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Abstract 

Evolutionary biologists have long been interested in understanding the mechanisms 
underlying Haldane’s rule. The explanatory theories of dominance and faster-X, which are based 
on recessive alleles being expressed in the heterogametic sex, have been proposed as common 
mechanisms. These mechanisms predict that greater hemizygosity leads to both faster evolution 
and greater expression of intrinsic postzygotic isolation. Under these mechanisms, haplodiploids 
should evolve and express intrinsic postzygotic isolation faster than diploids because the entire 
genome is analogous to a sex chromosome. Here, we measure sterility and inviability in hybrids 
between Neodiprion pinetum and N. lecontei, a pair of haplodiplopids that differ 
morphologically, behaviorally, and genetically. We compare the observed isolation to that 
expected from published estimates of isolation in diploids at comparable levels of genetic 
divergence. We find that both male and female hybrids are viable and fertile, which is less 
isolation than expected. We then discuss several potential explanations for this surprising lack of 
isolation, including alternative mechanisms for Haldane’s rule and a frequently overlooked quirk 
of haplodiploid genetics that may slow the emergence of complete intrinsic postzygotic isolation 
in hybrid males. Finally, we describe how haplodiploids, an underutilized resource, can be used 
to differentiate between mechanisms of Haldane’s rule.  
 
Introduction  
 Barriers to gene flow enable species to diverge along independent evolutionary 
trajectories. For this reason, the evolution of reproductive isolation is a central focus of 
speciation research. Although there are many different types of reproductive barriers 
(Dobzhansky 1951; Coyne and Orr 2004), the most impermeable and permanent of these is 
intrinsic postzygotic isolation (IPI), which is the inability to produce viable, fertile hybrids. At a 
genetic level, hybrid inviability and sterility are often caused by the accumulation of Bateson-
Dobzhansky-Muller incompatibilities (BDMIs) in diverging populations (Bateson 1909; 
Dobzhansky 1937; Muller 1942). While neutral or beneficial in the parental genomes, negative 
epistasis among BDMIs in hybrid genomes results in IPI. 

In early stages of speciation, sterility or inviability is often restricted to one sex of the 
hybrid offspring (Coyne and Orr 1989, 1997). When this occurs, it is almost always the 
heterogametic sex (XY, ZW) that is sterile or inviable, a pattern known as Haldane’s rule 
(Haldane 1922; Schilthuizen et al. 2011). To date, multiple non-mutually exclusive mechanisms 
have been proposed to explain Haldane’s rule. Two explanations that have gained considerable 
empirical support are dominance theory and faster-X theory (Schilthuizen et al. 2011; Delph and 
Demuth 2016). Both of these assume that BDMIs are, on average, at least partially recessive in 
the hybrids.  

First, under  dominance theory, heterogametic hybrid malfunction is explained by BDMIs 
involved in autosomal-sex chromosome interactions (Turelli and Orr 1995). Whereas hybrids of 
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the homogametic sex will express only those X (or Z)-linked BDMIs that are at least partially 
dominant, hybrids of the heterogametic sex will express all X (or Z)-linked BDMIs, regardless of 
dominance. There is empirical evidence for the dominance theory, particularly for inviability 
loci. Most of these loci have been identified in Drosophila (Heikkinen and Lumme 1998; Coyne 
et al. 2004; Masly and Presgraves 2007), but also many other plant and animal taxa (Salazar et 
al. 2005; Carling and Brumfield 2008; Brothers and Delph 2010; Demuth et al. 2013).   

 The faster-X explanation for Haldane’s rule stems from the observation that the X (or Z) 
chromosome often has a disproportionate impact on hybrid fitness compared to autosomes, a 
pattern known as the large X-effect (Charlesworth et al. 1987). One explanation for the large X-
effect is that new beneficial mutations that are partially recessive will have a faster substitution 
rate on the X chromosome compared to the autosomes (Charlesworth et al. 1987). This is 
because on the X chromosome, new recessive alleles are immediately visible to selection in 
heterogametic individuals. This faster accumulation of substitutions on the X provides more 
opportunities for BDMIs to arise. Faster-X evolution can lead to Haldane’s rule either via 
exacerbating the effect of dominance described above or via the fixation of alleles that act in the 
heterogametic sex only (Coyne and Orr 2004). 

