

1

2 Short-term changes in polysaccharide utilization mechanisms of marine bacterioplankton during a
3 spring phytoplankton bloom

4

5

6 Greta Reintjes^{1‡}, Bernhard M. Fuchs¹, Mirco Scharfe^{2†}, Karen H. Wiltshire², Rudolf Amann¹, and
7 Carol Arnosti^{3*}

8

9

10 Affiliations

11 1) Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen,
12 Germany. 2) Alfred Wegener Institute, Germany 3) Department of Marine Sciences, University
13 of North Carolina-Chapel Hill, Chapel Hill, NC, USA

14

15 Correspondence:

16 *C. Arnosti, Department of Marine Sciences, University of North Carolina-Chapel Hill, Chapel
17 Hill, NC 27599-3300, USA. E-mail: arnosti@email.unc.edu;

18

19 Running title: Polysaccharide utilization during a bloom

20

21 ‡ Current address: Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge,
22 AB, T1J 4B1, Canada.

23 †deceased

24

25 Originality statement

26

27 The means by which heterotrophic bacteria cooperate and compete to obtain substrates is a key
28 factor determining the rate and location at which organic matter is cycled in the ocean. Much of this
29 organic matter is high molecular weight (HMW), and must be enzymatically hydrolyzed to smaller
30 pieces to be processed by bacterial communities. Some of these enzyme-producing bacteria are
31 'selfish', processing HMW organic matter without releasing low molecular weight (LMW) products
32 to the environment. Other bacteria hydrolyze HMW substrates in a manner that releases LMW
33 products to the wider bacterial community. How these mechanisms of substrate hydrolysis work
34 against a changing background of organic matter supply is unclear. Here, we measured changing
35 rates and mechanisms of substrate processing during the course of a natural phytoplankton bloom
36 in the North Sea. Selfish bacteria generally dominate in the initial bloom stages, but a greater supply
37 of increasingly complex substrates in later bloom stages leads to external hydrolysis of a wider range
38 of substrates, increasing the supply of LMW hydrolysis products to the wider bacterial community.

39

40

41 **Summary**

42 Spring phytoplankton blooms in temperate environments contribute disproportionately to global
43 marine productivity. Bloom-derived organic matter, much of it occurring as polysaccharides, fuels
44 biogeochemical cycles driven by interacting autotrophic and heterotrophic communities. We tracked
45 changes in the mode of polysaccharide utilization by heterotrophic bacteria during the course of a
46 diatom-dominated bloom in the German Bight, North Sea. Polysaccharides can be taken up in a
47 ‘selfish’ mode, where initial hydrolysis is coupled to transport into the periplasm, such that little to
48 no low molecular weight (LMW) products are externally released to the environment. Alternatively,
49 polysaccharides hydrolyzed by cell-surface attached or free extracellular enzymes (external
50 hydrolysis) yield LMW products available to the wider bacterioplankton community. In the early
51 bloom phase, selfish activity was accompanied by low extracellular hydrolysis rates of a few
52 polysaccharides. As the bloom progressed, selfish uptake increased markedly, and external hydrolysis
53 rates increased, but only for a limited range of substrates. The late bloom phase was characterized by
54 high external hydrolysis rates of a broad range of polysaccharides, and reduced selfish uptake of
55 polysaccharides, except for laminarin. Substrate utilization mode is related both to substrate
56 structural complexity and to the bloom-stage dependent composition of the heterotrophic bacterial
57 community.

58

59

60

61 **Introduction**

62 Spring phytoplankton blooms in temperate environments are responsible for a considerable
63 portion of annual primary productivity, and via their production and demise, are coupled closely to
64 the transformation and remineralization of organic matter throughout the oceanic food chain.
65 Although the specific interactions among phytoplankton, nutrients, water column mixing, and
66 grazers mean that spatial extents and temporal courses of spring blooms are highly variable
67 (Martinez *et al.*, 2011; Daniels *et al.*, 2015), dynamic changes in primary producer communities during
68 spring blooms can be closely tracked (Wiltshire *et al.*, 2015; Sarker *et al.* 2018; Scharfe and Wiltshire,
69 2019). Less is known, however, about the composition and structure of complex organic matter that
70 they produce in response to nutrient and light availability, and as they are affected by viruses and
71 grazing (e.g. Daniels *et al.*, 2015).

72 This complex organic matter is a direct link coupling phytoplankton and the heterotrophic
73 bacterial communities that are responsible for recycling a substantial fraction of primary production
74 (Teeling *et al.*, 2012; Buchan *et al.*, 2014). The bacterial response to rapidly increasing concentrations
75 of phytoplankton-derived organic matter during blooms is typically dominated by 'boom-and-bust'
76 specialists who opportunistically react to rapidly changing conditions, including members of the
77 *Bacteroidetes*, *Gammaproteobacteria*, and *Roseobacter* (*Alphaproteobacteria*) (Buchan *et al.*, 2014). Within these
78 taxa, successive bacterial groups grow and replace one another (Teeling *et al.*, 2012), with a marked
79 temporal succession in key genes and proteins produced by individual bacterial groups that are
80 linked with the processing of complex organic matter (Teeling *et al.*, 2012; 2016). The nature and
81 structures of the phytoplankton-derived substrates targeted by specific bacterial groups is only
82 beginning to be revealed through focused genetic and (meta-)genomic analyses that indicate the
83 substrate specialization of specific organisms (Teeling *et al.*, 2012; 2016; Kappelmann *et al.*, 2018;
84 Krüger *et al.*, 2019).

85 Measurements of the rates at which these bacteria degrade their target substrates, and the
86 turnover rates of complex organic matter pools during a phytoplankton bloom are still lacking,
87 however. Here we seek to fill this gap by measuring hydrolysis rates of polysaccharides, an abundant
88 class of high molecular weight organic matter in algae (Painter, 1983), and simultaneously tracking
89 changes in the bacterial community during the course of a phytoplankton bloom at Helgoland
90 (North Sea). Polysaccharides must be enzymatically hydrolyzed to smaller sizes in order to be used
91 as substrates by bacterial communities. The structural specificities of the extracellular enzymes
92 produced by bacteria thus help determine which polysaccharides are available for metabolism by the
93 wider microbial community (Arnosti, 2011). Over a six-week period during the 2016 bloom, we
94 followed basic biological (bacterial cell counts, phytoplankton abundance) and physical/chemical
95 parameters (N, P, Si, Temp). At four distinct timepoints, we measured the rates and mechanisms by
96 which bloom-associated bacterial communities processed complex polysaccharides.

97 Enzymatic processing of polysaccharides by bacteria in the ocean has recently been
98 discovered to be carried out by two distinctly different mechanisms: the first mechanism, long
99 known in microbiology, is referred to here as “external hydrolysis”: polysaccharides are hydrolyzed
100 to low molecular weights outside the cell by cell-surface-associated or free extracellular enzymes.
101 The low molecular weight products of external hydrolysis can be taken up by a range of bacteria,
102 including those that did not produce the extracellular enzymes. A second mechanism, “selfish”
103 substrate processing (Cuskin *et al.*, 2015), builds on a polysaccharide degradation mechanism known
104 for more than a decade from gut microbiology (Cho and Salyers, 2001; Martens *et al.*, 2009). With
105 ‘selfish’ uptake, initial hydrolysis of a polysaccharide is coupled directly to transport of the resulting
106 large oligosaccharides into the periplasmic space, producing little or no low molecular weight
107 hydrolysis products in the external environment (Cuskin *et al.* 2015; Rakoff-Nahoum *et al.* 2016).

108 Only recently has the existence and prevalence of ‘selfish’ uptake been recognized in surface waters
109 of the Atlantic Ocean (Reintjes *et al.*, 2017; 2019). Across a transect of the North and South
110 Atlantic, the relative contributions of selfish uptake and external hydrolysis to polysaccharide
111 degradation varied by substrate, as well as by location (Reintjes *et al.*, 2019), with selfish uptake
112 reaching up to 25% of DAPI-stainable cells (Reintjes *et al.*, 2017).

113 We hypothesize that a range of factors, including substrate availability and complexity,
114 controls the extent of selfish and external hydrolysis at a given location (Arnoldi *et al.*, 2018). Our
115 previous investigations (Reintjes *et al.*, 2017; 2019), however, were made at single timepoints across
116 a broad transect; in effect, we had point measurements of bacterial communities whose past
117 histories we could only infer. The current investigation provided the opportunity to track both
118 mechanisms of polysaccharide degradation against a clearly-defined background of changing
119 phytoplankton communities, which constitute the major source of substrates for heterotrophic
120 bacteria.

121 Here, we tracked dynamics in phytoplankton and bacterial communities as they responded
122 to changing conditions over the course of a spring bloom. Our focus was particularly on the
123 prevalence and presence of selfish uptake and external hydrolysis over the course of the bloom. We
124 measured both processes by incubating fluorescently-labeled polysaccharides (FLA-PS; Arnoldi,
125 2003) in water samples collected at four timepoints during different bloom phases. Time-course
126 subsamples were collected from each incubation to monitor the extent of external hydrolysis, as well
127 as selfish uptake of large fragments of FLA-PS. Samples were also collected for next generation
128 sequencing (NGS) to monitor changes in community composition. External hydrolysis of the FLA-
129 PS was measured as the systematic decreases with time of the molecular weight of the added
130 polysaccharide in the incubation water, a process that can be tracked analytically via gel permeation
131 chromatography and fluorescence detection (Arnoldi, 2003). Selfish uptake of the polysaccharides

132 was visualized microscopically in subsamples of water as uptake of the glycan into the periplasmic
133 space of bacteria (Reintjes *et al.*, 2017). Fluorescent staining in the periplasmic space, particularly at
134 time points in an incubation at which no low molecular weight hydrolysis products are detectable in
135 the external environment, is a clear indication of selfish uptake (Reintjes *et al.*, 2017). Monitoring the
136 size distribution of FLA-PS in the external environment, as well as the presence of fluorescence in
137 the periplasmic space of bacteria, thus enables us to track in the same incubations mechanisms of
138 polysaccharide processing, as well as rates of enzymatic hydrolysis.

139 Understanding the controls on external hydrolysis and selfish uptake can provide new insight
140 into factors affecting microbially-driven carbon cycling and the composition of heterotrophic
141 microbial communities in surface ocean waters. The mechanism by which high molecular weight
142 polysaccharides are processed in the environment – external hydrolysis, or selfish uptake – can affect
143 the size distribution of bloom-derived organic matter in the water column and thus the extent to
144 which low molecular weight (LMW) hydrolysis products are made available to the rest of the
145 microbial community (Arnosti *et al.*, 2018). The pool size of LMW hydrolysis products available can
146 in turn affect population dynamics of “scavenging” bacteria that take up LMW hydrolysis products,
147 although they do not produce extracellular enzymes (Arnosti *et al.*, 2018; Reintjes *et al.*, 2019). The
148 relative balance of selfish uptake and external hydrolysis is thus relevant to the workings of the
149 marine carbon cycle and dynamics of heterotrophic microbial communities.

