

1 **Polymorphism of fecundity genes (*BMP15* and *GDF9*) and their association
2 with litter size in Bangladeshi prolific Black Bengal goat**

3 Ashutosh Das^{1*}, Mishuk Shaha¹, Mukta Das Gupta², Avijit Dutta² and Omar Faruk
4 Miazi¹

5 ¹*Department of Genetics and Animal Breeding, Chattogram Veterinary and Animal Sciences
6 University, Chattogram, Bangladesh*

7 ²*Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal
8 Sciences University, Chattogram, Bangladesh*

9 *Corresponding author

10 Ashutosh Das, PhD

11 Associate Professor, Department of Genetics and Animal Breeding, Chattogram Veterinary and
12 Animal Sciences University, Chattogram, Bangladesh

13 Email: ashutosh.das@cvasu.ac.bd

14

15

16

17

18 **Abstract**

19 The primary objective of this study was to identify polymorphisms in two major fecundity genes
20 (*BMP15* and *GDF9*) and their association with litter size in Black Bengal goat, a prolific goat breed
21 in Bangladesh. Total 40 blood samples were collected from Black Bengal does with twining
22 records in the first three parities. All sampled animals were genotyped for fragments of exon 2 of

23 *BMP15* gene and exon 1 and 2 of *GDF9* gene using DNA sequencing. The results of DNA
24 sequence analysis revealed six polymorphic loci (g.735G>A, g.743C>A, g.754G>T, g.781C>A,
25 g.808C>G and g.1061C>T) in *BMP15* gene and three (g.118C>T, g.302_303insT and
26 g.1173_1174insA) in *GDF9* gene. Association analysis for polymorphic loci showed litter size in
27 Black Bengal goat significantly varied between genotypes at g.735G>A and g.781C>A loci of
28 *BMP15* gene. Further studies with a high number of genetically unrelated animals for assessing the
29 association of these loci and others in the fecundity genes with litter size may be useful.

30 Keywords: Black Bengal goat; fecundity genes, polymorphisms, litter size

31 **Introduction**

32 Prolificacy (increase in litter size) is an essential economic trait in farm animals. This trait abides
33 vital attention to the animal breeders since a small increase in offspring size can yield substantial
34 gains in profit. Prolificacy in domestic species genetically influenced by multiple genes called
35 fecundity genes.¹ Studies on the genetics of prolificacy in goat detected several candidate
36 fecundity genes.² Bone Morphogenetic Protein 15 (*BMP15*), and Growth Differentiation Factor 9
37 (*GDF9*) are two of them.² Several studies reported the correlation between prolificacy and
38 genetic polymorphisms in *BMP15* and *GDF9* genes in different goat breeds around the globe.²⁻¹¹

39 In Bangladesh, with a census size of 25.7 million goat stands for the third largest
40 livestock species. Most of the goats in Bangladesh are Black Bengal goat (>90%), reared mainly
41 by landless, small-scale farmers.¹² Black Bengal goat is a dwarf goat breed and is well-known
42 for its high prolificacy, meat quality and skin quality.¹³ The average litter size of this breed
43 ranges from 1.93 to 2.33.^{12,14,15} This breed also renders a significant source of red meat (25%)
44 production in Bangladesh¹⁶. Considering its importance, increasing the numbers of black Bengal

45 goat has invariably been the central breeding goal for selective goat breeding program in
46 Bangladesh.

47 The use of molecular markers in animal breeding has added benefits over conventional
48 breeding techniques. The advancement in molecular genetics has led to the detection of DNA
49 markers with considerable effects on the traits of economic importance. To the best of our
50 knowledge, no screening attempted to identify polymorphisms in fecundity genes in goats of
51 Bangladesh, using DNA based technologies. Therefore, this study aimed at the detection of
52 genetic variants in fecundity genes (*BMP15* and *GDF9*) and their relationship with litter size in
53 the only recognized native goat breed in Bangladesh, Black Bengal.

54

55 **Materials and Methods**

56 ***Sample acquisition***

57 In the present study, a total of forty (40) prolific Black Bengal does (with twining in the first
58 three parities) were selected from two Upazilas (a sub-district unit) from Chattogram district,
59 Bangladesh. We selected unrelated animals at random from their breeding tracts by picking up
60 only two samples per smallholding and only five herds per village. Demographic data for all
61 selected animal were collected using a predefined questionnaire.

62 ***Blood sample collection and DNA extraction***

63 In the present study, a total of forty (40) prolific Black Bengal does (with twining in the first
64 three parities) were selected from two Upazilas (a sub-district unit) from Chattogram district,
65 Bangladesh. We selected unrelated animals at random from their breeding tracts by picking up

66 only two samples per smallholding and only five herds per village. Demographic data for all
67 selected animal were collected using a predefined questionnaire. Blood samples were collected
68 aseptically from the jugular vein in a vacutainer tube containing ethylene diamine tetraacetic acid
69 (EDTA) as the anticoagulant. All samples were delivered to the Poultry Research and Training
70 Center (PRTC) laboratory at Chattogram Veterinary and Animal Sciences University using an
71 icebox. Genomic DNA was extracted from the blood samples using GeneJET Genomic DNA
72 Purification kit (Thermo Scientific, Waltham, Massachusetts, USA) according to the
73 manufacturer's instructions. The quality of isolated DNA was investigated using agarose gel
74 electrophoresis (0.8%).

75 ***Polymerase chain reaction (PCR) amplification***

76 All selected goats were genotyped for segments of *BMP15* (Gene ID: 100861233) and *GDF9*
77 (Gene ID: 100860859), respectively, associated with fecundity in sheep and goat^{3,17-19}. To
78 amplify exon 1 of *GDF9* gene and, exon 2 of *BMP15* gene, we used two sets primers reported in
79 the literature (Table 1).

