, Yong-Jin Kim¹, Hyung-Kwan Kim^{1*}

¹Department of Internal medicine, Seoul National University Hospital, Seoul, Korea

²Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Korea

³Department of Biostatistics, The Catholic University of Korea, Seoul, Korea

Short title: Differential cancer risk in heart failure

*Corresponding author

Address for correspondence:

Hyung-Kwan Kim, MD, PhD

18 Professor / Director of Cardiac Diagnostic Test Unit

19 Cardiovascular center, Department of Internal Medicine,

20 Seoul National University Hospital

21 101 Daehak-ro, Jongno-gu, Seoul, S.

22 Tel.: +02-2072-0243 / Fax: +82-2-762-9622

23 E-mail: cardiman73@gmail.com or hkkim73@knu.ac.kr

27 **ABSTRACT**

28

29 **Background:** Heart failure (HF) and cancer are currently two leading causes of mortality, and
30 sometimes coexist. However, the relationship between them is not completely elucidated. We
31 aimed to investigate whether patients with HF are predisposed to cancer development using
32 the large Korean National Health Insurance claims database.

33 **Methods and findings:** This study included 128,441 HF patients without a history of cancer
34 and 642,205 age- and sex-matched individuals with no history of cancer and HF between 1
35 January 2010 and 31 December 2015. During a median follow-up of 4.06 years, 11,808
36 patients from the HF group and 40,805 participants from the control were newly diagnosed
37 with cancer (cumulative incidence, 9.2% vs. 6.4%, $p<0.0001$). Patients with HF presented a
38 higher risk for cancer development compared to controls in multivariable Cox analysis
39 (hazard ratio [HR] 1.64, 95% confidence interval [CI] 1.61 - 1.68). The increased risk was
40 consistent for all site-specific cancers. To minimize potential surveillance bias, additional
41 analysis was performed by eliminating participants who developed cancer within the initial 2
42 years of HF diagnosis (i.e. 2-year lag analysis). In the 2-year lag analysis, the higher risk of
43 overall cancer remained significant in patients with HF (HR 1.09, 95% CI 1.05 - 1.13),
44 although the association was weaker. Among the site-specific cancers, three types of cancer
45 (lung, liver/biliary/pancreas, and hematologic malignancy) were consistently at higher risk in
46 patients with HF.

47 **Conclusions:** Cancer incidence is higher in patients with HF than in the general population.
48 Active surveillance of coexisting malignancy needs to be considered in these patients.

49

50 **Keywords:** Heart failure; Cancer; Incidence

51 INTRODUCTION

52 Heart failure (HF) is one of the leading causes of mortality in developed countries
53 [1]. Recent advances in the contemporary management of HF have improved survival [2].
54 Hence, the relative contributions of non-cardiovascular causes to mortality cannot be ignored
55 in patients with HF [3,4].

56 Cancer is a major cause of mortality in the general population, and its incidence
57 increases steadily with age. Due to the extended life expectancy of patients with HF, a new
58 diagnosis of cancer in patients with established HF is not infrequent, and cancer is now one
59 of the most common causes of non-cardiovascular mortality, accounting for up to 10% of the
60 reported causes of death [3,4]. However, whether HF itself predisposes to an increased risk of
61 malignancy has been rarely discussed compared to the development of HF due to
62 cardiotoxicity induced by cancer chemotherapy [5].

63 Recently, four large cohort studies reported an increased incidence of cancer in
64 patients with HF [6-9], whereas this association was dispelled in a study exclusively
65 involving male physicians [10]. Several limitations such as the small sample size of the
66 cohort [8], lack of appropriate risk adjustment [6,9], and short follow-up period [6,8], as well
67 as the specific selection of the participants [10], may be the reasons why previous studies
68 reported discrepant results. Moreover, the possibility of a surveillance bias, which may act as
69 a major confounder within the studies, cannot be excluded, since active follow-up with
70 frequent and regular hospital visit might provide a better opportunity for earlier and easier
71 detection of cancer. Thus, the relationship between these two severe diseases is still in
72 question, and more compelling evidence is warranted in a larger study population.

73 Thus, we aimed to evaluate the association between HF and cancer using data from
74 the Korean National Health Insurance Service (NHIS) claims database.

75

76 **METHODS**

77 **Data source and study population**

78 We conducted a nationwide population-based cohort study using data from the
79 Korean NHIS claims database. Korean NHIS system is a mandatory universal health
80 insurance program managed by the Korean government since 1989 and offers comprehensive
81 medical care to 97% of the Koreans [11]. The remaining 3% of Koreans with evidence of low
82 income are covered by the Medical Aid Program, whose information has been incorporated
83 into a single database since 2006. The NHIS database includes detailed information of an
84 individual, including demographic characteristics, health behavior, diagnosis, prescription,
85 surgery or procedures received, health care utilization (i.e. hospitalization) [11]. This well-
86 constructed database was used in many previously published studies, and its validity as a
87 reliable data source has been established [12-14].

88 Among the NHIS representative sample cohort between 2010 and 2015, the data of
89 participants newly diagnosed with HF and aged ≥ 20 years were collected. HF was defined by
90 claims for diagnostic codes (*International Classification of Disease, Tenth Revision, Clinical*
91 *Modification; ICD-10-CM*) (I50) with at least one hospital admission attributed to HF
92 diagnosis. Patients who had a history of cancer defined by *ICD-10-CM* codes (C00 to C97) at
93 the time of enrolment were systematically excluded. For comparison, an age- and sex-
94 matched control group comprising individuals who had no history of either HF or cancer was
95 randomly selected (1:5 ratio). The flow diagram of patient selection is presented in **Fig 1**.

96

97 **Fig 1. Flow chart for the selection of the study population**

98 Flow chart depicting the process of patient selection included in the study.

99 HF denotes heart failure.

100

101 The study protocol conformed to the ethical guidelines of the Declaration of Helsinki
102 and was approved by the Institutional Review Board of our institution (Seoul National
103 University Hospital, Seoul, Korea; IRB number, E-1806-018-949). As anonymized and
104 unidentified information was used for the analysis, the need for informed consent was waived
105 by the same ethic committee (Seoul National University Hospital).

106

107 **Diagnostic validity of cancer**

108 In Korea, all cancers fall under the category of *Rare Intractable Diseases*; all patients
109 in this category are designated as special medical aid beneficiaries with the expanding benefit
110 of the NHIS. Since 2006, the government has introduced an initiative covering 90% of all
111 medical expenses claimed by these patients. Therefore, the diagnosis of cancer is strictly
112 determined and monitored by a thorough verification with clinical, imaging, and pathological
113 evidence, and rigorous reviews by medical experts and health insurance professionals,
114 according to an act established by the Ministry of Health and Welfare [13,14]. Therefore,
115 data for cancer used in this study can be considered validated and reliable.