150

151 **Results**

152 **Bloom development: nutrients, diatoms, and bacterial counts and composition**

153 A spring bloom developed in 2016 consistent with previous observations carried out using
154 continuous measurements at Helgoland Roads
155 (<https://doi.pangaea.de/10.1594/PANGAEA.864676> ; Fig. S1). Temperature increased steadily

156 from 6.2 °C to 8.8 °C between our sampling timepoints on March 22nd, April 5th, April 19th, and May
157 3rd, 2016. These sampling dates are referred to as Hel_1 to Hel_4 in the following text. Nutrient
158 concentrations indicated the development of the bloom, with silicate decreasing from 8.47 µM for
159 Hel_1 to concentrations close to 0.5 µM for Hel_2 to Hel_3, and 0.13 µM for Hel_4. Nitrate
160 concentrations over the same time points also decreased sharply, with concentrations of 21.4 µM on
161 Hel_1 to 9.4, 7.2 and 7.7 µM for Hel_2, Hel_3, and Hel_4. Phosphate concentrations were variable
162 but low (< 0.5 µM) throughout the sampling period. Concurrent with silicate depletion, diatom
163 abundance increased markedly, from 7.9x10⁵ cells l⁻¹ at Hel_1 to 1.0x10⁶ cells l⁻¹ and 2.6x10⁶ cells l⁻¹ at
164 Hel_2 and Hel_3 respectively, before declining somewhat to 2.2x10⁶ cells l⁻¹ at Hel_4. The diatom
165 bloom was dominated by centric diatoms, but included a modest contribution of pennate diatoms in
166 the latter phases of the bloom (Fig. 1a). Bacterial cell counts were relatively constant from Hel_1 to
167 Hel_3, at 5±2 x 10⁵ cells ml⁻¹, before increasing to 9.9 x 10⁵ cells ml⁻¹ at Hel_4 (Fig 1b). The
168 composition of the bacterial community, as determined using FISH staining (see below), also
169 changed somewhat during the development of the diatom bloom, with consistently higher counts of
170 *Bacteroidetes* (CF319a) than *Gammaproteobacteria* (GAM42a), but a stronger relative increase in
171 *Gammaproteobacteria* from Hel_1 to Hel_4 (Fig. 1c). Counts for *Rhodobacteraceae* (ROS537) were
172 variable but increased overall from Hel_1 to Hel_4.
173

174 **Incubation experiments**

175 *Extracellular enzyme activities:*

176 We measured the hydrolysis rates and the substrate spectrum of polysaccharide hydrolase
177 activities during the development of the bloom by adding fluorescently-labeled polysaccharides
178 (FLA-PS) to water samples collected from Hel_1 to Hel_4 and incubating the samples over a
179 timecourse of up to 9 days (6 days for Hel_1). The complement of polysaccharide-hydrolyzing

180 enzymes present in heterotrophic bacteria varies widely (Zimmerman *et al.*, 2013; Xing *et al.* 2014;
181 Kappelmann *et al.*, 2018), as does the suite of enzyme activities in natural communities in ocean
182 waters (Arnoldi *et al.*, 2011; Hoarfrost *et al.*, 2019). For these incubations, hydrolysis of laminarin,
183 xylan, chondroitin sulfate, carrageenan, and arabinogalactan was measured via changes in the
184 molecular weight of the added polysaccharides with time as they were systematically hydrolyzed to
185 smaller size classes (Arnoldi 2003; Arnoldi *et al.*, 2012). These polysaccharides were selected because
186 they are present in the oceans, some of them in very high quantities (Alderkamp *et al.* 2007), and/or
187 enzymes that hydrolyze them are widely distributed among marine bacteria (Alderkamp *et al.* 2007,
188 Arnoldi *et al.* 2011, Usov 2011, Xing *et al.* 2015, Kappelmann *et al.*, 2018). In addition, these
189 polysaccharides represent a range of composition and complexity: laminarin is a glucose-containing
190 polysaccharide, xylan is made of xylose, arabinogalactan is a mixed polysaccharide of arabinose and
191 galactose, chondroitin sulfate is a sulfated polysaccharide of N-acetylgalactosamine and glucuronic
192 acid, and carrageenan is a sulfated polysaccharide of galactose and 3,6-anhydrogalactose.

193 Enzymatic hydrolysis rates, as well as the number of substrates (the spectrum of substrates)
194 hydrolyzed, changed notably during the development of the bloom (Fig. 2a). Initially, at Hel_1, only
195 laminarin and xylan hydrolysis were measurable; hydrolysis rates were comparatively low (2-4 nmol
196 monomer L⁻¹ h⁻¹). At Hel_2, hydrolysis rates of laminarin and xylan were somewhat higher, 6 to 8
197 nmol monomer L⁻¹ h⁻¹, rates that were maintained through the rest of the incubations. At Hel_2,
198 chondroitin hydrolysis was first measurable at a low rate (1 nmol monomer L⁻¹ h⁻¹) at the 9 day
199 timepoint. At Hel_3, carrageenan hydrolysis was first measurable at the 9 day timepoint, at a rate of
200 3 nmol monomer L⁻¹ h⁻¹ (chondroitin hydrolysis was not tested at Hel_3). By Hel_4, carrageenan
201 and chondroitin hydrolysis were both measurable by the 6 day incubation timepoint, and the rate of
202 chondroitin hydrolysis had increased to 6 nmol monomer L⁻¹ h⁻¹ by the 9 day timepoint. Thus, the
203 spectrum of substrates hydrolyzed, the initial timepoint at which hydrolysis was detected, and

204 hydrolysis rates of specific polysaccharides increased from Hel_1 to the later bloom stages.
205 Intriguingly, no arabinogalactan hydrolysis was measurable at any timepoint, although cell staining
206 indicated selfish uptake of this substrate (see below). No enzyme activities were measurable in the
207 autoclaved seawater with added polysaccharides.

208

209 *Cell counts*

210 Cell counts in the incubation experiments varied with incubation time as well as with
211 timepoint during the bloom (Fig. 2b). Hel_1 showed little overall change in numbers, with the
212 exception of the carrageenan incubation, which showed a doubling of cell counts (from ca. 1 to 2 x
213 10^6 cells ml^{-1}). Initial cell counts for Hel_2 were lower than for Hel_1, but increased with time to the
214 3 or 6 day timepoint before decreasing again. Initial cell counts at Hel_3 were similar to those at
215 Hel_1, but unlike for Hel_1, in Hel_3 cell counts in all incubations increased considerably with time.
216 In all incubations, cell counts for Hel_3 reached a maximum of 2.5×10^6 to 3.5×10^6 at the 3 day
217 timepoint, and decreased to close to initial values (ca. 0.75 to 1.2×10^6 cells ml^{-1}) at day 9. Cell
218 numbers for Hel_4 were initially higher (consistent with cell numbers from the environment; Fig.
219 1b), but peaked at day 1 for all incubations, and decreased thereafter. The temporal patterns (Fig.
220 2b) in cell counts were not significantly different within bloom phases for amended and unamended
221 incubations (ANOVA: $F = 0.5$, $p = 0.78$), suggesting that overall patterns in cell numbers were
222 driven by factors such as cell growth on natural organic matter from the bloom included in the
223 incubations, as well as decreases in cell counts due to viruses or grazers, rather than growth in
224 response to addition of FLA-PS to the incubations.

225

226 *Sequencing*

227 Against a background of changing initial microbial community composition (Fig. 1c),
228 community composition in the FLA-PS incubations also changed with time. Next generation
229 sequencing was carried out at selected timepoints (t0, 3d, 6d) to compare temporal changes in the
230 incubations and to highlight possible principal responders in the incubations (Fig. 3; Figs. S2, S3).
231 Early in the bloom (Hel_1), strong changes were seen in all incubations with time, with an especially
232 strong response of *Bacteroidetes* (genus *Aurantivirga* and uncultured *Cryomorophyaceae*),
233 *Gammaproteobacteria* (genus *Colwellia*), and *Alphaproteobacteria* (genera *Amylibacter* and *Planctomarina*) (Fig
234 3; Fig. S2). Changes observed at Hel_2 differed in part compared to Hel_1. There was again a strong
235 response of the bacteroidetal genus *Aurantivirga*, as well as of *Ulvibacter* and uncultured
236 *Cryomorophyaceae* (Fig. 3). The *Gammaproteobacteria* growing were affiliated with the genera *Glaciecola*, in
237 addition to *Colwellia*. For Hel_3, a strong positive response was seen also for the
238 alphaproteobacterial genus *Sulfitobacter*, and the gammaproteobacterial genera *Colwellia* and *Glaciecola*.
239 At Hel_4 in particular, there was also a distinct substrate-related response, with the changes in the
240 carageenan and chondroitin incubations distinct from the other incubations (Fig. S3). This response
241 included a strong increase of members of the bacteroidetal genus *Flavicella*. (Figs. 3; S2, S3). For the
242 other substrate incubations (and for the no-addition control), the gammaproteobacterial genus
243 *Colwellia* again increased strongly (Fig. 3, Fig. S3).

244 Summarizing overall community composition throughout the time course of incubation,
245 Hel_1 (and to a lesser extent, Hel_4) showed communities that were distinctly different from the
246 more similar Hel_2 and Hel_3 incubations (Fig. 4). Statistical analysis of the overall community
247 compositions demonstrated that bloom phase and sampling timepoint within a bloom phase each
248 significantly influenced overall community composition (Table 1), whereas the specific FLA-PS
249 added ('substrate' in Table 1) did not. These factors - bloom phase and sampling point – had
250 different weights for the three major phylogenetic groups considered "master recyclers" (Buchan *et*

251 *al.*, 2014). Among the *Bacteroidetes* and the *Rhodobacteria*, the predominant response was related to
252 bloom phase (Hel_1 to 4; ANOSIM $R = 0.76$ and $R = 0.56$, p -value = 0.001, respectively). As shown
253 by the NMDS plots in Fig. S2, all incubation timepoints of Hel_1 separated considerably from
254 Hel_2 to Hel_4. Moreover, Hel_4 was mostly (for *Rhodobacteria*) or completely (for *Bacteroidetes*)
255 separated from Hel_2 and Hel_3. In contrast, although the *Gammaproteobacteria* initially separated by
256 bloom phase, over the course of the sampling timepoints they converged to the same genera (most
257 notably *Colwellia*). Thus, sampling timepoint (rather than bloom phase) was the factor that most
258 distinguished the *Gammaproteobacteria* (ANOSIM $R = 0.55$, p -value = 0.001, Fig. S2).

259

260 *Bacterial staining by FLA-PS and FISH*

261 The abundance and activity of ‘selfish’ bacteria was determined by tracking cellular uptake of
262 FLA-PS in the same incubations set up for enzyme activity measurements (Reintjes *et al.*, 2017).
263 Selfish uptake was substrate as well as bloom-phase dependent. At all bloom phases, laminarin was
264 consistently taken up by a larger fraction of the bacterial community than the other substrates (Fig.
265 5). The fraction of cells taking up laminarin increased from 14% at Hel_1 to a maximum of 29% at
266 Hel_2. It remained high with maxima of 20% and 25% of total DAPI-stained cells at Hel_3 and
267 Hel_4, respectively. The fraction of cells taking up xylan, chondroitin, and arabinogalactan also was
268 higher at timepoints after Hel_1, but the fraction of total cells taking up a substrate was considerably
269 smaller than for laminarin: for xylan, maximum uptake was 14% for at Hel_3, for chondroitin the
270 maximum was slightly over 5% for Hel_2 (no incubations with chondroitin for Hel_3), and
271 maximum arabinogalactan uptake was 12% for Hel_2 (Fig. 5). Note that carrageenan uptake could
272 not be counted, since the background fluorescence from this gel-forming substrate was too high.
273 Overall, selfish staining was highest at Hel_2 (Fig. 5).

274 FISH staining was carried out using the probes CF319a and ALT1413 to identify the overall
275 presence of *Bacteroidetes* and *Alteromonadales* in the incubations. In the laminarin incubations, a high
276 fraction (10 to 40% of DAPI-stainable cells) were CF319a positive (Fig. S4). These incubations also
277 had a typically smaller and more variable fraction of ALT1413 positive cells, ranging from nearly
278 zero for Hel_1 to a high above 30% for Hel_2 to 3%-20% for Hel_3 and Hel_4 (Fig. S4). This
279 pattern of variable proportions of ALT1314-stainable cells and a generally high fraction of CF319a-
280 positive cells also characterized the xylan, chondroitin, and arabinogalactan incubations. Carrageenan
281 incubations were not analyzed using FISH due to high background fluorescence.

282 A variable proportion of these ALT1413 and CF319a-stained cells were identified as ‘selfish’
283 (Fig. 5). The fraction of FLA-PS-stained (‘selfish’) cells that were not CF319a/ALT1413 positive
284 was frequently one-third to one-half of the total, thus there are additional clades with a selfish
285 polysaccharide uptake mechanism (Fig. 5). The microscopic evidence of ‘selfish’ uptake of
286 arabinogalactan (Fig. 5) was particularly intriguing, since there was no evidence of external hydrolysis
287 of this substrate (Fig. 2a).