80 Polymerase chain reaction (PCR) was performed in a final reaction volume of 25 µL on a
81 Thermo-cycler (2720 Thermal cycler, Applied Biosystems, USA). The PCR reaction was run
82 under the following thermal condition: initial denaturation for 1 min at 94 °C; 30 cycles of
83 denaturation at 94 °C for 45 s, annealing at 60°C for 45 s, extension step at 72 °C for 45 s with a
84 final extension at 72 °C for 5 min. The amplified PCR product was electrophoresed by running
85 10 µl of through a 2% agarose gel stained with ethidium bromide (0.5µg/ml) (Sigma Aldrich,
86 USA). The specific sizes of the fragments were distinguished by using 1kb plus DNA ladder
87 (O, GeneRuler, 1 kb Plus, Thermo Scientific Fermentas) in the gel and visualized by a UV
88 transilluminator gel-documentation system (BDA digital, Biometra GmbH, Germany).

89 ***Sequencing and analysis***

90 Amplified PCR products were bidirectionally sequenced in Macrogen Co., Korea. Nucleotide
91 sequence data were edited and analysed by MEGA version 10.0.5.²⁰ The detected
92 polymorphisms (SNPs) were compared to the *Capra hircus* nucleotide database in NCBI da-
93 tabase using BLAST.²¹ The sequences were submitted with the accession number of MN401415
94 for *BMP15* and MN401414 for *GDF9* gene, respectively.

95 ***Phylogenetic analysis***

96 We performed a phylogenetic analysis of exon 2 of *BMP15* gene and exon 1 of *GDF9* gene with
97 accessible published sequences of the same regions of genes in different goat breeds to identify
98 the genetic diversity of Black Bengal goat. CLUSTALW²² was used for multiple alignment and
99 iTOL²³ to visualize the phylogenetic trees.

100 ***Statistical analysis***

101 We used SHEsis online platform (<http://analysis.bio-x.cn>)²⁴ to calculate genotype frequencies,
102 allele frequencies and χ^2 values for Hardy–Weinberg equilibrium (HWE) test. The deviation
103 from HWE for each polymorphism was tested using the Hardy–Weinberg
104 law.^{25,26} Heterozygosity (He), polymorphism information content (PIC) and effective allele
105 number (Ne) for each polymorphism were estimated employing an online computing software
106 (<http://www.msrgcall.com/Gdical.aspx>). For PIC, following classifications was used i) low
107 polymorphism if PIC value <0.25 , ii) moderate polymorphism if PIC value ≥ 0.25 to ≤ 0.50 and
108 iii) high polymorphism if PIC 0.50.

109 A generalized linear model was used to analyse the association of polymorphisms in
110 *BMP15* and *GDF9* gene with litter size by applying the least-squares method in SPSS 25
111 statistical software, SPSS Inc., Chicago, IL, USA.

112
$$Y_i = \mu + P_i + e_{ij}$$

113 where, Y_i is the phenotypic value of litter size; μ , is the overall population mean; P_i , is
114 the genotype and e_{ij} , is the random error.

115 **Results**

116 ***Sequence analysis of the BMP15 gene exon 2***

117 In a comparison of caprine *BMP15* gene sequence, we identified six single nucleotide
118 polymorphisms (SNPs): g.735G>A, g.743C>A, g.754G>T, g.781C>A, g.808C>G (Fig.1) and
119 g.1061C>T in the exon 2 of *BMP15* gene (Fig.1 and Supplementary Fig. S1). Five of these
120 polymorphisms leading to amino substitutions (Table 2). The predicted possible effect of
121 identified polymorphism on the structure and function of the functional protein revealed two
122 mutations: g.754G>T and g.1061C>T have a significant impact on the coding BMP15 peptide
123 (Fig. 2) indicating a substantial phenotypic effect. The g.781C>A mutation deduced to cause a
124 moderate change while remaining two mutations did not show significant effects on the
125 functional BMP15 protein.

126 ***Sequence analysis of the GDF9 gene exons 1 and 2***

127 The sequence of the exon 1 of *GDF9* gene showed a SNP g.118C>T and an insertion mutation
128 g.302_303insT. The g.302_303insT mutation causes a frameshift in the reading frame of the
129 *GDF9* gene which leads to a premature stop codon at third codon downstream of the mutated

130 codon (Supplementary Fig. S2). We identified a one bp insertion in between nucleotide 1173 and
131 1174 in the exon 2 of *GDF9* gene, which deduced a premature stop codon at 16th codon
132 downstream of the mutated codon (Supplementary Fig. S3).

133 ***Genetic parameters for the detected polymorphisms in BMP15 and GDF9 gene***

134 The genotypic and allelic frequencies, PIC, HE, Ne and χ^2 values for detected polymorphisms in
135 two fecundity genes are presented in Table 3. The g.735G>A of *BMP15* showed all the three
136 possible genotypic combinations while remaining SNPs recorded with two genotypes. All 40
137 tested individuals had only homozygous mutant genotypes for g.1061C>T of *BMP15* and
138 g.118C>T of *GDF9* gene. All tested goats expressed heterozygous genotype at g.808C>G and
139 homozygous mutant genotype at g.1061C>T of *BMP15* gene. Genotype frequencies for most of
140 the detected polymorphisms were significantly different from the expectations of Hardy-
141 Weinberg equilibrium in Black goat population in this study ($P < 0.01$), except g.735G>A and
142 g.754G>T in *BMP15* gene. Three polymorphisms in *BMP15* genes (g.743C>A, g.781C>A and
143 g.808C>G) and two in *GDF9* gene (g.302_303insT and g.1173_1174insA) were found to
144 moderate polymorphic according to the classification of PIC. The remainder of the detected
145 polymorphisms was found to be low polymorphic.

146 ***Phylogenetic analysis***

147 Results of phylogenetic analysis show that the sequences of the exon 2 of *BMP15* gene in this
148 study clustered in a shared cluster with previously published sequences for Black Bengal goat,
149 however, diverges from that of other goat breeds (Fig. 4). On the other hand, sequences of the
150 exon 1 of *GDF9* gene did not form a breed-specific cluster (Fig. 5).

