

1 **A strategy for complete telomere-to-telomere assembly of ciliate
2 macronuclear genome using ultra-high coverage Nanopore data**

3

4 Guangying Wang¹, Xiaocui Chai^{1, 2}, Jing Zhang¹, Wentao Yang^{1, 2},
5 Chuanqi Jiang¹, Kai Chen¹, Wei Miao^{1, 3, 4*}, Jie Xiong^{1*}

6

7 ¹Key Laboratory of Aquatic Biodiversity and Conservation, Institute of
8 Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China

9 ²University of Chinese Academy of Sciences, Beijing 100049, China

10 ³CAS Center for Excellence in Animal Evolution and Genetics, Kunming
11 650223, China

12 ⁴State Key Laboratory of Freshwater Ecology and Biotechnology of China,
13 Wuhan 430072, China

14

15 *Corresponding author

16 Email:

17 miaowei@ihb.ac.cn

18 xiongjie@ihb.ac.cn

19

20

21

22 **ABSTRACT**

23 Ciliates contain two kinds of nuclei: the germline micronucleus (MIC)
24 and the somatic macronucleus (MAC) in a single cell. The MAC usually
25 have fragmented chromosomes. These fragmented chromosomes,
26 capped with telomeres at both ends, could be gene size to several
27 megabases in length among different ciliate species. So far, no
28 telomere-to-telomere assembly of entire MAC genome in ciliate species is
29 finished. Development of the third generation sequencing technologies
30 allows to generate sequencing reads up to megabases in length that
31 could possibly span an entire MAC chromosome. Taking advantage of
32 ultra-long Nanopore reads, we established a simple strategy for the
33 complete assembly of ciliate MAC genomes. Using this strategy, we
34 assembled the complete MAC genomes of two ciliate species
35 *Tetrahymena thermophila* and *Tetrahymena shanghaiensis*, composed of
36 181 and 214 chromosomes telomere-to-telomere respectively. The
37 established strategy as well as the high-quality genome data will provide
38 a useful approach for ciliate genome assembly, and a valuable
39 community resource for further biological, evolutionary and population
40 genomic studies.

41

42

43 **Introduction**

44 Ciliate separates its germline and somatic genetic information by
45 maintaining two kinds of functionally distinct nuclei: the diploid
46 micronucleus (MIC), and the polyploid macronucleus (MAC) (Gorovsky,
47 1973; Lynn, 2008). The MIC, like other eukaryotes, usually contains long
48 chromosomes with centromeres and capped by telomeres. In general, the
49 MAC genome comes from the MIC genome through a so-called MAC
50 differentiation process in the sexual stage (conjugation) of ciliate (Orias,
51 2000). In MAC differentiation, the MIC-like chromosomes are fragmented
52 into small pieces at the chromosome breakage sites (CBSs), and the
53 internal eliminated sequences (IESs), which contain transposable
54 elements, are removed (Orias, 2000). This process finally results in the
55 MAC containing fragmented chromosomes with length range from gene
56 size to several megabases, and capped by telomere sequences at both
57 ends but without centromeres.

58 Development of the third generation sequencing technologies, e.g.
59 the Nanopore sequencing, allows to generate sequencing reads up to
60 megabases in length (Jain et al., 2018), and thus could sometimes
61 sequence an entire MAC chromosome of ciliate by a single read. The
62 generation of such long sequencing reads gives the opportunity to
63 assemble more complete MAC genomes of ciliates.

64 Here, we reported a simple strategy which was used to assemble the
65 complete genome of *T. thermophila* and *T. shanghaiensis* using high
66 coverage Nanopore sequencing data.

