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SUMMARY 

Terminal selectors are transcription factors that control the morphological, physiological 

and molecular features that characterize distinct cell types. Here we use expression analyses 

and a transgenic reporter line to show that NvPOU4 is expressed in post-mitotic cells that give 

rise to a diverse set of neural cell types in the sea anemone Nematostella vectensis. We 

generated a loss-of-function allele by CRISPR/Cas9 and used additional transgenic reporter 

lines to show that the initial specification of neural cells is not affected in the NvPOU4 mutants. 

Analyses of transcriptomes derived from the mutants and from different neural cell populations 

revealed that NvPOU4 is required for the execution of the terminal differentiation program of 

these neural cells. These findings suggest that POU4 genes have ancient functions as terminal 

selectors for morphologically and functionally highly disparate types of neurons and they 

provide experimental support for the relevance of terminal selectors for understanding the 

evolution of cell types. 

 

 

Key words: Cnidaria, Unc-86, Brn3, POU genes, neurogenesis, terminal selector, 

cnidocytes, CRISPR mutant, transgenic reporter, RNA sequencing, cell type evolution   
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INTRODUCTION 

Neurons display a remarkable morphological and molecular diversity. The acquisition of 

the features that characterize different types of neurons is the result of a series of developmental 

processes largely directed by transcription factors and signalling molecules (Edlund and Jessell, 

1999). Early stages of neural development are often characterized by the proliferation of 

different types of progenitor cells via symmetric and/or asymmetric divisions (Doe, 2008; 

Homem et al., 2015; Taverna et al., 2014). After their terminal mitosis, the differentiation of 

neurons typically begins with the occurrence of more general neural features like the expression 

of neural cytoskeletal proteins and by the formation of neurites (Ernsberger, 2012; Stefanakis 

et al., 2015). The terminal identity of individual types of neurons eventually manifests by the 

expression of specific neurotransmitter systems, the elaboration of specific projection patterns 

and other factors defining the physiological properties of these neuron types. Transcription 

factors that regulate these terminal differentiation features of distinct neuron types are called 

terminal selector genes (Allan and Thor, 2015; Hobert, 2016; Hobert and Kratsios, 2019). 

Terminal selectors often function in combination and may affect all or only some aspects of the 

identity of a neuron (e.g. (Etchberger et al., 2007; Stratmann et al., 2019). While transcription 

factors regulating the terminal differentiation of neurons have been identified in several 

bilaterians (Allan and Thor, 2015; Hobert and Kratsios, 2019), it is currently unknown whether 

conserved terminal selectors tend to have comparable functions over long evolutionary 

distances. We address this question here by analysing the function of the POU domain 

transcription factor POU4/Brn3 in a representative of a non-bilaterian animal clade, the 

cnidarian Nematostella vectensis.  

Cnidarians are the sister group of bilaterians (Dunn et al., 2014; Telford et al., 2015), with 

the separation of these two lineages estimated to have occurred over 600 million years ago (dos 

Reis et al., 2015; Park et al., 2012). As adults, they possess a relatively simple nervous system 
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that lacks brain-like centralization. Their nervous system comprises three main classes of neural 

cells: cnidocytes (“stinging cells”, cnidarian-specific mechano/chemoreceptor cells), ganglion 

cells (interneuron-like cells) and sensory/sensory-motor cells (Galliot et al., 2009; Rentzsch et 

al., 2019; Watanabe et al., 2009). Morphological and molecular analyses suggest the existence 

of distinct subpopulations of these classes of neural cells; however, an integrated 

characterization of neural cell types in cnidarians is currently lacking (Rentzsch et al., 2019; 

Sebe-Pedros et al., 2018; Siebert et al., 2018). The sea anemone Nematostella vectensis belongs 

to the anthozoan class of cnidarians. Due to its inducible fertilization, its relatively short 

generation time and amenability to molecular manipulations, Nematostella has become an 

important cnidarian model organism (Layden et al., 2016). It has previously been shown that a 

large fraction of its neurons derives from a pool of NvSoxB(2)-expressing neural progenitor 

cells (NPCs) located in both ectoderm and endoderm, which give rise to the three classes of 

neural cells (Nakanishi et al., 2012; Richards and Rentzsch, 2014). In addition to NvSoxB(2), 

the basic helix-loop-helix (bHLH) genes NvAshA and NvAtonal-like have been identified as 

positive regulators of neurogenesis, whereas Notch signalling acts to restrict the number of 

neural progenitor cells (Layden et al., 2012; Layden and Martindale, 2014; Rentzsch et al., 