151 **Association between SNPs of *BMP15* and *GDF9* and litter size trait**

152 The litter size of AA genotype individuals at G735A locus of *BMP15* was significantly higher
153 than that of GG genotype ($p<.05$), however, there is no significant difference between
154 individuals with GA and GG genotypes at this locus. Individuals with heterozygous CA
155 genotype at C781A locus of *BMP15* had a significantly higher ($p<.01$) litter size than those of
156 CC genotype. Individuals with different genotypes at other loci in both *BMP15* and *GDF9* gene
157 did not show any significant difference for litter size. In this study, the mean litter size was
158 highest (3.04 ± 0.45) in individuals with heterozygous CA genotype at C781A locus of *BMP15*
159 (Table 4).

160 **Discussion**

161 We herein reported nine polymorphic sites in two well-studied fecundity genes namely *BMP15*
162 and *GDF9* in Black Bengal goat, the only prolific goat breed in Bangladesh. The genetic
163 parameters of the detected loci and their association with the litter size in the Black Bengal goat
164 were also analysed. The g.735G>A locus of *BMP15* recorded with three possible combinations
165 of genotypes while the remaining loci expressed either two or one genotypes in the study
166 population. The frequency distribution of genotype in a population is the simplest way to
167 describe mendelian variation²⁷, which might not be the fact in this study since we sequenced only
168 40 goats for each locus. However, other factors such as such matting pattern, random genetic
169 drift, individual survival, reproductive success, and migration also generate genetic variation in a
170 population.²⁸

171 In this study, four SNPs in *BMP15* gene viz. g.743C>A, 754G>T, g.781C>A and
172 g.1061C>T were found to be novel based on an extensive literature search. Remaining two SNPs
173 identified by us in *BMP15* gene viz g.735G>A and g.808C>G have also been reported in Black

174 Bengal goats in the neighbouring country Indian.^{2,4,18} None of the polymorphisms in *GDF9* gene
175 detected by us was reported so far in goat. However, several studies reported polymorphisms in
176 the flanking sequences of *GDF9* gene.^{2,25,29}

177 The diversity of the impact on molecular function determines the effect of a mutation.

178 Mutational effects can be neutral, harmful or beneficial depending on their context or location³⁰.

179 In our study, two of the identified polymorphisms in *BMP15* gene predicted to have a significant
180 effect on resulting protein sequence, hence might contribute to phenotypic change. An
181 advantageous phenotypic effect of two insertions detected by us in *GDF9* gene might be
182 excluded since frameshifting generally assume to cause a loss of function resulting from
183 degrading mutant mRNA by nonsense-mediated or non-stop-mediated mRNA decay³¹⁻³³.

184 However, any harmful or neutral effect³⁴ of these frameshift mutations on GDF9 protein function
185 cannot be ruled out.

186 Phylogenetic analysis of *BMP15* gene revealed Black Bengal goat including the present
187 study assorted in a common cluster which differs from that of other goat breeds. The *GDF9* gene
188 sequences show more genetic diversity in different goat breeds. A similar trend of genetic
189 divergence in the coding region of *BMP15* and *GDF9* gene has reported by Xue-qin et al.³⁵

190 Results of association study showed that goat with AA genotype at G735A of *BMP15*
191 had significantly higher litter size than that of GG genotypic individuals ($p = <0.05$). The effect
192 of G735A in *BMP15* gene on litter size also reported in Indian Black Bengal goat^{2,4}. Besides, the
193 phenotypic effects of this synonymous mutation could not be ruled out since there are many
194 mechanisms exist by which a synonymous mutation can affect a phenotype.³⁶ In this study,
195 Black Bengal goat with genotype CA at C781A of *BMP15* gene had significantly higher litter
196 size than those with CC at the same locus. Ahlawat et al^{2,4} and Feng et al³⁷ have reported a

197 significant effect of allelic variants in *BMP15* gene on the litter size in different goat breeds
198 including Black Bengal.

199 Variations of a quantitative trait are controlled by several genes, genetic variants and their
200 interactions. Hence, detection of polymorphisms that are underlying the differences in a
201 quantitative trait, for instance, litter size remains as a challenge in modern genetics. *BMP15*,
202 *GDF9* and *BMPR1B* are three well-documented candidate genes for litter size in sheep and goat.
203 Till date, no association of *BMPR1B* gene with litter size in goat has been established. However,
204 researchers have explored the association between litter size in goat and polymorphisms in
205 *BMP15* and *GDF9* genes. These two genes are part of the ovary-derived transforming growth
206 factor β (TGF β) that have an integral role as growth factors and receptors in follicular
207 development in the ovaries.³⁸ Both bone morphogenetic proteins (BMPs) and growth
208 differentiation factors (GDFs) have critical role in follicle growth and cell-survival signalling
209 hence causal mechanism underlying the high prolificacy or fertility in female animal.³⁹
210 Considering the biological importance of *BMP15* and *GDF9* genes, this study investigated
211 polymorphisms in these genes and their association with the litter size in Bangladeshi prolific
212 Black Bengal goat.

213 Conclusion

214 This is the first study exploring polymorphisms in *BMP15* and *GDF9* genes and investigating
215 their association with litter size in Bangladeshi goat. The findings of the study reveal that
216 different genotypes at two loci in *BMP15* gene had significant ($p \leq 0.05$) effect on litter size in
217 the prolific Black Bengal breed of Bangladesh. Hence, there is a need for further research with a
218 substantially large number of animals across a wide range of geographically divergent
219 populations of this breed. Our results enrich the repository of molecular markers database of

220 caprine fecundity genes which pave the way for association studies with fecundity trait, hence
221 contribute to molecular breeding in goat.

222 **Data availability**

223 The assembled and annotated sequences for *BMP15* and *GDF9* genes were deposited to
224 GenBank database under accession numbers MN401414 and MN401415, respectively.