116

117 **Outcome measures**

118 Participants with HF were followed up from the date of first HF diagnosis to the date
119 of cancer diagnosis, or to the end of the study period (31 December 2017), whichever came
120 first. For the controls, the follow-up time was from the date of assigned national health
121 examination to the date of cancer diagnosis, or to the end of the study period (31 December
122 2017), whichever came first. Participants who died before cancer diagnosis during follow up
123 were censored. Development of cancer was confirmed by both the new assignment of ICD-
124 10-CM codes of cancer, and at the same period, new registration of the patient to the NHIS
125 enhanced benefits coverage registry by the cancer diagnosis. The incidence of overall and
126 each site-specific cancer was investigated. Site-specific cancers include gastrointestinal (GI)
127 cancer (esophagus, stomach, colorectal), liver/biliary/pancreas cancer (liver, biliary,
128 pancreas), lung cancer, prostate cancer, hematologic cancer (leukemia, lymphoma, multiple
129 myeloma), genitourinary cancer (renal, bladder), thyroid cancer, breast cancer, female
130 reproductive cancer (cervical, ovarian, uterine), head and neck cancer (oral, laryngeal), and
131 skin cancer. ICD-10-CM codes of cancers used in this study are summarized in **S1 Table**.
132

133 Statistical analysis

134 Categorical variables (frequencies and percentages) were compared using the χ^2 test,
135 and continuous variables (mean \pm standard deviation or median with interquartile range) were
136 analyzed by the Student's *t*-test or Wilcoxon's rank sum test for independent samples
137 between the HF group and the control group. The incidence rates of cancer were calculated
138 per 1,000 person-years. The cumulative incidence of cancer was plotted and compared
139 between the HF group and the control group by the log-rank test. Cox proportional hazard
140 regression analysis was performed to evaluate the association between HF and cancer

141 development. The multivariable Cox models were adjusted for age, sex, income, diabetes
142 mellitus, smoking, alcohol consumption, and body mass index. The adjusted hazard ratio
143 (HR) was also calculated for the pre-specified subgroups (according to age, and the status of
144 income, smoking, and drinking). The risk of cancer development in each site-specific cancer
145 was expressed as HR with the corresponding 95% confidence interval (CI) in univariable and
146 multivariable analyses.

147 To avoid potential surveillance bias, a sensitivity analysis was additionally
148 performed by eliminating patients who were newly diagnosed with cancer within the initial 2
149 years of HF diagnosis, as well as those followed for less than 2 years (i.e. 2-year lag
150 analysis). The same statistical analyses were repeated in this 2-year lag cohort. SAS software
151 version 9.4 (SAS, Cary, NC, USA) was used in all statistical analyses, and p values <0.05
152 were considered statistically significant.

153

154 RESULTS

155 Study population

156 In the present cohort ($n = 770,646$; mean age, 67.1 years; men, 51.9%), patients with
157 HF ($n=128,441$) were compared with age- and sex-matched controls ($n = 642,205$). **Table 1**
158 summarizes the baseline characteristics of the study population. Briefly, patients with HF
159 were more likely to be obese, to have a smoking history, and comorbidities such as diabetes
160 mellitus, hypertension, and dyslipidemia (all $p <0.0001$), whereas alcohol consumption was
161 more prevalent in the controls ($p <0.0001$).

162

163

164 **Table 1. Baseline characteristics of the study population.**

	HF (n=128,441)	Control (n=642,205)	<i>p</i> value
Male, n (%)	66,687 (51.9)	333,435 (51.9)	>0.99
Age, years	67.1±12.4	67.1±12.4	>0.99
20-34	1,483 (1.1)	7,415 (1.1)	
35-49	10,160 (7.9)	50,800 (7.9)	
50-64	37,617 (29.3)	188,085 (29.3)	
≥65	79,181 (61.7)	395,905 (61.7)	
Body mass index, kg/m ²	24.1 ± 3.6	23.8 ± 3.1	<0.0001
≥25	49,708 (38.7)	219,991 (34.2)	<0.0001
Smoking, n (%)			<0.0001
Never-smoker	81,616 (63.5)	424,483 (66.1)	
Ex-smoker	25,627 (19.9)	119,582 (18.6)	
Current-smoker	21,198 (16.5)	98,140 (15.2)	
Alcohol, n (%)			<0.0001
Never	97,226 (75.7)	435,031 (67.7)	
Mild to moderate	26,062 (20.2)	177,241 (27.6)	
Heavy*	5,153 (4.0)	29,933 (4.6)	
Low income [†] , n (%)	30,550 (23.7)	131,267 (20.4)	<0.0001
Diabetes mellitus, n (%)	41,680 (32.4)	124,574 (19.4)	<0.0001
Hypertension, n (%)	101,461 (78.9)	353,761 (55.0)	<0.0001
Dyslipidemia, n (%)	70,959 (55.2)	222,156 (34.5)	<0.0001

165 *Heavy drinking status was defined by alcohol consumption ≥30 grams/day.

166 [†]Low income is defined as household income ≤30% of the median.

167 HF denotes heart failure.

168

169

170 **Incidence and cumulative incidence of cancer**

171 The incidence of all cancers was higher in the HF group compared to that of the
172 control group. During a median follow-up of 4.06 years (interquartile range, 2.75 – 5.76
173 years), 11,808 participants from the HF group and 40,805 participants from the control group
174 were newly diagnosed with cancer (9.2% vs. 6.4%), corresponding to an incidence rate of
175 24.2 and 14.6 per 1,000 person-year, respectively (**Table 2**). The cumulative incidence of
176 cancer in the HF group was higher than that of the control group ($p < 0.0001$) (**Fig 2A**). The
177 higher cancer incidence among the HF group was consistently observed for all site-specific
178 cancers (**Table 2**). The cumulative incidence of the four most common site-specific cancers is
179 shown in **Fig 3A**. Of note, the incidence rate of overall cancer was markedly increased in the
180 HF group for the first 2 years of HF diagnosis (**Fig 2A**). The same trend was consistently
181 observed for all major site-specific cancers (**Fig 3A**).

182 **Table 2. Comparison of the incidence of cancer between the HF and the control group.**

Outcomes	No lag					2-year lag				
	HF (n=128,441)		Control (n=642,205)		<i>p</i> value	HF (n=101,924)		Control (n=578,266)		<i>p</i> value
	Event	IR	Event	IR		Event	IR	Event	IR	
Overall cancer	11,808 (9.2)	24.2	40,805 (6.4)	14.6	<0.0001	3,857 (3.8)	8.4	22,127 (3.8)	8.1	0.0001
Site-specific cancers										
Gastrointestinal	4,236 (3.3)	8.4	16,009 (2.5)	5.6	<0.0001	1,236 (1.2)	2.6	8,004 (1.4)	2.9	0.0615
Liver/Biliary/Pancreas	2,762 (2.2)	5.4	8,460 (1.3)	2.9	<0.0001	859 (0.8)	1.8	4,560 (0.8)	1.6	0.0010
Lung	2,584 (2.0)	5.0	6,725 (1.0)	2.3	<0.0001	781 (0.8)	1.6	3,760 (0.7)	1.3	<0.0001
Prostate*	1,159 (1.7)	4.5	4,986 (1.5)	3.4	<0.0001	420 (0.8)	1.8	2,838 (1.0)	2.0	0.9534
Hematology	924 (0.7)	1.8	1,895 (0.3)	0.6	<0.0001	210 (0.2)	0.4	1,111 (0.2)	0.4	0.0033
Genitourinary	719 (0.6)	1.4	2,628 (0.4)	0.9	<0.0001	250 (0.2)	0.5	1,498 (0.2)	0.5	0.2958
Thyroid	538 (0.4)	1.0	2,135 (0.3)	0.7	<0.0001	149 (0.1)	0.3	960 (0.2)	0.3	0.4239
Breast†	386 (0.6)	1.5	1,432 (0.5)	1.0	<0.0001	147 (0.3)	0.6	721 (0.3)	0.5	0.0484
Female reproductive†	354 (0.6)	1.3	985 (0.3)	0.7	<0.0001	101 (0.2)	0.4	496 (0.2)	0.3	0.2213
Head and neck	248 (0.2)	0.4	891 (0.1)	0.3	<0.0001	87 (0.09)	0.1	476 (0.08)	0.1	0.3684
Skin	49 (0.04)	0.09	188 (0.03)	0.06	0.0155	18 (0.02)	0.03	114 (0.02)	0.04	0.8730

183 *Prostate cancer is analyzed only in men (n=66,687 in HF and n=333,435 in control for 'no lag' cohort; n=51,456 in HF and n=297,780 in

184 control for '2-year lag' cohort).