288

289 **Discussion**

290 Spring phytoplankton blooms in temperate environments fuel the base of complex food
291 webs, producing a rapid increase in organic matter that is recycled in the upper ocean as well as
292 exported below the thermocline (Boss and Behrenfeld, 2010). The progression of phytoplankton
293 during the course of the bloom is mirrored by a succession of bacterial community members whose
294 dynamics are also complex (Riemann *et al.*, 2000; Teeling *et al.*, 2012; 2016). These successional
295 patterns are likely the result of finely-tuned bacterial responses to changing organic matter
296 availability derived from the phytoplankton. Specialist heterotrophic bacterial groups vary in their
297 genomic repertoire (Bauer *et al.*, 2006; Xing *et al.*, 2014; Badur *et al.*, 2017; Unfried *et al.*, 2018;

298 Kappelmann *et al.*, 2018; Krüger *et al.*, 2019), and thus in their ability to access complex substrates
299 produced in abundance by phytoplankton; the progression during a bloom of autotrophic and
300 heterotrophic members of the plankton is therefore closely intertwined (Buchan *et al.*, 2014).
301 Measuring two distinct mechanisms of substrate processing while tracking dynamic changes in
302 microbial community composition provides new insight into the conditions under which different
303 strategies of substrate processing prevail. To arrive at a clear picture of these intertwined dynamics,
304 however, first the changes in community composition, and then the changes in substrate processing
305 mechanisms need to be examined.

306

307 **Community compositional changes**

308 Our incubation experiments were in effect small bottle experiments, in which a diverse array
309 of microorganisms present in the water sampled grew primarily in response to the natural organic
310 matter present (Fig. 2b; Figs. S2, S3). As demonstrated by the similarity in cell counts between the
311 amended and unamended incubations, overall changes in bacterial cell numbers during our
312 incubations (Fig. 2b) were more closely related to the four bloom phases and the bloom-derived
313 organic matter naturally included in the incubations, and not to the addition of a comparatively low
314 concentration of FLA-PS to a given incubation. In terms of bacterial community composition, as
315 expected (Buchan *et al.*, 2014), members of the *Alphaproteobacteria*, *Gammaproteobacteria*, and
316 *Bacteroidetes* were among the most prominent responders (Fig. 3, Figs. S2, S3). The nature of the
317 responses among these groups varied, however. The development of dominant *Bacteroidetes* and
318 *Alphaproteobacteria* genera separated clearly among bloom phases, likely as a result of changes of
319 bacterial community composition over the course of the bloom (Fig. 3, Fig. S2). Although the
320 *Gammaproteobacteria* present at t0 (Fig. S2) also differed by bloom phase, the specific increase in
321 *Colwellia* in all bloom phase incubations decreased the overall gammaproteobacterial community

322 dissimilarity, and thus drove the overall composition from different initial starting points in a similar
323 direction during the course of the incubations (Fig. S2). This strong response is not surprising, as
324 *Colwellia* is regarded as a ‘boom and bust’ specialist (Teira *et al.*, 2008), highly responsive to the
325 presence of complex organic matter, including in amendment incubations with diatom-derived high
326 molecular weight organic matter in water from the North Atlantic (Balmonte *et al.*, 2019), and in
327 response to diatom-derived dissolved organic matter in continuous cultures experiments in the
328 Southern Ocean (Landa *et al.*, 2018). Other organisms that have been reported to respond to
329 diatom-bloom-related DOM include *Alphaproteobacteria* of the genus *Sulfitobacter*, and the genus
330 *Uribacter* of the *Bacteroidetes* (Landa *et al.*, 2018), which were present in all of our incubations,
331 including the no-addition control (Fig. S2).

332

333 **Bacterial functional responses to bloom dynamics**

334 In addition to the compositional response, the development of the bloom triggered a clear
335 functional response among the bacterial community, characterized by an increase in potential
336 polysaccharide hydrolysis rates and a broadened spectrum of polysaccharide hydrolase activities
337 between the early and the later phases of the bloom (Fig. 2a). These responses are likely due to
338 increased quantity as well as higher complexity of organic matter available during the course of the
339 bloom (Krüger *et al.*, 2019). Hel_1 was taken early in the first diatom bloom after the winter,
340 conditions under which little bioavailable HMW organic matter would be present. We suggest that
341 over the course of the next 6 weeks, the concentrations and the complexity of the polysaccharides
342 increased, simultaneous with the complexity of the phytoplankton community as the Centrales-type
343 diatoms dominant in Hel_1 transitioned to a mixture containing Pennales and coccolithophorids
344 that was still dominated by Centrales (Fig. 1a). As the bloom progressed, the glycan pool diversified,
345 containing increasing quantities of polysaccharides of higher complexity as well as freshly released

346 polysaccharides. The early bloom phase showed hydrolysis only of laminarin and xylan, which are
347 compositionally less complex than chondroitin and carrageenan; the hydrolysis of these latter two
348 substrates began only after the initial phase of the bloom (Fig. 2a). These developing responses to
349 the presence of specific polysaccharides likely reflected transitions in the bloom-associated microbial
350 community, with bacteria possessing the highly specific enzymes required to depolymerize more
351 complex substrates increasingly present as the bloom progressed (Teeling *et al.*, 2016; Krüger *et al.*,
352 2019). Thus, in order to observe hydrolysis of specific complex substrates in our incubations, a
353 starting community for a given incubation had to contain sufficient member(s) with the capability of
354 responding to that complex substrate. Our measurement of activities from a wider spectrum of
355 enzymes with progressing bloom stage is consistent with previous data from Helgoland spring
356 blooms showing increased expression of proteins associated with polysaccharide degradation with
357 time (Teeling *et al.*, 2012).

358 The incubations with carrageenan and chondroitin highlight the intertwined roles that
359 bacterial community capabilities and substrate complexity play in determining the fate of bloom-
360 derived organic matter. Both carrageenan and chondroitin were hydrolyzed only after the initial
361 bloom phase; sequencing of the carrageenan and chondroitin incubations in the latter phase of the
362 bloom revealed communities that were distinctly different – especially among members of the
363 *Bacteroidetes* (Fig. 3, Figs. S2, S3) - from those in the laminarin, xylan, and control incubations at the
364 same timepoint, as well as from incubations with carrageenan and chondroitin early in the bloom
365 (Fig. S3). These two substrates provide an example of a substrate-driven effect on microbial
366 community composition (Landa *et al.*, 2013). The prominent response later in the bloom of the
367 bacteroidetal genus *Flavicella* (Fig. 3, Fig. S3) to both carrageenan and chondroitin, moreover,
368 suggests that it may have a role in the degradation of these complex, charged substrates, in

369 accordance with the idea that certain heterotrophs are selectively able to utilize organic matter from
370 specific phytoplankton (Sarmento *et al.*, 2012).

371 The heterotrophic bacterial community responded to the development of the bloom not
372 only with increased activities of extracellular enzymes that yield lower molecular weight
373 polysaccharide fragments outside the cell; some members of the community also increased ‘selfish’
374 uptake of substrates. Laminarin uptake, which is readily induced (Reintjes *et al.*, 2017), was high
375 already for Hel_1, with 14% of DAPI-stained cells binding this FLA-PS at t0 (~ 15 minutes after
376 substrate addition; Fig. S5). A considerable fraction of bacteria incorporated laminarin at t0 at
377 subsequent bloom sampling times, reaching a maximum slightly over 25% of total cell counts at t0
378 for Hel_4. Through the course of each bloom incubation, the fraction of cells taking up laminarin
379 varied by time point (Fig. 5), but overall remained at a high level. Uptake of chondroitin and
380 arabinogalactan changed considerably during the bloom, with initial values less than 3% of total cell
381 counts throughout the Hel_1 incubation, increasing to ca. 6-12% at Hel_2, and decreasing to
382 somewhat lower values (arabinogalactan) to very low levels (chondroitin) for later bloom phases.
383 Xylan uptake changed less between bloom sampling times, typically reaching a maximum of 8-14%
384 of total cells at some point in each of the incubation series, although initial uptake (at all but Hel_2)
385 was low. The percentage of total cells taking up laminarin and xylan is similar to previous
386 measurements in the northern temperate province of the North Atlantic (Reintjes *et al.*, 2017);
387 chondroitin and arabinogalactan uptake overall are somewhat lower than previously seen in the
388 northern temperate province (Reintjes *et al.*, 2019).

389 Consideration of the ‘selfish’ bacteria that became stained with FLA-PS reveals several
390 intriguing features. No hydrolysis of arabinogalactan was measured, yet 1-12% of total cells showed
391 ‘selfish’ uptake of this substrate, with overall higher uptake percentages after Hel_1 (Fig. 5). In these
392 incubations, therefore, arabinogalactan processing appears to have occurred solely via selfish

393 pathways, with no detectable production of low molecular weight hydrolysis products in the external
394 environment. This pattern of solely-selfish uptake contrasts with our previous investigation, in
395 which both external hydrolysis and selfish uptake of arabinogalactan was measurable at all five
396 stations in the North and South Atlantic (Reintjes *et al.*, 2019). In that investigation, however,
397 fucoidan was also taken up in a ‘selfish’ manner, with no detectable extracellular hydrolysis (Reintjes
398 *et al.*, 2019). Possibly there are links between selfish uptake and initiation of extracellular hydrolysis,
399 particularly for the more complex substrates. If selfish uptake is also coupled to low production of
400 external hydrolysate (as has been shown for some members of the *Bacteroidetes*; Rakoff-Nahoum *et*
401 *al.*, 2016), then perhaps a threshold concentration of arabinogalactan hydrolysis products was not
402 reached to initiate such activity at Helgoland.

403 Another intriguing observation relates to our efforts to identify the selfish bacteria by FISH.
404 The term selfish uptake has been coined for gut *Bacteroidetes* (Cuskin *et al.*, 2015); again in this study, a
405 fraction of the marine *Bacteroidetes* – mostly members of the class *Flavobacteriia* - were shown to
406 behave selfishly with respect to the substrates tested (Fig. 5). Not surprisingly, even comparatively
407 structurally simple glycans such as laminarin are not taken up by all marine *Bacteroidetes* (Fig. S4);
408 comparative genome analysis of 53 strains of marine *Bacteroidetes* suggested that only 33 have the
409 canonical polysaccharide utilization loci for laminarin (Kappelmann *et al.*, 2018). The same
410 consideration applies to *Alteromonas*, where a very small fraction of the cells was stained by FLA-PS
411 (Fig. 5). In both cases, part of the underlying cause for unstained cells may be that the respective
412 genes are absent or not induced; insufficient FISH probe coverage is also a possibility. At most
413 timepoints and for most incubations, a sizable fraction ranging from 45% to 100% of the selfish
414 bacteria were not detected with the FISH probes used. This observation suggests that bacteria other
415 than *Bacteroidetes* and a few members of the *Gammaproteobacteria* may be involved in the uptake of
416 FLA-PS. This point has already been demonstrated for *Verrucomicrobia* (Martinez-Garcia *et al.*, 2012)

417 and *Planctomycetes* (Reintjes et al., 2017). These other ‘selfish’ bacteria must transport polysaccharides
418 using mechanisms other than the well-studied Sus systems (starch utilization system; Cho and
419 Salyers, 2001).

420

421 **Interacting strategies of carbon cycling during a spring bloom**

422 Multiple organisms and factors interact during a phytoplankton bloom, changing the
423 quantity and nature of organic matter produced and consumed by heterotrophic microbial
424 communities, and also the strategies used to consume fractions of differing complexity. Here, it is
425 important to note that measurements of selfish bacteria sampled immediately (~ 15 minutes) after
426 substrate addition likely reflect the conditions in the field during the bloom. Looking at these time-
427 zero points, a clear distinction between laminarin on the one hand and the other substrates on the
428 other is evident (Fig. S5). Initial laminarin uptake was high at Hel_1 (14% of total cell counts), and
429 became higher during the course of the bloom, reaching 25% at Hel_4. For arabinogalactan,
430 chondroitin, and xylan, initial uptake at time zero at Hel_1 was low (ranging from 0 to 3%),
431 increased substantially at Hel_2, and decreased again at Hel_3 and Hel_4 to 0 to 3% of total cells.
432 Integration of these data in a schematic figure (Fig. 6a) shows that the early bloom phase (Hel_1) is
433 characterized by low selfish uptake, except for laminarin, and a limited range of polysaccharide
434 hydrolase activities (Fig. 2a). Two weeks further into the increasing bloom (Hel_2), more – and most
435 likely more complex – organic matter is available as diatom numbers rapidly increase, and are turned
436 over by grazers and viruses (Fig. 1a). Selfish organisms are now more numerous and diverse with
437 respect to the substrate transported. They presumably have had sufficient exposure to a broader
438 range of substrates such that selfish uptake is induced or that selfish bacteria have increased in
439 relative abundance (Reintjes et al., 2017). Extracellular hydrolysis rates are also higher, and a slightly
440 wider spectrum of substrates is hydrolyzed. At the late bloom stage (Hel_4), even more organic

441 matter of greater complexity is available, and bacterial cell numbers have increased substantially (Fig.
442 1b). This increase must have included bacteria that carry out external hydrolysis, since a broad
443 spectrum of substrates is hydrolyzed. Selfish uptake remains high primarily for laminarin, but much
444 less so for the other substrates, presumably because the selfish bacteria doubled less rapidly than the
445 external hydrolyzers in response to the rapid increase in organic matter, or they were killed by
446 viruses or grazers. At this stage, external hydrolyzers become more important for the degradation of
447 the more complex substrates.