67

68

69 **Materials and Methods**

70 **Cell culture and DNA extraction**

71 *T. thermophila* SB210 and *T. shanghaiensis* (ATCC accession:
72 205039) cells were grown in SPP medium (Cassidy-Hanley, 2012) and
73 harvested at a density of 250,000 cells/ml. The total DNA was extracted
74 using the Blood & Cell Culture DNA Midi Kit (Q13343, Qiagen, CA, USA)
75 following the manufacturer's protocol. The DNA was then purified using
76 the Agencourt AMPure XP beads (A63881, BECKMAN), and the DNA
77 quality and quantity was tested using both NanoDrop One UV-Vis
78 spectrophotometer (Thermo Fisher Scientific, USA) and Qubit 3.0
79 Fluorometer (Invitrogen, USA).

80

81 **Nanopore sequencing**

82 Approximately 10 µg of DNA was size-selected (10-50 Kb) using Blue
83 Pippin (Sage Science, Beverly, MA), and sequencing library was
84 constructed using the Ligation sequencing 1D kit (SQK-LSK108, ONT, UK)

85 according to the manufacturer's instructions. Each library was sequenced
86 on R9.4 FlowCells using the PromethION sequencer (ONT, UK) for 48
87 hours. Base calling was subsequently performed on fast5 files using the
88 ONT Albacore software (v0.8.4), and the "passed filter" reads (high
89 quality data) were used for downstream analysis.

90

91 **Genome assembling and polishing**

92 Genome assembling was performed using 60X Nanopore datasets.
93 Assemblers, including CANU (Koren et al., 2017), NECAT
94 (<https://github.com/xiaochuanle/NECAT>), SHASTA
95 (<https://github.com/chanzuckerberg/shasta>), Flye (Kolmogorov, Yuan, Lin,
96 & Pevzner, 2019), and wtdbg2 (Ruan & Li, 2019), were used. The
97 parameters for the assemblers are listed as follows: 1) CANU, -fast
98 genomeSize=100m; 2) NECAT, GENOME_SIZE=100000000
99 MIN_READ_LENGTH=3000; 3) SHASTA, default settings; 4) Flye, -g
100 100m; 5) wtdbg2, default settings. The performance of CANU and NECAT
101 far better than three other assemblers in assembling the MAC
102 chromosomes capped with telomere sequences in both ends. Comparing
103 to CANU, the time cost of NECAT was far less than CANU, and thus
104 NECAT was recommended. Quickmerge
105 (<https://github.com/mahulchak/quickmerge>) was used to merge the

106 un-closed scaffolds to the 60X genome assemblies (command line:
107 merge_wrapper.py un-closed_scaffolds 60X_assembly). After each round
108 of merging, the closed scaffolds (MAC chromosomes) were extracted,
109 and the left un-closed scaffolds were used to perform the next round of
110 merging. After that, an addition round of merging between the un-closed
111 scaffolds and error corrected telomere-sequences-containing reads was
112 performed using miniasm (-1 -2 -c 1) (Li, 2016). Final genome polishing
113 was performed based on the Illumina sequencing data using Pilon
114 (<https://github.com/broadinstitute/pilon>).

115

116

117 **Results and Discussion**

118 *T. thermophila* is a very useful unicellular model organism for
119 molecular and cellular biology (Ruehle, Orias, & Pearson, 2016). In 2006,
120 the MAC genome of *T. thermophila* has been sequenced using the
121 Sanger method (Coyne et al., 2008; Eisen et al., 2006), which greatly
122 accelerated the studies using *Tetrahymena* system. The current MAC
123 genome assembly (103.0 Mb,
124 <http://ciliate.org/index.php/home/downloads>) of *T. thermophila* has 1158
125 scaffolds, among which 128 (~58.9 Mb) were capped by telomeres with
126 C4A2 repeats at 5'-end and G4T2 repeats at 3'-end (hereafter defined as

127 closed scaffolds) and could be regarded as complete MAC chromosomes.
128 However, about a half of genome sequences, composed of 1030
129 scaffolds, are still not assembled as complete MAC chromosomes
130 (hereafter defined as un-closed scaffolds).