185 †Female reproductive malignancies and breast cancer are analyzed only in women (n=61,754 in HF and n=308,770 in control for 'no lag' cohort;

186 n=50,468 in HF and n=280,486 in control for '2-year lag' cohort).

187 HF denotes heart failure

188 IR denotes incidence ratio (1,000 person-year)

189 **Fig 2. Cumulative incidence of overall cancer in the HF group and the control group.**

190 Kaplan-Meier curves of overall cancer incidence were compared between the HF group and
191 the control group using the log-rank test.

192 *A.* Overall cancer incidence after HF diagnosis; *B.* Overall cancer incidence after 2 year of
193 HF diagnosis (2-year lag analysis).

194 HF denotes heart failure.

195

196 **Fig 3. Cumulative incidence of site-specific cancers in the HF group and the control**
197 **group.**

198 Kaplan-Meier curves for each site-specific cancer incidence were compared between the HF
199 group and the control group using the log-rank test.

200 *A.* Cumulative incidence of GI, prostate, liver/biliary/pancreas, and lung cancer in the no lag
201 cohort.

202 *B.* Cumulative incidence of GI, prostate, liver/biliary/pancreas, and lung cancer in the 2-year
203 lag cohort.

204 GI denotes gastrointestinal and HF, heart failure.

205

206

207 **Risk of cancer development**

208 **No lag analysis**

209 During a median follow-up of 4.06 years (interquartile range, 2.75 – 5.76 years), the
210 HF group showed an increased risk of overall cancer in the unadjusted analysis (HR 1.68,
211 95% CI 1.64-1.71; $p < 0.0001$), and in multivariable-adjusted analysis (HR 1.64, 95% CI 1.61
212 - 1.68; $p < 0.0001$) (**Table 3**). The risk of all site-specific cancers was consistently higher in

213 the HF group in both the unadjusted and multivariable-adjusted analysis (**Table 3**), with the
214 highest HRs noted for hematologic and lung malignancy. This association remained constant
215 in the separate analysis by sex except for skin cancer (**S2 Table**). The adjusted risk of overall
216 cancer was also significantly increased in all pre-specified subgroups (**S1 Fig**).

Table 3. Association of heart failure with cancer development in the 'no lag' and '2-year lag' analysis

Outcomes	No lag				2-year lag			
	Unadjusted	p value	Adjusted*	p value	Unadjusted	p value	Adjusted*	p value
Overall cancer	1.68 (1.64-1.71)	<0.0001	1.64 (1.61-1.68)	<0.0001	1.11 (1.08-1.15)	<0.0001	1.09 (1.05-1.13)	<0.0001
Site-specific groups								
Gastrointestinal	1.51 (1.46-1.56)	<0.0001	1.49 (1.44-1.54)	<0.0001	0.99 (0.93-1.05)	0.7839	0.97 (0.91-1.03)	0.3794
Liver/Biliary/Pancreas	1.90 (1.82-1.98)	<0.0001	1.80 (1.72-1.88)	<0.0001	1.22 (1.13-1.31)	<0.0001	1.16 (1.08-1.25)	<0.0001
Lung	2.26 (2.16-2.37)	<0.0001	2.22 (2.12-2.32)	<0.0001	1.38 (1.28-1.49)	<0.0001	1.35 (1.25-1.46)	<0.0001
Prostate [†]	1.40 (1.32-1.50)	<0.0001	1.40 (1.31-1.49)	<0.0001	1.01 (0.91-1.12)	0.8304	1.01 (0.91-1.12)	0.8040
Hematology	2.79 (2.58-3.02)	<0.0001	2.77 (2.55-3.00)	<0.0001	1.22 (1.05-1.42)	0.0065	1.20 (1.03-1.39)	0.0159
Genitourinary	1.61 (1.48-1.75)	<0.0001	1.55 (1.43-1.69)	<0.0001	1.10 (0.96-1.26)	0.1515	1.05 (0.92-1.20)	0.4423
Thyroid	1.34 (1.22-1.48)	<0.0001	1.30 (1.18-1.43)	<0.0001	0.89 (0.75-1.06)	0.1949	0.84 (0.70-1.00)	0.0545
Breast [‡]	1.44 (1.28-1.61)	<0.0001	1.36 (1.21-1.52)	<0.0001	1.16 (0.97-1.39)	0.0905	1.09 (0.91-1.31)	0.3143
Female reproductive [‡]	1.95 (1.72-2.20)	<0.0001	1.90 (1.68-2.15)	<0.0001	1.19 (0.96-1.48)	0.0979	1.14 (0.92-1.42)	0.2164
Head and neck	1.61 (1.40-1.86)	<0.0001	1.62 (1.41-1.87)	<0.0001	1.18 (0.93-1.48)	0.1556	1.19 (0.94-1.50)	0.1354
Skin	1.52 (1.11-2.09)	0.0085	1.53 (1.11-2.11)	0.0081	1.01 (0.61-1.67)	0.9496	1.00 (0.60-1.65)	0.9835

Values are expressed as hazard ratios (95% confidence interval).

*Adjusted by age, sex, income, diabetes mellitus, smoking, alcohol consumption and body mass index.

220 †Prostate cancer is analyzed only in men (n=66,687 in HF and n=333,435 in control for ‘no lag’ cohort; n=51,456 in HF and n=297,780 in
221 control for ‘2-year lag’ cohort).

222 ‡Female reproductive malignancies and breast cancer are analyzed only in women (n=61,754 in HF and n=308,770 in control for ‘no lag’ cohort;
223 n=50,468 in HF and n=280,486 in control for ‘2-year lag’ cohort).

224 HF denotes heart failure.

225 **2-year lag analysis**

226 To avoid the potential surveillance bias, the same analyses were repeated after
227 eliminating patients with either cancer diagnosis established within 2 years of HF diagnosis
228 or having a follow-up duration of less than 2 years. About 80% of patients remained in the
229 HF group (n = 101,924), and 578,266 participants remained in the control group for
230 comparison. Similar to the original cohort, the HF group in the 2-year lag cohort showed a
231 higher prevalence of comorbidities, including obesity, smoking history, diabetes mellitus,
232 hypertension, and dyslipidemia, except for alcohol consumption (**S3 Table**).

233 The mean follow-up period of the 2-year lag cohort was 4.48 years (interquartile
234 range, 3.17 – 5.97 years). The number of cancer diagnoses and incidence rate per 1,000
235 person-year in the 2-year lag cohort are shown in **Table 2**. The cumulative incidence of
236 overall cancers in the 2-year lag cohort was still significantly higher in the HF group (p
237 =0.0001), although the gap between the two groups became smaller than that analyzed in the
238 original cohort (**Fig 2B**). Cox proportional hazard analysis showed that the HF group
239 demonstrated a significantly increased risk of overall cancers in both the unadjusted (HR
240 1.11, 95% CI 1.08 - 1.15; $p < 0.0001$) and multivariable-adjusted analysis (HR 1.09, 95% CI
241 1.05 - 1.13; $p < 0.0001$), with a smaller HR compared to that of no lag analysis (**Table 3**). The
242 adjusted risks of all cancers in all pre-specified subgroups are illustrated in **S2 Fig**.

243 With regard to the site-specific cancers, the risk remained higher for
244 liver/biliary/pancreas, lung, and hematologic malignancies, while the statistical difference
245 was lost for the other site-specific cancers in this analyses (**Table 3**). The cumulative
246 incidence of the four most common site-specific cancers in this 2-year lag analysis is shown
247 in **Fig 3B**.