A shared feature of dominance and faster-X theories is that the expression of recessive 
alleles on sex chromosomes in the heterogametic sex results in stronger postzygotic isolation 
compared to the homogametic sex. All else equal, both mechanisms predict that the rate of 
evolution of IPI should correlate positively with the extent of hemizygosity. In support of this 
prediction, Drosophila species that have a larger proportion of their genome on the X 
chromosome evolve IPI more rapidly than species with smaller X chromosomes (Turelli and 
Begunt 1997). Additionally, taxa with heteromorphic sex chromosomes evolve IPI at lower 
levels of genetic divergence than taxa with homomorphic or no sex chromosomes (Lima 2014).   

Although Haldane’s rule has predominantly been studied in diploid taxa with sex 
chromosomes, it is also applicable to haplodiploids (Haldane 1922; Koevoets and Beukeboom 
2009). In haplodiploids, males develop from unfertilized eggs and are haploid, and females 
develop from fertilized eggs and are diploid (Normark 2003). Thus, in haplodiploid systems the 
entire genome is analogous to a sex chromosome. Because hemizygosity is maximized in 
haplodiploids, dominance and faster-X theory predict that evolution of IPI should be maximized 
in haplodiploid taxa (Koevoets and Beukeboom 2009).  

Although there is some empirical evidence of Haldane’s rule in haplodiploids (Koevoets 
et al. 2012), there are currently no direct comparisons between the rate of IPI evolution in 
diploids and haplodiploids. Here, we take advantage of a recent study that surveyed the literature 
and used linear regression to estimate the relationship between genetic divergence and the 
strength of IPI for diploid taxa with heteromorphic sex chromosomes (Lima 2014). Using this 
regression line, we asked whether the observed level of IPI in a haplodiploid species pair exceeds 
the expected IPI for diploid taxa at a comparable level of genetic divergence, as predicted under 
both dominance and faster-X theories. 

To estimate IPI in a haplodiploid species pair, we focused on a pair of sister species in the 
pine-sawfly genus Neodiprion: N. pinetum and N. lecontei (Order: Hymenoptera; Family: 
Diprionidae) (Linnen and Farrell 2008). These species have substantial extrinsic postzygotic 
isolation stemming from oviposition traits (Bendall et al. 2017). Specifically, whereas N. pinetum 
females embed their eggs within the needles of a thin-needled pine species (Pinus strobus), N. 
lecontei females deposit their eggs in thicker, more resinous needles in other pine species. While 
females of each species have oviposition traits well-suited to their respective hosts, hybrid 
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females have maladaptive combinations of oviposition traits that lead to hatching failure: they 
prefer the thin-needled host, but have traits better suited to thicker, more resinous needles. More 
generally, this species pair has many morphological and behavioral differences and many fixed 
genetic differences (genome-wide FST = 0.6, unpublished data). Overall, given the substantial 
genetic and phenotypic divergence between this species pair and the complete hemizygosity of 
haploid males, we expected hybrid males to be sterile or inviable. Shockingly, we found no 
evidence of IPI. In the discussion, we consider possible explanations for this surprising result, 
including a frequently overlooked quirk of haplodiploid genetics that may drastically slow the 
emergence of complete IPI in hybrid haploid males.    
 
Methods 
Study System Details and Overall Approach 
 The N. pinetum and N. lecontei lab lines that were used in this study were derived from 
larvae collected in the field (Table S1) and propagated in the lab for 1-4 generations following 
standard lab protocols (Harper et al. 2016; Bendall et al. 2017). We evaluated hybrid female and 
hybrid male viability and fertility relative to their purebred counterparts according to the crossing 
scheme illustrated in Figure S1. As is the case in most hymenopterans, unfertilized Neodiprion 
eggs give rise to haploid males, while fertilized eggs give rise to diploid females. Thus, 
interspecific crosses create hybrid females (“F1”) and pure-species males. To obtain hybrid males 
(“F2”), we allowed hybrid females to reproduce. For these experiments we used a combination of 
mated females (produce both males and females if fertilization is successful) and virgin females 
(produce all-male colonies). Because females of both species lay their entire egg complement on 
a single branch terminus and colonies are gregarious throughout development (Coppel and 
Benjamin 1965), all viability measures were colony-level measurements. Additionally, for our 
viability estimates, we only used colonies that produced live adults. This enabled us to rule out 
non-IPI related sources of colony failure, such as lab pathogens, diapause, or extrinsic 
postzygotic isolation (Coppel and Benjamin 1965; Bendall et al. 2017). Fertility measures were 
based on the reproductive success of individual adults. 
 With these data, we evaluated presence/absence of hybrid inviability in each sex and in 
both directions of the cross. We also evaluated presence/absence of hybrid sterility in both 
directions of the cross for females and in one direction of the cross for males (due to sample 
limitations). If we observed any evidence of viability or fertility for a particular cross/sex 
combination, we considered that combination to lack IPI. These qualitative measures of IPI were 
comparable to published IPI measures from diploid taxa (Coyne and Orr 1989; Lima 2014).  
 
