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ABSTRACT 

In contrast with our everyday experience using brain circuits, it can take a prohibitively 

long time to train a computational system to produce the correct sequence of outputs in the 

presence of a series of inputs. This suggests that something important is missing in the way in 

which models are trying to reproduce basic cognitive functions. In this work, we introduce a new 

neuronal network architecture that is able to learn, in a single trial, an arbitrary long sequence of 

any known objects. The key point of the model is the explicit use of mechanisms and circuitry 

observed in the hippocampus, which allow the model to reach a level of efficiency and accuracy 

that, to the best of our knowledge, is not possible with abstract network implementations. By 

directly following the natural system’s layout and circuitry, this type of implementation has the 

additional advantage that the results can be more easily compared to experimental data, allowing 

a deeper and more direct understanding of the mechanisms underlying cognitive functions and 

dysfunctions, and opening the way to a new generation of learning architectures.  

Introduction 

If we decide to have a second look at a nice and unique piece of art, while navigating through the 

halls of a museum that we are visiting for the first time, we do not need a long and extensive 

learning session. Just a single walk during the initial visit will usually (although not always) be 

sufficient to reach our goal. This is in striking contrast with the notoriously long and difficult 

process that any deep learning algorithm (reviewed in Schmidhuber, 2015) needs to follow to learn 

a trajectory through a sequence of objects. Depending on the problem, training a neural network 
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to produce the correct sequence of outputs in the presence of a series of inputs can take a 

prohibitively long training time. This is a clear indication that something important is missing in 

the way in which computational models try to reproduce basic cognitive functions. Nevertheless, 

using customized network architectures and clever learning algorithms, recurrent neural networks 

such as Long Short-Term Memory or Bidirectional Recurrent neural networks have reached 

impressive practical results (reviewed in Yu et al., 2019). These networks, however, have little 

resemblance with the biological architecture of the hippocampus, a brain region well known to 

integrate space, time and memory (reviewed in Eichenbaum, 2017), and to also deal in an 

extremely efficient way with the task to learn how to follow cues during spatial navigation (in a 

museum, a maze, a series of roads, a building, etc.). In this work, we tried a new approach to 

learning a sequence of objects, by building a neuronal network architecture that significantly 

departs from the current mainstream of deep learning algorithms; we show that by assembling cell 

and circuit properties observed in the hippocampus, the resulting network is able to learn an 

arbitrarily long sequence of arbitrary objects in a single trial, opening the way to a new generation 

of artificial intelligence algorithms. 

Methods 

The network was implemented in PYNN (Davison et al., 2009), and it was composed from 21 

leaky integrate-and-fire (LIF) neurons with the same electrophysiological properties. During the 

learning phase, the synaptic weights evolved following a spike-time-dependent synaptic plasticity 

rule (STDP) implemented by considering experimental findings in the hippocampus (Nishiyama 

et al., 2000). The Robot Operating System (ROS, https://www.ros.org/about-ros/) was used to 

build a basic closed-loop environment to get input and direct the movement of a virtual robot. 

Several python custom transfer functions were also implemented to integrate the PYNN and ROS 

code into the NeuroRobotics Platform of the Human Brain Project (NRP-HBP, 

https://www.humanbrainproject.eu/en/robots/). As soon as the corresponding paper is published, 

all model and simulation files used for this work will be publicly available on ModelDB 

(https://senselab.med.yale.edu/ModelDB/), and on the HBP Brain Simulation 

(https://www.humanbrainproject.eu/en/brain-simulation/brain-simulation-platform/) and 

NeuroRobotics (https://www.humanbrainproject.eu/en/robots/) Platforms.     

Results  
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For the purposes of this work, the network was composed of 21 LIF neurons arranged as a feed-

forward network schematically shown in Fig.1. According to their location and connectivity in the 

network, the different neurons were labeled as Place Cells (PC), object cells (obj), persistent firing 

cells (PF), and left and right cells (L and R, respectively). It should be stressed that we used cell 

and circuit properties observed in the hippocampus, such as: 

1) cells selectively firing in presence of specific inputs associated with a given object; 

this sparse and explicit coding has been observed experimentally (e.g. Quiroga et 

al., 2005), and we have previously shown how it can be implemented in a 

biophysically detailed model (Migliore et al., 2008). We indicated these cells as obj 

in Fig.1. In general, by object we mean a set of incoming fibers collectively coding 

for a number of features forming a sparse representation of a multisensorial input, 

and targeting a single or very few neurons. Each obj cell makes synaptic contacts 

with all PC cells. For the sake of simplicity, in this work we assumed that only one 

obj cell will be activated when the corresponding object is presented as input.  