448 Short-term changes in polysaccharide utilization mechanisms are likely driven in part by the
449 quantity and complexity of available substrates: initial exposure to readily-dissolved substrates such
450 as laminarin can lead to rapid selfish uptake, and hoarding of substrate for those cells. When organic
451 matter supply is sufficient to fuel a larger community and is enriched in particulate organic matter,
452 external hydrolysis becomes more prevalent (Fig. 6b). It is intriguing that laminarin is taken up by a
453 selfish mechanism throughout the bloom, and that the fraction of selfish uptake increases even as
454 external hydrolysis increases. This situation likely reflects the fact that in diatom-dominated blooms,
455 laminarin is constantly released in large quantities. Global production of laminarin is estimated to be
456 on the order of 5-15 Gt annually (Alderkamp *et al.*, 2007); it therefore must constitute a major energy
457 source for many marine bacteria.

458 These interactions between selfish and sharing bacteria have major implications for
459 downstream carbon flow: scavenging bacteria profit from low molecular weight substrates provided
460 by the external hydrolyzers, but not - for the most part - from the activities of selfish bacteria
461 (Arnosti *et al.*, 2018). The quantity and type of substrates available to feed the downstream bacterial
462 foodchain thus are closely linked to these upstream processes. Sarmento and Gasol (2012) found
463 that uptake of dissolved organic carbon (DOC) from a variety of phytoplankton varied markedly
464 among major phylogenetic groups of heterotrophic bacteria, and that with an increase in DOC

465 quantity, quality became less important (Sarmento *et al.*, 2016). We find that the mode of substrate
466 processing – selfish or external hydrolysis – varies markedly by substrate as well as by bloom phase,
467 i.e. by substrate quality, by substrate quantity, and also by the bloom-stage dependent composition
468 of the heterotrophic bacterial community. Quality determines the specific enzymatic requirements
469 for selfish bacteria, as well as abundance of ‘specialist’ bacteria among external hydrolyzers, as seen
470 for carrageenan and chondroitin. Quantity seems to be important in fueling the growth of external
471 hydrolyzers that produce a broader range of hydrolysis products that presumably fuel scavenging
472 bacteria as well as the external hydrolyzers: with higher quantities of a substrate, a wider fraction of
473 the total heterotrophic community can benefit. The bloom-stage composition of the heterotrophic
474 bacterial community helps determine the predominance of the individual mechanisms of substrate
475 utilization, based on genomic specialization and linked community-level interactions.

476

477 **Experimental procedure**

478 **Sampling and Substrate Incubations**

479 Seawater samples were collected near the island of Helgoland in the German Bight at the
480 long-term monitoring station Kabeltonne (54°11'03" N, 7°54'00" E). 25 L of seawater was collected
481 between 10:00 - 12:00 on March 22nd, April 5th, April 19th, and May 3rd, 2016. The samples are
482 referred to as Hel_1 to Hel_4, respectively. Due to the abundance of organic matter, samples Hel_2,
483 Hel_3 and Hel_4 were prefiltered through a 142 mm diameter 10 µm pore-size polycarbonate filter
484 (Milipore) by peristaltic pump (<200 mbar) for the incubations (see below).

485 At each sampling date, fifteen 650 ml subsamples were placed into acid-washed sterile glass
486 bottles and incubated with one of five fluorescently labelled polysaccharides (FLA-PS) for a total of
487 9 days, with the exception of Hel_1, for which the incubations only lasted for 6 days. Single
488 substrates (fluoresceinamine-labelled laminarin, xylan, chondroitin sulfate, arabinogalactan, and

489 carrageenan) were added at a concentration of 3.5 μ M monomer equivalent. Additionally, a no-
490 addition control, consisting of a 650 ml subsample incubated in a sterile glass bottle without added
491 polysaccharide, and five killed controls, consisting of 50 ml subsamples of autoclaved seawater
492 incubated with polysaccharides, were taken at each time point (0, 1, 3, 6, and 9 days). All of the
493 enzyme activities were monitored for Hel_1, Hel_2, and Hel_4; due to a lack of available substrate,
494 chondroitin sulfate was not included in the measurements for Hel_3.

495 All bottles (15 incubations, 1 no-addition incubation, and 5 killed controls per sampling time
496 point) were incubated at *in situ* temperatures (6°C, 7°C, 8°C, 8.5°C, for Hel_1 to Hel_4, respectively)
497 in the dark. At regular intervals subsamples were collected from the incubations (typically ca. 15 min
498 (referred to as t0), 1d, 3d, 6d, and 9d). For microscopy and FISH, 20 ml of water was fixed with 1%
499 formaldehyde for 1 h at room temperature and subsequently filtered through a 47 mm (0.2 μ m pore
500 size) polycarbonate filter, applying a gentle vacuum of < 200 mbar. After drying, the filters were
501 stored at -20°C until further analysis. For microbial diversity analyses, 10 ml of water was filtered
502 through a 25 mm (0.2 μ m pore size) polycarbonate filter using a Whatman 420200 Swin-Lok filter
503 holder (Sigma-Aldrich, Munich, Germany) and stored at -80°C until further analysis. Two ml of the
504 filtrate from the microbial diversity sample was collected and stored at -80°C for measurement of
505 extracellular enzyme activities.

506 **Physical/chemical data and phytoplankton abundance**

507 Phytoplankton abundance and composition, as well as physical and chemical data (salinity,
508 temperature, chlorophyll *a*, silicate, nitrate/nitrite, phosphate) were measured as part of the
509 Helgoland Roads LTER time series, as described in detail in Teeling *et al.* (2012). These time series
510 data are available as part of the open database Pangaea (<http://www.pangaea.de>)
511 <https://doi.pangaea.de/10.1594/PANGAEA.864676>.

512 **Preparation and characterization of FLA-PS and measurement of extracellular enzyme
513 activities**

514 Fluorescently labeled polysaccharides (FLA-PS) laminarin, xylan, chondroitin sulfate,
515 arabinogalactan, and lamda-carrageenan were synthesized and characterized following the procedure
516 described in Arnosti (2003). In brief, polysaccharides (Sigma-Aldrich) were dissolved in milli-Q
517 water, activated with CNBr, injected onto a column of Sephadex gel (G-25 or G-50, depending on
518 the molecular weight of the polysaccharide), and the initial peak (followed via absorbance at 290 nm
519 using a UV-Vis detector) was collected into a vial containing fluoresceinamine. The labeled
520 polysaccharide was separated from unreacted fluorescent tag via an additional round of column
521 chromatography or by using Vivaspin 20 concentrators (Vivaproducts). Arabinogalactan was labeled
522 using the procedure described (Arnosti 2003) for chondroitin sulfate and laminarin. Lamda-
523 carrageenan was also labeled using this procedure, but only 10 mg of lamda-carrageenan were
524 initially dissolved in 2 ml milli-Q water, and the solution was filtered through a 0.8 um pore-size
525 disposable filter that was rinsed twice with 500 ul milli-Q water to constitute the initial
526 polysaccharide solution for activation. FLA-PS were chemically characterized by measuring
527 carbohydrate content (Chaplin and Kennedy, 1986) and fluorescent tag abundance via absorbance at
528 490 nm.

529 Extracellular enzymes are measured by following the changes in substrate molecular weight
530 with incubation time (Arnosti, 2003). Since the extent of enzyme activity cannot be determined *a*
531 *priori*, samples are collected over a time course and analyzed. As described in considerable detail (and
532 shown in chromatograms in Arnosti (2003)), hydrolysis of a FLA-PS is detected as the change in
533 substrate molecular weight as the polysaccharide is hydrolyzed to progressively smaller sizes with
534 time; initial hydrolysis of a polysaccharide can be detected only when a sufficient fraction of the
535 added polysaccharide pool has shifted in molecular weight class. For this reason, there is a lag

536 between initial occurrence and initial detection of hydrolytic activity. Samples from the time course
537 incubations (samples collected at 0, 1, 3, 6 and 9 days; for Hel_1, incubations were not run beyond 6
538 days) were injected onto a system consisting of two columns of Sephadex gels connected in series
539 with column effluent passing through a Hitachi fluorescence detector set to excitation and emission
540 wavelengths of 490 and 530 nm, respectively. Columns are standardized with commercially-available
541 FITC dextran standards (50 kDa; 10 kDa; 4 kDa; monomer; free tag; all from Sigma) so the elution
542 time corresponding to different molecular weight classes is known. The extent to which hydrolysis
543 can be detected is limited by the resolution of the gel permeation chromatography system, since
544 hydrolytic activity is only detectable when a measurable fraction of the added polysaccharide pool is
545 shifted to a lower molecular weight class.

546 **Substrate Staining, FISH and Automated Microscopy**

547 All cell staining, FISH, and microscopy was done as described in detail in Reintjes *et al.*
548 (2017). Briefly, total cell counts were determined by staining with 4',6-diamidino-2-phenylindole
549 (DAPI). Cells were counted using the automated image acquisition and cell counting system described
550 by Bennke *et al.* (2016), and verified by manual counting. The number of substrate stained cells were
551 determined by enumerating cells which had both a positive DAPI signal and a positive substrate
552 signal (excitation 488 nm wavelength, minimum signal background ratio of 2.5 at constant exposure
553 time of 200 ms). Subsequently, two group specific FISH probes targeting the *Bacteroidetes* (CF319a
554 (5'- TGG TCC GTG TCT CAG TAC -3, formamide 35%, accession no. pB-42, (Manz *et al.*, 1996),
555 and *Alteromonadaceae* (ALT1413 (5'- TTG GCA TCC CAC TCC CAT -3', formamide 40%, Accession
556 no. pB-609; Pernthaler *et al.*, 2002)) were applied to quantify the abundance of these groups during
557 the incubations. All cell counts and microbial abundance data are openly available at
558 <https://doi.pangaea.de/10.1594/PANGAEA.903579>.

559 **DNA Extraction, Polymerase Chain Reaction (PCR), Size Selection and Quantification**

560 DNA extractions were done using the MoBio Power Water DNA Extraction Kit (MoBio
561 Laboratories, Inc., CA, USA) as recommended by the manufacturer. PCR was carried out using the
562 Platinum PCR SuperMix High Fidelity polymerase kit (Thermo Fisher), using the primers S-D-Bact-
563 0341-b-S-17 and S-D-Bact-0785-a-A-21 targeting the V3-V4 variable region of the 16S rRNA,
564 evaluated by Klindworth *et al.*, (2013). Both primers were fusion primers with additional adaptor and
565 barcode sequences at the 5' end to allow sequencing and separation of samples in down-stream
566 analyses. The reverse primers contained the Ion tr-P1 adaptor and the forward primers contained
567 both the Ion A adaptor and one of 40 IonXpress barcodes (Ion Xpress 1 - 40) as well as the key
568 sequence (GAT) before the primer. Reverse fusion primer sequence: (5'- CCT CTC TAT GGG
569 CAG TCG GTG AT GAC TAC HVG GGT ATC TAA TCC -3'). Forward fusion primer
570 sequence: (5'-CCA TCT CAT CCC TGC GTG TCT CCG ACT CAG - barcode sequence - GAT
571 CCT ACG GGN GGC WGC AG-3'). The primers were barcoded with the Ion ExpressTM Barcodes
572 (ThermoFisher) number 1-40.