248

249 DISCUSSION

250 In this study, we evaluated the relationship between HF and cancer development by
251 analyzing data from a large Korean NHIS claims database. The current population-based
252 cohort study has two main findings. Firstly, an abrupt increase of the new cancer diagnosis
253 was observed in the first 2 years of HF diagnosis. Subsequently, the 2-year lag analysis
254 (performed to minimize potential surveillance bias) proved a higher risk of overall cancer in
255 the HF group compared to the control group, although the difference in the cancer incidence
256 was much smaller. Secondly, the association of HF with the development of site-specific
257 cancers was variable. While the ‘no lag’ analysis showed consistently increased risk of all
258 site-specific cancers in both the unadjusted and multivariable-adjusted models, three subtypes
259 of malignancies (liver/biliary/pancreas, lung, and hematologic malignancies) remained at
260 higher risk in the ‘2-year lag’ unadjusted and multivariable-adjusted analyses.

261 A decade ago, HF and cancer were considered unrelated, with no influence on each
262 other. Recent studies, however, suggested a shared pathophysiologic link between HF and
263 cancer. For instance, chronic inflammation is a well-established mechanism of cancer
264 development [15], which can also act as a crucial disease modifier in HF [16,17]. This is
265 advocated by the elevated levels of pro-inflammatory cytokines that are also closely
266 associated with the adverse outcomes in patients with HF [17-19]. This plausible hypothesis
267 is further supported by a higher risk of cancer in other chronic inflammatory disorders
268 [6,20,21]. More recently, Meijers *et al.* reported that precancerous lesions developed more
269 frequently in HF-induced mice [22]. They found that several proteins, such as serpin A3 and
270 A1, fibronectin, ceruloplasmin, and paraoxonase 1, were associated with enhanced tumor
271 growth, independent of hemodynamic impairment, suggesting a potential mechanism of

272 tumorogenesis induced by circulating factors produced by the failing heart [22]. In addition,
273 they proved that elevated levels of inflammatory biomarkers in healthy participants had a
274 predictive value for new-onset cancer independent of cancer-related risk factors, such as age,
275 smoking status, and obesity [22]. Thus, the study provided evidence that HF is closely related
276 to cancer development by enhanced inflammation.

277 An increased risk of cancer in HF patients was previously suggested in four cohort
278 studies. In 2013, Hasin *et al.* reported a 68% higher risk of cancer development in a cohort
279 including 596 patients with HF after adjusting for cancer-related risk factors, including
280 obesity, smoking status, and comorbidities [7]. This finding was reproduced in a cohort of HF
281 patients caused by myocardial infarction (n = 1,081) [8], in the Danish HF cohort (n = 9,307)
282 [6] and in the Japanese population (n=5,238) [9]. In contrast, only one study refuted the
283 association between HF and cancer development [10]. The study exclusively enrolled male
284 population and used a patients-self report for HF and cancer diagnosis, and as such this issue
285 is still under debate. Hence, additional, sizable studies with diagnostic validation and
286 inclusion of both sexes are required to establish the association between these two grave
287 diseases [23].

288 The current study presented an association between HF and cancer, with a HR of
289 1.64 for overall cancer and HRs in the range of 1.30 to 2.77 for site-specific cancer subtypes
290 in the ‘no lag’ analysis. The most powerful advantage of our study compared to previous
291 reports was the largest sample size of the cohort including 128,441 patients with HF and
292 642,205 community-based age- and sex-matched controls. In addition, a cancer diagnosis was
293 verified by strict nationwide monitoring due to unique national insurance system and *Rare*
294 *Intractable Disease* program of Korea, enabling accurate estimation of cancer development.
295 More importantly, ‘2-year lag’ analysis was performed to minimize any possibility of co-

296 existence of HF and hidden or subclinical malignancy, and the surveillance bias. In fact,
297 during the first 2 years after HF diagnosis, the detection rate of cancer was substantially
298 elevated compared to that of the general population, suggesting that surveillance bias may
299 play a role due to the intensified medical evaluation. Nevertheless, the HF group still
300 presented an increased cancer risk in the '2-year lag' analysis, although the association was
301 weaker, supporting the link between the two diseases.

302 Of interest, each site-specific cancer had different risks in the 2-year lag adjusted
303 model; specifically, hematologic malignancy, lung cancer, and liver/biliary/pancreas cancer
304 presented persistently elevated risk. Similar findings were demonstrated in the Danish HF
305 cohort study [6]. This result implies that the impact of HF on cancer development may differ,
306 and we can speculate that the mechanisms involved in the link between the two devastating
307 disorders can be multifactorial.

308 Clinicians are apt to focus on cardiovascular consequences in patients with HF.
309 However, with improved survival in HF and the aging societies, cancer has become non-
310 negligible morbidity among the patients with HF [24], accounting for 10% of total deaths
311 [3,4]. Outcomes of superimposed cancer in patients with HF are more dismal than in patients
312 with HF alone [7], or cancer patients without HF [6,25]. Furthermore, the clinical decision
313 can be modified in the presence of the concurrent malignancy; for example, the decision to
314 implant a defibrillator or a left ventricular assist device can be rejected in patients diagnosed
315 with cancer at an advanced stage [26]. Therefore, timely detection of de novo malignancy in
316 patients with HF can be critical. Our findings demonstrated the higher cancer incidence in
317 patients with HF than that of the general population, which implies that physicians are more
318 encouraged to keep the possibility of coexisting malignancy in mind, and to perform active
319 cancer screening in these population at risk. In particular, the surveillance could be targeted

320 on the certain types of malignancies (i.e., lung cancer), given the differential risk of each site-
321 specific cancer. Future studies are warranted to investigate whether surveillance of cancer
322 screening can lead to an improvement in clinical outcomes in patients with HF.

323 This study is not without limitations. First, more detailed information of cancer-
324 associated covariates, such as a family history of cancer and physical activity, was lacking.
325 Medication data regarding cardiovascular drugs, such as angiotensin-converting enzyme
326 inhibitors, angiotensin-receptor blockers, and beta-blockers, were also unavailable. Although
327 a positive correlation between some HF medications, like angiotensin-receptor blockers, and
328 cancer risk was previously reported [27,28], more recent publications refuted their
329 associations [29-31]. Second, the estimation of left ventricular ejection fraction was not
330 available. Although no substantial difference in the risk of cancer by left ventricular ejection
331 fraction was reported, data on left ventricular systolic function would have strengthened our
332 data [7,8,9]. Finally, the median follow-up of 4.06 years may not be long enough to
333 adequately assess the impact of HF on cancer development. However, we believe that this
334 limitation can be overcome by the large sample size of our cohort and by complete follow-up
335 data obtained because of the unique medical reimbursement system of our country.

336

337 **CONCLUSIONS**

338 This sizable, population-based cohort study found that patients with HF may carry a
339 substantial risk of cancer development. In particular, the risk of liver/biliary/pancreas, lung,
340 and hematologic malignancies was increased, even after excluding HF patients who
341 developed cancer within 2 years after HF diagnosis in order to minimize potential

342 surveillance bias. Therefore, from the clinical point of view, increased awareness and active
343 surveillance of malignancy need to be considered in patients with HF.

