

1 **Three Rules Explain Transgenerational Small RNA Inheritance in *C. elegans***

2 Leah Houri-Ze'evi¹*, Olga Antonova¹, Oded Rechavi¹*

3 *1Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience,*

4 *Tel Aviv University, Tel Aviv, Israel 69978.*

5 *Correspondence to: oded.rechavi@gmail.com, leah.houri@gmail.com

6

7 Life experiences trigger transgenerational small RNA-based responses in *C. elegans* nematodes.

8 Dedicated machinery ensures that heritable effects would re-set, typically after a few

9 generations. Here we show that isogenic individuals differ dramatically in the persistence of

10 transgenerational responses. By examining lineages composed of >20,000 worms we reveal 3

11 inheritance rules: (1) Once a response is initiated, each isogenic mother stochastically assumes

12 an “inheritance state”, establishing a commitment that determines the fate of the inheritance. (2)

13 The response that each mother transfers is uniform in each generation of her descendants. (3)

14 The likelihood that an RNAi response would transmit to the progeny increases the more

15 generations the response lasts, according to a “hot hand” principle. Mechanistically, the

16 different parental “inheritance states” correspond to global changes in the expression levels of

17 endogenous small RNAs, immune response genes, and targets of the conserved transcription

18 factor HSF-1. We show that these rules predict the descendants’ developmental rate and

19 resistance to stress.

21 Even when environmental conditions are tightly controlled, populations of isogenic
22 *Caenorhabditis elegans* nematodes exhibit inter-individual differences in many traits including
23 developmental timing, response to stress, behavior, and life span [1–7]. Further, worms display
24 substantial variability in the manifestation of heritable epigenetic effects [8–10].

25 *C.elegans* can control the expression of genes transgenerationally via heritable small
26 RNAs [11–15]. RNA interference (RNAi) and RNAi inheritance are modulated by different
27 external challenges [6,16–21], and even by internal neuronal processes [22]. Heritable small
28 RNAs are amplified in the next generations by specialized RNA-dependent RNA polymerases
29 and thus avoid “dilution” [17,23].

30 Exogenous introduction of double stranded RNA (dsRNA) triggers transgenerational
31 silencing of germline genes [9]. Typically, heritable RNAi is maintained for ~3-5 generations
32 (the so-called “bottleneck” to RNAi inheritance [9]), unless it is re-set earlier by stress [24].
33 While this is the usual duration of heritable responses at the population level, some individuals
34 continue to silence genes for multiple generations, and others rapidly lose the inherited effects. It
35 has been shown that selection enables maintenance of heritable RNAi indefinitely (>80
36 generations) [10]. Control over the duration of transgenerational silencing is achieved via an
37 elaborate regulatory pathway [8], and disabling some of the genes in the pathway (for example,
38 *met-2*, which encodes for an H3K9 methyltransferase) leads to stable inheritance [14,25,26].
39 Currently, the source of variability in the inheritance capacity of genetically identical individuals
40 is completely unaccounted for.

41 To examine how heritable silencing is segregated across a lineage and distributed in the
42 population, we exposed worms containing a germline-expressed single-copy *gfp* transgene to
43 anti-*gfp* dsRNA. We scored *gfp* silencing in sister worms that derive from a single mother that

44 was exposed to RNAi (we tightly controlled the exposure to RNAi and allowed the mothers to
45 lay eggs for 6-8 hours, see **Methods**). As expected, 100% of the worms that were directly
46 exposed to RNAi (the P0 generation) silenced the *gfp*. We then examined how these isogenic
47 sisters pass on the silencing response transgenerationally. For this purpose, we used two different
48 experimental setups: In the first set of experiments we tracked silencing across multiple
49 generations, by propagating a few randomly selected worms from each lineage in every
50 generation (**Fig. 1A** and **Methods**). In the second set of experiments, we monitored heritable
51 silencing for one generation only, and scored the progeny of the entire synchronized RNAi-
52 exposed population (**Fig. 1B** and **Methods**).

53 To our surprise, in the first set of experiments we found that in every generation
54 individuals descending from a given lineage (from a single RNAi-treated mother), exhibit
55 striking uniformity in heritable silencing levels, which became complete in later generations
56 (**Fig. 1A**), regardless of the day in which the progeny were laid (namely it did not depend on the
57 mother's age). In the second set of experiments, we further controlled differences in *in-utero*
58 exposure of the F1 progeny to the external dsRNA trigger (**Methods**) and thus completely
59 eliminated heritable variability in the F1 generation. Still, when comparing multiple groups of
60 progenies that were derived from different RNAi-treated P0 mothers, we observed strong
61 differences in the dynamics and penetrance of the heritable silencing between the different
62 lineages (**Fig. 1B**). In the past, RNAi experiments were traditionally performed by exposing
63 populations of worms to RNAi followed by random sampling of worms in every
64 generation[8,24,25]. Our experiments, in which we examined inheritance across lineages that
65 originate in single mothers, reveal that the variability in the inheritance dynamics that is

66 observed in population-based assays can be attributed to differences that begin in the RNAi-
67 exposed mothers.

68 Why do isogenic mothers initiate different heritable RNAi responses? We reasoned that
69 this inter-individual variability arises either because each mother is exposed to different amounts
70 of dsRNA, or, more interestingly, because the RNAi inheritance machinery in isogenic mothers
71 can assume different internal “states”. Despite extensive efforts to minimize potential differences
72 in the exposure of individual worms to the dsRNA trigger (**Methods**), we still observed
73 remarkable variability in the inheritance between lineages that derive from single isogenic P0
74 mothers. We thus examined whether this variability could instead be explained by internal inter-
75 individual differences in the activation state of each worm’s RNAi machinery. To this end, we
76 analyzed the silencing patterns of a germline-expressed *mcherry* transgene, which gets
77 spontaneously silenced, independently of exogenous dsRNA, by endogenous small RNAs [27].
78 Similar to the variability observed in dsRNA-induced anti-*gfp* silencing, we found that isogenic
79 sister worms vary in their tendency to silence the *mcherry* transgene. Silencing accumulates over
80 generations in the population, eventually resulting in a population of worms which all silence the
81 transgene (see lineages of *mcherry*-silencing inheritance in **Fig. S1** and **Methods**). We generated
82 worms that contain both *gfp* and *mcherry* transgenes, which are integrated into different genomic
83 locations on different chromosomes but are constructed using similar promoters and 3’ UTRs
84 sequences (See **Fig. 2A**). For these experiments, we selected worms in which the *mcherry*
85 transgene is still expressed and varies in the population (and is not completely silenced) and
86 exposed their progeny – the P0 generation – to anti-*gfp* RNAi. We then examined whether the
87 level of spontaneous endogenous small RNA-mediated silencing of *mcherry* in the parental
88 generation, which is exposed to the dsRNA trigger, could predict the fate of the dsRNA-initiated

89 RNAi inheritance against the other gene, *gfp* (**Fig. 2B to C**). We found that P0 mothers which
90 spontaneously silence the *mcherry* transgene trigger stronger and more penetrant heritable *gfp*-
91 silencing responses across generations when exposed to anti-*gfp* dsRNA (**Fig. 2D**). Thus, the two
92 silencing phenomena are coordinated, and their observed variability is shared. We conclude that
93 each mother assumes a general, non-gene-target-specific “small RNA inheritance state”.

94 Importantly, while the spontaneous silencing of the *mcherry* transgene predicted the strength of
95 the dsRNA-triggered anti-*gfp* RNAi inheritance, the expression of the two transgenes in the
96 absence of anti-*gfp* dsRNA-induced RNAi was not positively correlated (**Fig. S1**). Thus, internal
97 inter-individual variability in initiating RNAi inheritance determines the fate of inherited
98 responses that propagate and segregate across generations.

99 Overall, and throughout the different experiments carried out in this study, we have
100 examined inheritance in lineages composed of a total of >20,000 worms. To understand the
101 transition rules of the silencing response across generations, we systematically analyzed these
102 inheritance data and found a “hot hand” effect of transgenerational silencing: the more
103 generations a heritable response lasted, the higher the chances that it will be transmitted to the
104 next generation as well (46.5% of the worms kept silencing the *gfp* transgene at the transition
105 from the 1st to the 2nd generation; 80.5% at the transition from the 2nd to the 3rd, 92.6%-100%
106 starting from the 3rd generation. See summary visualization in **Fig. 2E**).

107 To characterize the differences in the RNA pools of worms that assume different RNAi
108 inheritance states, we isolated four sister worms that derive from a single mother and allowed
109 each of these worms to lay eggs for 6 hours on separate plates. We used a COPASTM “Worm
110 Sorter” [28] to isolate worms that strongly express or spontaneously silence *mcherry* in each of
111 these lineages (25 top and bottom percentile, see scheme in **Fig. 3A**). We sequenced small RNAs

112 and mRNAs from the sorted worms to investigate what underlies the different internal
113 inheritance states. The total levels of small RNA transcripts which derive from piRNA loci are
114 *increased* in the sisters that silence the *mcherry* transgene (this transgene contains multiple
115 piRNA-recognition sites [27], **Fig. 3B**). In contrast, we found that overall endogenous small
116 RNA levels are reduced in worms which spontaneously silence the *mcherry* transgene (**Fig. 3B**).
117 It is well-established that in worms different small RNA pathways compete over limited shared
118 biosynthesis machineries [29]. It is therefore possible that the decrease in endogenous protein-
119 coding-targeting small RNAs in *mcherry*-silencing worms makes more small RNA-processing
120 machinery available for additional endogenous or exogenous siRNAs species. Together, these
121 analyses suggest that sisters, despite being isogenic and deriving from the same mother, are
122 equipped with a different arsenal of gene-silencing endogenous small RNAs.