2017; Richards and Rentzsch, 2015). For the regulation of early stages of neuron development, 

these observations suggest a considerable degree of conservation between Nematostella and 

bilaterians. How the terminal differentiation of neurons is regulated in Nematostella, is 

currently poorly understood. Accordingly, it is not known whether the conservation of 

neurogenic transcriptional programs between Nematostella and bilaterians extends to the late 

stages of neuron development. 

POU (Pit/Oct1/UNC-86) genes are transcription factors that contain a bipartite DNA 

binding domain consisting of a POU-specific and a homeobox domain. While being found only 

in metazoans, they diversified early during animal evolution and four classes of POU genes 
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were present in the last common ancestor of all living animals (Gold et al., 2014; Larroux et al., 

2008). Genes of the POU4 class are predominantly expressed in neuronal cells and have been 

shown to regulate the terminal differentiation of these neurons in several organisms. In 

mammals there are three POU4 genes, Brn3a, Brn3b and Brn3c, all of which are prominently 

expressed in partially overlapping areas of sensory structures, as well as in other parts of the 

nervous system (Collum et al., 1992; Fedtsova and Turner, 1995; Gerrero et al., 1993; Ninkina 

et al., 1993; Turner et al., 1994; Xiang et al., 1995; Xiang et al., 1993). Analyses of knock-out 

mice have identified key roles for these genes in the formation of hair cells in the auditory and 

vestibular systems (Brn3c; (Erkman et al., 1996; Xiang et al., 1997), of retinal ganglion cells 

(Brn3b, (Erkman et al., 1996; Gan et al., 1996) and of somatosensory and brainstem neurons 

(Brn3a, (McEvilly et al., 1996; Xiang et al., 1996). Each of the Brn3 genes functions mainly at 

later stages of neural differentiation, e.g. in the acquisition of morphological features of 

somatosensory neurons and retinal ganglion cells (Badea et al., 2009; Badea et al., 2012; 

Erkman et al., 2000; Ryan and Rosenfeld, 1997). In Drosophila, the POU4 orthologue acj6/I-

POU regulates synaptic targeting in the central nervous system and the odour sensitivity of 

olfactory neurons (Ayer and Carlson, 1991; Certel et al., 2000; Clyne et al., 1999; Treacy et al., 

1992). In the nematode Caenorhabditis elegans, the single POU4 gene, unc-86, is expressed in 

several types of neurons (Finney and Ruvkun, 1990). In most of these neurons, unc-86 acts in 

specific combinations with other transcription factors to control a terminal differentiation 

program, for example by defining the neurotransmitter identity of the cell (Chalfie et al., 1981; 

Duggan et al., 1998; Hobert, 2016; Serrano-Saiz et al., 2013; Zhang et al., 2014). This terminal 

selector function of POU4 genes is often also required for the maintenance of the identity of 

these neurons, both in C. elegans and in mice (Serrano-Saiz et al., 2018). In addition to its role 

in terminal differentiation, unc-86 has a role in regulating the division of some neural progenitor 

cells (Chalfie et al., 1981; Finney and Ruvkun, 1990). In line with potential roles in the nervous 
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system, POU4 genes are expressed in sensory and other neural structures in several other 

bilaterians (Backfisch et al., 2013; Candiani et al., 2006; Candiani et al., 2005; Nomaksteinsky 

et al., 2013; O'Brien and Degnan, 2002; Ramachandra et al., 2002; Wollesen et al., 2014). 

Overall, their roles in different types of neurons and in several bilaterians make POU4 genes 

prime candidates for addressing the early evolution of terminal neural differentiation. 