344 **Acknowledgments**

345 None

346

347 **Author Contributions**

348 Conceptualization: Soongu Kwak and Hyung-Kwan Kim;

349 Data curation: Soongu Kwak, Soonil Kwon, Seo-Young Lee, Seokhun Yang, Hyun-Jung Lee,

350 Heesun Lee, Jun-Bean Park, and Hyung-Kwan Kim;

351 Formal analysis: Soongu Kwak, Kyungdo Han, and Hyung-Kwan Kim;

352 Funding acquisition: Hyung-Kwan Kim

353 Investigation: Soongu Kwak, Kyungdo Han, and Hyung-Kwan Kim;

354 Methodology: Kyungdo Han and Hyung-Kwan Kim;

355 Project Administration: Soongu Kwak and Hyung-Kwan Kim;

356 Resources: Kyungdo Han and Hyung-Kwan Kim;

357 Software: Kyungdo Han;

358 Supervision: Yong-Jin Kim and Hyung-Kwan Kim;

359 Validation: Kyungdo Han and Hyung-Kwan Kim;

360 Visualization: Soongu Kwak;

361 Writing – Original Draft Preparation: Soongu Kwak and Hyung-Kwan Kim;

362 Writing – Review & Editing: Soongu Kwak, Soonil Kwon, Seo-Young Lee, Seokhun Yang,

363 Hyun-Jung Lee, Heesun Lee, Jun-Bean Park, Yong-Jin Kim, and Hyung-Kwan Kim;

364

365

367 REFERENCE

368 1. Dwyer-Lindgren L, Bertozzi-Villa A, Stubbs RW, Morozoff C, Kutz MJ, Huynh C et
369 al. Us county-level trends in mortality rates for major causes of death, 1980-2014. *JAMA*
370 2016;316:2385-2401.

371 2. Joffe SW, Webster K, McManus DD, Kiernan MS, Lessard D, Yarzebski J et al.
372 Improved Survival After Heart Failure: A Community-Based Perspective. *J Am Heart Assoc*
373 2013;2:e000053.

374 3. Lee DS, Gona P, Albano I, Larson MG, Benjamin EJ, Levy D et al. A systematic
375 assessment of causes of death after heart failure onset in the community: impact of age at death,
376 time period, and left ventricular systolic dysfunction. *Circ Heart Fail* 2011;4:36-43.

377 4. Henkel DM, Redfield MM, Weston SA, Gerber Y, Roger VL. Death in heart failure:
378 a community perspective. *Circ Heart Fail* 2008;1:91-97.

379 5. Ameri P, Canepa M, Anker MS, Belenkoy Y, Bergler-Klein J, Cohen-Solal A et al.
380 Cancer diagnosis in patients with heart failure: epidemiology, clinical implications and gaps in
381 knowledge. *Eur J Heart Fail* 2018;20:879-887.

382 6. Banke A, Schou M, Videbaek L, Moller JE, Torp-Pedersen C, Gustafsson F et al.
383 Incidence of cancer in patients with chronic heart failure: a long-term follow-up study. *Eur J*
384 *Heart Fail* 2016;18:260-266.

385 7. Hasin T, Gerber Y, McNallan SM, Weston SA, Kushwaha SS, Nelson TJ et al. Patients
386 with heart failure have an increased risk of incident cancer. *J Am Coll Cardiol* 2013;62:881-
387 886.

388 8. Hasin T, Gerber Y, Weston SA, Jiang R, Killian JM, Manemann SM et al. Heart
389 Failure After Myocardial Infarction Is Associated With Increased Risk of Cancer. *J Am Coll*

390 Cardiol 2016;68:265-271.

391 9. Sakamoto M, Hasegawa T, Asakura M, Kanzaki H, Takahama H, Amaki M et al. Does
392 the pathophysiology of heart failure prime the incidence of cancer? *Hypertens Res*
393 2017;40:831-836.

394 10. Selvaraj S, Bhatt DL, Claggett B, Djousse L, Shah SJ, Chen J et al. Lack of Association
395 Between Heart Failure and Incident Cancer. *J Am Coll Cardiol* 2018;71:1501-1510.

396 11. Lee J, Lee JS, Park SH, Shin SA, Kim K. Cohort Profile: The National Health
397 Insurance Service-National Sample Cohort (NHIS-NSC), South Korea. *Int J Epidemiol*
398 2017;46:e15.

399 12. Na SJ, Kang MJ, Yu DS, Han KD, Lee JH, Park YG et al. Cancer risk in patients with
400 Behcet disease: A nationwide population-based dynamic cohort study from Korea. *J Am Acad*
401 *Dermatol* 2018;78:464-470.e2.

402 13. Park JH, Kim DH, Park YG, Kwon DY, Choi M, Jung JH et al. Cancer risk in patients
403 with Parkinson's disease in South Korea: A nationwide, population-based cohort study. *Eur J*
404 *Cancer* 2019;117:5-13.

405 14. Lee KR, Hwang IC, Han KD, Jung J, Seo MH. Waist circumference and risk of breast
406 cancer in Korean women: A nationwide cohort study. *Int J Cancer* 2018;142:1554-1559.

407 15. Balkwill F, Mantovani A. Cancer and Inflammation: Implications for Pharmacology
408 and Therapeutics. *Clin Pharmacol Ther* 2010;87:401-406.

409 16. Van Linthout S, Tschope C. Inflammation - Cause or Consequence of Heart Failure or
410 Both? *Curr Heart Fail Rep* 2017;14:251-265.

411 17. Dick SA, Epelman S. Chronic Heart Failure and Inflammation: What Do We Really
412 Know? *Circ Res* 2016;119:159-176.

413 18. Mann DL. Innate immunity and the failing heart: the cytokine hypothesis revisited.

414 19. Vasan RS, Sullivan LM, Roubenoff R, Dinarello CA, Harris T, Benjamin EJ et al.
415 Inflammatory markers and risk of heart failure in elderly subjects without prior myocardial
416 infarction: the Framingham Heart Study. *Circulation* 2003;107:1486-1491.
417
418 20. Deng T, Lyon CJ, Bergin S, Caligiuri MA, Hsueh WA. Obesity, Inflammation, and
419 Cancer. *Annu Rev Pathol* 2016;11:421-449.
420
421 21. De Brujin KM, Arends LR, Hansen BE, Leeflang S, Ruiter R, van Eijck CH.
422 Systematic review and meta-analysis of the association between diabetes mellitus and
423 incidence and mortality in breast and colorectal cancer. *Br J Surg* 2013;100:1421-1429.
424
425 22. Meijers WC, Maglione M, Bakker SJL, Oberhuber R, Kieneker LM, de Jong S et al.
426 Heart Failure Stimulates Tumor Growth by Circulating Factors. *Circulation* 2018;138:678-691.
427
428 23. Boffetta P, Malhotra J. Impact of Heart Failure on Cancer Incidence: A Complicated
429 Question. *J Am Coll Cardiol* 2018;71:1511-1512.
430
431 24. Farré N, Vela E, Clèries M, Bustins M, Cainzos-Achirica M, Enjuanes C et al. Real
432 world heart failure epidemiology and outcome: A population-based analysis of 88,195 patients.
433 *PLoS One* 2017;12:e0172745.
434
435 25. Ameri P, Canepa M, Anker MS, Belenkoy Y, Bergler-Klein J, Cohen-Solal A et al.
436 Heart Failure Association Cardio-Oncology Study Group of the European Society of
437 Cardiology. Cancer diagnosis in patients with heart failure: epidemiology, clinical implications
438 and gaps in knowledge. *Eur J Heart Fail* 2018;20:879-887.
439
440 26. Han JJ, Acker MA, Atluri P. Left Ventricular Assist Devices. *Circulation* 2018;138:
441 2841-2851.
442
443 27. Sipahi I, Debanne SM, Rowland DY, Simon DI, Fang JC. Angiotensin-receptor
444 blockade and risk of cancer: meta-analysis of randomised controlled trials. *Lancet Oncol*

438 2010;11:627-636.

439 28. Ahern TP, Lash TL, Sorensen HT, Pedersen L. Digoxin treatment is associated with
440 an increased incidence of breast cancer: a population-based case-control study. *Breast Cancer*
441 *Res* 2008;10:R102.