573 After amplification the PCR products were size selected using Agencourt AMPure XP
574 (Beckman Coulter, Krefeld, Germany). All template libraries and final sequencing pools were
575 analysed on a fragment analyser (AATI, USA) using the DNF - 472 standard sensitivity NGS kit
576 sizing DNA (AATI, size range from 25 bp – 5,000 bp and up to a minimum of 0.1 ng μ l⁻¹) as
577 recommended by the manufacturer

578 **Ion Torrent Sequencing and Raw Sequence Processing**

579 All substrate incubations of Hel_1, to Hel_4 for time points t0, 3 days, and 6 days were
580 sequenced using an Ion Torrent PGM platform (Thermos Fisher). Library preparation was done as
581 recommended by the manufacturer using an Ion OneTouch 2 Instrument (Thermo Fisher), Ion
582 OneTouch ES instrument (Thermo Fisher) and the Ion PGM Hi-Q View OT2 kit. Subsequently,
583 the libraries were sequenced on an Ion Torrent PGM sequencer (Thermo Fisher) using the Ion

584 PGM Hi-Q View Sequencing Kit (Thermo Fisher) and Ion 314 chip v2 (Thermo Fisher) with a total
585 of 1200 flows per sequencing run.

586 The raw reads were quality trimming using user define “stringent” settings in the Torrent
587 Suite software (Thermo Fisher, Stringent settings:--barcode-mode 1 --barcode-cutoff 0 --trim-qual-
588 cutoff 15 --trim-qual-window-size 10 --trim-min-read-len 250). The remaining high quality reads
589 were classified using the standard settings of the SilvaNGS pipeline (Quast *et al.*, 2013). Briefly, the
590 pipeline processing involved alignment against the SSU rRNA seed of the SILVA database release
591 132 using SINA v1.2.10. (Quast *et al.*, 2013) and subsequent quality controls for sequence length (>
592 200 bp), minimum quality score (30), minimum alignment score (40), minimum alignment identify
593 (40%), maximum ambiguities (< 2%) and maximum homopolymers (< 2%). The remaining reads
594 were then de-replicated and clustered using cd-hit-est (version3.1.2; Li and Godzik, 2006), running
595 in accurate mode, ignoring overhangs and applying identity criteria of 1.00 and 0.98, respectively.
596 Then the classification is performed by a local nucleotide BLAST search against SILVA SSURef
597 132.1 NR database using blast -2.2.22+ with standard settings. A detailed description of the
598 SILVAngs project and pipeline can be found (<https://www.arb-silva.de/ngs/Index.html#about>:
599 Quast *et al.*, 2013).

600 All sequence data was deposited in the European Nucleotide Archive (ENA; Toribio *et al.*,
601 2017) using the data brokerage service of the German Federation for Biological Data (GFBio,
602 (Diepenbroek *et al.* 2014), in compliance with the MIXS standard (Yilmaz *et al.* 2011). The INSDC
603 accession number for the data is PRJEB33503.

604 Statistical Analysis

605 All statistical analyses and graphing of the microbial diversity data were done using RStudio
606 version 1.2.335 with the packages Picante version 1.8, Rioja version 0.9-21 and RVAideMemoire
607 version 0.9-73 (RStudio Team, 2018; Juggins, 2016; Kembel *et al.*, 2019; Herve, 2019). Read

608 abundances were normalized using the decostand (method = "total") function of the Vegan package
609 (Okasanen *et al.*, 2019). Beta diversity hypothesis testing was done using Bray-Curtis dissimilarity
610 matrices of the total bacterial community of each sample and subsequently non-metric
611 multidimensional scaling (NMDS). Tests for significance differences in community composition
612 between the substrates, across sampling time point and over the incubation times were performed
613 by analysis of similarity (ANOSIM) and permutation multivariate analysis of variance
614 (PERMANOVA). Additionally, the change in community composition over the course of each
615 incubation was visualized using the average percentage change in abundance of each genus over time
616 (minimum read abundance of 1.0%). This value was calculated by calculating the change in
617 normalised read abundance of each bacterial genus over time compared to the initial community
618 (t0), and highlights only the positive and negative responses of each genus to the substrate additions.
619

620 Acknowledgements

621 We thank Karl-Peter Rücknagel and Lilly Hufnagel (MPI) for FISH counts of environmental
622 samples during the 2016 Helgoland spring bloom. This study was supported by the Max Planck
623 Society, with additional support by the U.S. National Science Foundation (OCE-1332881 and OCE-
624 1736772 to C.A.) C.A. was also supported by a fellowship from the Hanse Institute for Advanced
625 Study (Delmenhorst, Germany). G.R was also supported by funding from the European Union's
626 Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement
627 No. 840804.

628

629 Conflict of interest statement

630 The authors have no conflicts of interest to declare.

631

632 **References**

633 Alderkamp, A.-C., van Rijssel, M., and Bolhuis, H. (2007) Characterization of marine bacteria and the
634 activity of their enzyme systems involved in degradation of the algal storage glucan laminarin. *FEMS
635 Microbiol Ecol* **59**: 108-117.

636 Arnosti, C. (2003) Fluorescent derivatization of polysaccharides and carbohydrate-containing biopolymers
637 for measurement of enzyme activities in complex media. *J Chromatog B* **703**: 181-191.

638 Arnosti, C., Reintjes, G., and Amann, R. (2018) A mechanistic microbial underpinning for the size-reactivity
639 continuum of DOC degradation. *Mar Chem* **206**: 93-99.

640 Arnosti, C., Steen, A.D., Zervogel, K., Ghobrial, S., and Jeffrey, W.H. (2011) Latitudinal gradients in
641 degradation of marine dissolved organic carbon. *PLoS ONE* **6**: e28900.

642 Badur, A.H., Plutz, M.J., Yalamanchili, G., Jagtap, S.S., Schweder, T., Unfried, F. et al. (2017) Exploiting
643 fine-scale genetic and physiological variation of closely related microbes to reveal unknown
644 enzymatic function. *J Biol Chem* **292**: 13056-13067.

645 Balmonte, J.P., Buckley, A., Hoarfrost, A., Ghobrial, S., Zervogel, K., Teske, A., and Arnosti, C. (2019)
646 Community structural differences shape microbial responses to high molecular weight organic
647 matter. *Environ Microb* **21**: 557-571.

648 Bauer, M., Kube, M., Telling, H., Richter, M., Lombardot, T., Allers, E. et al. (2006) Whole genome analysis
649 of the marine Bacteroidetes 'Gramella forsetii' reveals adaptations to degradation of polymeric
650 organic matter. *Environ Microb* **8**: 2201-2213.

651 Behrenfeld, M., Doney, S.C., Lima, I., Boss, E.S., and Siegel, D.A. (2013) Annual cycles of ecological
652 disturbance and recovery underlying the subarctic Atlantic spring plankton bloom. *Global Biogeochem
653 Cycles* **27**: 526-540.

654 Bennke, C.M., Reintjes, G., Schattenhofer, M., Ellrott, A., Wulf, J., Zeder, M., Fuchs, B.M.
655 (2016) Modification of a high-throughput automatic microbial cell enumerations system for
656 shipboard analyses. *Appl Environ Microb* **82**: 3289-3296.

657 Boss, E., and Behrenfeld, M. (2010) In situ evaluation of the initiation of the North Atlantic phytoplankton
658 bloom. *Geophys Res Lett* **37**: L18603, doi:10.1029/2010GL044174.

659 Buchan, A., LeCleir, G.R., Gulvik, C.A., and Gonzalez, J.M. (2014) Master recyclers: features and functions
660 of bacteria associated with phytoplankton blooms. *Nature Rev Microb* **12**: 686-698.

661 Chaplin, M.F., and Kennedy, J.F. (1986) Carbohydrate analysis: A practical approach. IRL Press, Oxford.
662 228 pp.

663 Cho, K.H., and Salyers, A.A. (2001) Biochemical analysis of interactions between outer membrane proteins
664 that contribute to starch utilization by Bacteroides thetaiotaomicron. *J Bact* **183**: 7224-7230.

665 Cuskin, F., Lowe, E.C., Tample, M.J., Zhu, Y., Cameron, E.A., Pudlo, N.A. et al. (2015) Human gut
666 Bacteroidetes can utilize yeast mannan through a selfish mechanism. *Nature* **517**: 165-173.

667 Daniels, C.J., Poulton, A.J., Esposito, M., Paulsen, M.L., Bellerby, R., St John, M., and Martin, A.P. (2015)
668 Phytoplankton dynamics in contrasting early stage North Atlantic spring blooms: composition,
669 succession, and potential drivers. *Biogeosciences* **12**: 2395-2409.

670 Diepenbroek, M. Glöckner F., Grobe P., Güntsch A., Huber R., König-Ries B., Kostadinov I., Nieschulze
671 J., Seeger B., Tolksdorf R. and Triebel, D. Towards an integrated biodiversity and ecological research
672 data management and archiving platform: The German Federation for the Curation of Biological
673 Data (GFBio) In: Plödereder E, Grunske L, Schneider E, Ull D, editors. Informatik 2014 – Big Data
674 Komplexität meistern. GI-Edition: Lecture Notes in Informatics (LNI) – Proceedings. GI edn. Vol.
675 232. Bonn: Kölken Verlag; 2014. pp. 1711–1724.

676 Herve, M. (2019) RVAideMemoire: testing and plotting procedures for biostatistics. CRAN
677 <https://CRAN.R-project.org/package=RVAideMemoire>

678 Hoarfrost, A., Balmonte, J.P., Ghobrial, S., Ziervogel, K., Bane, J., Gawarkiewicz, G., and Arnosti, C. (2019)
679 Gulf Stream ring intrusion on the Mid-Atlantic Bight shelf affects microbially-driven carbon cycling.
680 *Frontiers Marine Sci.* 6: 394. Doi: 10.3389/fmars.2019.00394

681 Juggins, S. (2016) Rioja: Analysis of quaternary science data. CRAN edition 0.9-21.
682 <http://www.staff.ncl.ac.uk/stephen.juggins/>

683 Kappelmann, L., Kruger, K., Hehemann, J.-H., Harder, J., Markert, S., Unfried, F. et al. (2018)
684 Polysaccharide utilization loci of North Sea Flavobacteriia as basis for using SusC/D-protein
685 expression for predicting major phytoplankton glycans. *The ISME J.* **13**: 76-91.

686 Kembel, S.W., Ackerly, D.D., Blomberg, S.P., Cornwell, W.K., Cowan, P.D. Helmus, M.R. (2019) 'picante'
687 Integrating phylogenies and ecology. CRAN 1.8 <https://picante.r-forge.r-project.org>

688 Klindworth, A. Pruesse, E. Schweer, T., Peplies J., Quast, C. Horn, M. et al. (2013) Evaluation of general
689 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity
690 studies. *Nucleic Acids Res.* **41**: e1.

691 Krüger, K., Chafee, M., Francis, T.B., delRio, T.G., Becher, D., Schweder, T. et al. (2019) In marine
692 Bacteroidetes the bulk of glycan degradation during algae blooms is mediated by few clades using a
693 restricted set of genes. *The ISME J.* **13**: 2800-2816. doi.org/10.1038/s41396-019-0476-y

694 Landa, M., Blain, S., Harmand, J., Monchy, S., Rapaport, A., and Obernosterer, I. (2018) Major changes in
695 the composition of a Southern Ocean bacterial community in response to diatom-derived dissolved
696 organic matter. *FEMS Microb Ecol* **94**: doi: 10.1093/femsec/fiy034.

697 Landa, M., Cottrell, M.T., Kirchman, D.L., Blain, S., and Obernosterer, I. (2013) Changes in bacterial
698 diversity in response to dissolved organic matter supply in a continuous culture experiment. *Aq*
699 *Microb Ecol* **69**: 157-168.

700 Li, W., and Godzik, A. (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or
701 nucleotide sequences. *Bioinformatics* **22**: 1658-1659.