131 About 1000X Nanopore sequencing data (total DNA of both MAC and
132 MIC, reads N50: 25.8 Kb) were obtained to finish the MAC genome
133 assembly. Comparison of different third-generation sequencing data
134 assemblers , including CANU, NECAT, SHASTA, Flye and wtdbg2, were
135 performed. In practice, CANU and NECAT showed better performance on
136 assembling closed scaffolds compared to other assemblers. We divided
137 the ~1000X Nanopore data into different parts, each with ~60X data, and
138 individually assembled them (Figure 1). We have two reasons to do this
139 division: 1) The MIC reads (contaminations) could be limited below 3X
140 (the copy number ratio between MAC and MIC is 45:2), which will usually
141 be filtered by genome assemblers (Jain et al., 2018); 2) At 60X
142 coverage, CANU and NECAT already have good assembling
143 performance and the time cost of assembling could be greatly reduced.

144 We started from the 1158 scaffolds in current genome assembly of *T.*
145 *thermophila* (Figure 1), and divided these scaffolds into two parts: 1) 128
146 closed scaffolds which assembled as complete MAC chromosomes; 2)
147 1030 un-closed scaffolds which have not been assembled as MAC

148 chromosomes. For the 128 closed scaffolds, three of them still have gaps
149 (one per each). These gaps were easily closed by aligning the three
150 scaffolds to the 60X Nanopore data assemblies. The left 1030 un-closed
151 scaffolds were iteratively merged with each assembled genome using
152 60X Nanopore data (Figure 1). After six rounds of merging using
153 quickmerge, 34 closed scaffolds were newly obtained. After that, we
154 extracted the 256,181 raw telomere-sequence-containing reads (TSCR,
155 reads N50, 28.5 Kb) from Nanopore data (Figure 1), and sequencing
156 errors were corrected using NECAT. These error corrected TSCR were
157 aligned to the left scaffolds using minimap2, and followed by a new round
158 of assembly using miniasm (Figure 1), and additional 12 scaffolds with
159 telomere sequences capped at both ends were obtained, and only six
160 scaffolds (3.3 Mb) could not be resolved. To close these six scaffolds, we
161 manually checked the overlaps between TSCR and these scaffolds
162 (Figure 1), and all of them were closed by trimming their terminal
163 sequences and re-merging with TSCR.

164 In summary, the complete MAC genome (102.9 Mb) with a total of 181
165 MAC chromosomes (including rDNA mini-chromosome) were obtained.
166 These MAC chromosomes were re-named from 1 to 181 by their order
167 along the five MIC chromosomes. Figure 2 showed the full panel of the
168 181 MAC chromosomes. The longest MAC chromosome is 3.26 Mb in

169 length, and the shortest one (excluding rDNA mini-chromosome) is 38 Kb
170 in length. The real N50 of the MAC genome is ~891 Kb. A total of 22
171 classes of repetitive sequences, which masked 5.2% MAC genome, were
172 identified by RepeatModeler. The repetitive sequences in the MAC are
173 not randomly distributed, most of them are enriched in the MAC
174 chromosomes and derived from the pericentromeric and subtelomeric
175 regions of MIC chromosomes (Hamilton et al., 2016; Xiong et al., 2019).
176 In particular, we also found some new genes which missed in the current
177 genome assembly, for example, the alpha 2 subunit of the proteasome.

178 To test the applicability of this strategy, we generated ~900X
179 Nanopore sequencing data (reads N50: 30.8 Kb) of *T. shanghaiensis*.
180 Instead using pre-existed assembly, we started from a 60X *de novo*
181 assembly by NECAT, and then followed the strategy showing in Figure 1.
182 After eight rounds of merging using quickmerge and a round of assembly
183 using miniasm, and followed by additional manual checking, we finally got
184 the complete genome of *T. shanghaiensis* with 214 MAC chromosomes
185 (92.0 Mb) which capped with telomere sequences at both ends. Genome
186 assembly statistics of the two *Tetrahymena* species are shown in Table 1.
187 We anticipate that the established strategy can probably be used directly
188 or with a slight adaptation to assemble complete MAC genomes of other
189 ciliate species.