IPI in females 
 To evaluate hybrid female viability, we crossed N. lecontei females with N. pinetum 
males (LxP) and vice versa (PxL). We then released each mated female into a mesh cage with 
two P. strobus and two P. banksiana seedlings (preferred hosts for N. pinetum and N. lecontei, 
respectively). When the female oviposited, we reared the resulting colonies on the host chosen 
for oviposition. To evaluate hybrid female viability, we calculated the proportion of colonies that 
had adult females emerge from crosses that had any adult emergence. We did this for both 
directions of the hybrid cross (PxL N = 15, LxP N = 23), as well as purebred N. pinetum (N = 15) 
and N. lecontei (N = 20). To determine if female viability differed among cross types, we 
performed a logistic regression followed by a Tukey’s HSD post-hoc test. 
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To evaluate hybrid female sterility, we recorded oviposition success (i.e., whether or not 
a female laid eggs) and, if the female oviposited, the number of eggs laid for four cross types:  
F1(PxL) hybrid female mated to a N. pinetum male (N = 41), F1(LxP ) hybrid female mated to a N. 
lecontei male (N = 32), N. lecontei female mated to a N. lecontei male (N = 124), and N. pinetum 
female mated to a N. pinetum male (N = 108). All females were placed into choice cages as 
described above. To remove possible effects of mating, we also evaluated oviposition success 
and egg number for three types of virgin females (we did not have F1(PxL) available for this 
experiment): F1(LxP) females (N = 35), N. lecontei females (N = 58), and N. pinetum females (N = 
86).  We performed a logistic regression to test if oviposition willingness differed, and an 
ANOVA to test if egg number differed between female type. For both analyses we used Tukey’s 
post-hoc tests. We performed separate analyses for virgin and mated females. All statistical 
analyses were performed in R (3.6.0)      

     
IPI in males 

To evaluate hybrid male viability, we placed mated females of different types into 
oviposition cages (a combination of “choice” and “no-choice” cages were used) and reared the 
resulting offspring to adulthood. We estimated male viability for each cross type as the 
proportion of colonies that had adult male emergence. To generate F2(LxP) hybrid males, we 
crossed F1(LxP) hybrid females with either N. lecontei or N. pinetum males (N = 32). To generate 
F2(PxL) hybrid males, we backcrossed F1(PxL) hybrid females to N. pinetum males (N = 9). These 
crosses result in backcross females and F2 males. For comparison, we also examined male 
emergence in pure N. pinetum (N = 34) and N. lecontei (N = 18) crosses. We performed a logistic 
regression and a Tukey’s HSD post-hoc test to determine if hybrids had lower rates of male 
emergence compared to the pure species. 
 We evaluated hybrid male sterility in one direction of the cross (LxP; due to availability 
of males). First, we examined sperm motility in N. pinetum (N = 20), N. lecontei (N = 47), and 
F2(LxP) males (N = 39). Upon eclosion from cocoons, adult males were stored at 4°C until use to 
prolong life.  In some cases, males were used in mating assays prior to testes dissection, then 
returned to 4°C for a minimum of 24 hours until further use. Males were warmed to room 
temperature for a minimum of one hour prior to dissection. From each male, we removed both 
testes and placed each testis on a siliconized slide in 50 µl of testes buffer (183 mM KCl, 47 mM 
NaCl, 10 mM Tris-HCl, pH 6.8). After piercing a testis, we imaged the sperm at 40x with a 
Nikon E800 DIC. Neodiprion males have sperm that form bundles. We recorded sperm motility 
for each male (both testes combined) as no motility (no moving bundles), low motility (0-35% 
moving bundles), or normal motility (>35% moving bundles), Because mating status did not 
impact motility, we combined data from unmated and mated males (Chisq= 2.66, p= 0.103). To 
determine whether hybrid males had reduced sperm motility, we performed a Kruskal-Wallace 
test, followed by Tukey’s post-hoc tests.  