442 29. Bangalore S, Kumar S, Kjeldsen SE, Makani H, Grossman E, Wetterslev J et al.
443 Antihypertensive drugs and risk of cancer: network meta-analyses and trial sequential analyses
444 of 324,168 participants from randomised trials. *Lancet Oncol* 2011;12:65-82.

445 30. Cardwell CR, Mc Menamin UC, Hicks BM, Hughes C, Cantwell MM, Murray LJ.
446 Drugs affecting the renin-angiotensin system and survival from cancer: a population based
447 study of breast, colorectal and prostate cancer patient cohorts. *BMC Med* 2014;12:28.

448 31. Sipahi I, Chou J, Mishra P, Debanne SM, Simon DI, Fang JC. Meta-analysis of
449 randomized controlled trials on effect of angiotensin-converting enzyme inhibitors on cancer
450 risk. *Am J Cardiol* 2011;108:294-301.

451

452

453

454

455

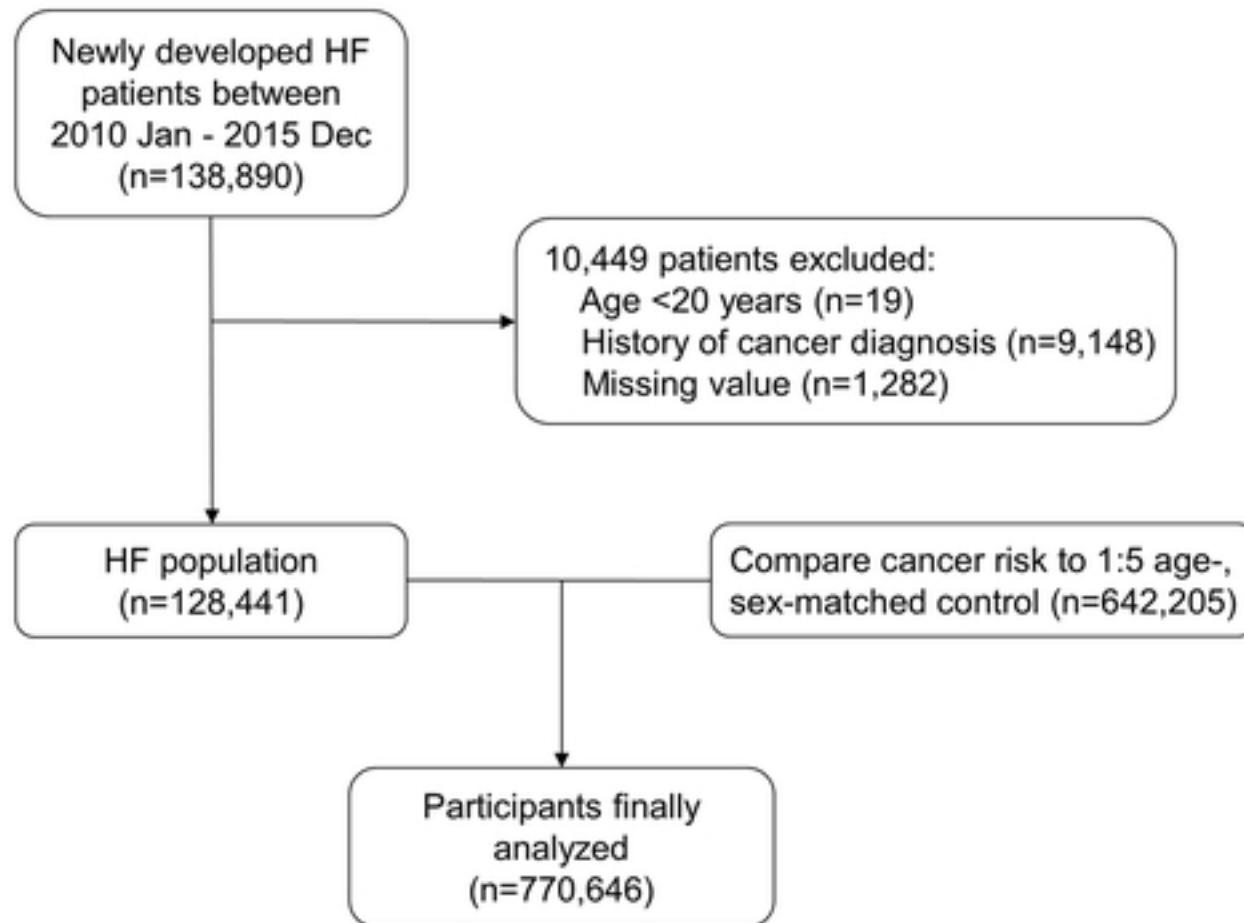
456

457

458

459 **Supporting information**

460 **S1 Table. ICD-10 codes of overall and subtypes of cancers. (DOCX)**


461 **S2 Table. Association of heart failure with cancer development in a separate analysis by**
462 **sex. (DOCX)**

463 **S3 Table. Baseline characteristics of the study population excluding patients with either**
464 **cancer diagnosis within 2 years of HF diagnosis or having follow-up duration of less than**
465 **2 years. (DOCX)**

466 **S1 Fig. Association of cancer risk with HF in major subgroups (no lag cohort). (DOCX)**

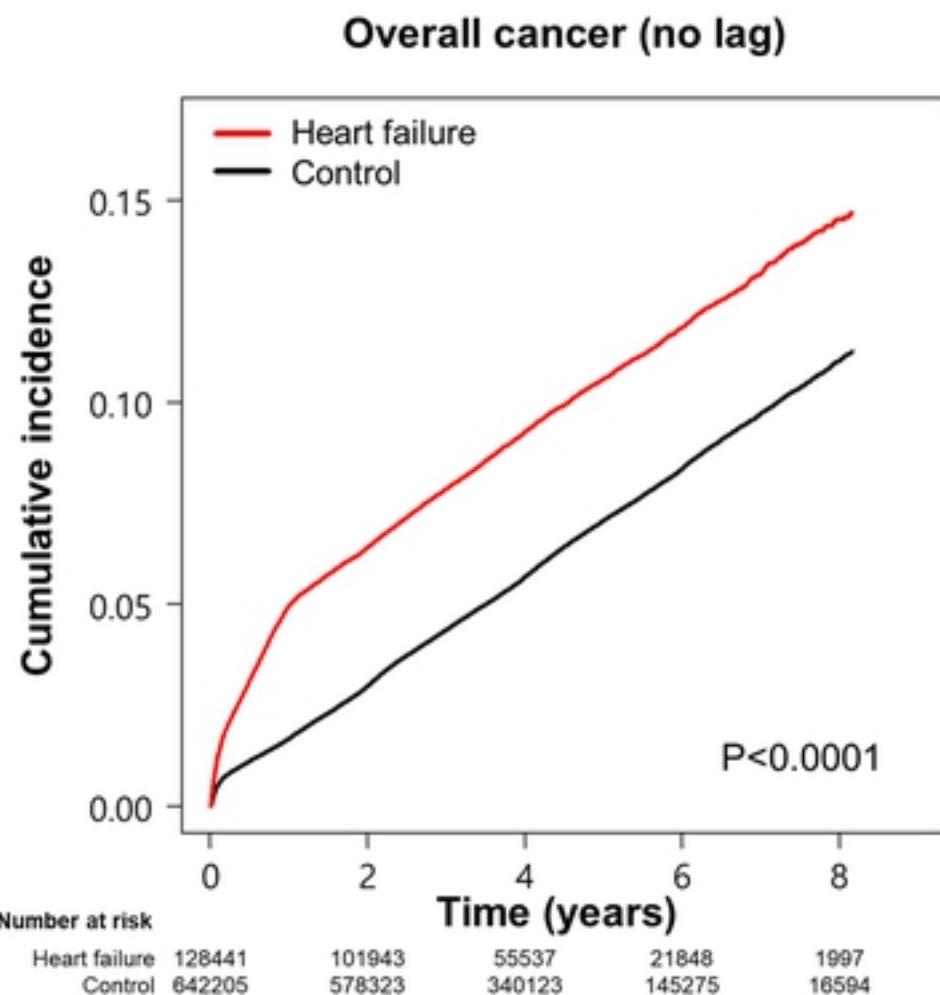

467 **S2 Fig. Association of cancer risk with HF in major subgroups (2-year lag cohort). (DOCX)**