123 We next examined the changes in mRNA expression levels in *mcherry* silencing and non-
124 silencing sisters. Although we sequenced tightly synchronized isogenic progeny that were
125 derived from a single mother, we found that 349 genes are differentially expressed between
126 sisters which express or silence the *mcherry* transgene (**Fig. 3C**). Surprisingly, we found that the
127 most significant enrichment in this set of genes is for immune and defense response processes
128 (immune response, GO:0006955, FDR = 6.08E-09; defense response, GO:0006952, FDR =
129 2.08E-09, **Fig. 3D** and **Fig. S2**). This enrichment might echo the evolutionary origins of small
130 RNAs as part of the worm's immune system [30]. Interestingly, we found that these
131 differentially expressed genes are enriched in neurons and in the alimentary system [31] (**Fig. 3E**
132 and **Fig. S3**). The differentially expressed genes included multiple genes known to function
133 together in specific regulatory pathways (see **Fig S2**, **Table S1**). Among the genes which vary
134 between *mcherry*-silencers and non-silencers sisters, we identified *hsp-16.2*, a heat shock protein

135 whose variable activation upon heat stress is a classic example for stochastic gene expression
136 differences between isogenic worms. Non-genetic variable expression of HSP-16.2 was shown to
137 predict the worm's life span and stress resistance [2]. Interestingly, the promoter of *hsp-16.2* is
138 shared (at the opposite orientation, see **Fig. 3F** and **Fig. S3**) with *hsp-16.41*, an additional Heat
139 Shock Protein. We found that both *hsp-16.2* and *hsp-16.41* show similar transcriptional changes
140 between the two states (**Fig. 3F** and **Fig. S3**), indicating that the observed variability arises from
141 variation at the level of transcriptional regulation.

142 Among the different genes that show differential mRNA levels in our sequencing data we
143 identified *irg-1* (Immune Response Gene-1). IRG-1 plays a critical role in immunity, and
144 specifically in the response to pathogenic *pseudomonas* (PA14) [32]. We used a fluorescent
145 reporter to quantify *irg-1* levels in individuals to validate the mRNA sequencing results.
146 Although *irg-1* was never reported before to vary in isogenic populations, we found that *irg-1*
147 indeed shows variable pathogen-induced induction levels in isogenic, synchronized, individuals
148 (**Fig. 3G**).

149 As many of the genes that typify the two "heritable silencing states" have shared roles
150 (e.g. immune regulation), and since we observed patterns of transcriptional regulation that vary
151 between silencers and non-silencers (**Fig. 3F** and **Fig. S3**), we looked for regulators (e.g.
152 transcription factors) that might synchronize the RNAi inheritance states. The existence of
153 multiple Heat Shock Proteins which vary between the two states, and the unexpected enrichment
154 for cuticle-structure genes pointed toward Heat Shock Factor-1 (HSF-1)-dependent regulation
155 [33]. HSF-1 is a highly conserved transcription factor, a master regulator of proteostasis, whose
156 activity is important under both stressful and non-stressful conditions [34]. HSF-1 was recently
157 shown to be involved in transcriptome remodeling of non-coding RNAs' pools in response to

158 heat shock in *C. elegans* nematodes [35] and to account for cell-to-cell variation and phenotypic
159 plasticity in budding yeast [36].

160 We found that the genes which are differentially expressed between the two inheritance
161 states show a strong enrichment for HSF-1-regulated genes [33] (166/349 genes, 1.63 fold
162 enrichment, p-value < 2.45e-13, hypergeometric test **Fig. 4A**), and that gene expression changes
163 in the non-silencers worms resemble gene expression changes following knockdown of *hsf-1*
164 [33] (**Fig. 4A**).

165 To directly test the involvement of HSF-1 in generating variable inheritance states, we
166 first examined whether individual worms display variability in HSF-1's function. We did not
167 detect significant inter-individual variability in *hsf-1* mRNA levels, in accordance with previous
168 observations of HSF-1's activity being regulated at the post-translational level [37]. Specifically,
169 it was recently revealed that in *C. elegans* HSF-1's activity corresponds to the formation of stress
170 granules inside the nucleus [38]. By using a single-copy integrated fluorescent GFP translational
171 reporter, we found that the number of HSF-1 granules and HSF-1's expression intensity vary in
172 the germline syncytium nuclei of isogenic and tightly synchronized sister worms, even in the
173 absence of any external stress or heat-shock stimuli (**Fig. 4B**).

174 To investigate if HSF-1 plays a role in constituting different inheritance states, we tested
175 how changes in HSF-1's activity affect small RNA-mediated heritable silencing. We examined
176 worms which bear a reduction-of-function mutation in *hsf-1* (*sy441*) and measured the state of
177 their RNAi inheritance machinery. We quantified how the rate and variability of spontaneous
178 *mcherry* silencing changes in *hsf-1* reduction-of-function mutants. Strikingly, we found that in
179 these mutants the differences in heritable silencing between isogenic sisters were canceled,
180 namely, all the worms exhibited a uniform expression of the *mcherry* transgene (**Fig. 4C**). We

181 then examined whether HSF-1's activity can also affect *endogenous* transgenerational silencing
182 functions in the worms. We recently reported that the *saeg-2* gene is strongly silenced in the
183 germline by RDE-4-dependent endo-siRNAs, and that neuronally-transcribed small RNAs
184 control this silencing transgenerationally [22]. Using single-molecule fluorescence in situ
185 hybridization (smFISH), we found that worms which bear a reduction-of-function mutation in
186 *hsf-1* de-silence *saeg-2*, similarly to the de-silencing that is observed in mutants devoid of *saeg-*
187 2-targeting siRNAs [22] (**Fig. 4D**). These results, together with previous evidence that HSF-1
188 sculpts the pools of different endogenous small RNAs [35], suggest that HSF-1 affects multiple,
189 separate transgenerational small RNA processes, and as such, can coordinate the broad small
190 RNA inheritance “states”.

191 Survival during long periods of starvation requires HSF-1 [39]. In the absence of food,
192 worms arrest their development at the first larval stage; Starvation alters the transgenerational
193 pool of heritable small RNAs [6,24], and leads to multiple phenotypic changes in the progeny,
194 such as increased lifespan [6], reduced fecundity and increased heat resistance [40].
195 Interestingly, isogenic worms produce different transgenerational responses following starvation
196 [40]. We hypothesized that by monitoring the inheritance states of the parents, we can predict the
197 transgenerational phenotypic responses to starvation. We found that starved progeny of mothers
198 that silence the *mcherry* transgene did not show pronounced variability in recovery time
199 following starvation as measured by size distribution and the presence of L1/2-arrested worms in
200 the population (**Fig. 4E**). In striking contrast, progeny of mothers that did not silence the *mcherry*
201 transgene exhibited high variability in their recovery time following starvation and higher rates
202 of developmental delay (**Fig. 4E**). Overall, these results indicate that the mother's “inheritance
203 state” predicts multiple heritable small RNA-related phenotypes: transgenerational dsRNA-

204 induced silencing, spontaneous transgene-silencing, and the inherited outcomes of environmental
205 stress-relevant responses.

206 In summary, we find that the propagation of small RNA-encoded epigenetic information
207 across generations can be explained using simple rules (**Fig. 4F**). Variation is the raw material of
208 evolution, and while small RNAs could increase inter-individual variability, and some somatic
209 processes in the worm can control DNA changes in the worm's germline [41], it is still unclear if
210 and how epigenetic inheritance contributes to the process of evolution. Our results suggest that
211 similarly to the mechanisms which evolved to generate genetic variation (e.g. random assortment
212 of chromosomes and recombination), an innate mechanism gives rise to variability in small RNA
213 inheritance.

214

References and Notes:

215 1. Stern S, Kirst C, Bargmann CI (2017) Neuromodulatory Control of Long-Term
216 Behavioral Patterns and Individuality across Development. *Cell* **171**: 1649–1662.e10.

217 2. Rea SL, Wu D, Cypser JR, Vaupel JW, Johnson TE (2005) A stress-sensitive reporter
218 predicts longevity in isogenic populations of *Caenorhabditis elegans*. *Nat Genet* **37**: 894–
219 898.

220 3. Burga A, Casanueva MO, Lehner B (2011) Predicting mutation outcome from early
221 stochastic variation in genetic interaction partners. *Nature* **480**: 250–253.

222 4. Casanueva MO, Burga A, Lehner B (2012) Fitness Trade-Offs and Environmentally
223 Induced Mutation Buffering in Isogenic *C. elegans*. *Science (80-)* **335**: 82–85.

224 5. Perez MF, Francesconi M, Hidalgo-Carcedo C, Lehner B (2017) Maternal age generates
225 phenotypic variation in *Caenorhabditis elegans*. *Nature* **552**: 106–109.

226 6. Rechavi O, Houri-Ze’evi L, Anava S, Goh WSS, Kerk SY, Hannon GJ, Hobert O (2014)
227 Starvation-induced transgenerational inheritance of small RNAs in *C. elegans*. *Cell* **158**:
228 277–287.

229 7. Bazopoulou D, Knoefler D, Zheng Y, Ulrich K, Oleson BJ, Xie L, Kim M, Kaufmann A,
230 Lee Y-T, Dou Y, et al. (2019) Developmental ROS individualizes organismal stress
231 resistance and lifespan. *Nature* 1–5.

232 8. Houri-Ze’evi L, Korem Y, Sheftel H, Faigenbloom L, Toker IA, Dagan Y, Awad L,
233 Degani L, Alon U, Rechavi O (2016) A Tunable Mechanism Determines the Duration of
234 the Transgenerational Small RNA Inheritance in *C. elegans*. *Cell* **165**:

235 9. Alcazar RM, Lin R, Fire AZ (2008) Transmission dynamics of heritable silencing induced
236 by double-stranded RNA in *Caenorhabditis elegans*. *Genetics* **180**: 1275–1288.

237 10. Vastenhouw NL, Brunschwig K, Okihara KL, Müller F, Tijsterman M, Plasterk RHA
238 (2006) Gene expression: long-term gene silencing by RNAi. *Nature* **442**: 882.