190

191 **Acknowledgments**

192 This work was supported by the National Natural Science Foundation of
193 China Grant no. 31525021, 91631303 (to W.M.), 31672281, 31872221 (to
194 J.X.) and 31900316 (to G.W.); Knowledge Innovation Program of the
195 Chinese Academy of Sciences (to J.X.); Youth Innovation Promotion
196 Association, Chinese Academy of Sciences (to J.X.); The bioinformatics
197 analysis was aided by the computing resources of the Wuhan Branch,
198 Supercomputing Center, Chinese Academy of Sciences, China.

199

200 **Author contributions**

201 W.M. and J.X. designed the project. J.X., G.W. and W.Y. assembled and
202 annotated the genome. X.C., J.Z., C.J. and K.C. prepared DNA samples for
203 sequencing. J.X. and G.W. wrote the manuscript. All authors read, revised
204 and approved the final manuscript.

205

206 **Data accessibility**

207 The complete genome sequences of *T. thermophila* and *T. shanghaiensis*
208 can be accessed from <http://ciliate.ihb.ac.cn/tcgd/download.html>.

209

210

211

212 **References**

213 Cassidy-Hanley, D. M. (2012). *Tetrahymena* in the laboratory: strain
214 resources, methods for culture, maintenance, and storage. *Methods in*
215 *Cell Biology*, 109, 237-276. doi:10.1016/B978-0-12-385967-9.00008-6

216 Coyne, R. S., Thiagarajan, M., Jones, K. M., Wortman, J. R., Tallon, L. J.,
217 Haas, B. J., . . . Methe, B. A. (2008). Refined annotation and assembly
218 of the *Tetrahymena thermophila* genome sequence through EST
219 analysis, comparative genomic hybridization, and targeted gap closure.
220 *BMC Genomics*, 9, 562. doi:10.1186/1471-2164-9-562

221 Eisen, J. A., Coyne, R. S., Wu, M., Wu, D. Y., Thiagarajan, M., Wortman,
222 J. R., . . . Orias, E. (2006). Macronuclear genome sequence of the
223 ciliate *Tetrahymena thermophila*, a model eukaryote. *PLoS Biology*,
224 4(9), 1620-1642. doi:10.1371/journal.pbio.0040286

225 Gorovsky, M. A. (1973). Macro - and micronuclei of *Tetrahymena*
226 *pyriformis*: A model system for studying the structure and function of
227 eukaryotic nuclei. *The Journal of Protozoology*, 20(1), 19-25.
228 doi:10.1111/j.1550-7408.1973.tb05995.x

229 Hamilton, E. P., Kapusta, A., Huvos, P. E., Bidwell, S. L., Zafar, N., Tang,
230 H. B., . . . Coyne, R. S. (2016). Structure of the germline genome of
231 *Tetrahymena thermophila* and relationship to the massively rearranged

232 somatic genome. *Elife*, 5. doi:10.7554/eLife.19090.001

233 Jain, M., Koren, S., Miga, K. H., Quick, J., Rand, A. C., Sasani, T. A., . . .

234 Fiddes, I. T. (2018). Nanopore sequencing and assembly of a human

235 genome with ultra-long reads. *Nature Biotechnology*, 36, 338-345.

236 doi:10.1038/nbt.4060

237 Kolmogorov, M., Yuan, J., Lin, Y., & Pevzner, P. A. (2019). Assembly of

238 long, error-prone reads using repeat graphs. *Nature Biotechnology*, 37,

239 540-546. doi:10.1038/s41587-019-0072-8

240 Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., &

241 Phillippy, A. M. (2017). Canu: scalable and accurate long-read

242 assembly via adaptive k-mer weighting and repeat separation.

243 *Genome research*, 27(5), 722-736. doi:10.1101/gr.215087.116

244 Li, H. (2016). Minimap and miniasm: fast mapping and de novo assembly

245 for noisy long sequences. *Bioinformatics*, 32(14), 2103-2110.