To test whether hybrid males could mate successfully, we used no-choice mating assays. 
We placed a single N. lecontei female in a clear 3.25-oz container with either a N. lecontei (N = 
36) or F2 (LxP) hybrid male (N = 37) (N. pinetum males and females were not available). We 
observed each pair for 2 hours and recorded whether they mated during that time.  To test if 
mating success differed between N. lecontei and hybrid males, we performed a logistic 
regression. Mating does not indicate that hybrid males produce viable sperm. To evaluate hybrid 
male fertility, we placed each mated female in a cage with a P. banksiana seedling and reared 
resulting colonies as described above. For all colonies with a F2 father that produced adults, we 
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evaluated whether there was successful fertilization by recording the proportion that produced 
adult females (diploid females indicate successful fertilization).  
 
Comparing observed IPI in haplodiploids to predicted IPI in heteromorphic diploid taxa 

Lima (2014) conducted a meta-analysis of published IPI estimates for taxa with 
heteromorphic, homomorphic, and no sex chromosomes. Using logistic regression, he calculated 
the expected level of IPI (with a 95% confidence interval) for a given genetic distance (Nei’s D) 
for these three categories. If haplodiploidy is analogous to extreme sex chromosome 
heteromorphy, we predict that sawflies will have higher levels of IPI than diploids with 
heteromorphic sex chromosomes at the same genetic distance. To test this prediction, we 
calculated Nei’s D for N. pinetum and N. lecontei and compared the observed level of IPI for this 
species pair to expectations derived from the relationship between Nei’s D and IPI in diploid 
taxa with heteromorphic sex chromosomes (Lima 2014).  

To calculate Nei’s D, we used adegenet (Nei 1978; Jombart 2008) with SNP data derived 
from ddRAD sequencing of 44 N. lecontei and 23 N. pinetum individuals (data from Bendall et 
al. in prep).  The individuals in the genetic dataset were from the same populations that 
established the lab lines we used to measure IPI. To calculate overall IPI between this species 
pair, we used the scale from Coyne and Orr (1989), which ranges from 0 (no IPI) to 1 (complete 
IPI). In brief, each sex that is either completely inviable or infertile in each direction of the cross 
adds 0.25 to the IPI score. We also calculated sex-specific IPI as in Lima (2014). IPI for each sex 
could take on three possible values: 0, if the sex was viable and fertile in both directions of the 
cross; 0.5, if the sex was inviable or infertile in one direction only; and 1, if the sex was inviable 
or infertile in both directions. With the estimates of IPI and genetic distance, we asked whether 
our observed IPI fell outside of Lima’s (2014) 95% confidence interval for IPI in heteromorphic 
taxa for our observed genetic distance. We compared observed to expected IPI for both overall 
and sex-specific measures of IPI. 
 
Results 
IPI in females 
 Interspecific crosses produce just as many colonies with viable female adults as 
intraspecific crosses (Figure 1A; Chisq = 2.20, P = 0.53). These data indicate that hybrid females 
are viable in both directions of the cross. Hybrid females are also fertile in both directions of the 
cross. Whether mated or virgin, hybrid females are no less willing to oviposit than non-hybrid 
females (Figure 1B, Figure S2A, Table S2, Table S3). When mated hybrid females oviposited, 
they also laid just as many eggs as N. lecontei and more eggs than N. pinetum (Figure 1C, Figure 
S2B, Table S2, Table S3). Egg number was similar for all virgin females (P=0.053, Table S2). 
Overall, hybrid females are viable and fertile in both directions of the cross.  
 
IPI in males 
 Hybrid males are viable in both directions of the cross. Although the proportion of 
colonies that produced adult males varied among cross type (Figure 1D, Chisq = 14.5, P = 
0.002), hybrid males didn’t have reduced male emergence compared to the pure species (Table 
S4).  