239 11. Shirayama M, Seth M, Lee H-C, Gu W, Ishidate T, Conte D, Mello CC (2012) piRNAs
240 initiate an epigenetic memory of nonself RNA in the *C. elegans* germline. *Cell* **150**: 65–
241 77.

242 12. Gu SG, Pak J, Guang S, Maniar JM, Kennedy S, Fire A (2012) Amplification of siRNA in
243 *Caenorhabditis elegans* generates a transgenerational sequence-targeted histone H3 lysine
244 9 methylation footprint. *Nat Genet* **44**: 157–164.

245 13. Luteijn MJ, van Bergeijk P, Kaaij LJT, Almeida MV, Roovers EF, Berezikov E, Ketting
246 RF (2012) Extremely stable Piwi-induced gene silencing in *Caenorhabditis elegans*.
247 *EMBO J* **31**: 3422–3430.

248 14. Perales R, Pagano D, Wan G, Fields BD, Saltzman AL, Kennedy SG (2018)
249 Transgenerational Epigenetic Inheritance Is Negatively Regulated by the HERI-1
250 Chromodomain Protein. *Genetics* **210**: 1287–1299.

251 15. Ashe A, Sapetschnig A, Weick E-M, Mitchell J, Bagijn MP, Cording AC, Doebley A-L,
252 Goldstein LD, Lehrbach NJ, Le Pen J, et al. (2012) piRNAs can trigger a
253 multigenerational epigenetic memory in the germline of *C. elegans*. *Cell* **150**: 88–99.

254 16. Moore RS, Kaletsky R, Murphy CT (2019) Piwi/PRG-1 Argonaute and TGF- β Mediate
255 Transgenerational Learned Pathogenic Avoidance. *Cell* **177**: 1827-1841.e12.

256 17. Rechavi O, Minevich G, Hobert O (2011) Transgenerational Inheritance of an Acquired
257 Small RNA-Based Antiviral Response in *C. elegans*. *Cell* **147**: 1248–1256.

258 18. Schott D, Yanai I, Hunter CP (2014) Natural RNA interference directs a heritable
259 response to the environment. *Sci Rep* **4**: 7387.

260 19. Ni JZ, Kalinava N, Chen E, Huang A, Trinh T, Gu SG (2016) A transgenerational role of
261 the germline nuclear RNAi pathway in repressing heat stress-induced transcriptional
262 activation in *C. elegans*. *Epigenetics Chromatin* **9**: 3.

263 20. Hall SE, Chirn G-W, Lau NC, Sengupta P (2013) RNAi pathways contribute to
264 developmental history-dependent phenotypic plasticity in *C. elegans*. *RNA* **19**: 306–319.

265 21. Sims JR, Ow MC, Nishiguchi MA, Kim K, Sengupta P, Hall SE (2016) Developmental
266 programming modulates olfactory behavior in *C. elegans* via endogenous RNAi pathways.
267 *Elife* **5**:

268 22. Posner R, Toker IA, Antonova O, Star E, Anava S, Azmon E, Hendricks M, Bracha S,
269 Gingold H, Rechavi O (2019) Neuronal Small RNAs Control Behavior
270 Transgenerationally. *Cell* **177**: 1814-1826.e15.

271 23. Vasale JJ, Gu W, Thivierge C, Batista PJ, Claycomb JM, Youngman EM, Duchaine TF,
272 Mello CC, Conte D (2010) Sequential rounds of RNA-dependent RNA transcription drive
273 endogenous small-RNA biogenesis in the ERGO-1/Argonaute pathway. *Proc Natl Acad
274 Sci U S A* **107**: 3582–3587.

275 24. Houri-Ze'evi L, Teichman G, Gingold H, Rechavi O (2019) Stress Resets
276 Transgenerational Small RNA Inheritance. *bioRxiv* 669051.

277 25. Lev I, Seroussi U, Gingold H, Bril R, Anava S, Rechavi O (2017) MET-2-Dependent
278 H3K9 Methylation Suppresses Transgenerational Small RNA Inheritance. *Curr Biol* **27**:
279 1138–1147.

280 26. Lev I, Toker IA, Mor Y, Nitzan A, Weintraub G, Antonova O, Bhonkar O, Ben Shushan I,
281 Seroussi U, Claycomb JM, et al. (2019) Germ Granules Govern Small RNA Inheritance.
282 *Curr Biol* **29**: 2880-2891.e4.

283 27. Zhang D, Tu S, Stubna M, Wu W-S, Huang W-C, Weng Z, Lee H-C (2018) The piRNA
284 targeting rules and the resistance to piRNA silencing in endogenous genes. *Science* **359**:
285 587–592.

286 28. Pulak R (2006) Techniques for Analysis, Sorting, and Dispensing of <i>C.
287 *elegans*</i> on the COPAS<sup>TM</sup> Flow-Sorting System. In, *C.
288 elegans* pp 275–286. Humana Press, New Jersey.

289 29. Zhuang JJ, Hunter CP (2012) The Influence of Competition Among *C. elegans* Small
290 RNA Pathways on Development. *Genes (Basel)* **3**:

291 30. Yan N, Chen ZJ (2012) Intrinsic antiviral immunity. *Nat Immunol* **13**: 214–222.

292 31. Kaletsky R, Yao V, Williams A, Runnels AM, Tadych A, Zhou S, Troyanskaya OG,
293 Murphy CT (2018) Transcriptome analysis of adult *Caenorhabditis elegans* cells reveals
294 tissue-specific gene and isoform expression. *PLOS Genet* **14**: e1007559.

295 32. Dunbar TL, Yan Z, Balla KM, Smelkinson MG, Troemel ER (2012) *C. elegans* detects
296 pathogen-induced translational inhibition to activate immune signaling. *Cell Host Microbe*
297 **11**: 375–386.

298 33. Brunquell J, Morris S, Lu Y, Cheng F, Westerheide SD (2016) The genome-wide role of
299 HSF-1 in the regulation of gene expression in *Caenorhabditis elegans*. *BMC Genomics* **17**:
300 559.

301 34. Li J, Chauve L, Phelps G, Brielmann RM, Morimoto RI (2016) E2F coregulates an
302 essential HSF developmental program that is distinct from the heat-shock response. *Genes
303 Dev* **30**: 2062–2075.

304 35. Schreiner WP, Pagliuso DC, Garrigues JM, Chen JS, Aalto AP, Pasquinelli AE (2019)
305 Remodeling of the *Caenorhabditis elegans* non-coding RNA transcriptome by heat shock.

306 36. *Nucleic Acids Res* **47**: 9829–9841.

307 36. Zheng X, Beyzavi A, Krakowiak J, Patel N, Khalil AS, Pincus D (2018) Hsf1
308 Phosphorylation Generates Cell-to-Cell Variation in Hsp90 Levels and Promotes
309 Phenotypic Plasticity. *Cell Rep* **22**: 3099–3106.

310 37. Huang C, Wu J, Xu L, Wang J, Chen Z, Yang R (2018) Regulation of HSF1 protein
311 stabilization: An updated review. *Eur J Pharmacol* **822**: 69–77.

312 38. Morton EA, Lamitina T (2013) *Caenorhabditis elegans* HSF-1 is an essential nuclear
313 protein that forms stress granule-like structures following heat shock. *Aging Cell* **12**: 112–
314 120.

315 39. Roux AE, Langhans K, Huynh W, Kenyon C (2016) Reversible Age-Related Phenotypes
316 Induced during Larval Quiescence in *C. elegans*. *Cell Metab* **23**: 1113–1126.

317 40. Jobson MA, Jordan JM, Sandrof MA, Hibshman JD, Lennox AL, Baugh LR (2015)
318 Transgenerational Effects of Early Life Starvation on Growth, Reproduction and Stress
319 Resistance in *Caenorhabditis elegans*. *Genetics* **201**: 201–212.

320 41. Ou H-L, Kim CS, Uszkoreit S, Wickström SA, Schumacher B (2019) Somatic Niche Cells
321 Regulate the CEP-1/p53-Mediated DNA Damage Response in Primordial Germ Cells.
322 *Dev Cell* **50**: 167-183.e8.

323 42. Zeiser E, Frøkjær-Jensen C, Jorgensen E, Ahringer J (2011) MosSCI and gateway
324 compatible plasmid toolkit for constitutive and inducible expression of transgenes in the
325 *C. elegans* germline. *PLoS One* **6**: e20082.

326 43. Sapetschnig A, Sarkies P, Lehrbach NJ, Miska EA (2015) Tertiary siRNAs mediate
327 paramutation in *C. elegans*. *PLoS Genet* **11**: e1005078.

328 44. Ge SX, Jung D (2018) ShinyGO: a graphical enrichment tool for ani-mals and plants.

329 *bioRxiv* 315150.

330 45. Hakim A, Mor Y, Toker IA, Levine A, Neuhof M, Markovitz Y, Rechavi O (2018)

WorMachine: machine learning-based phenotypic analysis tool for worms. *BMC Biol* 16:

8.

333 46. Kamath RS, Martinez-Campos M, Zipperlen P, Fraser AG, Ahringer J (2001)

Effectiveness of specific RNA-mediated interference through ingested double-stranded

RNA in *Caenorhabditis elegans*. *Genome Biol* 2: RESEARCH0002.

336 47. Andrews S (2010) FastQC A Quality Control tool for High Throughput Sequence Data.

<http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>

338 48. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. *Nat*

Methods 9: 357–359.

340 49. Anders S, Pyl PT, Huber W (2014) HTSeq A Python framework to work with high-

throughput sequencing data. Cold Spring Harbor Labs Journals.