246 doi:10.1093/bioinformatics/btw152

247 Lynn, D. (2008). *The ciliated protozoa: characterization, classification,*

248 *and guide to the literature* (3rd ed.). Berlin: Springer.

249 Orias, E. (2000). Toward sequencing the *Tetrahymena* genome:

250 exploiting the gift of nuclear dimorphism. *Journal of Eukaryotic*

251 *Microbiology*, 47(4), 328-333. doi:10.1111/j.1550-7408.2000.tb00057.x

252 Ruan, J., & Li, H. (2019). Fast and accurate long-read assembly with

253 wtdbg2. *Nature Methods*. doi:10.1038/s41592-019-0669-3

254 Ruehle, M. D., Orias, E., & Pearson, C. G. (2016). *Tetrahymena* as a

255 Unicellular Model Eukaryote: Genetic and Genomic Tools. *Genetics*,

256 203(2), 649-665. doi:10.1534/genetics.114.169748

257 Xiong, J., Lu, X., Zhou, Z., Chang, Y., Yuan, D., Tian, M., . . . Orias, E.

258 (2012). Transcriptome analysis of the model protozoan, *Tetrahymena*

259 *thermophila*, using deep RNA sequencing. *PLoS one*, 7(2), e30630.

260 doi:10.1371/journal.pone.0030630

261 Xiong, J., Yang, W., Chen, K., Jiang, C., Ma, Y., Chai, X., . . . Miao, W.

262 (2019). Hidden genomic evolution in a morphospecies-The landscape

263 of rapidly evolving genes in *Tetrahymena*. *PLoS Biology*, 17(6),

264 e3000294. doi:10.1371/journal.pbio.3000294

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286 **Figure legends**

287

288 **Figure 1. Diagram showing the strategy to assemble complete MAC**
289 **genome of ciliate.** M1 to Mn, the un-closed scaffolds in each round (1 to
290 n) which do not have telomere sequences in both ends. M_miniasm
291 means the un-closed scaffolds after merging using miniasm. C1 to Cn,
292 the closed scaffolds (MAC chromosomes) in each round (1 to n) which
293 have telomere sequences in both ends. C_miniasm means the closed
294 scaffolds (MAC chromosomes) after merging using miniasm. C_manual
295 means the closed scaffolds after the manual checking of overlaps
296 between TSCR and un-closed scaffolds (trimmed).

297

298 **Figure 2. A full panel of 181 MAC chromosomes of *T. thermophila*.**
299 For each MAC chromosome, the pink boxes represents the predicted
300 genes; the red boxes represent all the genes that have been named in
301 TGD wiki (<http://ciliate.org/>); the blue histogram represents the gene
302 expression profile across the chromosome in vegetative growth (Xiong et
303 al., 2012).