702 Mahadevan, A., D'Asaro, E., Lee, C., and Perry, M.J. (2012) Eddy-driven stratification initiates North
703 Atlantic spring phytoplankton blooms. *Science* **337**: 54-58.

704 Manz, W., Amann, R., Ludwig, W., Vancanneyt, M., Schleifer, K.-H. (1996) Application of a suite of 16S
705 rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-
706 flavobacter-bacteroides in the natural environment. *Microbiol* **142**: 1097-1106.

707 Martens, E.C., Koropatkin, N.M., Smith, T.J., and Gordon, J.I. (2009) Complex glycan catabolism by the
708 human gut microbiota: the Bacteroidetes SUS-like paradigm. *J Biol Chem* **284**: 24673-24677.

709 Martin, A. (2012) The seasonal smorgasbord of the seas. *Science* **337**: 46-47.

710 Martinez, E., Antoine, D., D'Ortenzio, F., and de Boyer Montegut, C. (2011) Phytoplankton spring and fall
711 blooms in the North Atlantic in the 1980s and 2000s. *J Geophysical Res* **116**: C11029,
712 doi:10.1029/2010JC006836.

713 Martinez-Garcia, M., Brazel, D.M., Swan, B.K., Arnosti, C., Chain, P.S.G., Reitenga, K.G. et al. (2012)
714 Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of
715 Verrucomicrobia. *PLoS ONE* **7**: e35314.

716 Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R. Legendre, P., McGlinn, D. et al. (2019) vegan:
717 Community Ecology Package. R package. Version 2.5-4. [http://CRAN.R-
718 project.org/package=vegan](http://CRAN.R-project.org/package=vegan)

719 Painter, T.J. (1983) Algal Polysaccharides. In *The Polysaccharides*. Aspinall, G.O. (ed). New York: Academic
720 Press, pp. 195-285.

721 Pernthaler, A., Pernthaler, J., Amann, R. (2002) Fluorescence in situ hybridization and catalyzed
722 reporter deposition for the identification of marine bacteria. *Appl Environ Microbiol* **68**: 3094-
723 3101.

724 Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P. et al. (2013) The Silva ribosomal
725 RNA gene database project: Improved data processing and web-based tools. *Nucleic Acids Res*
726 **41**: D590-596.

727 Rakoff-Nahoum, S., Foster, K.R., and Comstock, L.E. (2016) The evolution of cooperation within the gut
728 microbiota. *Nature* **533**: 255-259.

729 Reintjes, G., Arnosti, C., Fuchs, B.M., and Amann, R. (2017) An alternative polysaccharide uptake
730 mechanism of marine bacteria. *The ISME J* **11**: 1640-1650

731 Reintjes, G., Arnosti, C., Fuchs, B.M., and Amann, R. (2019) Selfish, sharing, and scavenging bacteria in the
732 Atlantic Ocean: a biogeographic study of microbial substrate utilisation. *The ISME J*. **13**: 1119-1132.
733 doi.org/10.1038/s41396-018-0326-3

734 Riemann, L., Steward, G.F., and Azam, F. (2000) Dynamics of bacterial community composition and
735 activity during a mesocosm diatom bloom. *Appl Environ Microbiol* **66**: 578-587.

736 RStudio Team (2018) RStudio: integrated development for R. RStudio, Inc. Boston, MA
737 <http://www.rstudio.com/>.

738 Sarker, S., Feudel, U., Meunier, C., Lemke, P., Dutta, P., and Wiltshire, K.H. (2018) To share or not to share?
739 Phytoplankton species coexistence puzzle in a competition model incorporating multiple resource-
740 limitation and synthesizing unit concepts. *Ecol Modelling* **383**: 150-159.

741 Sarmento, H., and Gasol, J.M. (2012) Use of phytoplankton-derived dissolved organic carbon by different
742 types of bacterioplankton. *Environ Microb* **14**: 2348-2360.

743 Sarmento, H., Morana, C., and Gasol, J.M. (2016) Bacterioplankton niche partitioning in the use of
744 phytoplankton-derived dissolved organic carbon: quantity is more important than quality. *The ISME*
745 *J* **10**: 2582-2592.

746 Scharfe, M. and Wiltshire, K.H. (2019) Modeling of intra-annual abundance distributions: Constancy and
747 variation in the phenology of marine phytoplankton species over five decades at Helgoland Roads
748 (North Sea). *Ecol Modeling* **404C**: 46-60.

749 Teeling, H., Fuchs, B.M., Becher, D., Klockow, C., Gardebrecht, A., Bennke, C.M. et al. (2012) Substrate-
750 controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom.
751 *Science* **336**: 608-611.

752 Teeling, H., Fuchs, B.M., Bennke, C.M., Kruger, K., Chafee, M., Kappelmann, L. et al. (2016) Recurring
753 patterns in bacterioplankton dynamics during coastal spring algae blooms. *eLife* **5**: e11888. DOI:
754 10.7554/eLife.11888

755 Teira, E., Gasol, J.M., Aranguren-Gassis, M., Fernandez, A., Gonzalez, J.M., Lekunberri, I., and Alvarez-
756 Salgado, X.A. (2008) Linkages between bacterioplankton community composition, heterotrophic
757 carbon cycling and environmental conditions in a highly dynamic coastal ecosystem. *Environ Microb*
758 **10**: 906-917.

759 Toribio, A., Alako, B., Amid, C., Cerdeno-Tarraga, A., Clarke, L., Cleland, I., et al., (2017) The European
760 nucleotide archive in 2016. *Nucleic Acids Res* **45**: D36-D40.

761 Unfried, F., Becker, S., Robb, C.S., Hehemann, J.-H., Markert, S., Heiden, S.E. et al. (2018) Adaptive
762 mechanisms that provide competitive advantages to marine bacteroidetes during microalgal blooms.
763 *The ISME J*. **12**: 2894-2906. doi.org/10.1038/s41396-018-0243-5

764 Usov, A.I. (2011) Polysaccharides of the red algae. *Adv Carbohydr Chem Biochem* **65**: 115-217.

765 Wiltshire, K.H., Boersma, M., Carstens, K., Peters, S., and Scharfe, M. (2015) Control of phytoplankton in a
766 shelf sea: Determination of the main drivers based on the Helgoland Road time series. *J Sea Res* **105**:
767 42-52.

768 Xing, P., Hahnke, R.L., Unfried, F., Markert, S., Hugang, S., Barbeyron, T. et al. (2014) Niches of two
769 polysaccharide-degrading Polaribacter isolates from the North Sea during a spring diatom bloom.
770 *The ISME J*. **9**: 1410-1422.

771 Yilmaz, P. Kottmann, R. Field, D., Knight, R., Cole, J.R., Amaral-Zettler, L., et al. (2011) Minimum
772 information about a marker gene sequence (MIMARKS) and minimum information about any (x)
773 sequence (MxS) specifications. *Nat Biotech* **29**: 415-420.
774 Zimmerman, A.E., Martiny, A.C., and Allison, S.D. (2013) Microdiversity of extracellular enzyme genes
775 among sequenced prokaryotic genomes. *The ISME J.* 7: 1187-1199.
776

777

778 Figure Legends

779 Fig. 1 Phytoplankton and bacterial community changes at Helgoland from March through May
780 2016. 1a) Diatom and coccolithophorid abundance. Vertical arrows indicate the four dates (Hel_1
781 through Hel_4) on which samples were collected for analyses. 1b) Total cell counts (blue line) and
782 diatom abundance (gray shaded) at Helgoland sampling site. Black arrows indicate Hel_1 to Hel_4
783 sampling dates. (1c): Total abundance of *Bacteroidetes* (CF319a), *Gammaproteobacteria* (GAM42a), and
784 *Alphaproteobacteria* (ROS537) as counted by FISH. Gray shaded area shows diatom abundance, black
785 arrows show sampling dates Hel_1 to Hel_4.

786
787 Fig. 2a) Enzymatic hydrolysis rates of laminarin, xylan, chondroitin sulfate, arabinogalactan, and
788 carrageenan measured in triplicate incubations in each bloom phase at each sampling time point.
789 Error bars represent the standard deviation of 3 separate incubations for each substrate. 2b) Total
790 cell counts in the same incubations from which enzymatic hydrolysis rates were measured, plus cell
791 counts in no addition (NA) control (no FLA-PS added). Amended incubations are color-coded
792 (same color code as in 2a) to indicate which FLA-PS was added; error bars represent n = 6
793 biological and technical replicates. Note that for Hel_1, incubations lasted only 6 days. Also note
794 that no incubations with chondroitin sulfate were carried out at Hel_3.

795
796 Fig. 3: Bubble plot of bacterial genera with a minimum normalized read abundance of 0.05% at t0,
797 3d, and 6d for all substrates and for the unamended control incubation for Hel_1 to Hel_4. The size
798 of the bubble represents the relative abundance (%) of each genus.

799
800 Fig. 4: NMDS ordination based on Bray-Curtis dissimilarity for the comparison of microbial
801 community composition between 4 bloom phases (color coded). Hel_1 separates strongly from the
802 other timepoints, and Hel_4 is mostly separated from Hel_2 and Hel_3. The time course of
803 incubation for each sample time are indicated by increasing bubble size.

804
805 Fig. 5: Total cellular abundance of FLA-PS stained cells (selfish uptake) for all incubations and
806 timepoints. A fraction of these selfish cells were identified using FISH as members of *Alteromonas*
807 (blue; ALT1413) and *Bacteroidetes* (yellow; CF319a); the remaining substrate stained cells are indicated
808 by green color.

809
810 Fig. 6a: *The relationships between substrate complexity and quantity, selfish uptake, and extracellular hydrolysis*
811 *changes substantially during the course of a bloom*, as demonstrated by external hydrolysis rates (same data
812 as in Fig. 2a) and selfish uptake at t0 (plots from Fig. S5), shown below the main schematic diagram.
813 During the early bloom phase, both external hydrolysis and selfish uptake are low, except for
814 laminarin, a widely-available substrate. During the bloom phase, more complex substrates also
815 become available; a broader range of substrates are taken up via a selfish mechanism; external
816 hydrolysis rates increase somewhat. The late bloom phase is characterized by greater quantities of
817 more complex substrates that support bacteria carrying out external hydrolysis; these bacteria double
818 quickly. Fewer selfish bacteria are supported, since much of the substrate is hydrolyzed externally to
819 low molecular weights. Because of the high quantity of laminarin available throughout the bloom, it
820 is processed by both selfish and external hydrolysis even in the late bloom phase (see Fig. 6b).

821
822 Fig. 6b: *Substrate complexity and quantity both affect the nature of substrate processing*. In the early bloom
823 stages, selfish bacteria become more active as a wider range of substrates are initially made available.
824 Increasing quantity of these substrates, however, leads to more rapid doubling of bacteria that carry

825 out external hydrolysis; in late bloom stages, external hydrolysis is the more dominant substrate
826 processing pathway. Because of the high quantity of laminarin available throughout the bloom,
827 however, it supports both selfish uptake and external hydrolysis in all bloom phases. The net
828 outcome for organic matter processing is that overall more low molecular weight substrates are
829 available in the external environment in the bloom/postbloom stages.
830
831

832 Supplemental Figure Legends:

833

834 Fig. S1 Diatom abundance and nutrient (silicate, nitrogen, phosphate) concentrations from March 1st
835 to May 30th 2016 at the Helgoland sampling site.

836

837 Fig. S2: Bubble plots showing normalized read abundance of members of the *Bacteroidetes* (a),
838 *Gammaproteobacteria* (b), and *Rhodobacteriaceae* (minimum read abundance 0.005%) for each substrate
839 incubation and the unamended incubation at t0, 3d, and 6d for Hel_1 to Hel_4. NMDS plots (right)
840 based on Bray-Curtis dissimilarity reveal separation in *Bacteroidetes*, *Gammaproteobacteria*, and
841 *Rhodobacteriaceae* composition across bloom phases with time. ANOSIM (R:Vegan) indicates
842 significant difference between dissimilarity across bloom phases.