225 **Conflict of Interest**

226 The authors declare that they have no competing financial interests.

227 **Funding**

228 The study was supported financially by a grant from the University Grants Commission
229 Bangladesh under a project entitled “Screening genetic markers in fecundity: a savings account
230 for marker-assisted selection in Black Bengal goat’.

231 **Author contributions**

232 A. Das conceived this project. M. Shaha performed sample collection. M. Shaha and A. Dutta
233 extracted genomic DNA and performed PCR. A. Das and M. Das Gupta performed data curation
234 and formal data analysis. A. Das and O. F. Miazi involved in funding acquisition, project
235 administration and supervision. A. Das drafted the original manuscript. All authors read and
236 approved the final manuscript.

237 **References**

238 1. Drouilhet L, Mansanet C, Sarry J, et al. The Highly Prolific Phenotype of Lacaune Sheep
239 Is Associated with an Ectopic Expression of the B4GALNT2 Gene within the Ovary.
240 *PLOS Genet.* 2013;9(9):e1003809.

241 2. Ahlawat S, Sharma R, Roy M, Tantia MS, Prakash V. Association analysis of novel
242 SNPs in BMPR1B, BMP15 and GDF9 genes with reproductive traits in Black Bengal
243 goats. *Small Ruminant Res.* 2015;132:92-98.

244 3. Ahlawat S, Sharma R, Maitra A. Screening of indigenous goats for prolificacy associated
245 DNA markers of sheep. *Gene.* 2013;517(1):128-131.

246 4. Ahlawat S, Sharma R, Roy M, Mandakmale S, Prakash V, Tantia MS. Genotyping of
247 Novel SNPs in BMPR1B, BMP15, and GDF9 Genes for Association with Prolificacy in
248 Seven Indian Goat Breeds. *Anim Biotechnol.* 2016;27(3):199-207.

249 5. Deldar-Tajangookeh H, Shahneh AZ, Zamiri MJ, Daliri M, Kohram H, Nejati-Javaremi
250 A. Study of BMP-15 gene polymorphism in Iranian goats. *Afr J Biotechnol.* 2009;8(13).

251 6. Feng T, Geng C, Lang X, et al. Polymorphisms of caprine GDF9 gene and their
252 association with litter size in Jining Grey goats. *Mol Biol Rep.* 2011;38(8):5189-5197.

253 7. Hadizadeh M, Mohammadbadi MR, Niazi A, Esmailizadeh A, Gazooei YM. Search for
254 polymorphism in growth and differentiation factor 9 (GDF9) gene in prolific beetal and
255 tali goats (*Capra hircus*). *J Biodiver Environ Sci.* 2014; 4(4):186-191

256 8. He Y, Ma X, Liu X, Zhang C, Li J. Candidate genes polymorphism and its association to
257 prolificacy in Chinese goats. *J Agril Sci.* 2010;2(1):88.

258 9. Hua GH, Chen SL, Ai JT, Yang LG. None of polymorphism of ovine fecundity major
259 genes FecB and FecX was tested in goat. *Anim Reprod Sci.* 2008;108(3-4):279-286.

260 10. Jalbani MA, Kaleri HA, Baloch AH, et al. Study of BMP15 gene Polymorphism in Lehri
261 goat breed of Balochistan. *J Appl Environ Biol Sci.* 2017;7(2):84-89.

262 **11.** Polley S, De S, Batabyal S, et al. Polymorphism of fecundity genes (BMPR1B, BMP15
263 and GDF9) in the Indian prolific Black Bengal goat. *Small Ruminant Res.* 2009;85(2-
264 3):122-129.

265 **12.** Amin M, Husain S, Islam A. Reproductive peculiarities and litter weight in different
266 genetic groups of Black Bengal does. *Asian-Australas J Anim Sci.* 2001;14(3):297-301.

267 **13.** Choudhury M, Sarker S, Islam F, et al. Morphometry and performance of Black Bengal
268 goats at the rural community level in Bangladesh. *Bangladesh J Anim Sci.* 2012;41(2):83-
269 89.

270 **14.** Akhtar F, Islam A, Amin M. Effect of Selection for Growth on Production Performance
271 in Black Bengal Goats. *Pakistan J Biol Sci.* 2006;9(2):182-185.

272 **15.** Islam M, Amin M, Kabir A, Ahmed M. Comparative study between semi-intensive and
273 scavenging production system on the performances of Black Bengal goat. *J Bangladesh
274 Agril Uni.* 2009;7(452-2016-35476).

275 **16.** Black Bengal – a promising goat genetic resource of Bangladesh. Vol 2019: Food and
276 Agricultural Organization of United Nations.; 2006.

277 **17.** Javanmard A, Azadzadeh N, Esmailizadeh AK. Mutations in bone morphogenetic protein
278 15 and growth differentiation factor 9 genes are associated with increased litter size in
279 fat-tailed sheep breeds. *Vet Res Commun.* 2011;35(3):157-167.

280 **18.** Maitra A, Sharma R, Ahlawat S, Borana K, Tantia MS. Fecundity gene SNPs as
281 informative markers for assessment of Indian goat genetic architecture. *Indian J Anim
282 Res.* 2016;50(3):349-356.

283 **19.** Abdoli R, Mirhoseini SZ, Hossein-Zadeh NG, Zamani P. Screening for causative
284 mutations of major prolificacy genes in Iranian fat-tailed sheep. *Int J Fertil Steril.*
285 2018;12(1):51.

286 **20.** Kumar S, Stecher G, Li M, Knyaz C, Tamura KJMb, evolution. MEGA X: molecular
287 evolutionary genetics analysis across computing platforms. *Mol Biol Evol.*
288 2018;35(6):1547-1549.

289 **21.** Altschul SF, Gish W, Miller W, Myers EW, Lipman DJJomb. Basic local alignment
290 search tool. *J Mol Biol.* 1990;215(3):403-410.

291 **22.** Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of
292 progressive multiple sequence alignment through sequence weighting, position-specific
293 gap penalties and weight matrix choice. *Nucleic Acids Res.* 1994;22(22):4673-4680.