304

305

306

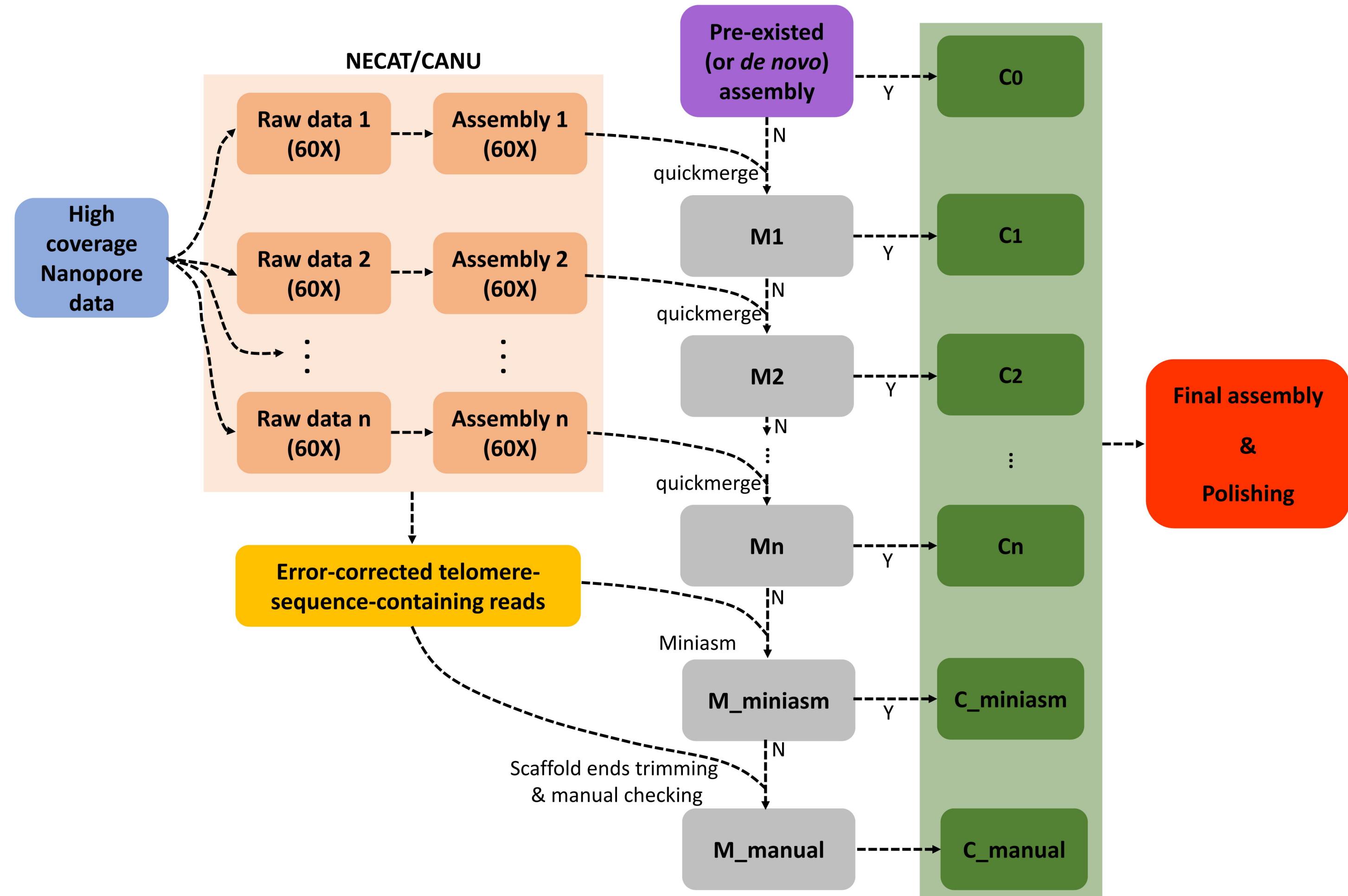
307

308

309 **Table 1.** Genome assembly statistics of *T. thermophila* and *T.*
310 *shanghaiensis*

	Assembly in this study		Current assembly	
	<i>T. thermophila</i>	<i>T. shanghaiensis</i>	<i>T. thermophila</i> [†]	<i>T. shanghaiensis</i> [‡]
Assembly size (Mb)	102.9	92.0	103.0	95.6
Number of scaffolds	181	214	1,158	2,660
Closed Scaffolds [§]	181	214	128	31
Scaffold N50 (Kb)	891.3	620.0	520.9	153.6
Longest scaffold size (Mb)	3.26	1.98	2.22	0.79
Mean scaffold size (Kb)	568.5	430.0	89.0	36.0
“N” gaps (Kb) [¶]	0	0	63.7	90.0