Compared to N. lecontei, hybrid F2(LxP) males did not have reduced sperm motility 
(Figure 1E; Chisq= 1.03, P= 0.60). However, N. lecontei females were less willing to mate with 
hybrid males than they were with N. lecontei males (Figure 1F; Chisq =3.93, P = 0.045). This 
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constitutes a form of extrinsic postzygotic isolation (behavioral isolation) in at least one direction 
of the cross. Nevertheless, hybrid males did mate successfully with some N. lecontei females. Of 
the 10 hybrid-male-fathered colonies that produced adults, 70% produced adult females, 
indicating that hybrid males are fertile. Overall, hybrid males are viable in both directions of the 
cross and fertile in one direction (N. lecontei female x N. pinetum male). The fertility of the 
reciprocal cross is unknown.  

 
Figure 1. Viability and fertility for hybrid females and hybrid males. A. The proportion of colonies with adult 
females out of all colonies with adult emergence. B. The proportion of females that oviposited. C.  The 
average number of eggs laid for pure and hybrid females. D. The proportion of colonies with adult males out of 
all colonies with adult emergence. E. Proportion of males that had normal sperm motility. F. Compared to N. 
lecontei males, hybrid males mate less frequently with N. lecontei females. Error bars represent standard error. 
Different letters denote pairwise comparisons that are significantly different in post-hoc tests; lack of letters 
indicate that there were no significant differences. 
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Genetic distance 
Using 21,590 SNPs genotyped in sympatric N. lecontei and N. pinetum populations, our 

Nei’s D estimate was 0.36.  If we assume that the untested hybrid male type (which differs from 
the tested hybrid male type only in the mitochondrial genome) was fertile, N. pinetum and N. 
lecontei have an IPI score of 0. For a Nei’s D of 0.36, this IPI score is outside of the 95% 
confidence interval for expected IPI in heteromorphic taxa (Figure 2). However, IPI deviated in 
the opposite direction of what we predicted: N. pinetum and N. lecontei have lower IPI than 
expected given their genetic distance. The individual sexes also had IPI scores of 0. While the 
male-specific IPI was lower than the 95% confidence interval, the female-specific IPI fell within 
the 95% confidence interval (which included 0).  

If we assume instead that the untested hybrid male type was infertile, this would give an 
overall IPI of 0.25, a male-specific IPI of 0.5, and a female-specific IPI of 0. These IPI estimates, 
which are the maximum possible IPI for this species pair, did fall within the 95% confidence 
interval of the heteromorphic taxa. However, these adjusted IPI scores still fell below the 
heteromorphic regression lines. 
 

Discussion 
Haplodiploids should have higher levels of IPI than diploids for a given genetic distance 

because all recessive mutations are expressed in the haploid males. We found that N. lecontei 
and N. pinetum hybrids are fertile and viable for both sexes, making the IPI score lower than 
expected given the genetic distance between N. pinetum and N. lecontei.  Here, we consider 
several possible reasons for the lack of intrinsic isolation in hybrid haploid males.  

First, not all genetic mechanisms that have been hypothesized to explain Haldane’s rule 
rely on the hemizygous nature of sex chromosomes. Although there is significant support for 
dominance theory and faster-X, mechanisms that rely on chromosomal segregation or the sex-
determining properties of the X chromosome may also contribute to Haldane’s rule. These 
mechanisms will not cause IPI to evolve more rapidly--and may even slow the emergence of IPI-
-in haplodiploids. For example, under meiotic drive, the sex ratio becomes distorted from 50:50 
when drive elements evolve on the X chromosome (McDermott and Noor 2010). Strong negative 
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Figure 2. N. pinetum and N. lecontei 
have lower isolation than taxa with 
heteromorphic sex chromosomes at the 
same genetic distance.  The thick line is 
the expected amount of IPI for taxa 
with heteromorphic sex chromosomes 
at Nei’s D of 0.36 (from Lima 2014). 
The gray shaded area represents the 
95% confidence interval. The circles 
represent the observed isolation 
between N. pinetum and N. lecontei. 
The blue circle is the maximum 
potential isolation and the pink circle is 
the observed isolation.  Isolation for 
both sexes combined, females only, and 
males only are shown. 
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selection against distorted sex ratios favors suppressors on other chromosomes (autosomal or Y) 
that restore a balanced sex ratio. This cycle of antagonistic coevolution of drivers and 
suppressors results in rapid evolution of the X chromosome and increased divergence between 
species. With increased divergence comes an increased number of incompatibilities. In several 
Drosophila groups meiotic drive has been implicated in hybrid sterility (Hauschteck-Jungen 
1990; Tao et al. 2001; Orr and Irving 2005).  