Outside bilaterians, little is known about the role of POU4 genes. In medusae of the 

cnidarians Aurelia sp. and Craspedacusta sowerbyi, POU4 expression was detected in sensory 

structures at the margin of the bell (Hroudova et al., 2012; Nakanishi et al., 2010), however, no 

functional analyses have been reported so far in these groups. In this study, we use gene 

expression analyses and an NvPOU4::memGFP transgenic reporter line to show that the single 

Nematostella POU class 4 gene is expressed in a large and heterogeneous population of post-

mitotic neural cells. Furthermore, we generated an NvPOU4 mutant line by CRISPR/Cas9-

mediated genome editing, analysed the transcriptome of the mutants and crossed it to nervous 

system-specific transgenic reporter lines. This revealed that NvPOU4 functions in the terminal 

differentiation of neural cells, including the cnidarian-specific cnidocytes. These observations 

indicate that POU4 genes have ancient roles in terminal neural differentiation and that the 

regulation of cell differentiation by terminal selector genes evolved early in animal evolution.  
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RESULTS 

NvPOU4 is expressed in neural cells from early blastula to polyp stage 

The Nematostella genome contains a single POU4 gene (Putnam et al., 2007; Larroux et al., 

2008; Gold et al., 2014). Using whole mount in situ hybridization, we first observed expression 

of NvPOU4 in few cells at early blastula (12 hours post fertilization at 21°C; Figure 1A). This 

expression occurs after the start of NvSoxB(2) expression (a gene expressed in neural progenitor 

cells, (Magie et al., 2005; Richards and Rentzsch, 2014)), but before expression of NvNCol3 

commences (a gene expressed in differentiating cnidocytes and encoding the minicollagen 

structural protein of the cnidocyst capsule wall (Babonis and Martindale, 2017; Zenkert et al., 

2011)). NvPOU4 is expressed in scattered cells all over the ectoderm of the embryo at gastrula 

stage and in scattered single cells in both ectoderm and endoderm at mid-planula stage (Figure 

1B-C). At late planula stage, the expression is prominent in cells close to the oral opening 

(Figure 1D). At tentacle bud stage, this expression has resolved into four distinct patches, the 

developing tentacle buds (Figure 1E). In primary polyps, expression of NvPOU4 is still 

detectable in scattered ectodermal and endodermal cells and, most prominently, in the tentacle 

tips (Figure 1F). The expression in scattered cells throughout the body column resembles that 

of several neural genes described previously (Layden et al., 2012; Marlow et al., 2009; 

Nakanishi et al., 2012) whereas the expression in the tentacle buds and tentacle tips reflects the 

main sites of cnidocyte formation (Babonis and Martindale, 2017; Zenkert et al., 2011). 

NvPOU4 starts being expressed approximately two hours after the expression of NvSoxB(2) 

(Figure S1), a gene that is broadly required for neurogenesis in Nematostella (Richards and 

Rentzsch, 2014). To understand better whether NvPOU4 is expressed in cells of the neural 

lineage, we inhibited the function of NvSoxB(2) by injection of a morpholino antisense 

oligonucleotide (Richards and Rentzsch, 2014). This resulted in a nearly complete suppression 

of NvPOU4 expression (Figure 1G-K). 
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Taken together, the expression pattern and the dependence on NvSoxB(2) suggest that 

NvPOU4 is expressed in neural cells in Nematostella. 

 

NvPOU4 expression is restricted to non-proliferating, differentiating cells 

To better characterize the identity of the NvPOU4-expressing cells, we used double 

fluorescent in situ hybridization to test co-expression of NvPOU4 with other genes expressed 

during neural development. We observed that NvPOU4 is partially co-expressed with the 

neuropeptide gene NvRFamide (labelling differentiating sensory and ganglion cells, Figure 2A-

B) and with NvNcol3 (Figure 2C-D). In contrast, NvPOU4 is not co-expressed with the neural 

progenitor marker NvSoxB(2) from blastula to late planula stages (Figure 2E-F, Figure S2 and 

Movies S1-S9). As we have shown that the expression of NvPOU4 depends on NvSoxB(2) 

function (Figure 1G-K), the lack of co-expression of the two mRNAs indicates that they might 

be expressed sequentially in developing neurons. As a first step to test this possibility, we 

examined cell proliferation in NvPOU4 expressing cells. We incubated wild type animals at 

late blastula stage for 30 min with EdU, fixed them immediately afterwards and performed EdU 

Fig. 1 NvPOU4 expression is controlled by NvSoxB(2). (A-F) In situ hybridization 

with probes indicated on the left side and the developmental stage on top. Mid-lateral views 

with the aboral pole to the left. The white bracket in (C) indicates the endoderm layer. 