311


312 [†]Genome data from website: <http://ciliate.org/index.php/home/downloads>

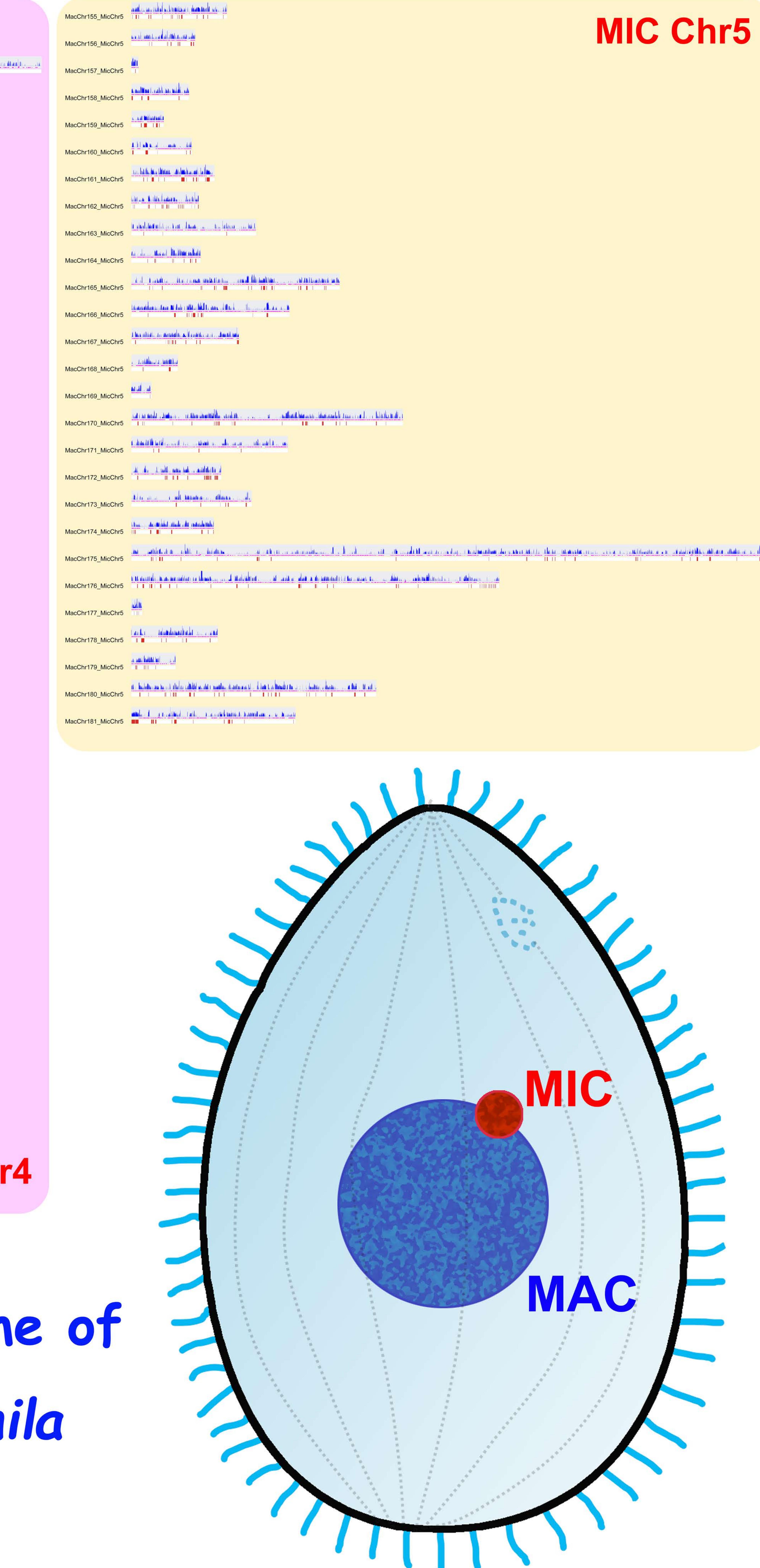
313 [‡]Genome data from (Xiong et al., 2019)