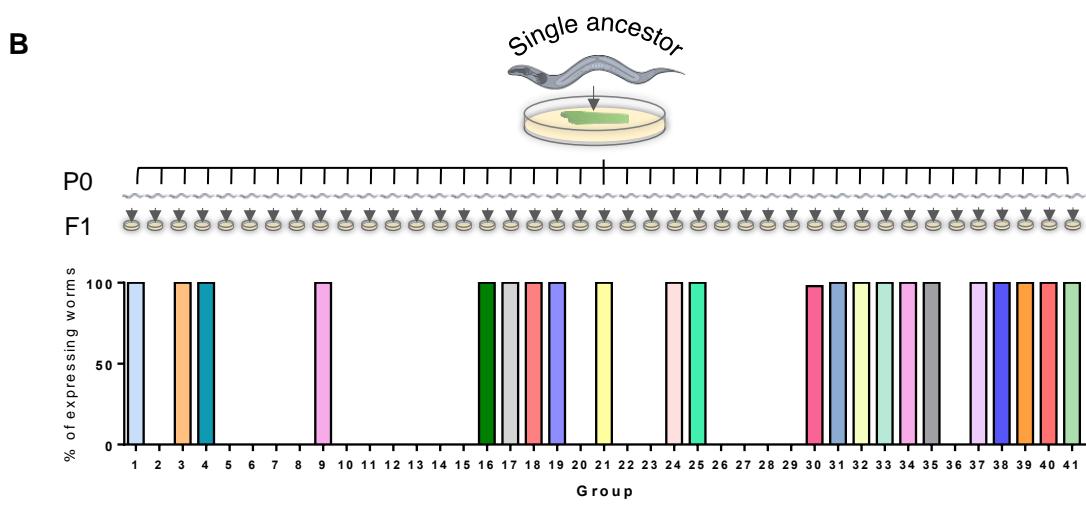
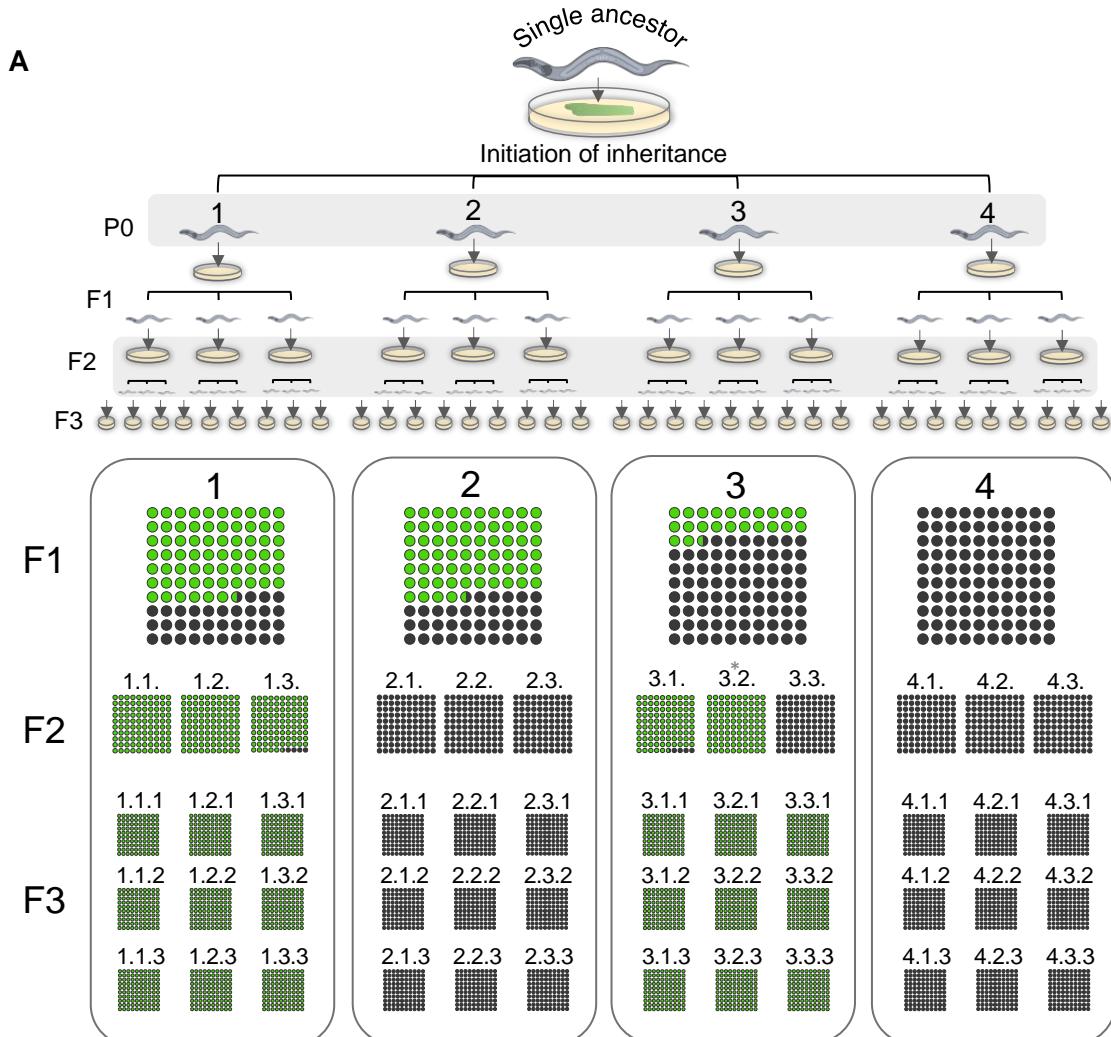
342 50. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion

for RNA-seq data with DESeq2. *Genome Biol* **15**: 550.

344

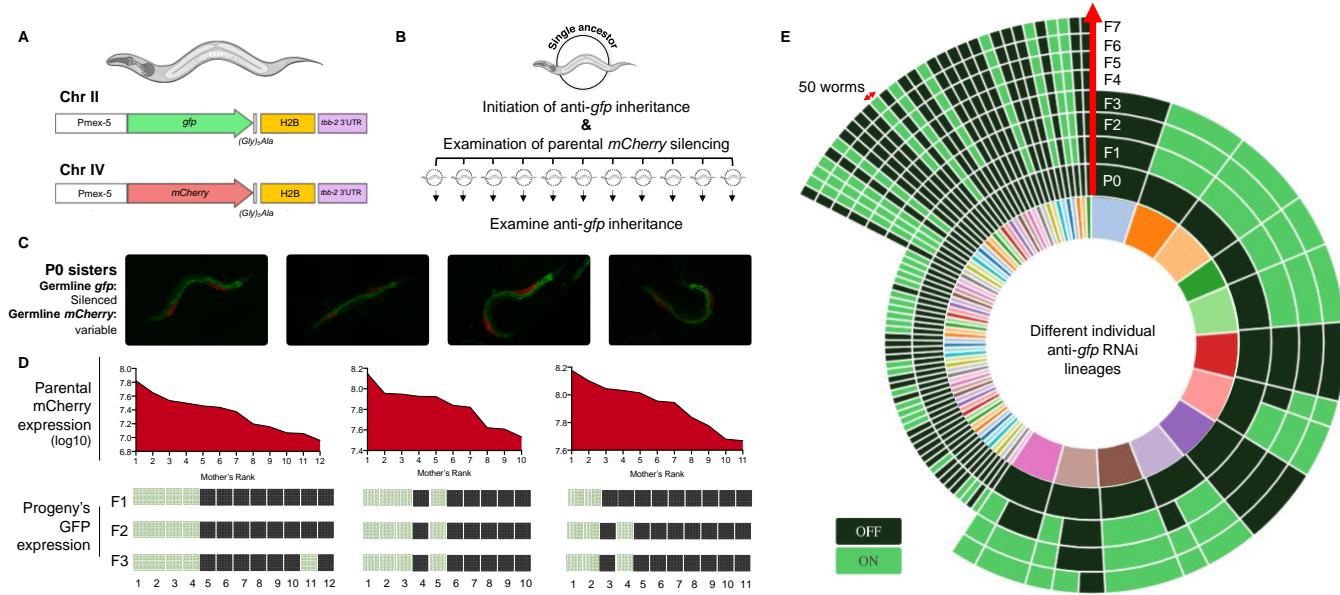
345

346



Acknowledgments

347

We thank all the Oded Rechavi lab members for comments and discussions. Special thanks to Sarit Anava, Ekaterina Star, Hila Gingold and Guy Teichman for experimental and visualization assistance. Some strains were provided by the CGC, which is funded by NIH Office of Research Infrastructure Programs (P40 OD010440). We thank Eric Miska and Julie Ahringer for kindly providing us with strains. L.H.Z. is thankful to the Clore Foundation. O.R. is thankful to the Adelis Foundation grant #0604916191. This work was funded by ERC grants #335624 and #819151. As this is a short article, we apologize that we could not reference many other important studies on the mechanisms of RNAi and small RNA inheritance, especially experiments that were conducted with organisms other than *C.elegans*.


356

357

358 **Fig. 1. Inheritance patterns of an anti-*gfp* silencing response reveal striking uniformity in**
359 **heritable silencing in worms which are derived from the same mother.**

360 A. Four P0 mothers, derived from one single ancestor, initiate an anti-*gfp* RNAi response. At
361 each generation, the inheritance phenotype of the entire synchronized progeny of each
362 mother is scored, and three worms are randomly selected to generate the next generation.
363 Displayed are the proportion of worms that still inherit anti-*gfp* silencing response (dark
364 circles) and worms that lost the silencing (green circles) in each group of progeny. The
365 number of worms in each group of progeny ranged from 25 to 90. Mean = 43, median =
366 41.5. (*In group 3.2. only 7 worms were examined due to partial sterility of the mother.)
367 B. Multiple (41) synchronized P0 mothers, derived from one single ancestor, initiate an anti-
368 *gfp* RNAi response. In these sets of experiments the *in-utero* exposure of the F1
369 generation to the dsRNA trigger was further minimized. The inheritance phenotype of the
370 F1 progeny of each mother is scored and presented as the percentage of worms that lost
371 heritable silencing response (re-express GFP) in each group. Each color represents a
372 separate P0-derived progeny group. For further details regarding synchronization and
373 exposure times, please refer to the **Methods** section.