294 **23.** Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new
295 developments. *Nucleic Acids Res.* 2019. Jul 2;47(W1):W256-W259

296 **24.** Li Z, Zhang Z, He Z, et al. A partition-ligation-combination-subdivision EM algorithm
297 for haplotype inference with multiallelic markers: update of the SHEsis (<http://analysis.bio-x.cn>). *Cell Res.* 2009;19(4):519.

299 **25.** Yue C, Bai WL, Zheng YY, et al. Correlation analysis of candidate gene SNP for high-
300 yield in Liaoning cashmere goats with litter size and cashmere performance. *Anim Biotechnol.* 2019;19:1-8.

302 **26.** Gorlov IF, Kolosov YA, Shirokova NV, et al. GDF9 gene polymorphism and its
303 association with litter size in two Russian sheep breeds. *Rendiconti Lincei. Scienze
304 Fisiche e Naturali.* 2018;29(1):61-66.

305 27. Mather K, Jinks JL. Introduction to biometrical genetics: Chapman and Hall London;
306 1977.

307 28. Chen N, Juric I, Cosgrove EJ, et al. Allele frequency dynamics in a pedigree natural
308 population. *PNAS*. 2019;116(6):2158-2164.

309 29. Chu M, Wu Z, Feng T, et al. Polymorphism of GDF9 gene and its association with litter
310 size in goats. *Vet Res Commun*. 2011;35(6):329-336.

311 30. Loewe L. Genetic mutation. *Nature education*. 2008;1(1):113.

312 31. Van Hoof A, Frischmeyer PA, Dietz HC, Parker R. Exosome-mediated recognition and
313 degradation of mRNAs lacking a termination codon. *Science*. 2002;295(5563):2262-
314 2264.

315 32. Scofield DG, Hong X, Lynch M. Position of the final intron in full-length transcripts:
316 determined by NMD? *Mol Biol Evol*. 2007;24(4):896-899.

317 33. Nagy E, Maquat LE. A rule for termination-codon position within intron-containing
318 genes: when nonsense affects RNA abundance. *Trends Bioch Sci*. 1998;23(6):198-199.

319 34. Hu J, Ng PC. Predicting the effects of frameshifting indels. *Genome Biol*. 2012;13(2):R9.

320 35. Ran X-q, Lin J-B, Du Z-y, Qing C, Wang J-f. Diversity of Bmp15 and Gdf9 genes in
321 White goat of Guizhou province and evolution of the encoded proteins. *Zool Res*.
322 2009;30(6):593-602.

323 36. Zwart MP, Schenk MF, Hwang S, et al. Unraveling the causes of adaptive benefits of
324 synonymous mutations in TEM-1 β -lactamase. *Heredity*. 2018;121(5):406.

325 37. Feng T, Chu M-X, CAO G-L, et al. Screening for S32G mutation of BMP15 gene in 18
326 goat breeds. *Turkish J Vet Anim Sci*. 2014;38(5):463-468.

327 **38.** Davis GH. Major genes affecting ovulation rate in sheep. presented at: Genetics Selection
328 Evolution 2005.

329 **39.** Otsuka F, McTavish KJ, Shimasaki S. Integral role of GDF-9 and BMP-15 in ovarian
330 function. *Mol Reprod Dev*. 2011;78(1):9-21.

331

332

Table 1. List of primer used to amplify specific segment of *GDF9* and *BMP15* gene.

Gene	Region	Oligonucleotide sequence (5'-3')	Amplicon size (bp)
<i>BMP15</i>	Exon2	F: CACTGTCTTCTTGTACTGTATTCATGAC	141
		R: GATGCAATACTGCCTGCTTG	
	Exon1	F: TCCCTAAAGGCCTGAAAGAGT	575
		R: GCTGAAGGCAAGGAATAGAAC	
<i>GDF9</i>	Exon1	F: GAAGACTGGTATGGGGAAATG	462
		R: CCAATCTGCTCCTACACACCT	
	Exon2	F: CCACACAAATACAACCCCTCGATAC	183
		R: AGGCTCGATGCCAAACACT	

333

334

335

336

337

338

Table 2. Identified polymorphisms in *GDF9* and *BMP15* genes in Bangladeshi Black Bengal goat breed.

Gene	Region	Mutation	Amino acid substitution	Type of mutation
<i>BMP15</i>	Exon2	g.735G>A	-	Synonymous
		g.743C>A	p.Pro248His	Non-synonymous
		g.754G>T	p. Gly252Cys	Non-synonymous
		g.781C>A	p. Pro261Thr	Non-synonymous
		g.808C>G	p.Gln270Glu	Non-synonymous
		g.1061C>T	p.Ala354Val	Non-synonymous
<i>GDF9</i>	Exon1	g.118C>T	-	Synonymous
		g.302_303insT	p.Gly101Glyfs2X	Frameshift
	Exon2	g.1173_1174insA	p.Arg392Glnfs16X	Frameshift

339

340

341

342 **Table 3.** Genotypic and allelic frequencies and population parameters for mutations detected in *GDF9* and *BMP15* genes in Bangladeshi Black
 343 Bengal Goat breed (N=40).

Gene	Mutation	Genotypic frequencies			Allelic frequencies		PIC	He	Ne	H-W (χ^2)	test	p value
		PP	Pq	qq	P	q						
<i>BMP15</i>	g.735G>A	0.625	0.275	0.100	0.762	0.237	0.237	0.361	1.567	2.317	-	0.127
	g.743C>A	0.300	0.700	0	0.650	0.350	0.351	0.455	1.834	11.597	-	0.000
	g.754G>T	0.700	0.300	0	0.85	0.15	0.222	0.255	1.342	1.245	-	0.264
	g.781C>A	0.450	0.550	0	0.725	0.275	0.319	0.398	1.663	5.755	-	0.016
	g.808C>G	0	1.000	0	0.500	0.500	0.375	0.500	2.000	40.000	-	0.000
	g.1061C>T	0	0	1.000	0	1.000	0	0	1.000	-	-	-
<i>GDF9</i>	g.118C>T	0	0	1.000	0	1.000	0	0	1.000	-	-	-
	g.302_303insT	0.200	0.800	0	0.600	0.400	0.364	0.480	1.923	17.778	-	0.000
	g.1173_1174insA	0.300	-	0.700	0.300	0.700	0.331	0.420	1.724	39.999	-	0.000

344 PP, homozygous reference allele, Pq, heterozygous mutant allele; qq, homozygous mutant allele; PIC, polymorphism information content; He,
 345 effective number of heterozygosities; Ne, effective number of alleles.