314 [§]Scaffolds capped with telomeres at both ends

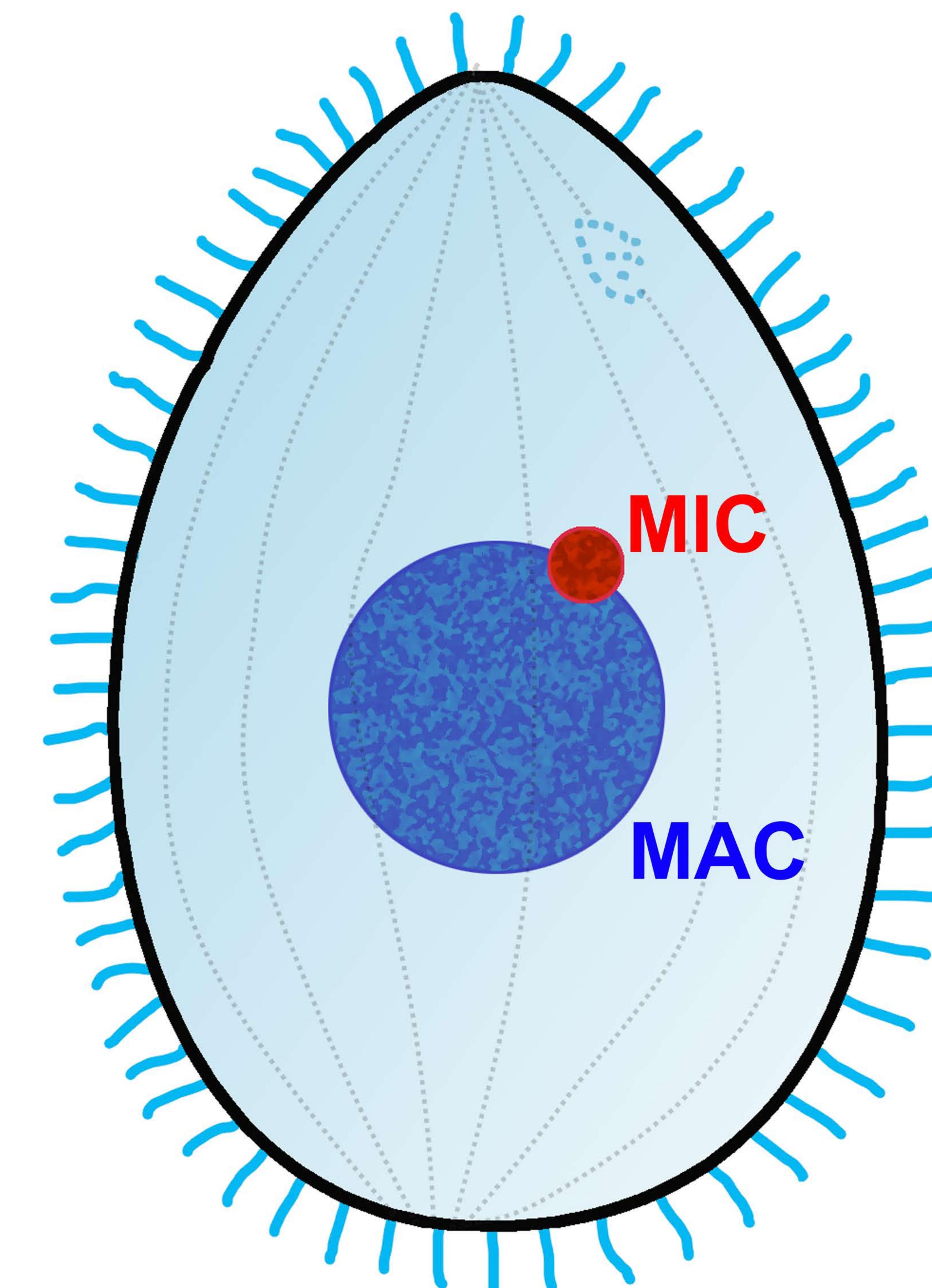
315 [¶]Sum of all “N” nucleotides present in the genome assembly


316

MIC Chr1


MIC Chr3

MIC Chr2



MIC Chr4

MIC Chr5

The complete MAC genome of
Tetrahymena thermophila
181 chromosomes