Figure 1

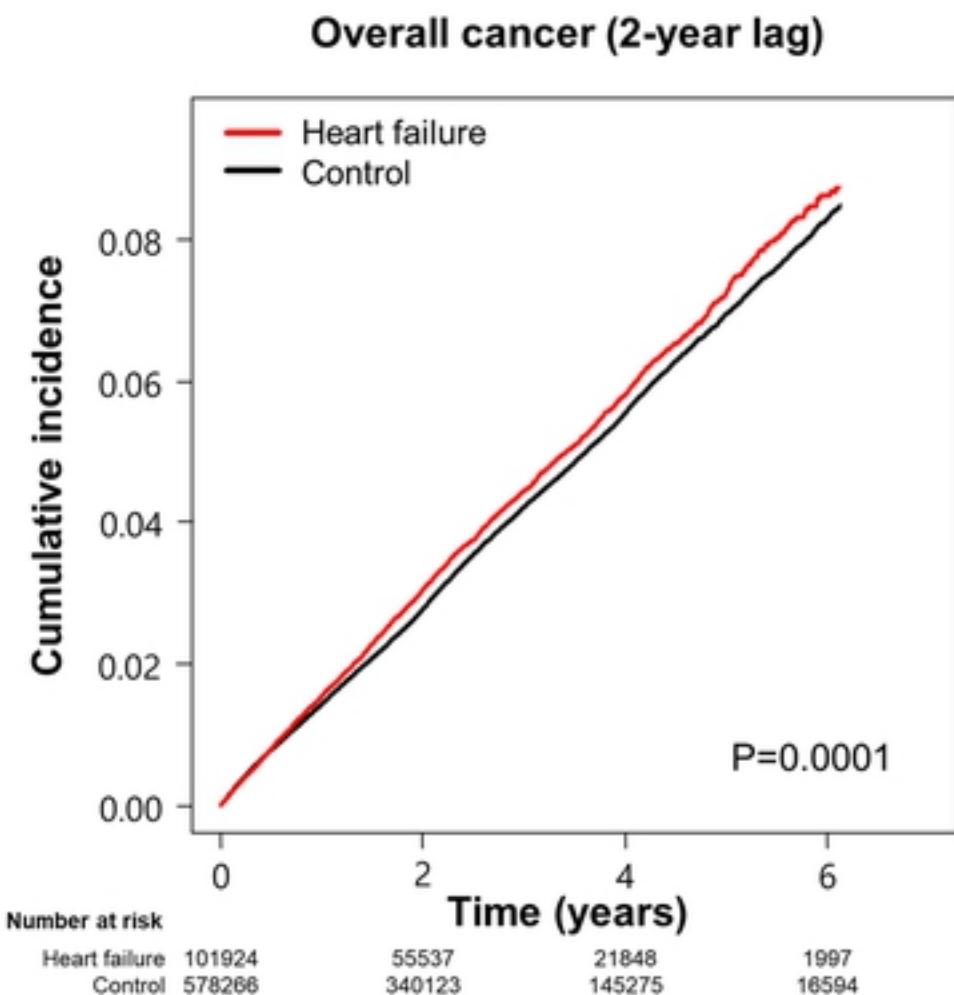
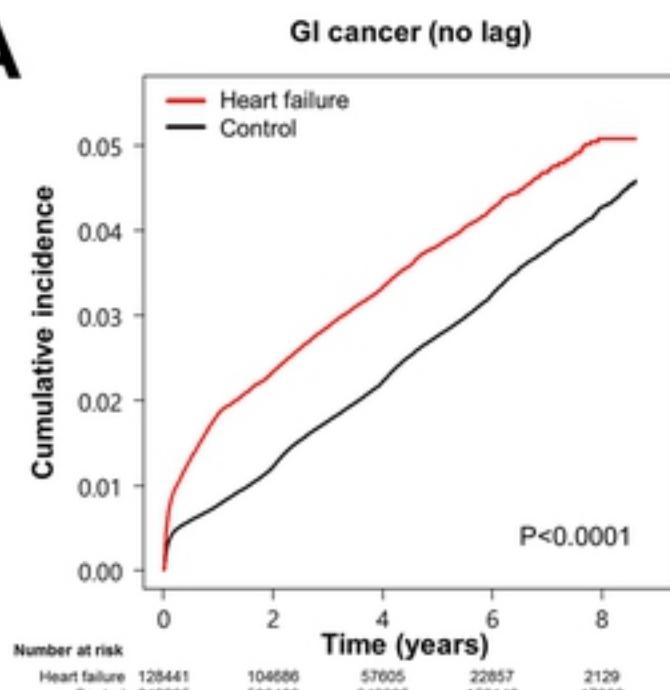