346

347

348

349

350

351
352

Table 4. Genotype wise least squares mean \pm standard error of litter size in Bangladeshi Black Bengal goat.

Gene	Locus	Genotype	N	Litter size	Significance
<i>BMP15</i>	G735A	GG	25	3.00 ^a \pm 0.33	*
		GA	11	2.52 ^{ab} \pm 0.13	
		AA	4	2.27 ^b \pm 0.20	
	C743A	CC	12	2.42 \pm 0.20	NS
		CA	28	2.53 \pm 0.13	
		AA	0	-	
	G754T	GG	28	2.39 \pm 0.14	NS
		GT	12	2.75 \pm 0.13	
		TT	0	-	
<i>GDF9</i>	C781A	CC	18	1.83 ^a \pm 0.09	***
		CA	22	3.04 ^b \pm 0.45	
	302_303insT	GG	8	2.47 \pm 0.12	NS
		GGT	32	2.63 \pm 0.24	
<i>GDF9</i>	1173_1174insA	TT	7	2.86 \pm 0.69	NS
		TTA	28	2.42 \pm 0.66	

353 *, p value <0.05 ***, p value <0.01 ; rows with different superscripts differed significantly.

354
355

356

357

358

359

360 **Figure Legends**

361 **Figure 1.** Sequencing chromatograms of the detected single nucleotide polymorphisms (SNPs) in exon 2 of the *BMP15* gene in Black Bengal
362 goat breed. a. g.735G>A (heterozygous); b. g.743C>A (heterozygous); c. g.754G>T (heterozygous); d. g.781C>A (heterozygous); d. g.808C>G
363 (heterozygous) and f. g.1061C>T (homozygous TT). Positions of the mutations are based on the full sequences of the *BMP15* gene (Gene ID:
364 100861233).

365

366 **Figure 2.** Sequencing chromatograms of the detected polymorphisms in the *GDF9* gene in Black Bengal goat breed. a. g.118C>T (homologous
367 TT) and b. 302_303insT in the exon 1 of *GDF9* gene; c. g.1173_1174insA in the exon 2 of *GDF9* gene. Positions of the mutations are based on
368 the full sequences of the *GDF9* gene (Gene ID: 100861233).