374 **Fig. 2. Inter-individual variability in anti-*gfp* small RNA inheritance can be predicted by**
375 **the rate of spontaneous *mCherry* silencing at the parental generation.**

376 A. Transgene construction of genomically-integrated single-copies of *gfp* and
377 *mCherry* transgenes. Both transgenes bear identical promoter and 3' UTR sequences and
378 were integrated using MosSCI into separate genomic loci and different
379 chromosomes[42,43] (**Methods**).
380 B. Experimental scheme: to examine the ability to predict inter-individual variability in
381 silencing inheritance, worms which bear both transgenes were subjected to an anti-
382 *gfp* RNAi treatment and were scored for spontaneous silencing of the *mcherry* transgene
383 at the generation of exposure to RNAi. Experiments were done in triplicates, with each
384 replicate of P0 mothers derived from one single ancestor. Inheritance of anti-*gfp* silencing
385 response was scored at the next generations separately for each P0-derived lineage.

386 C. Fluorescent microscope images of sister worms which are exposed to anti-*gfp* RNAi.

387 While all mothers completely silence the *gfp* transgene upon exposure to RNAi,

388 the *mcherry* transgene is spontaneously silenced to different degrees in sister worms.

389 D. Matched scores of parental mCherry expression and inheritance of anti-*gfp* silencing

390 across generations. Each individual P0 mother was examined for mCherry expression

391 levels at the parental generation and ranked based on its relative expression compared to

392 its sister worms. Presented are the log10 expression levels of mCherry for each mother,

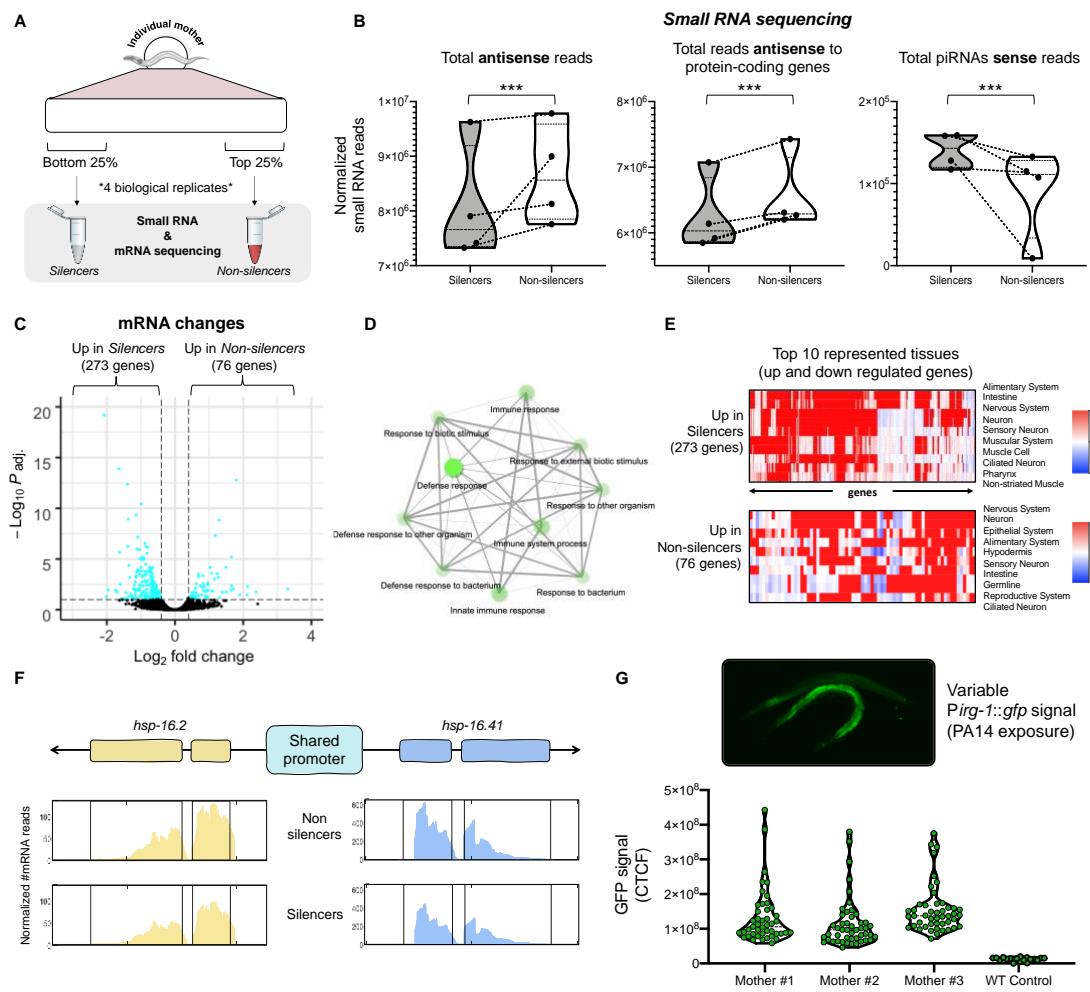
393 and the proportion of silencing (dark grey) vs. re-expressing (green) progeny in each

394 lineage across generations.

395 E. Visual summary of all anti-*gfp* RNAi inheritance lineages examined in this study

396 (>20,000). Data are presented as inheritance “series”: each colored section of the inner

397 circle represents one separate lineage, originating from an individual P0 mother. The


398 outer circles represent each generation, and the scored silencing phenotype for the

399 specified generation in each lineage. OFF: full silencing of *gfp*. ON: re-expression of

400 GFP. The size of each section in the outermost circle corresponds to the number of

401 worms examined in each lineage that were found to have the indicated silencing

402 phenotype. Red arrow (↔) represents 50 worms.

403

404 **Fig. 3. The transcriptomic changes that underlie the different inheritance states in isogenic**
405 **sister worms**

406 A. The experimental design for collecting tightly synchronized, isogenic sister worms
407 bearing different inheritance states (**Methods**).

408 B. Global changes in small RNA species in silencer vs. non-silencer worms (χ^2 test). The Y-
409 axis represents the normalized total number of reads for each indicated type of small
410 RNA species. Each coupled measurement of progeny (silencer and non-silencer sisters) is
411 marked with a dotted line. See **Methods** for full details regarding analyses.

412 C. Volcano plot summarizing mRNA differences between silencer and non-silencer worms.

413 D. Gene ontology (GO) enrichment[44] of genes which are differentially expressed between

414 silencers and non-silencers, and the connection between the different enriched terms (top

415 10 enriched terms). Brighter nodes represent more significantly enriched gene sets.

416 Bigger nodes represent larger gene sets for the specific GO term. Terms (nodes) are

417 connected to each other if they share at least 20% of their genes.

418 E. Tissue-enrichment analysis for genes which are up or down regulated between the two

419 states of inheritance [31]. Red color represents higher predicted gene expression in the

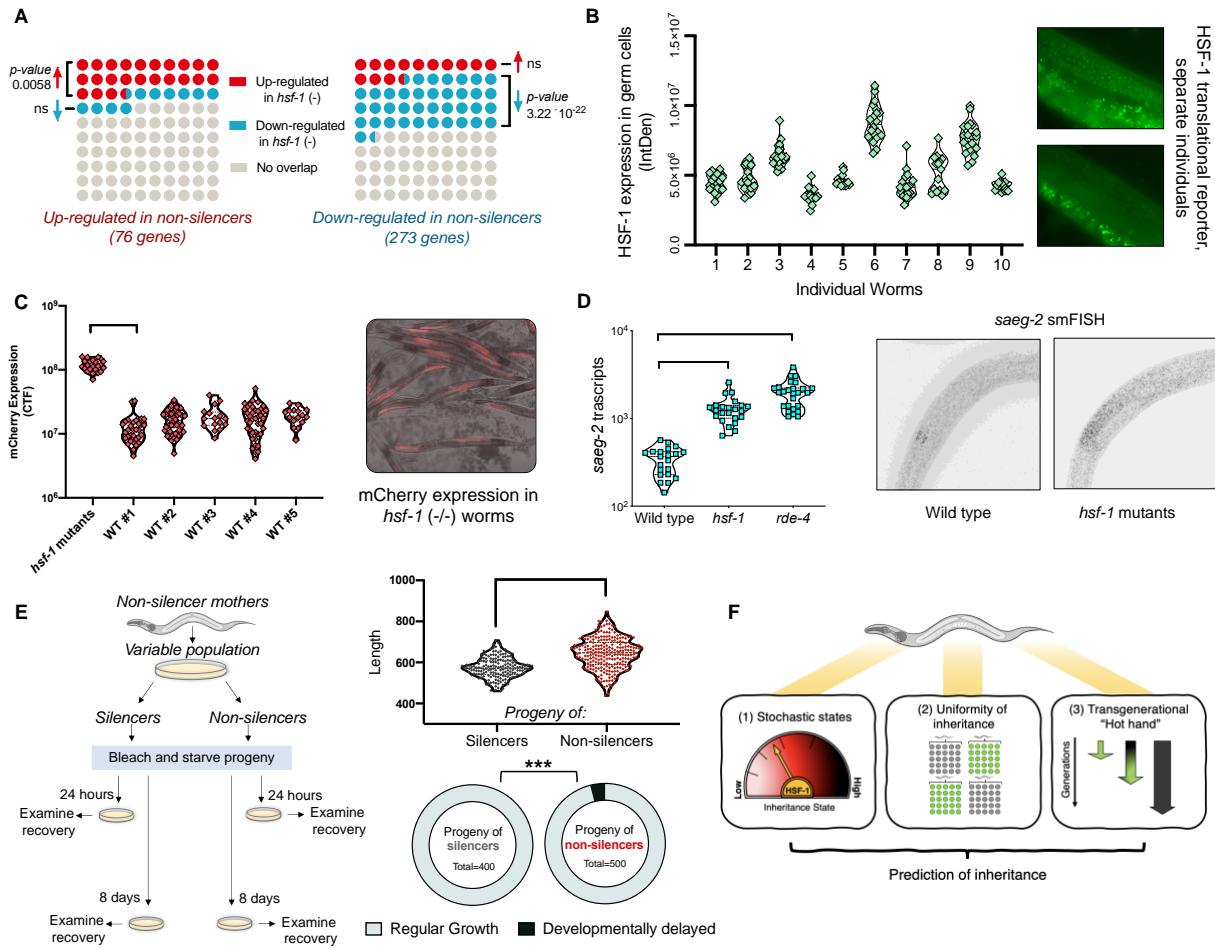
420 indicated tissue.