843

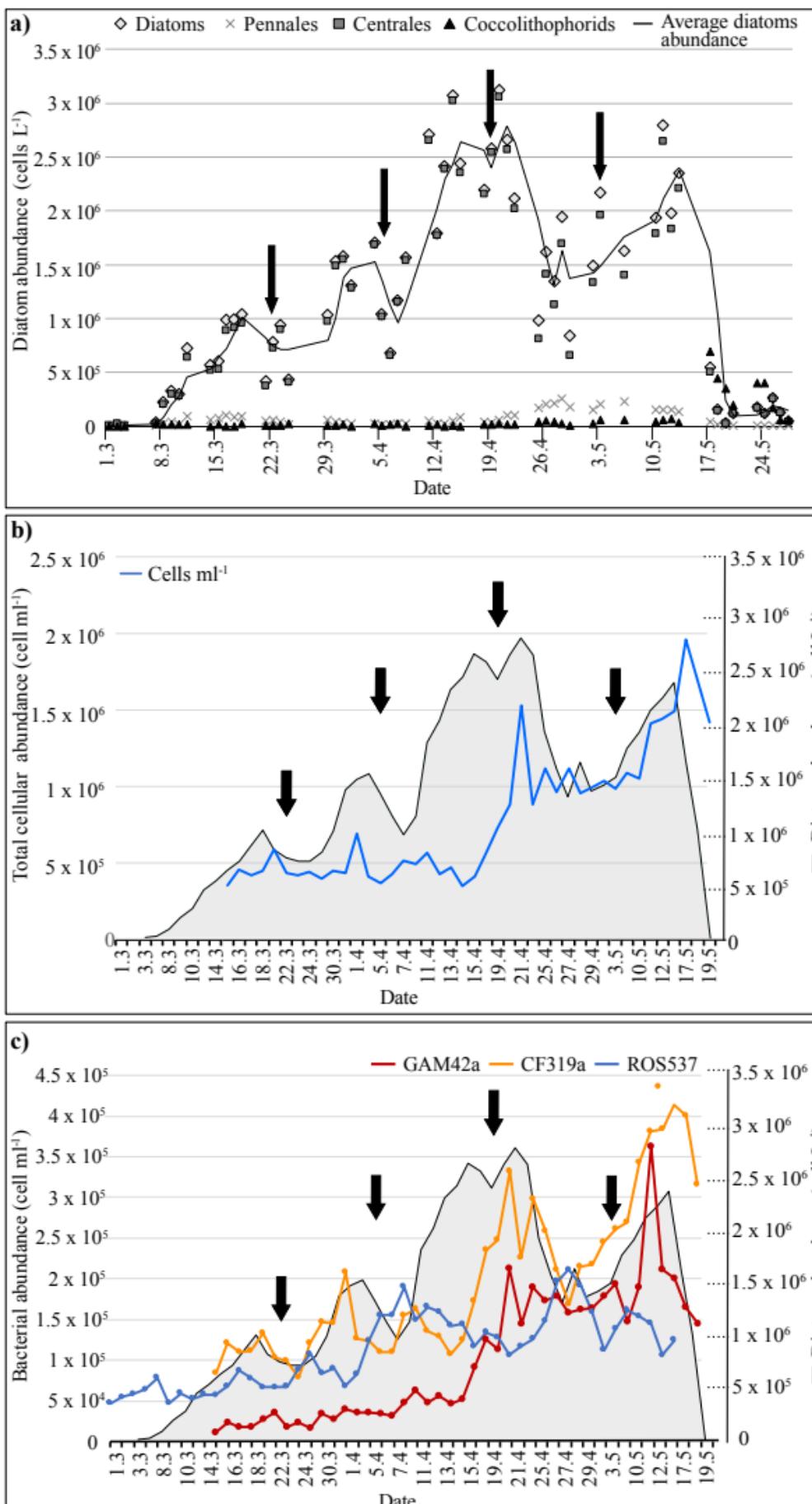
844 Fig. S3: Shifts in microbial communities (1% minimum abundance) during incubation with FLA-PS.
845 Percentage change in relative read abundance of bacterial genera (and phyla) are shown; the bar
846 chart compares t0 abundances of each genus to 3d and 6d abundances and shows increase or
847 decrease in each genus. ARA = arabinogalactan, CA = carrageenan, CH = chondroitin sulfate, LA =
848 laminarin, XY = xylan, NA = no addition control. (a) Hel_1; note there are no data for CA at 6d (b)
849 Hel_2; Note there are no data for xylan because there are no data from the t0 sample; (c) Hel_3;
850 there are no data for the NA at 6d. Note also that there are no chondroitin data because this
851 substrate was not used at the Hel_3 sample point. (d) Hel_4.

852

853 Fig. S4: Relative abundance (% of DAPI stained cells) of *Alteromonas* (black; ALT1413) and
854 *Bacteroidetes* (gray; CF319a) during incubations Hel_1 to Hel_4 enumerated by FISH.

855

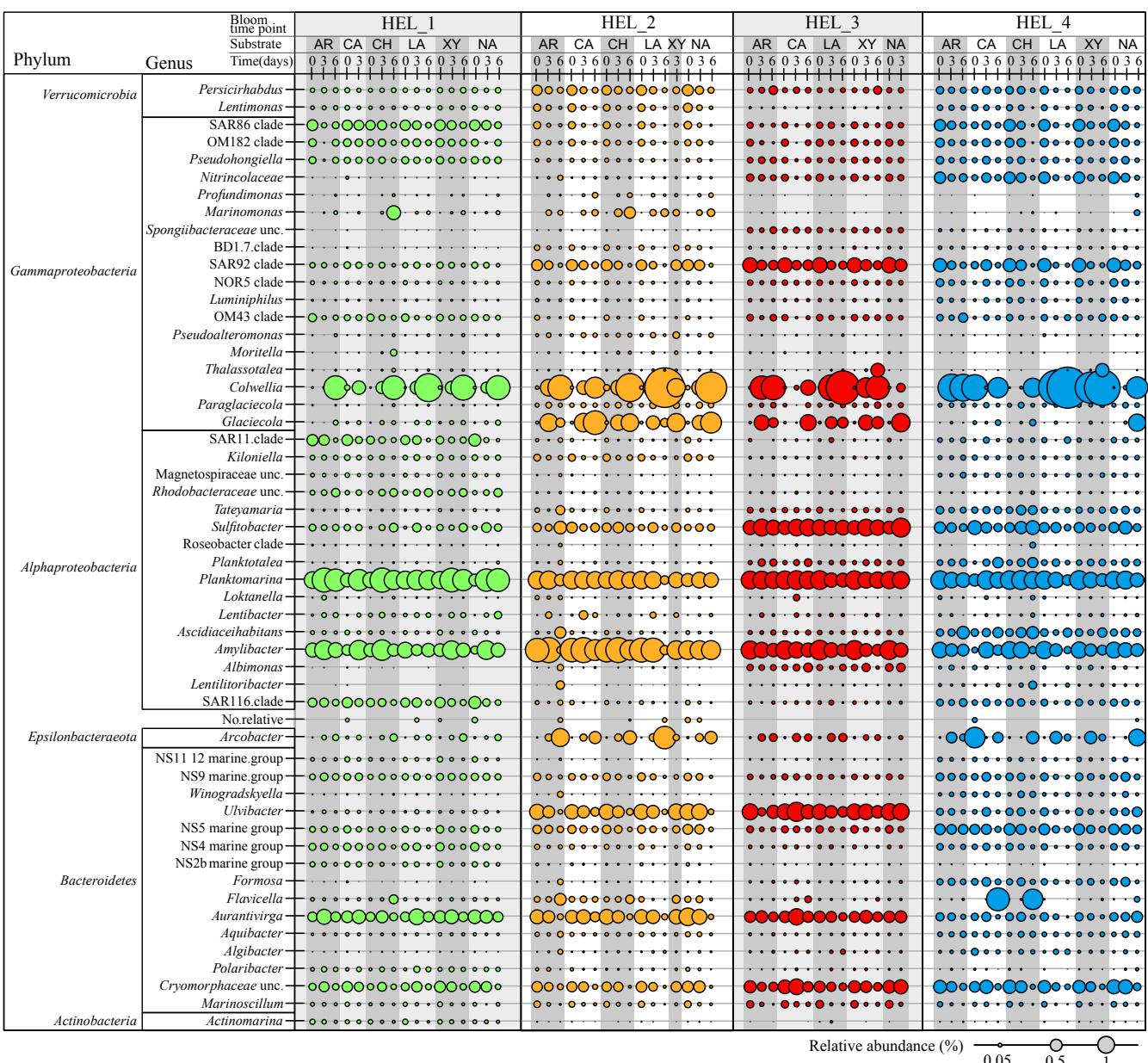
856 Fig. S5: Percentage of total DAPI-stainable cells at t0 timepoint (~ 15 minutes after substrate
857 addition) showing staining by laminarin, xylan, chondroitin sulfate, and arabinogalactan for Hel_1 to
858 Hel_4. Note that no chondroitin incubation was carried out for Hel_3. These data are the same as
859 the t0 timepoints in Fig. 6a, replotted here for clarity.