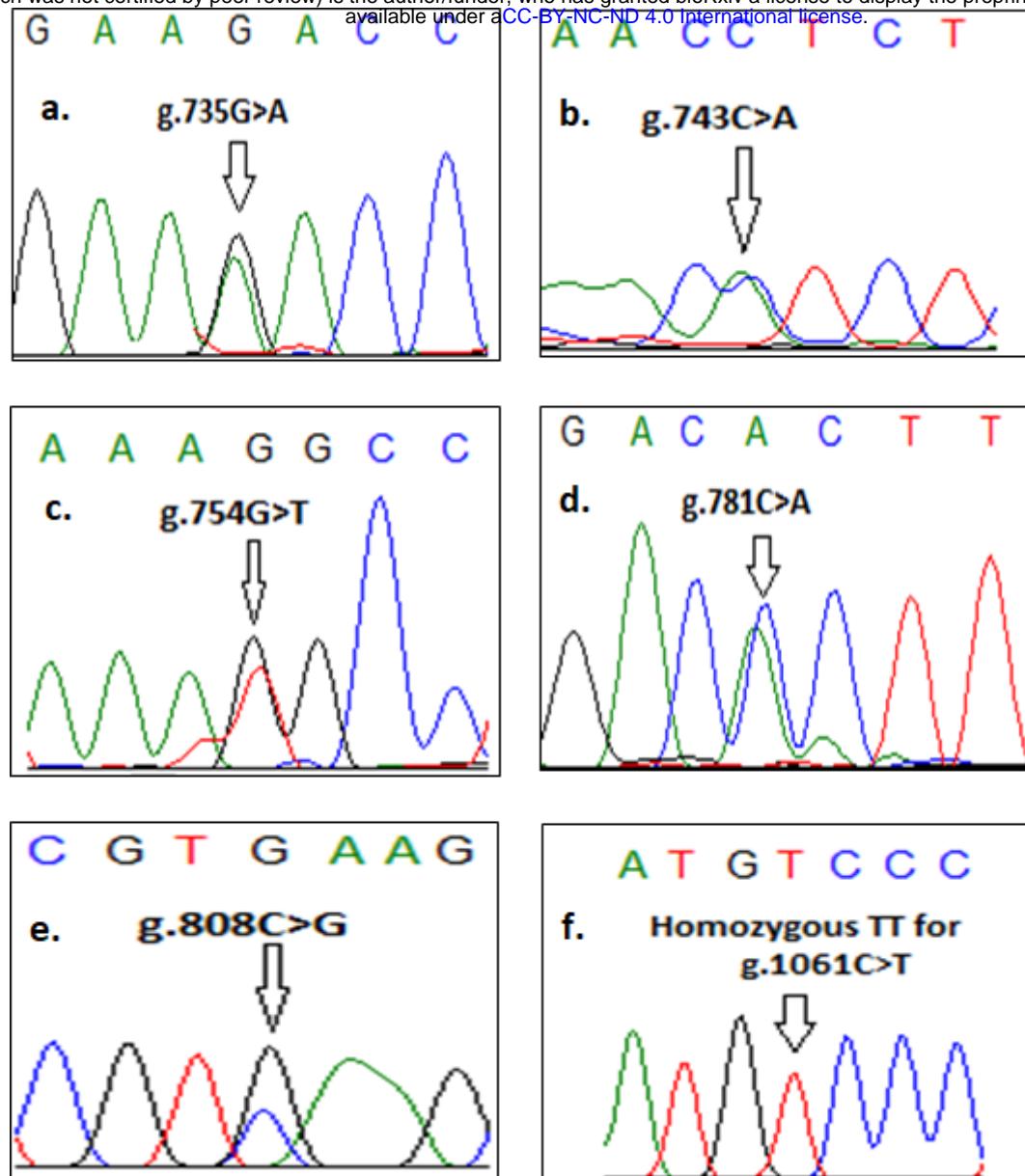
369

370 **Figure 3.** Predicted effects (using Ployphen2) of five single nucleotide polymorphisms (SNPs). a, b, c, d and e represent the of effect of
371 g.743C>A, g.754G>T, g.781C>A, g.808C>G and g.1061C>T on the functional BMP15 protein, respectively.

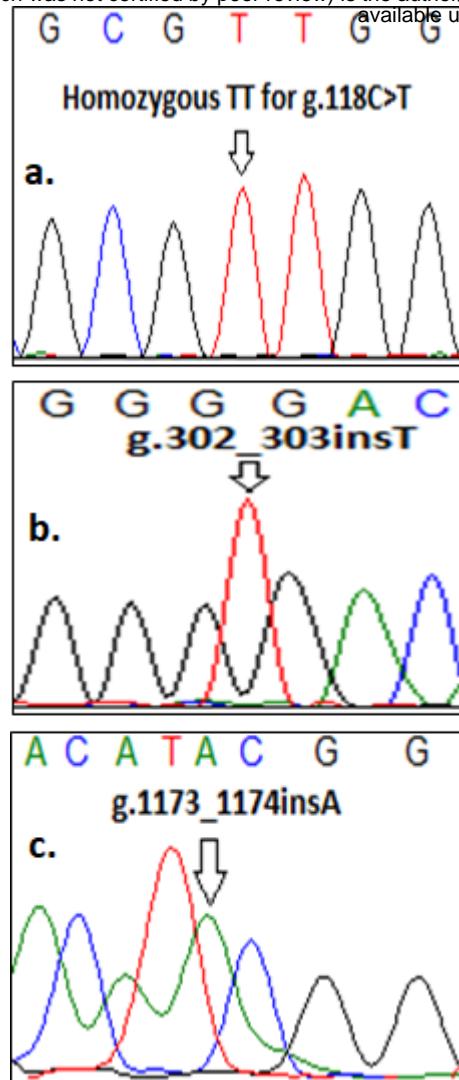
372

373 **Figure 4.** Phylogenetic tree of *BMP15* gene.

374 **Figure 5.** Phylogenetic tree of *GDF9* gene.


375 **Supplementary Figure S1.** Multiple alignment for g.1061C>T of *BMP15* gene (indicated by box arrow). *BMP15* gene sequences from this study
376 aligned with BMP15 mRNA sequence from the NCBI database using MEGA version 10.0.5.²⁰

377


378 **Supplementary Figure S2.** Multiple alignment for 302_303insT of *GDF9* gene (Condon changes are indicated by box arrow). *GDF9* gene
379 sequences from this study aligned with GDF9 mRNA sequence from the NCBI database using MEGA version 10.0.5.²⁰

380

381 **Supplementary Figure S2.** Multiple alignment for 302_303insT of *GDF9* gene (Condon changes are indicated by box arrow). *GDF9* gene
382 sequences from this study aligned with GDF9 mRNA sequence from the NCBI database using MEGA version 10.0.5.²⁰

Figure 1. Sequencing chromatograms of the detected single nucleotide polymorphisms (SNPs) in exon 2 of the *BMP15* gene in Black Bengal goat breed. a. g.735G>A (heterozygous); b. g.743C>A (heterozygous); c. g.754G>T (heterozygous); d. g.781C>A (heterozygous); d. g.808C>G (heterozygous) and f. g.1061C>T (homozygous TT). Positions of the mutations are based on the full sequences of the *BMP15* gene (Gene ID: 100861233).

Figure 2. Sequencing chromatograms of the detected polymorphisms in the *GDF9* gene in Black Bengal goat breed. a. g.118C>T (homologous TT) and b. 302_303insT in the exon 1 of *GDF9* gene; c. g.1173_1174insA in the exon 2 of *GDF9* gene. Positions of the mutations are based on the full sequences of the *GDF9* gene (Gene ID: 100861233).

This mutation is predicted to be **BENIGN** with a score of 0.022 (sensitivity: 0.95; specificity: 0.80)

a.

This mutation is predicted to be **PROBABLY DAMAGING** with a score of 0.996 (sensitivity: 0.55; specificity: 0.98)

