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ABSTRACT

In contrast with our everyday experience using brain circuits, it can take a prohibitively
long time to train a computational system to produce the correct sequence of outputs in the
presence of a series of inputs. This suggests that something important is missing in the way in
which models are trying to reproduce basic cognitive functions. In this work, we introduce a new
neuronal network architecture that is able to learn, in a single trial, an arbitrary long sequence of
any known objects. The key point of the model is the explicit use of mechanisms and circuitry
observed in the hippocampus, which allow the model to reach a level of efficiency and accuracy
that, to the best of our knowledge, is not possible with abstract network implementations. By
directly following the natural system’s layout and circuitry, this type of implementation has the
additional advantage that the results can be more easily compared to experimental data, allowing
a deeper and more direct understanding of the mechanisms underlying cognitive functions and

dysfunctions, and opening the way to a new generation of learning architectures.

Introduction

If we decide to have a second look at a nice and unique piece of art, while navigating through the
halls of a museum that we are visiting for the first time, we do not need a long and extensive
learning session. Just a single walk during the initial visit will usually (although not always) be
sufficient to reach our goal. This is in striking contrast with the notoriously long and difficult
process that any deep learning algorithm (reviewed in Schmidhuber, 2015) needs to follow to learn

a trajectory through a sequence of objects. Depending on the problem, training a neural network

1


https://doi.org/10.1101/2020.01.09.898064
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.09.898064; this version posted January 10, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

to produce the correct sequence of outputs in the presence of a series of inputs can take a
prohibitively long training time. This is a clear indication that something important is missing in
the way in which computational models try to reproduce basic cognitive functions. Nevertheless,
using customized network architectures and clever learning algorithms, recurrent neural networks
such as Long Short-Term Memory or Bidirectional Recurrent neural networks have reached
impressive practical results (reviewed in Yu et al., 2019). These networks, however, have little
resemblance with the biological architecture of the hippocampus, a brain region well known to
integrate space, time and memory (reviewed in Eichenbaum, 2017), and to also deal in an
extremely efficient way with the task to learn how to follow cues during spatial navigation (in a
museum, a maze, a series of roads, a building, etc.). In this work, we tried a new approach to
learning a sequence of objects, by building a neuronal network architecture that significantly
departs from the current mainstream of deep learning algorithms; we show that by assembling cell
and circuit properties observed in the hippocampus, the resulting network is able to learn an
arbitrarily long sequence of arbitrary objects in a single trial, opening the way to a new generation

of artificial intelligence algorithms.
Methods

The network was implemented in PYNN (Davison et al., 2009), and it was composed from 21
leaky integrate-and-fire (LIF) neurons with the same electrophysiological properties. During the
learning phase, the synaptic weights evolved following a spike-time-dependent synaptic plasticity
rule (STDP) implemented by considering experimental findings in the hippocampus (Nishiyama

et al., 2000). The Robot Operating System (ROS, https://www.ros.org/about-ros/) was used to

build a basic closed-loop environment to get input and direct the movement of a virtual robot.
Several python custom transfer functions were also implemented to integrate the PYNN and ROS
code into the NeuroRobotics Platform of the Human Brain Project (NRP-HBP,

https://www.humanbrainproject.eu/en/robots/). As soon as the corresponding paper is published,

all model and simulation files used for this work will be publicly available on ModelDB

(https://senselab.med.yale.edu/ModelDB/), and on the HBP Brain  Simulation

(https://www.humanbrainproject.eu/en/brain-simulation/brain-simulation-platform/) and

NeuroRobotics (https://www.humanbrainproject.eu/en/robots/) Platforms.

Results
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For the purposes of this work, the network was composed of 21 LIF neurons arranged as a feed-
forward network schematically shown in Fig.1. According to their location and connectivity in the
network, the different neurons were labeled as Place Cells (PC), object cells (0bj), persistent firing
cells (PF), and left and right cells (L and R, respectively). It should be stressed that we used cell
and circuit properties observed in the hippocampus, such as:

1) cells selectively firing in presence of specific inputs associated with a given object;
this sparse and explicit coding has been observed experimentally (e.g. Quiroga et
al., 2005), and we have previously shown how it can be implemented in a
biophysically detailed model (Migliore et al., 2008). We indicated these cells as obj
in Fig.1. In general, by object we mean a set of incoming fibers collectively coding
for a number of features forming a sparse representation of a multisensorial input,
and targeting a single or very few neurons. Each obj cell makes synaptic contacts
with all PC cells. For the sake of simplicity, in this work we assumed that only one
obj cell will be activated when the corresponding object is presented as input.