2) Persistent firing cells, PF in Fig.1. These cells are active during the maintenance 

period of cognitive tasks (Boran et al., 2019), and imply internal processing in the 

absence of an external input. We assumed that they are activated by an input object, 

and make synaptic contacts with all obj cells except the one corresponding to the 

same object, as illustrated by the grey circles between PF and obj cells in Fig.1. 

Consistently with experimental findings (Boran et al., 2019), a PF cell begins tonic 

firing just before the corresponding obj cell becomes inactive, this firing ends when  

new object is presented as input. 

3) Place Cells, PC in Fig.1. A hallmark of spatial navigation, these cells are commonly 

found in the CA1 hippocampal region (reviewed in Danjo, 2019); they fire when an 

animal is in a specific spatial location, and do not represent just space but also 

contextual information (Gulli et al., 2020). In our network, they are responsible for 

generating a signal when an object is observed with a specific head direction (HD); 

this output is used to control robot movement.  

4) Avoidance path. This is another mechanism commonly observed in hippocampal 

CA1 area, that also depends on the integrated activity with other brain areas 

(reviewed in Giovannini et al., 2015); in the network, we implemented this signal 
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by generating activity in the left/right direction, opposite to the location of unknown 

objects such as walls and obstacles.  

 
Fig. 1: Network architecture. Schematic representation of the network. Circles of different colors (blue, 
red, and black) represent neurons tuned to different input cues (different objects in this case); Blue 
pathways represent external inputs carrying contextual information (object identification and the current 
Head Direction (HD), in this case); colored squares indicate that the relative cell will be activated 
whenever the corresponding object is present in the input stream. Grey circles indicate plastic synapses; 
obj, object cell; PC, Place cell; PF, persistent firing cell; L, left; R, right; For clarity, only 3 of the 12 PC 
cells used in the network are shown in the diagram. 

 

There are two main inputs to the network: one representing the current head direction and one 

representing an object (large blue pathways in Fig.1). According to their content, these input 

pathways will activate one obj, one PC, and one PF cell, as represented by the small colored 

squares along both pathways. This is a simplified organization, to illustrate the proof of principle. 

The same general network organization will also work in a more natural layout, where a complex 

input will activate a number of obj neurons in a more distributed fashion.  
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We tested the network by connecting it to a basic virtual mobile robot, available in the NRP-

HBP. A movie of the (single) learning trial and of recall tests, under different conditions, is 

presented as Supplementary material. The network dynamics and synaptic weights evolution  

Fig. 2: Firing patterns and synaptic weights evolution during learning and recall. (Learning) firing 
patterns during a typical learning session; phase a) and b) are described in the main text. PF and obj labels 
are color coded to represent the corresponding object. PC1-3 represent neurons originally tuned to fire for 
three different head directions; during the learning phase, two of them (PC1 and PC3) will become place 
cells, and will signal to the robot the direction to take to go to the next object in the sequence. The insets at 
22-26 and 45-51 sec show the evolution of selected synaptic weights. (Recall) raster plots of the same 
neurons in Learning during a recall session. 
 
during the exploration of an environment with three objects is illustrated in Fig.2. We assumed 

that these objects (screens of different colors in this case) are already known to the network, and 
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therefore, that their presence in the input will generate a train of spikes in the corresponding obj 

cell. 

The raster plots in Fig.2 represent the firing patterns of different cells during the learning and recall 

phases; they will be better appreciated if compared with the movie (see Supplementary movie).  

 
Learning phase: 

a) In the absence of a known input, the robot does a stereotypical space exploration by looking 

around counterclockwise to find a known object. This movement generates the sequential 

activation of the PC cells tuned to the different head directions (for clarity, this part is not 

reported in Fig.2). As soon as a known object enters the visual field (a red object in this 

example) it will activate the red obj cell, and its spikes will propagate to all PC cells; 

however, at any given instant, only one of the PC cells is also independently firing in 

response to the current head direction information (PC1 in this example); the two 

concurring inputs on this neuron will potentiate the red obj-PC1 synaptic weight (Fig.2, 

learning, inset at sec 22-26).  

b) In the meanwhile, the PFred cell will also begin to generate spikes, which will be 

propagated to all the other obj cells, while the robot looks for the next object; when it sees 

it (a blue object, see Fig.2 learning, beginning at sec 45), two events occur: 1) the 

potentiation of the PFred-blue obj synaptic contact (Fig.2, inset at 46 sec, grey line), 

because of the concurrent activation of the blue and PFred neurons and, 2) the potentiation 

of the blue obj–PC3 synapse (Fig.2 inset at 46-51 sec, black line), because of the concurrent 

activation of the blue and PC3 neuron (corresponding to the current head direction); this is 

a crucial point, and it is the basic process through which the network learns the direction 

to be taken after any given object in a sequence.  

c) Points a) and b) are repeated until the goal is reached.  