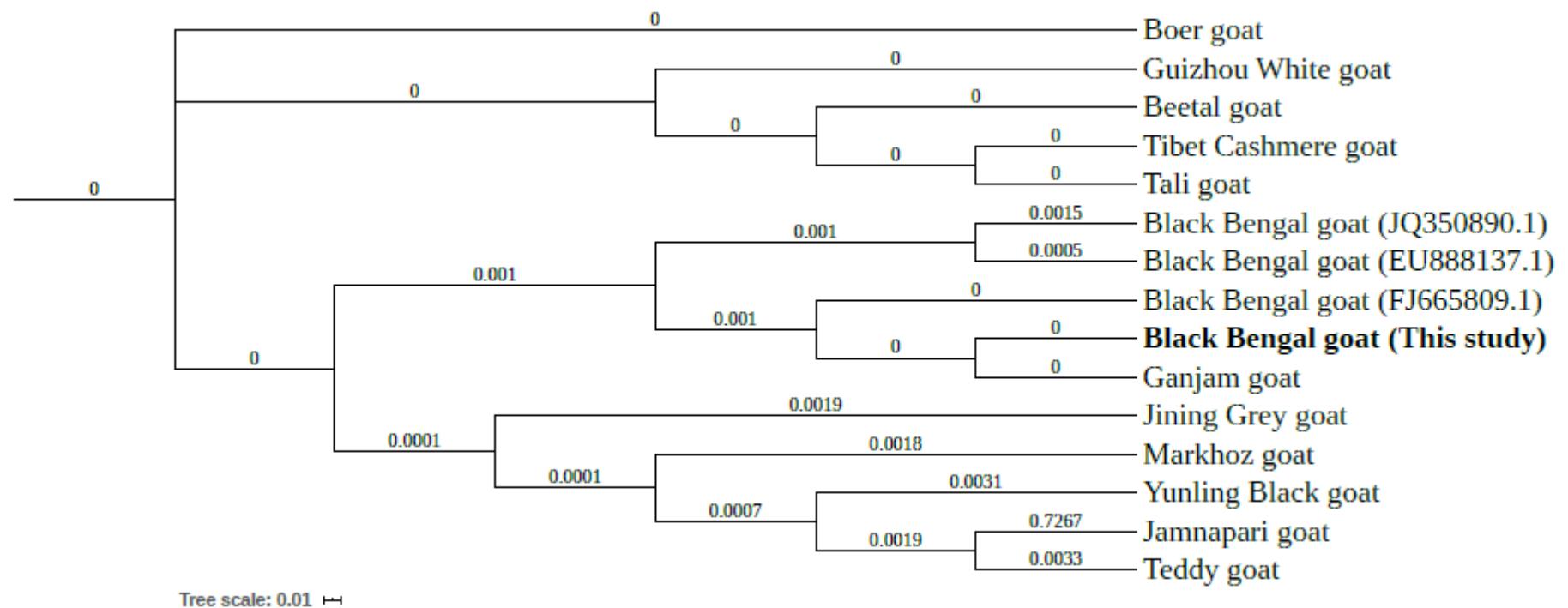
b.

This mutation is predicted to be **BENIGN** with a score of 0.450 (sensitivity: 0.89; specificity: 0.90)

c.

This mutation is predicted to be **BENIGN** with a score of 0.001 (sensitivity: 0.99; specificity: 0.15)

d.



This mutation is predicted to be **PROBABLY DAMAGING** with a score of 0.999 (sensitivity: 0.14; specificity: 0.99)

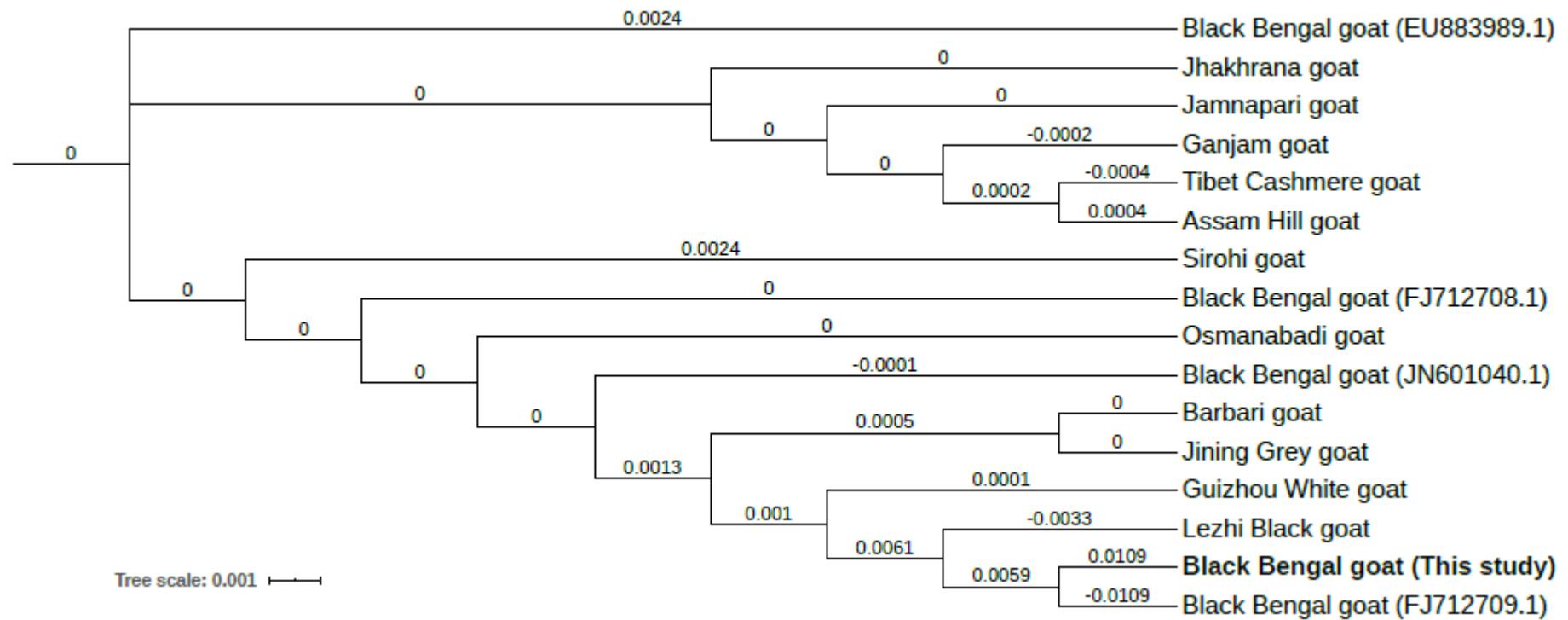

e.

Figure 3. Predicted effects (using Ployphen2) of five single nucleotide polymorphisms (SNPs). a, b, c, d and e represent the effect of g.743C>A, g.754G>T, g.781C>A, g.808C>G and g.1061C>T on the functional BMP15 protein, respectively.

Figure 4. Phylogenetic tree of *BMP15* gene.

Figure 5. Phylogenetic tree of *GDF9* gene.