Figure 2

A


B

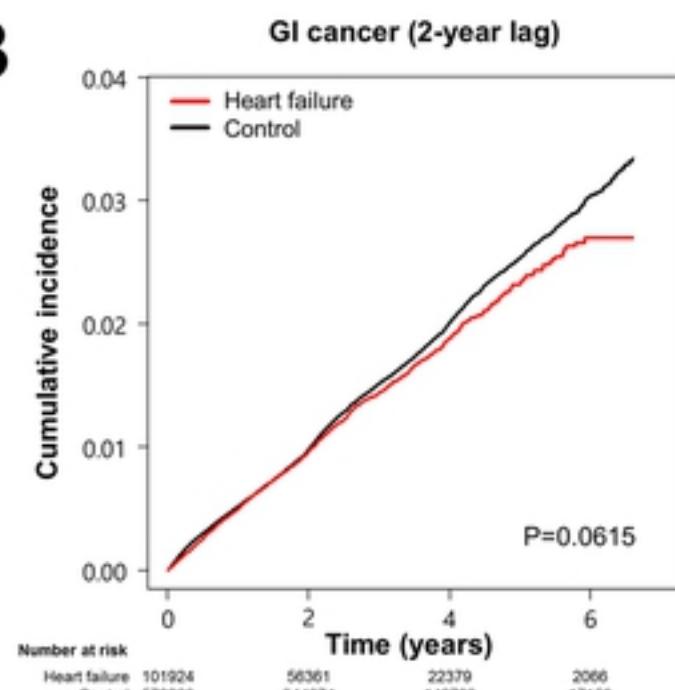
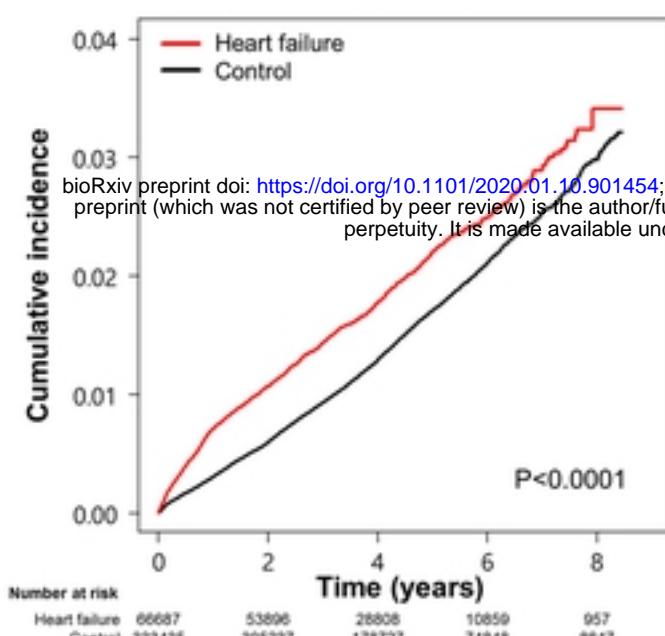
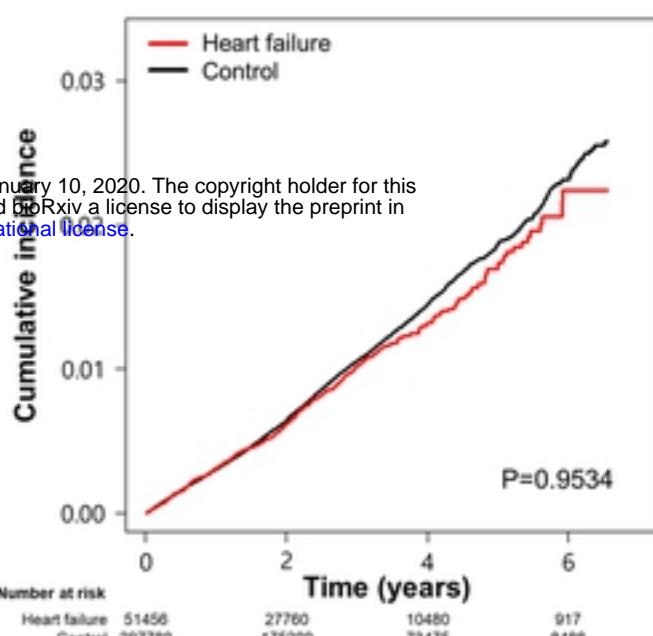
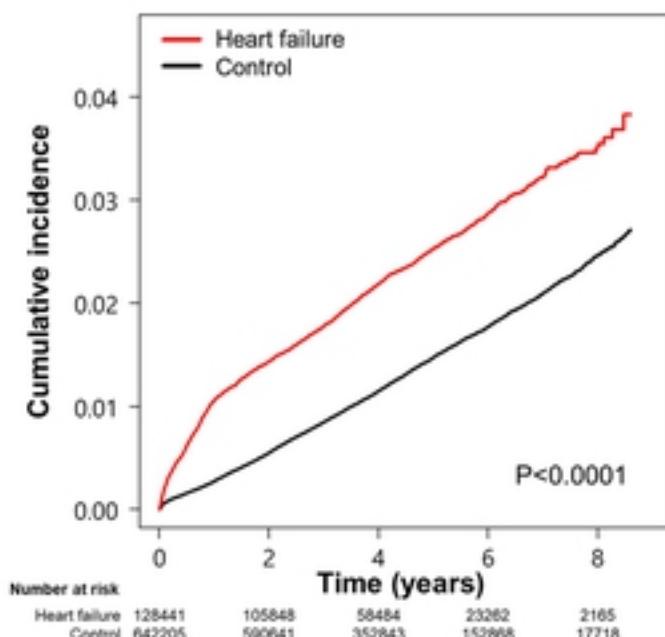
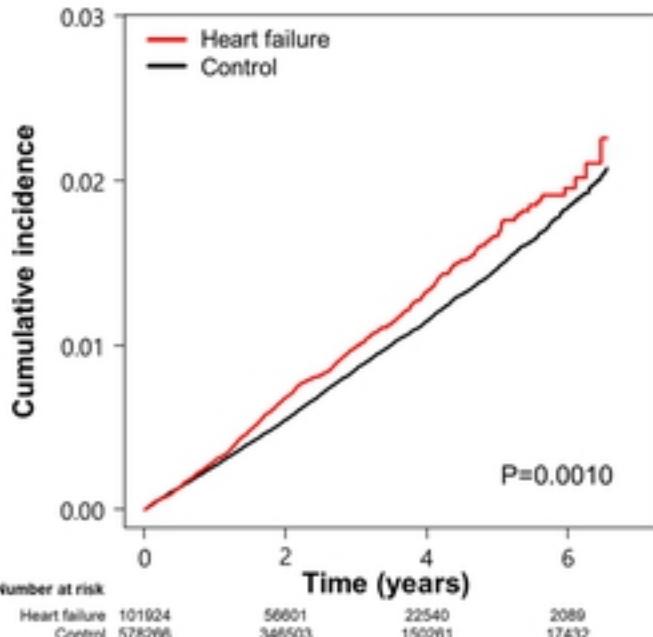

Fig2

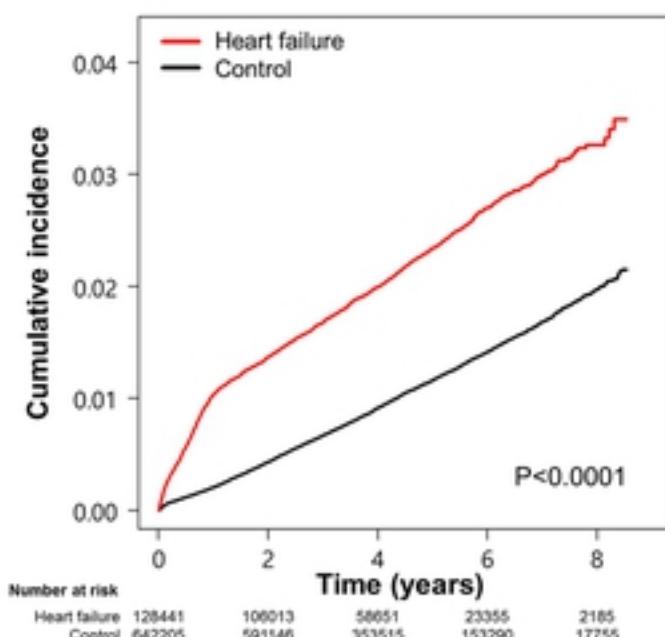
Figure 3


A


B


Prostate cancer (no lag)


Prostate cancer (2-year lag)


Liver/Biliary/Pancreas cancer (no lag)

Liver/Biliary/Pancreas cancer (2-year lag)

Lung cancer (no lag)

Lung cancer (2-year lag)

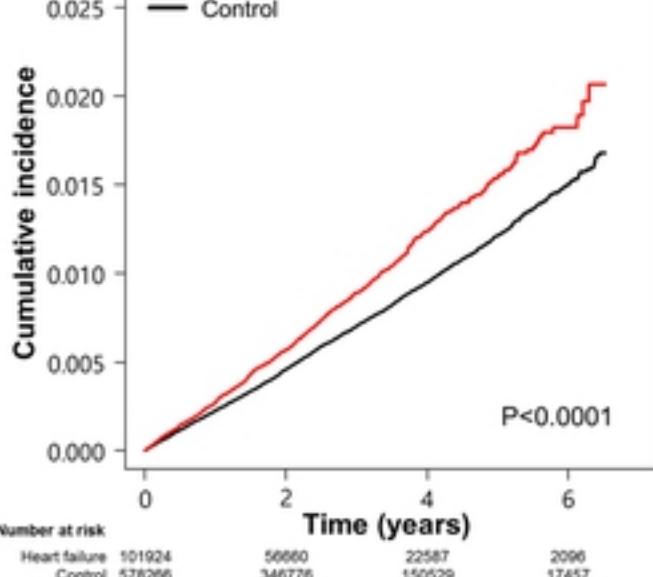


Fig3