In theory, meiotic drive could also produce Haldane’s rule in many haplodiploids. The 
genetic mechanism underlying haplodiploidy in Neodiprion sawflies and many other 
Hymenoptera is complimentary sex determination, in which sex is determined by heterozygosity 
at one or more sex-determining loci (Cook 1993; Harper et al. 2016). If an individual is 
hemizygous (haploid) or homozygous (diploid) at all sex-determining loci, then they are male. 
Individuals that are heterozygous (diploid) at one or more sex-determining loci are female. 
Meiotic drive elements can be linked to these sex-determining loci. As drive causes the 
frequency of an allele at the sex determining locus to increase, the number of homozygous 
individuals increases. Linked meiotic drive elements would create an unbalanced sex ratio that 
increases the proportion of diploid males in the population. Diploid males tend to be inviable or 
sterile, and diploid male production should be strongly selected against (Van Wilgenburg et al. 
2006). However, sex-determining loci and linked sites make up a small proportion of the 
genome. Thus, if meiotic drive is an important source of IPI, haplodiploids should not have faster 
evolution of IPI, and may evolve IPI more slowly depending on the proportion of the genome 
that is sex linked. 

Although dominance theory has wide support for causing male inviability, there is a lack 
of support when it comes to sterility (Presgraves 2010). An alternative mechanism to explain the 
evolution of sterility in the heterogametic sex is incorrect pairing of sex chromosomes during 
meiosis. Unlike homomorphic chromosomes, which pair by overall homology, heteromorphic 
sex chromosomes usually match by small stretches of shared sequence, which are often rapidly 
evolving repeat sequences. These repeat sequences can differ between species, causing hybrid X 
and Y (or Z and W) chromosomes to be unable to pair or separate properly during meiosis, 
making the hybrid’s gametes sterile. Since only heteromorphic sex chromosomes require this 
form of meiotic pairing, this mechanism could explain Haldane’s rule. Chromosome separation 
failures during meiosis, leading to sterility in hybrids, have recently been reported for mice 
(Schwahn et al. 2018) mosquitoes (Lang and Sharakhov 2019) yeast (Rogers et al. 2018), and 
Drosophila (Kanippayoor et al. 2020). Because haplodiploids lack sex chromosomes and males 
do not undergo meiosis to produce gametes, improper pairing of sex chromosomes cannot cause 
hybrid male sterility in haplodiploids, and hybrid males are therefore fertile. 

Even if there is a common underlying genetic mechanism that gives rise to Haldane’s rule 
across taxa in nature that should give rise to IPI in our system, there could be system-specific 
reasons why IPI was not observed. For example, the lack of IPI may be due to the divergence 
history of the species pair we examined, which has ongoing gene flow. If there is sufficient gene 
flow, deleterious genetic combinations are quickly produced and purged, preventing the 
evolution of hybrid inviability and sterility (Agrawal et al. 2011). In haplodiploids these 
deleterious alleles should be purged more quickly (Avery 1984). Whether there is sufficient gene 
flow in this system to cause selection against IPI remains to be tested.  
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Figure 3. A two-locus model of IPI in haplodiploids and diploids consistent with the dominance model. A.  
The evolution of a two-locus BDMI in diploids with incompatible loci on an autosome (long rectangle) and X 
chromosome (short rectangle). The red uppercase alleles are ancestral. The X-linked derived allele (yellow b) 
is recessive and the autosomal derived allele (blue a) is at least codominant.  In hybrids, an individual with at 
least one A allele and homozygous or hemizygous for the b allele, such as the male shown at the right, will be 
inviable or sterile. Only one direction of the cross will experience IPI under this model B. In diploids, 
hybridization leads to viable females and inviable males. All males have the same genotype that include the 
incompatibility. C. In haplodiploids, hybrid females are viable. Hybrid males aren’t formed until the second 
generation. Only 25% of the males will have the incompatibility and be inviable. 
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Alternatively, the low levels of male IPI may be a consequence of haplodiploidy itself. 