421 F. The heat-shock protein genes *hsp-16.2* and *hsp-16.41* share the same promoter and their

422 expression levels change together in the two different states of inheritance. Presented are

423 normalized mRNA-seq reads along the two genes. Grey areas represent annotated exons

424 locations.


425 G. Inter-individual variability in the expression of an *irg-1* transcriptional reporter, one of

426 the genes which were found to vary between the different inheritance states. Expression

427 was measured in progeny of individual worms following 6 hours of exposure to the

428 pathogenic bacterium *Pseudomonas aeruginosa* (PA14) (see **methods**).

429

430 **Fig. 4. HSF-1 varies between different individuals and affects multiple inheritance**
431 **processes. The inheritance states can predict the next generations' response to starvation**
432 **stress.**

433 A. Genes which are up and down regulated in the two different inheritance states show
434 enrichment for HSF-1-regulated genes. Specifically, transcriptional changes in non-
435 silencers resemble transcriptional changes in *hsf-1* mutant worms (hypergeometric test).
436 B. Translational reporter of the worm's HSF-1 protein reveals inter-individual variation in
437 the formation of HSF-1 stress granules in the germline. Each dot represents GFP levels in

438 one syncytial nucleus. Data were collected from ten separate and tightly synchronized
439 individual worms (X axis).

440 C. Variability in spontaneous silencing of the *mcherry* transgene is abolished in worms
441 which possess a reduction-of-function mutation in *hsf-1* (*sy441*). Each dot represents a
442 measurement of total fluorescence in one individual worm (F test).

443 D. Quantifications of *saeg-2* transcripts using smFISH in wild type, *hsf-1* (*sy441*) and *rde-4*
444 (*ne299*) worms. Each dot represents one quantified worm. P-values were determined by
445 Kruskal-Wallis test with Dunn's post hoc correction for multiple comparison and
446 asterisks represent p-values in comparison to wild type. **** represents p-value < 10⁻⁴.

447 E. The worms' response to starvation stress can be predicted by examination of the
448 inheritance state at the parental generation, prior to starvation (see **Methods**). Progeny of
449 non-silencer worms show pronounced variability and developmental delay following
450 recovery from 8 days of starvation. Top panel: length measurements [45] 60 hours after
451 transferring the worms to plates with food (F test). Bottom panel: frequency of
452 developmentally delayed worms (arrest as L1/L2) 48 hours after transferring the worms
453 to plates with food (χ^2 test).

454 F. Rules for the segregation of heritable small RNA responses across generations: (1) each
455 mother assumes a stochastic "inheritance state", which dictates the potency of the small
456 RNA responses that this worm would transmit to its descendants, (2) within every
457 generation heritable silencing responses are distributed uniformly among the progeny of
458 the same RNAi-exposed mother, (3) The more generations silencing responses last, the
459 chance that silencing would persist increases, according to the "hot hand" principle.

460

Methods

461

Nematodes' growth and maintenance

462

Standard culture techniques were used to maintain the worms. Worms were grown on Nematode Growth Medium (NGM) plates and fed with *Escherichia coli* OP50 bacteria. Strains maintenance and experiments were performed at 20°C. The worms were kept fed for at least five generations before the beginning of each experiment. Extreme care was taken to avoid contamination or starvation. Contaminated plates were discarded from the analysis.

467

468

Strains

469

The following *C. elegans* strains were used in this study: N2, SX1263 (mjIs134 [Pmex-5::gfp::(Gly)5Ala/his-58/tbb-2 3'UTR; cb-unc-119(+)] II), JA1527 (weSi14 [Pmex-5::mCherry::(Gly)5Ala/his-58/tbb-2 3'UTR; cb-unc-119(+)] IV)[42], PS3551 (*hsf-1(sy441)*), OG532 (drSi13 [Phsf-1::hsf-1::gfp::unc-54 3'UTR + Cbr-unc-119(+)] II) - outcrossed to generate wild-type background, AU133 (agIs17 [Pmyo-2::mCherry + Pирг-1::GFP] IV), BFF12 (*rde-4(ne299)*).

475

476

dsRNA administration

477

The standard assay for RNAi by feeding was carried out as previously described[46]: HT115 bacteria that transcribe dsRNA targeting *gfp* were grown in Carbenicillin-containing LB and were then seeded on NGM plates that contain Carbenicillin (100 µg/ml) and IPTG (1 mM). The plates were seeded with bacteria 24 hours prior to their use.

481

482

483

Lineages experiments:

484

Diversifying anti-gfp RNAi lineages (Fig. 1A):

485

An individual worm (day 2 of adulthood) was placed on a plate containing anti-gfp producing bacteria and was given 2-3 hours to lay eggs (the P0 generation). We then let the eggs hatch, and the worms grow until they become young adults. Four P0 worms were then transferred to plates containing regular bacteria (OP50) and were allowed to lay eggs (the F1 generation) for 6-8 hours. The P0 mothers were then removed and pictured for their silencing phenotype (all P0 mothers exhibited complete silencing).

491

The eggs (F1 generation) were then allowed to hatch, and the worms grew until reaching day 2 of adulthood. On day 2, we randomly selected 3 F1 worms from each separate P0-derived group and transferred each of them to a new plate for 12-16 hours of egg laying. We then pictured the entire F1 population and the three randomly selected F1 mothers. We repeated this procedure in the transmission between the F2 and F3 generation. In the F3 generation all 36 progeny groups were pictured. Across all generations, each group of progenies was constructed of 25-90 worms, with an average of 43 worms per group (median = 41.5).

497

(4 P0s x 3 F1s each x 3F2s each = 36 F3 groups)

499

Multiple separate anti-gfp RNAi P0 mothers (Fig. 1B):

500

To control for differences in *in utero* exposure of both the P0 and the F1 generation, we exposed the ancestor worm (which will lay the P0 generation) to the RNAi signal from the beginning of the L4 stage (before the creation of eggs), and allowed the P0 worms to “recover” on control plated before laying the F1 generation that will be examined in the experiments. Namely: an individual L4 worm was placed on a plate containing anti-gfp producing bacteria until it reached day 2 of adulthood. It was then transferred to a new anti-gfp plate and was allowed to lay eggs

506 for 6-8 hours (the P0 generation). The eggs were allowed to hatch, and the worms grew until
507 they reached day 1-2 of adulthood. The P0 mothers were transferred to regular plates for 4 hours
508 (during which the fertilized eggs that were directly exposed to the RNAi signal should have all
509 been laid). The P0 mothers were then transferred to separate plate (1 worm per plate) to lay eggs
510 (the F1 generation) for 6-8 hours, and then removed and pictured for the silencing phenotype.
511 The eggs (F1 generation) hatched and the worm grew until day 1 of adulthood, in which they
512 were scored for their silencing phenotype.

513 *Diversifying mcherry stochastic silencing lineages experiments (Fig. S1)*. Five mCherry-
514 expressing worms were chosen to create the five different lineages. Similar to anti-*gfp* lineages
515 experiments, three worms were randomly selected from the progeny to generate the next
516 generation. This procedure repeated in each examined generation (until F4).

517 *Coupled mcherry (stochastic silencing) and gfp (dsRNA-induced) lineages (Fig. 2A to D)*
518 For each of the three replicates, a single expressing adult (day 2) worm was chosen and was
519 allowed to lay eggs (the P0 generation) on an anti-*gfp* RNAi plate for 6-8 hours. The eggs were
520 allowed to hatch, and the worms grew until they reached adulthood. The P0 worms were then
521 transferred to regular plates for 4 hours of “recovery” egg laying (to minimize differences in *in*
522 *utero* exposure of the eggs to the dsRNA signal). The P0 mothers were then transferred to
523 separate plates – one P0 worm per plate – and allowed to lay eggs (the F1 generation) for 6-8
524 hours. The mothers were then removed and pictured for the anti-*gfp* silencing phenotype and for
525 their *mcherry* silencing phenotype. The eggs were allowed to hatch, and worms grew until they
526 reached day 2 of adulthood, at which each group was pictured for the anti-*gfp* silencing
527 phenotype and one worm was transferred to a new plate to lay the next generation (12-16 hours
528 of egg laying). This procedure repeated itself in each examined generation.

529 **Handling of the JA1527 strain**

530 (*bearing a stochastically silenced mcherry transgene*)

531 The JA1527 strain was kindly received from the Julie Ahringer lab (University of Cambridge).

532 After 6 outcrosses rounds, rapid silencing of the *mcherry* transgene was initiated in the
533 population. To avoid a complete “drift” of *mcherry* silencing in the population we either (1) kept
534 large stocks of frozen expressing JA1527 worms and thawed the worms a couple of weeks prior
535 to the initiation of experiments or (2) transferred the worms to 25°C for a couple of generations,
536 transferred them back to 20°C and selected multiple expressing worms to create the next
537 generations. We let these worms revive for at least 3 generations before the initiation of
538 experiments.

539 It is highly recommended to avoid repetitive selection of expressing worms (tens of generations
540 of selection), as it seems to drastically change RNAi sensitivity in the population.