2) Persistent firing cells, PF in Fig.1. These cells are active during the maintenance
period of cognitive tasks (Boran et al., 2019), and imply internal processing in the
absence of an external input. We assumed that they are activated by an input object,
and make synaptic contacts with all obj cells except the one corresponding to the
same object, as illustrated by the grey circles between PF and obj cells in Fig.1.
Consistently with experimental findings (Boran et al., 2019), a PF cell begins tonic
firing just before the corresponding obj cell becomes inactive, this firing ends when
new object is presented as input.

3) Place Cells, PC in Fig.1. A hallmark of spatial navigation, these cells are commonly
found in the CA1 hippocampal region (reviewed in Danjo, 2019); they fire when an
animal is in a specific spatial location, and do not represent just space but also
contextual information (Gulli et al., 2020). In our network, they are responsible for
generating a signal when an object is observed with a specific head direction (HD);
this output is used to control robot movement.

4) Avoidance path. This is another mechanism commonly observed in hippocampal
CALl area, that also depends on the integrated activity with other brain areas

(reviewed in Giovannini et al., 2015); in the network, we implemented this signal
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by generating activity in the left/right direction, opposite to the location of unknown

objects such as walls and obstacles.

next HD/obj
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Fig. 1: Network architecture. Schematic representation of the network. Circles of different colors (blue,
red, and black) represent neurons tuned to different input cues (different objects in this case); Blue
pathways represent external inputs carrying contextual information (object identification and the current
Head Direction (HD), in this case); colored squares indicate that the relative cell will be activated
whenever the corresponding object is present in the input stream. Grey circles indicate plastic synapses;
obj, object cell; PC, Place cell; PF, persistent firing cell; L, left; R, right; For clarity, only 3 of the 12 PC
cells used in the network are shown in the diagram.

There are two main inputs to the network: one representing the current head direction and one
representing an object (large blue pathways in Fig.1). According to their content, these input
pathways will activate one obj, one PC, and one PF cell, as represented by the small colored
squares along both pathways. This is a simplified organization, to illustrate the proof of principle.
The same general network organization will also work in a more natural layout, where a complex

input will activate a number of 0obj neurons in a more distributed fashion.
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We tested the network by connecting it to a basic virtual mobile robot, available in the NRP-
HBP. A movie of the (single) learning trial and of recall tests, under different conditions, is

presented as Supplementary material. The network dynamics and synaptic weights evolution
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Fig. 2: Firing patterns and synaptic weights evolution during learning and recall. (Learning) firing
patterns during a typical learning session, phase a) and b) are described in the main text. PF and obj labels
are color coded to represent the corresponding object. PCI-3 represent neurons originally tuned to fire for
three different head directions; during the learning phase, two of them (PC1 and PC3) will become place
cells, and will signal to the robot the direction to take to go to the next object in the sequence. The insets at

22-26 and 45-51 sec show the evolution of selected synaptic weights. (Recall) raster plots of the same
neurons in Learning during a recall session.

during the exploration of an environment with three objects is illustrated in Fig.2. We assumed

that these objects (screens of different colors in this case) are already known to the network, and
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therefore, that their presence in the input will generate a train of spikes in the corresponding obj
cell.
The raster plots in Fig.2 represent the firing patterns of different cells during the learning and recall

phases; they will be better appreciated if compared with the movie (see Supplementary movie).

Learning phase:

a) Inthe absence of a known input, the robot does a stereotypical space exploration by looking
around counterclockwise to find a known object. This movement generates the sequential
activation of the PC cells tuned to the different head directions (for clarity, this part is not
reported in Fig.2). As soon as a known object enters the visual field (a red object in this
example) it will activate the red obj cell, and its spikes will propagate to all PC cells;
however, at any given instant, only one of the PC cells is also independently firing in
response to the current head direction information (PC/ in this example); the two
concurring inputs on this neuron will potentiate the red obj-PCI synaptic weight (Fig.2,
learning, inset at sec 22-26).

b) In the meanwhile, the PFred cell will also begin to generate spikes, which will be
propagated to all the other 0bj cells, while the robot looks for the next object; when it sees
it (a blue object, see Fig.2 learning, beginning at sec 45), two events occur: 1) the
potentiation of the PFred-blue obj synaptic contact (Fig.2, inset at 46 sec, grey line),
because of the concurrent activation of the blue and PFred neurons and, 2) the potentiation
of the blue obj—PC3 synapse (Fig.2 inset at 46-51 sec, black line), because of the concurrent
activation of the blue and PC3 neuron (corresponding to the current head direction); this is
a crucial point, and it is the basic process through which the network learns the direction
to be taken after any given object in a sequence.

c) Points a) and b) are repeated until the goal is reached.