Haplodiploidy may influence the evolution of IPI in more complex ways that depend on the 
subtleties of the genetic basis of the BDMIs. For example, BDMIs may be formed when there is  
a mildly deleterious mutation in one species followed by a compensatory mutation in the same 
species (Kondrashov et al. 2002), as observed in some mitonuclear interactions (Barreto and  
Burton 2012). When the deleterious mutation is placed into the other genetic background without 
the compensatory mutation, the hybrid suffers low fitness. Since most mildly deleterious  
segregating variants in a population are recessive (Simmons and Crow 1977), and all recessive 
variants are expressed in haplodiploid males, selection will be more efficient at removing these 
variants from the population, resulting in fewer mildly deleterious mutations in haplodiploids 
(Avery 1984). If BDMIs formed through compensatory mutations are common, haplodiploids 
would be expected to evolve IPI more slowly than diploids. This reduced IPI in haplodiploids is 
only applicable if the dominance theory underlies sterility, since faster-X theory specifically 
deals with positively selected recessive alleles. To rigorously test this idea, the specific mutations 
involved in BDMI and their fitness effects in the original population must be known.   

Finally, the haplodiploid inheritance mechanism may account for the absence of complete 
inviability and sterility in hybrid males. To illustrate why, we propose a verbal model describing 
the effects of haplodiploid inheritance. We consider a simple two-locus BDMI in which there is 
one locus on the autosome and a second locus on the X chromosome that interact to cause the 
incompatibility (Figure 3A). In one species, a derived co-dominant autosomal mutation fixes, 
and in the other species a recessive mutation fixes on the X chromosome. When these species 
hybridize, hybrids are sterile or inviable when one copy of the derived autosomal allele and only 
the derived X allele is present in the hybrid, as would be observed in the heterogametic sex. Only 
one direction of the cross will experience IPI under this simple model.  

For the direction of the cross with IPI, all diploid hybrid males have one set of autosomal 
chromosomes from each species and the X from the maternal species causing all males to have 
the incompatibility (Figure 3B). The females will be viable and fertile, since the incompatible X 
locus is heterozygous. In haplodiploids, the incompatibilities would be on two different 
autosomes since they do not have sex chromosomes (Figure 3C). A F1 female has the same 
genotype as the diploid female and is viable and fertile. However, there is no true F1 hybrid male. 
Instead, the first generation of hybrid males (F2) are the offspring of hybrid females, allowing for 
recombination to occur before hybrid males are formed. Unlike diploids, not all males will have 
all incompatibilities. Instead, only 25% of the males will have the derived allele at both loci and 
will be inviable or infertile in this two-locus model. Although this model is more simplistic than 
many BDMIs in nature, it shows how recombination in F1 females allows viable allelic 
combinations to be formed in hybrid males. The exact effect of haplodiploidy inheritance on the 
evolution of IPI will depend on the genetic architecture of the BDMIs (e.g. effect size, 
dominance, genomic locations), and further modeling is necessary.  

We have proposed several explanations for why we detected lower IPI than expected 
under dominance theory and faster-X. These explanations fall into three categories 1) system 
specific effects 2) inheritance mechanism of haplodiploids, and 3) alternative mechanisms for 
Haldane’s rule.  Meiotic drive, pairing of sex chromosomes during meiosis, and dominance 
theory formed through compensatory mutations are non-mutually exclusive mechanisms that 
may all be important drivers of the evolution of BDMIs and Haldane’s rule. Importantly, 
haplodiploids can be used to distinguish between these different mechanisms because they have 
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different predictions for the level of IPI in haplodiploids compared to diploids (Table 1). To tease 
apart these different possibilities, quantitative measures of sterility and inviability from many 
haplodiploid and diploid taxa are needed. The influence of system-specific effects such as 
interspecific gene flow and species population sizes should also be examined. Biologists have 
been trying to understand the mechanism underlying Haldane’s rule for almost a century. 
Haplodiploids have been an underutilized resource in this search and have the potential to 
provide novel insight into the underlying basis of this phenomenon. 

 
Table 1. Proposed mechanisms for Haldane’s rule and predictions regarding how haplodiploids should differ 
from diploids in the rate of evolution of IPI.  
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