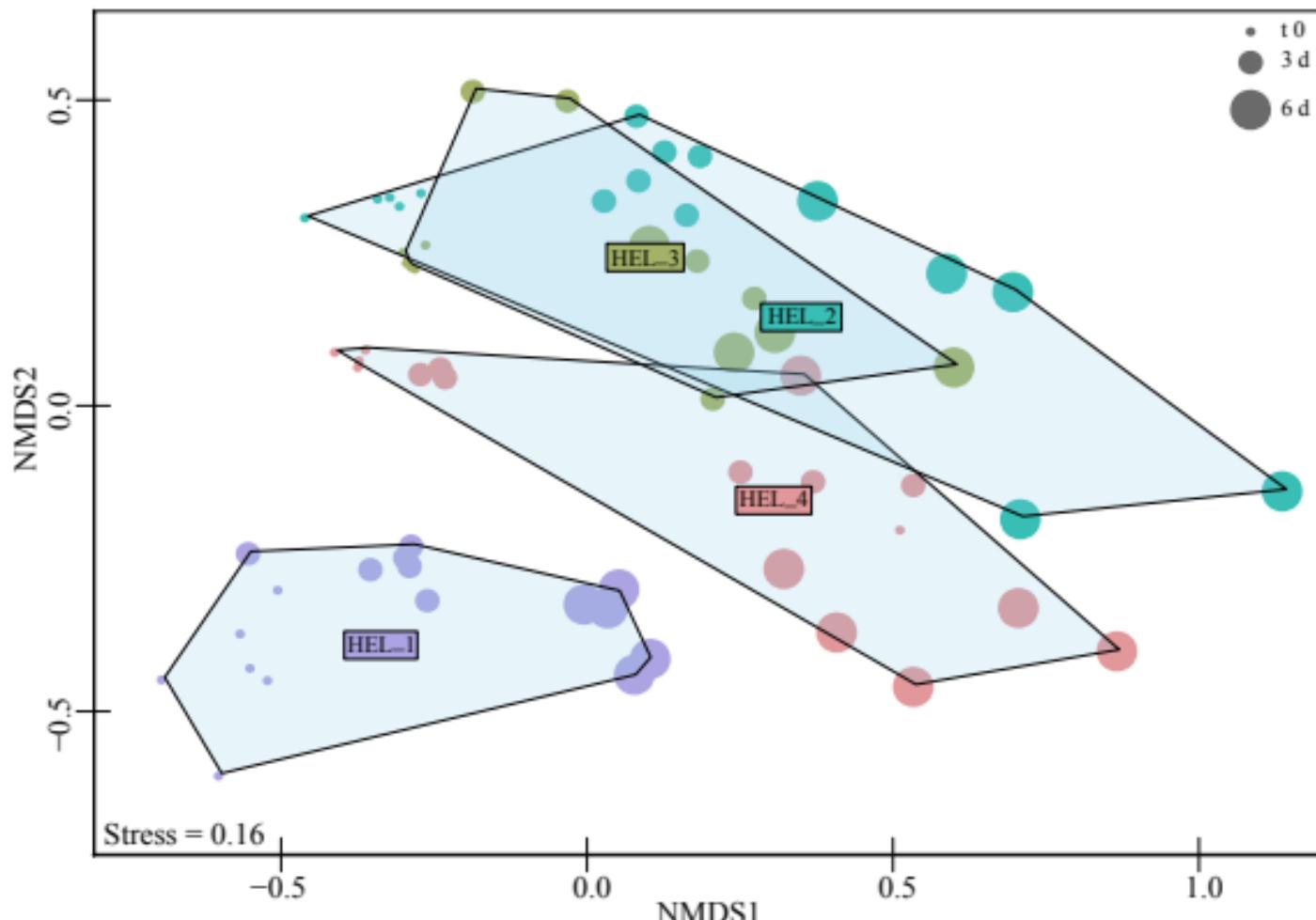

860

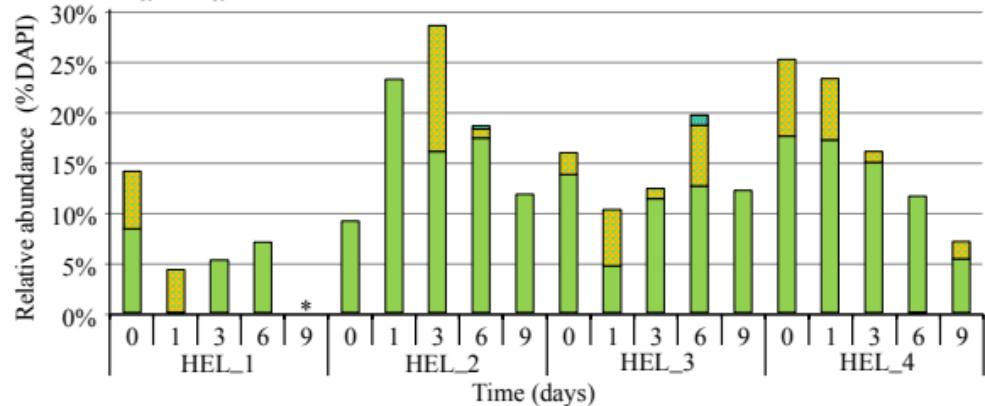
861

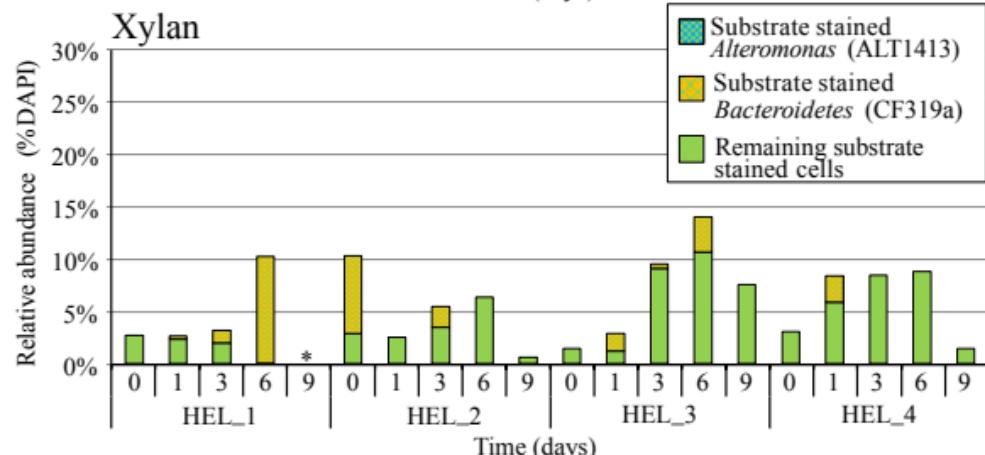
Table 1 Permutational multivariate analysis of variance (PERMANOVA) and analysis of similarly (ANOSIM) of bacterial community composition based on Bray–Curtis dissimilarities of relative read abundance, showing significant differences among bloom phases, and across individual time points within a bloom phase. There were no significant differences by substrate.

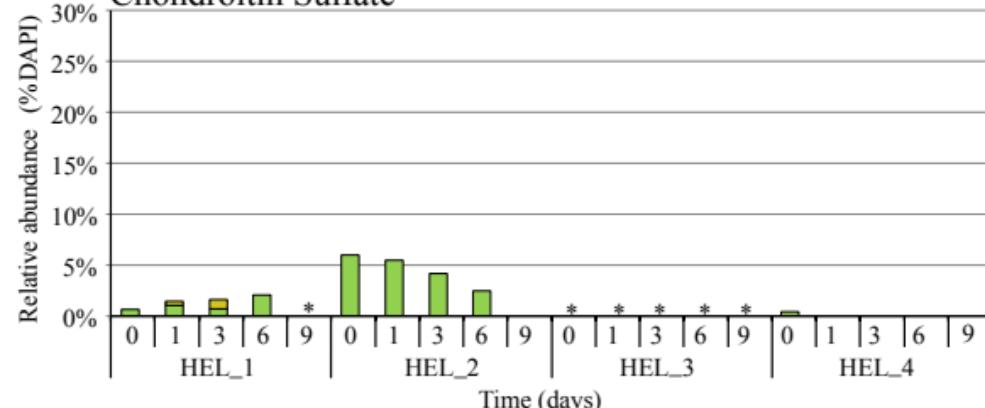
Source of variance	PERMANOVA				ANOSIM
	d.f	SS	pseudo F	R ²	
Substrate	5	0.39	11.03	0.05	-0.03361
Bloom phase	1	17.62	248.8	0.23*	0.3508*
Sampling timepoint	1	13.34	188.67	0.18*	0.5812*
Residuals	57	40.36		0.54	
Total	64	75.24		1	

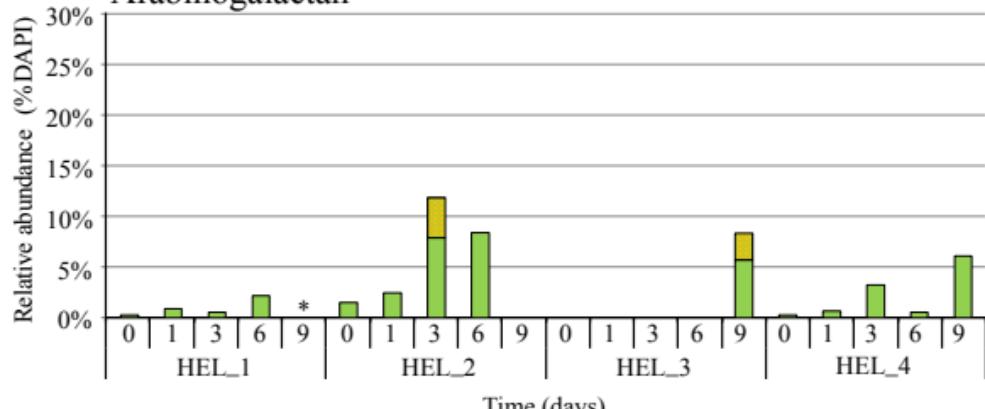

PERMANOVA test show influence of factors: "substrate", "bloom phase", and "sampling timepoint" on community composition, *p*-values were obtained using sum of squares and 999 permutations. ANOSIM performed with 999 permutation. d.f. degrees of freedom, SS sum of squares, * denotes significance (*p*<0.001).

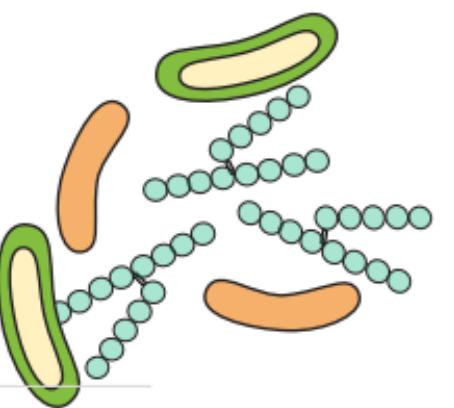

Reintjes et al. Figure 1 a-c


Reintjes et al. Figure 2 a & b


Reintjes et al. Figure 3

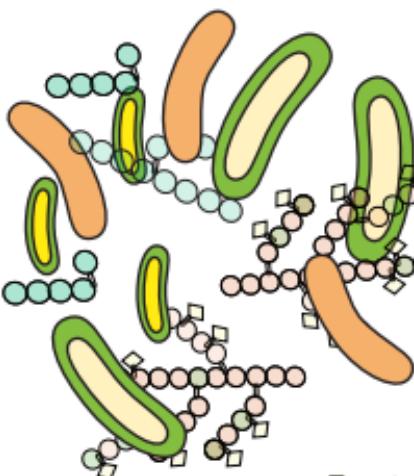

Laminarin


Xylan


Chondroitin Sulfate

Arabinogalactan

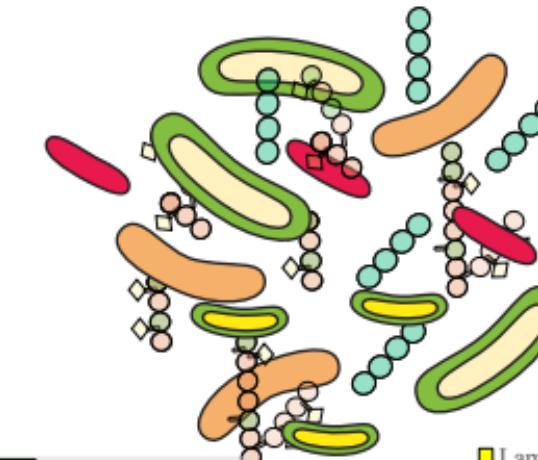
Early spring bloom



Low selfish activity except for laminarin

Low hydrolysis rate of limited number of substrates

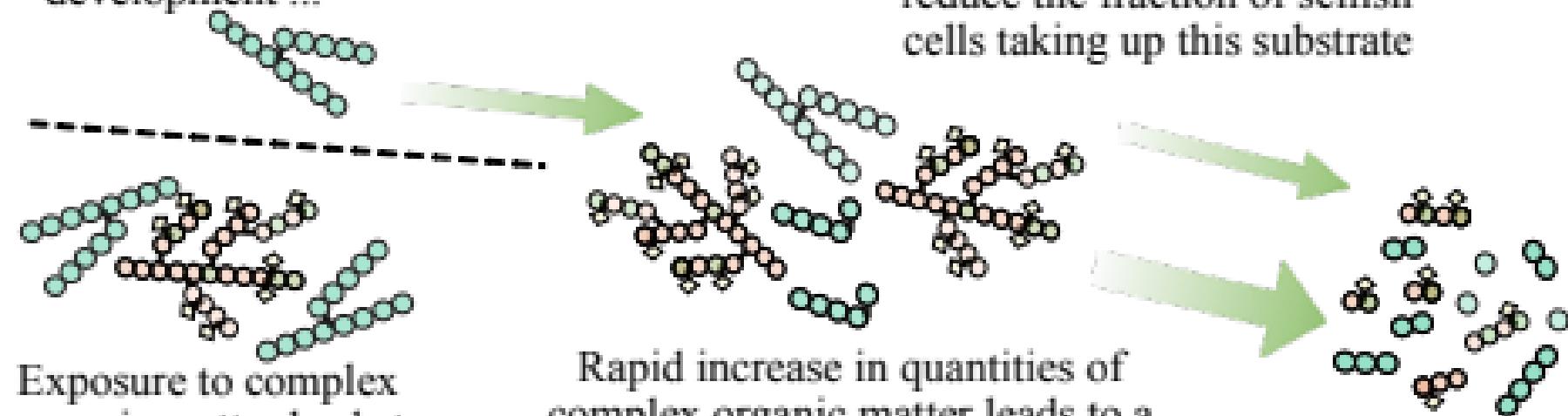
Bloom


More complex substrates, some of which are degraded

Increased selfish uptake, broad range of substrates

Late bloom

Substrate of increasing complexity are present and degraded



Laminarin selfish uptake very high, all other substrates low

Higher hydrolysis rates of a broader range of substrates

Initial bloom

Selfish uptake of laminarin already high. With increasing bloom development ...

Bloom / Postbloom

... external hydrolysis also becomes high, but does not reduce the fraction of selfish cells taking up this substrate

Rapid increase in quantities of complex organic matter leads to a more rapid doubling of bacteria carrying out external hydrolysis ...

... leading to more rapid production of low molecular weight substrates.

The quantity of low molecular weight hydrolysis products produced depends primarily on the doubling time and activity of bacteria carrying out external hydrolysis, which is controlled in turn by the supply of their substrates.