These steps, executed in a single pass until the goal is reached, conclude the learning phase.

From the previous discussion, it should be clear that the network will correctly learn sequences of
any length and any object combination; the key point is that the STDP mechanism is sufficient to

potentiate the correct synapses to learn the direction to the next object.

Recall phase
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During a recall phase (see Fig.2, recall), the robot, controlled by the firing generated by
the PC cells with potentiated synapses, will now follow a smooth path through all the objects (see
Supplementary movie). Note that all neurons are sequentially activated following the learned
sequence. This corresponds to the typical firing behavior observed experimentally for place cells
during spatial navigation (e.g. Haimerl et al., 2019). In a different recall session (see
Supplementary movie), we demonstrate how the robot is also able to avoid walls and obstacles

along the path, through the activity of the avoidance cells (not shown in Fig.2).

Discussion

In this work, we have introduced a new neuronal network architecture that is able to learn,
in a single trial, an arbitrary long sequence of any known objects. The key point to obtain this
result was the explicit use of mechanisms and circuitry observed in the hippocampus, instead of
the usual artificial network of identical point neurons recurrently connected all-to-all and evolving
following abstract learning rules. More generally, the model supports the idea that, by explicitly
including biologically plausible interactions among the different neuron types in different cortical
and subcortical structures (reviewed in Hinman et al., 2018), one can obtain a network able to
perform as efficiently as in the real system. The crucial point is the ability to rapidly configure the
network, following the type of conjunctive input processing experimentally observed at cellular
level (Bittner et al., 2015). At this moment, this is the only model of spatial navigation able to
produce this type of result. The main limitations of this simple proof of principle implementation
are that:
a) the network does not learn new objects; this mechanism can be added to the network through a
heterosynaptic competition process (Fiete et al., 2010; Rajan et al., 2016) that, in the context of
our model, will be able to learn a new object and eventually include it in the network on the fly,
during the learning phase.
b) confusion may arise in case of a sequence with multiple identical choices, such as when the
same object appears in the sequence in two or more different places after a given object, and when
it is also seen from the same angle; however, even a human could miss the right choice in this case,
without additional cues or previous learning phases.
¢) complex scenes, such as those including multiple known objects and contextual cues, cannot be

properly processed with the current implementation; they require a mechanism binding together
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objects and context information, known to be in effect in the hippocampus to represent a scene
(see e.g. Gulli et al., 2020); this aspect was outside the scope of this work.

Most, if not all, of these limitations can be taken into account by an inhibitory network,
exerting its disambiguation action through lateral and feedback inhibition mechanisms (see e.g.
Priebe and Ferster, 2008; Yu et al., 2014). A simple comparison with a typical recurrent neural
network architecture, should make it clear that there is a striking difference with other model
networks. Consider the simplest case of learning just one sequence, composed from & objects
randomly chosen from a set of » different objects, without repetitions. The goal is to obtain a
network able to generate the correct list of objects, starting from any point in the sequence. During
a training session with an artificial network, the sequence must be presented many times in the
input, to let the weights evolve until the error is small enough to ensure a good performance during
a recall. The number of times will strongly depend on the length of the sequence and the details of
the learning rule, and the accuracy cannot be guaranteed to converge to a good value. Instead, our
network will learn the sequence in a single presentation, with 100% accuracy, no matter how long
the sequence is.

In this work, we have demonstrated how the explicit and direct use of biological circuitry
to model a cognitive function can reach a level of efficiency and accuracy that is not possible with
abstract network implementations. In spite of its current limitations, it should be clear why this
approach can lead to a new generation of artificial intelligence algorithms for spatial navigation.
The network self-organizes to the correct functional state without any need for complex learning
rules or conditional multinomial probability distribution functions keeping track of the different
states visited during navigation. By directly following the natural system’s layout and circuitry,
this type of implementation has the additional advantage that the results can be more easily
compared to experimental data, allowing a deeper and more direct understanding of the

mechanisms underlying cognitive functions and dysfunctions.
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