541

542 **RNA and small RNA sequencing experiments**

543 *Collecting worms for sequencing*: four mCherry-expressing worms were allowed to lay eggs in
544 separate plates (one worm per plate) for 8 hours. The eggs were allowed to hatch and grew until
545 they reached adulthood. Each group of progenies (isogenic sisters) was then washed with M9
546 buffer into a 1.5ml Eppendorf tube, followed by 3-4 M9 washes, in order to remove any residual
547 bacteria. Each group was then examined in COPATM Biosort (Union Biometrica) and sorted to
548 get the top and bottom 25% of mCherry expressing worms in each group. TRIzol[®] (Life
549 Technologies) was then added to each sorted tube, and the tubes were immediately transferred to
550 -80°C until RNA extraction procedure.

551 *RNA extraction*: RNA extraction was performed as previously described[22].

552 *Small RNA libraries*: total RNA samples were treated with tobacco acid pyrophosphatase (TAP,
553 Epicenter), to ensure 5' monophosphate-independent capturing of small RNAs. Libraries were
554 prepared using the NEBNext® Small RNA Library Prep Set for Illumina® according to the
555 manufacturer's protocol. The resulting cDNAs were separated on a 4% agarose E-Gel
556 (Invitrogen, Life Technologies), and the 140–160 nt length species were selected. cDNA was
557 purified using the MinElute Gel Extraction kit (QIAGEN). Libraries were sequenced using an
558 Illumina HiSeq 2500 instrument.

559 *mRNA libraries*: cDNA was generated using SMART-Seq v4 Ultra Low Input RNA (Takara)
560 and libraries were prepared using Nextera XT DNA Sample Preparation Kit (Illumina). Libraries
561 were sequenced using an Illumina MiniSeq instrument.

562

563 **Sequencing analyses**

564 *Small RNA libraries*. Small RNA libraries were processed and analyzed as recently
565 described[24]. Normalization of the total number of reads in each sample, and the total number
566 of reads which align to the different types of genomic features was generated based on the
567 SizeFactor normalization provided by the DESeq2 package (the median ratio method). To omit
568 effects of PCR amplifications and additional sources of variability which are driven by
569 sequencing artifacts, Chi square test was performed on DESeq2-size-factor normalized reads and
570 the statistic value of the test was normalized to the same size factors.

571 *mRNA libraries*. mRNA libraries were first assessed for quality using the FastQC tool[47] and
572 were then aligned to ce11 version of the genome using bowtie 2[48], using the command:
573 `bowtie2 --sensitive-local -x ce11Reference -U mRNA_sample.fastq.gz > Alignment.sam`

574 The aligned reads were then counted using the python-based script HTSeq-count[49] and the
575 Ensembl-provided gff file (release-95), using the following command:

576 *HTSeq.scripts.count --stranded=yes --mode=union Alignment.sam cel1WBcel235.94.gtf >*
577 *Counts.txt*

578 The samples were then compared for differential expression using the R package DESeq2[50],
579 and a “patient”-based comparison, to directly compare between each pairs of silencer and non-
580 silencer sisters.

581

582 **PA14 exposure experiments**

583 Corresponds to **Fig. 3G**: worms were exposed to PA14 as previously described[32]. Adult (day
584 2) AU133 and wild type worms were allowed to lay eggs in separate OP50 plates (single worm
585 per plate) for 10 hours. The eggs hatched and the worms grew until they reached adulthood. The
586 worms were then placed on PA14-containing plates for 8 hours. After 8 hours the worms were
587 removed and pictured for *Pirg-1::GFP* expression.

588

589 **HSF-1 translational reporter experiments**

590 Corresponds to **Fig. 4B**: Worms were first outcrossed with wild-type (N2) worms to generate
591 worms which bear genomically integrated *Phsf-1::hsf-1::gfp::unc-54* 3'UTR construct in a wild-
592 type background. A single worm was allowed to lay eggs for 12 hours. L4 worms were selected
593 from the progeny to further facilitate synchronization between the different individuals and were
594 examined for the HSF-1 translational reporter expression 24 hours later.

595

596 **smFISH experiments**

597 smFISH experiments and analyses were performed as previously described[22] using the same
598 probe set.

599

600 **Starvation experiments**

601 Corresponds to **Fig. 4E**: Multiple mCherry-expressing adult worms were allowed to lay eggs
602 over-night. The eggs hatched and the worms grew, until they reached day 2 of adulthood. The
603 population was separated into silencers and non-silencers groups based on mCherry
604 fluorescence. Each group was bleached to achieve clean batches of eggs. The eggs were
605 transferred to unseeded Nematode Growth Medium (NGM) plates for either 24 hours of 8 days.
606 After the indicated starvation period, worms were washed and transferred to plates with food
607 (OP50 bacteria) and were scored for size and developmental delay.

608 *Scoring of developmentally delayed worms:* After 48 hours of recovery, the worms were
609 examined for the existence of developmentally delayed worms (arrested at the L1/L2 stage). The
610 number of all worms and the developmentally delayed worms in each condition was counted.
611 The investigators were blinded to identity of the groups during their examination.

612 *Measuring worms' size using WormMachine:* After 60 hours of recovery, each group of worms
613 was washed, paralyzed, pictured and then analyzed as previously described[45], using the
614 WormMachine software.

615

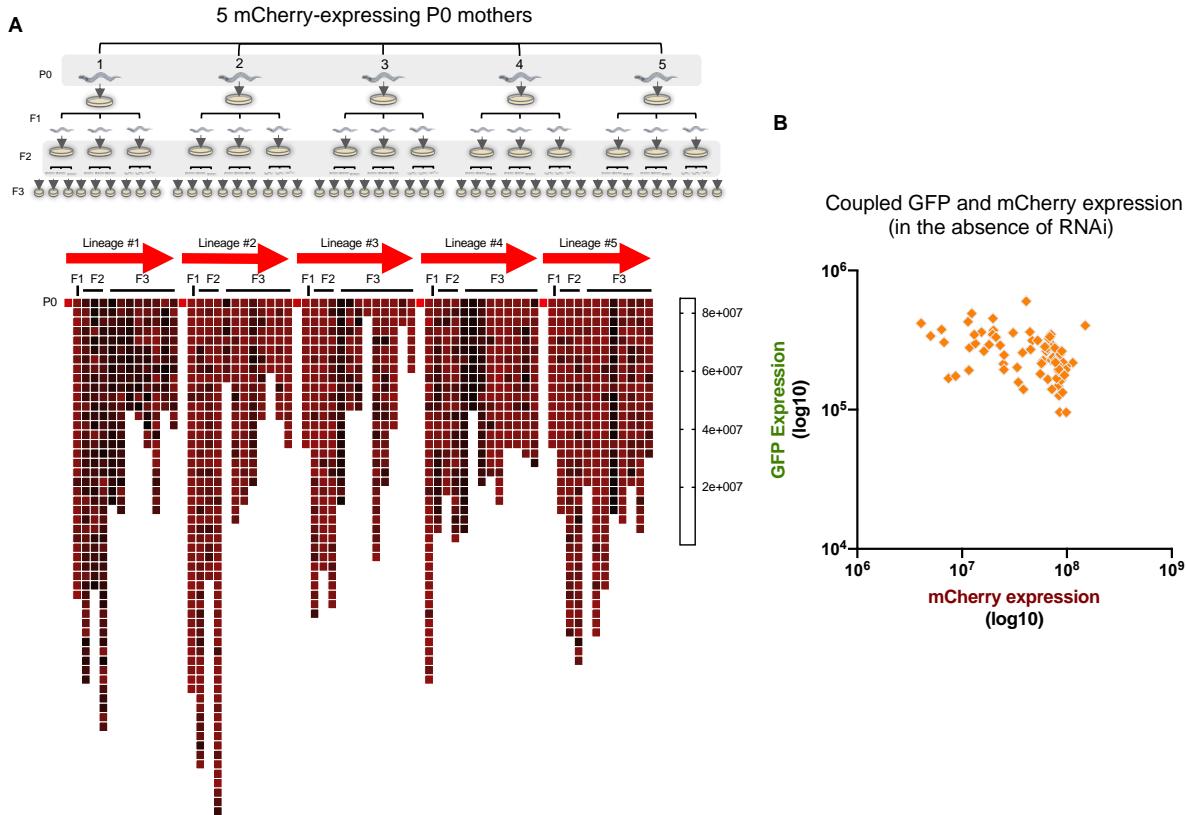
616 **Microscopy**

617 We used an Olympus BX63 microscope for fluorescence microscopy assays. Unless otherwise
618 noted experiments were pictured using a 10X objective lens, and an exposure time of 750ms.
619 Generally, worms were picked and transferred to 2% agarose padded microscope slides

620 containing drops of tetramisole to generate paralysis, covered with a glass cover slip, and
621 pictured after 2-5 minutes.

622 *Measuring anti-gfp RNAi inheritance.* GFP silencing and inheritance was scored using a binary
623 system: no expression (OFF) or any level of expression (ON).

624 Measuring *mCherry*'s stochastic silencing and *irg-1* reporter. Using *Fiji*, we measured the
625 integrated density of the whole worm, based on its contour, as well as multiple background
626 measurements per picture. The corrected total fluorescence (CTF) of each worm was calculated
627 as {Integrated Density – (Area of selected worm X Mean fluorescence of background readings)}.


628 *Measuring hsf-1 reporter.* The syncytial germline of the worms was pictured using 40X
629 objective lens. The GFP fluorescence in nuclei of each worm were then measured using *Fiji*.

630

631 **Statistics and visualization**

632 All statistical analyses were performed in R (version 3.6.1) or Graphpad Prism (version 8.3.0).
633 Statistical tests were performed as two-sided tests, unless inapplicable. Chi-square test and
634 hypergeometric tests were performed using online tools. Graphs were created in R and Graphpad
635 Prism.