These steps, executed in a single pass until the goal is reached, conclude the learning phase. 

From the previous discussion, it should be clear that the network will correctly learn sequences of 

any length and any object combination; the key point is that the STDP mechanism is sufficient to 

potentiate the correct synapses to learn the direction to the next object.  

 

Recall phase 
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During a recall phase (see Fig.2, recall), the robot, controlled by the firing generated by 

the PC cells with potentiated synapses, will now follow a smooth path through all the objects (see 

Supplementary movie). Note that all neurons are sequentially activated following the learned 

sequence. This corresponds to the typical firing behavior observed experimentally for place cells 

during spatial navigation (e.g. Haimerl et al., 2019). In a different recall session (see 

Supplementary movie), we demonstrate how the robot is also able to avoid walls and obstacles 

along the path, through the activity of the avoidance cells (not shown in Fig.2). 

 

Discussion 

In this work, we have introduced a new neuronal network architecture that is able to learn, 

in a single trial, an arbitrary long sequence of any known objects. The key point to obtain this 

result was the explicit use of mechanisms and circuitry observed in the hippocampus, instead of 

the usual artificial network of identical point neurons recurrently connected all-to-all and evolving 

following abstract learning rules. More generally, the model supports the idea that, by explicitly 

including biologically plausible interactions among the different neuron types in different cortical 

and subcortical structures (reviewed in Hinman et al., 2018), one can obtain a network able to 

perform as efficiently as in the real system. The crucial point is the ability to rapidly configure the 

network, following the type of conjunctive input processing experimentally observed at cellular 

level (Bittner et al., 2015). At this moment, this is the only model of spatial navigation able to 

produce this type of result. The main limitations of this simple proof of principle implementation 

are that: 

a) the network does not learn new objects; this mechanism can be added to the network through a 

heterosynaptic competition process (Fiete et al., 2010; Rajan et al., 2016) that, in the context of 

our model, will be able to learn a new object and eventually include it in the network on the fly, 

during the learning phase. 

b) confusion may arise in case of a sequence with multiple identical choices, such as when the 

same object appears in the sequence in two or more different places after a given object, and when 

it is also seen from the same angle; however, even a human could miss the right choice in this case, 

without additional cues or previous learning phases.  

c) complex scenes, such as those including multiple known objects and contextual cues, cannot be 

properly processed with the current implementation; they require a mechanism binding together 
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objects and context information, known to be in effect in the hippocampus to represent a scene 

(see e.g. Gulli et al., 2020); this aspect was outside the scope of this work.   

Most, if not all, of these limitations can be taken into account by an inhibitory network, 

exerting its disambiguation action through lateral and feedback inhibition mechanisms (see e.g. 

Priebe and Ferster, 2008; Yu et al., 2014). A simple comparison with a typical recurrent neural 

network architecture, should make it clear that there is a striking difference with other model 

networks. Consider the simplest case of learning just one sequence, composed from k objects 

randomly chosen from a set of n different objects, without repetitions. The goal is to obtain a 

network able to generate the correct list of objects, starting from any point in the sequence. During 

a training session with an artificial network, the sequence must be presented many times in the 

input, to let the weights evolve until the error is small enough to ensure a good performance during 

a recall. The number of times will strongly depend on the length of the sequence and the details of 

the learning rule, and the accuracy cannot be guaranteed to converge to a good value. Instead, our 

network will learn the sequence in a single presentation, with 100% accuracy, no matter how long 

the sequence is. 

In this work, we have demonstrated how the explicit and direct use of biological circuitry 

to model a cognitive function can reach a level of efficiency and accuracy that is not possible with 

abstract network implementations. In spite of its current limitations, it should be clear why this 

approach can lead to a new generation of artificial intelligence algorithms for spatial navigation. 

The network self-organizes to the correct functional state without any need for complex learning 

rules or conditional multinomial probability distribution functions keeping track of the different 

states visited during navigation. By directly following the natural system’s layout and circuitry, 

this type of implementation has the additional advantage that the results can be more easily 

compared to experimental data, allowing a deeper and more direct understanding of the 

mechanisms underlying cognitive functions and dysfunctions.  
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