636

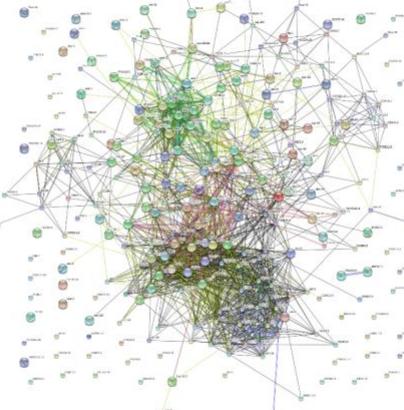
637

638 **Extended Data Figure 1: Stochastic silencing of the *mcherry* transgene across lineages,**
639 **and in comparison to GFP expression in the absence of anti-*gfp* RNAi.**

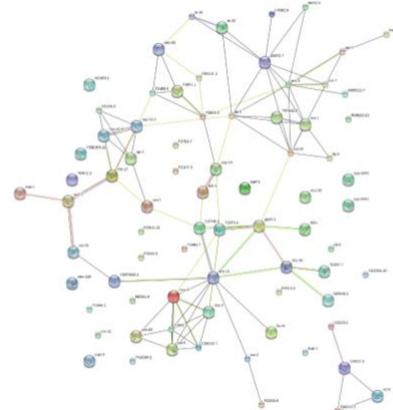
640 **A.** Top panel: scheme of examination of *mcherry* stochastic silencing across lineages (see
641 **Methods**). Bottom: mCherry expression levels in each examined worm across the
642 different lineages. Scale represent high (red) and low (dark) mCherry expression levels.
643 Each square represents a measurement of a single worm. Few groups were omitted from
644 the analysis due to contamination or premature death.

645 **B.** Paired measurements of GFP and mCherry expression in the absence of anti-*gfp* RNAi
646 treatment in worms which bear the two transgenes. Each dot represents the GFP and the
647 mCherry measurements of a single worm. Slight negative correlation is observed between
648 the two expression levels (simple linear regression. Slope = -0.001155, p-value < 0.0005)

A Up in Silencers (273 genes):


Enrichment FDR	Genes in list	Total genes	Functional Category
1.3E-07	27	468	Defense response
2.1E-06	15	171	Response to bacterium
2.1E-06	15	170	Defense response to bacterium
3.3E-06	4	4	Peptidoglycan catabolic process
3.3E-06	20	338	Innate immune response
3.3E-06	4	4	Peptidoglycan metabolic process
4.8E-06	20	352	Immune system process
4.8E-06	20	350	Immune response
6.9E-06	15	209	Response to biotic stimulus
6.9E-06	15	209	Response to external biotic stimulus
6.9E-06	4	5	Glycosaminoglycan catabolic process
6.9E-06	15	209	Response to other organism
6.9E-06	15	206	Defense response to other organism
1.0E-04	22	523	Response to external stimulus
1.4E-04	8	70	Muscle system process
1.4E-04	8	70	Defense response to Gram-positive bacterium
1.4E-04	8	69	Muscle contraction
3.6E-04	8	80	Regulation of system process
4.2E-04	34	1152	Response to stress
3.1E-03	10	172	Monocarboxylic acid metabolic process

Up in Non-silencers (76 genes):

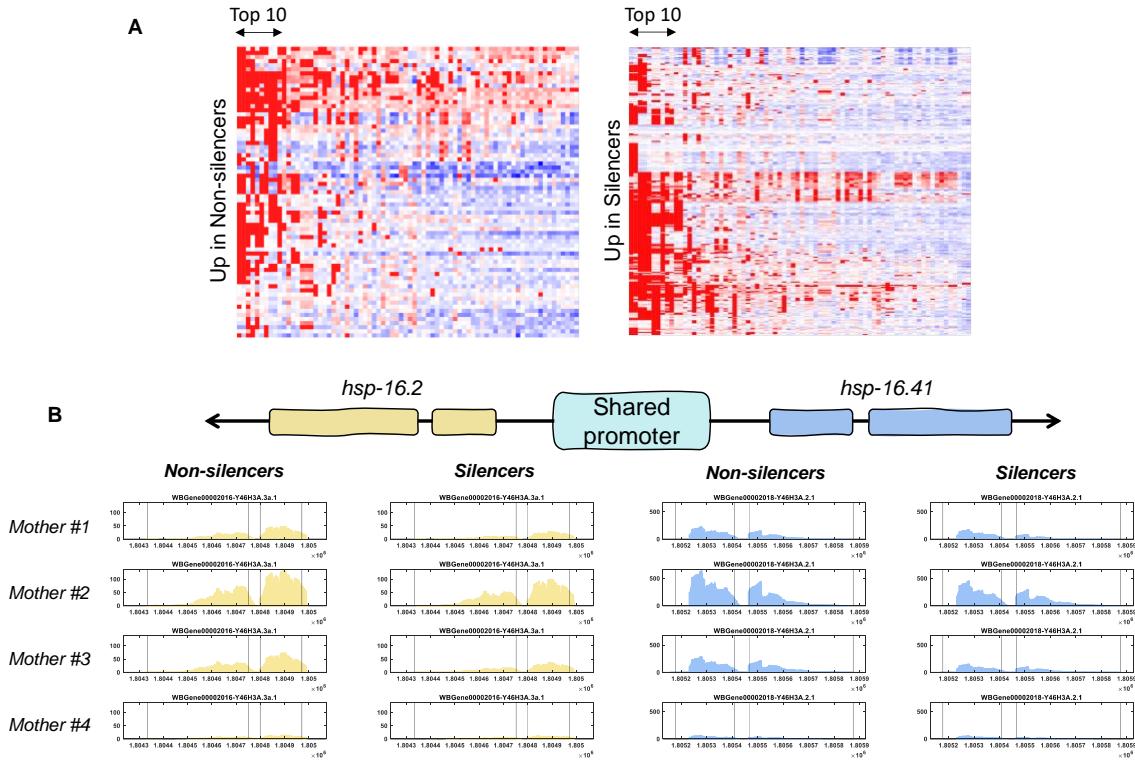

Enrichment FDR	Genes in list	Total genes	Functional Category
2.3E-03	10	468	Defense response
3.1E-03	8	352	Immune system process
3.1E-03	8	338	Innate immune response
3.1E-03	8	350	Immune response
4.0E-03	6	209	Response to biotic stimulus
4.0E-03	6	209	Response to external biotic stimulus
4.0E-03	6	209	Response to other organism
4.0E-03	6	206	Defense response to other organism
5.1E-03	9	542	Multi-organism process
7.9E-03	13	1152	Response to stress
1.8E-02	9	664	Oxidation-reduction process

B

proteins: 264
interactions: 1515
expected interactions: 232 (p-value: 0)

proteins: 76
interactions: 98
expected interactions: 33 (p-value: 0)

649


**650 Extended Data Figure 2: GO term enrichment and STRING representation of genes which
651 are differentially expressed between the two inheritance states.**

652 A. Gene ontology (GO) for genes which are up regulated in silencer and non-silencer
653 worms. Presented are the top 20 terms for each dataset, which have an FDR enrichment
654 value of less than 0.05 (only 11 terms pass this criterion in the dataset of genes which are
655 up regulated in Non-silencers).

656 B. STRING representation of the protein-protein interactions between the genes which are
657 differentially expressed in the different states of inheritance. Indicated is the expected
658 number of interactions, the observed number, and a significance value for enrichment of
659 interactions (Fisher's exact test followed by a correction for multiple testing).

660 Both panels were created using ShinyGO v0.61[44].

661

662

663 **Extended Data Figure 3: Tissue expression prediction of genes which change their**
 664 **expression in the different inheritance states, and co-regulation of the *hsp-16.2* and *hsp-***
 665 ***16.41* genes, which share a promoter.**

666 **A.** Full visualization of tissue expression prediction of the genes which are up regulated in
 667 Non-silencers (left) and Silencers (right). Columns represent different tissues, rows
 668 represent the different genes in each dataset[31].

669 **B.** Normalized mRNA-seq reads aligning to *hsp-16.2* and *hsp-16.41* which share their
 670 promoters. Presented are the normalized reads for each of the four groups of progenies
 671 which were sorted into Silencer and Non-silencer worms.

672

673
674

Extended Data Reference:

675 43. Zeiser, E., Frøkjær-Jensen, C., Jorgensen, E. & Ahringer, J. MosSCI and gateway
676 compatible plasmid toolkit for constitutive and inducible expression of transgenes in the
677 *C. elegans* germline. *PLoS One* **6**, e20082 (2011).

678 44. Sapetschnig, A., Sarkies, P., Lehrbach, N. J. & Miska, E. A. Tertiary siRNAs
679 mediate paramutation in *C. elegans*. *PLoS Genet.* **11**, e1005078 (2015).

680 45. Ge, S. X. & Jung, D. ShinyGO: a graphical enrichment tool for ani-mals and plants.
681 *bioRxiv* 315150 (2018). doi:10.1101/315150

682 46. Hakim, A. *et al.* WorMachine: machine learning-based phenotypic analysis tool for
683 worms. *BMC Biol.* **16**, 8 (2018).

684 47. Kamath, R. S., Martinez-Campos, M., Zipperlen, P., Fraser, A. G. & Ahringer, J.
685 Effectiveness of specific RNA-mediated interference through ingested double-stranded
686 RNA in *Caenorhabditis elegans*. *Genome Biol.* **2**, RESEARCH0002 (2001).

687 48. Andrews, S. FastQC A Quality Control tool for High Throughput Sequence Data.
688 <http://www.bioinformatics.babraham.ac.uk/projects/fastqc/> (2010).

689 49. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat.*
690 *Methods* **9**, 357–9 (2012).

691 50. Anders, S., Pyl, P. T. & Huber, W. *HTSeq A Python framework to work with high-*
692 *throughput sequencing data*. *bioRxiv* (Cold Spring Harbor Labs Journals, 2014).
693 doi:10.1101/002824

694 51. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and
695 dispersion for RNA-seq data with DESeq2. *Genome Biol.* **15**, 550 (2014).

696