NvPOU4 is expressed in scattered single cells all over the embryos. (G-J) Treatments are 

indicated to the top of each image, each MO condition is compared to control MO injected 

animals. NvSoxB(2) MO injection results in a decreased number of NvPOU4-expressing 

cells. Animals were quantified into phenotypic classes based on having no, weak or wild 

type expression. (I–J) are examples of weak expression. Bars at the base of each image 

represent the percentage of animals in each phenotypic class. (K) Graphical representation 

of the percentage of animals in each phenotypic class with standard deviation (four 

biological replicates).  
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detection together with fluorescent in situ hybridization (Figure 2G-I and Movie S10). We did 

not observe any EdU positive NvPOU4-expressing cells (10 embryos, in total 310 NvPOU4 

expressing cells in 100 μm × 100 μm squares in the mid-lateral part of the blastoderm). This 

differs from previous observations of EdU-incorporating cells that express NvSoxB(2) mRNA 

(Richards and Rentzsch, 2014). 

Together, these data suggest that NvPOU4 is expressed in non-proliferating, differentiating 

cells of the developing nervous system.  

  

NvPOU4 expressing cells develop into neurons and cnidocytes 

To gain further insight into the nature of the NvPOU4-expressing cells, we generated a 

stable transgenic reporter line, in which a 4.7 kb upstream region of the NvPOU4 coding 

sequence drives the expression of a membrane-tethered GFP (NvPOU4::memGFP). This 

allowed the identification of the NvPOU4-expressing cells and their progeny. Double 

Fig. 2 NvPOU4 is expressed in differentiating cells. (A-F) Double fluorescent in situ 

hybridization at blastula stage for NvPOU4 (green) and either NvRFamide, NvNcol3 or 

NvSoxB(2) (magenta). DAPI is shown in grey. The neural differentiating markers 

NvRFamide (A-B) and NvNCol3 (C-D) show partial co-expression (white) with NvPOU4. 

No co-expression with the NPC marker NvSoxB(2) was detected (E-F). (A, C, E) are 

projections of stacks, all other images are single confocal sections. Stacks are available as 

Movies S1-3. White color in (E) is caused by the maximal projection and does not represent 

co-labelling of NvPOU4 and NvSoxB(2). For gastrula and planula stages, see Figure S2 and 

Movies S4-9. All in situ hybridizations were performed with at least three replicates. (G-H) 

Fluorescent in situ hybridization for NvPOU4 (green) plus staining for EdU (magenta) and 

DAPI (blue) at blastula stage. (I) In a 100 μm × 100 μm area of mid-lateral ectoderm, of 310 

NvPOU4-expressing cells (in 10 animals), none incorporated EdU, suggesting that 

NvPOU4-expressing cells are post-mitotic. (G) is a projections of a stack, (H) is a single 

confocal section. The stack for (G) is available as Movie S10. Scale bars represent 20 μm 
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fluorescent in situ hybridization of memGFP and NvPOU4 in transgenic embryos, showed a 

strong co-expression of the reporter gene transcripts and endogenous NvPOU4 (Figure S3); this 

confirms that the reporter line accurately reflects the endogenous expression of NvPOU4. 

Analysis of memGFP expression showed that it starts in early gastrula and is increased and 

maintained until polyp stages (Figure 3A-C). At early planula stage, memGFP is localized in 

scattered ectodermal cells that have a slender shape and often an apical cilium (Figure 3A). 

Later on, at late planula stage, it is possible to detect the memGFP protein in both scattered 

ectodermal and endodermal cells (Figure 3B). At primary polyp stage, memGFP localization 

highlights the nerve net and is expressed in cells with various morphologies in the ectoderm 

and in the endoderm. In the endoderm, neurites of many memGFP+ neurons extend along the 

mesenteries - the longitudinal in-foldings of the endoderm. At this stage, there is also expression 

of the memGFP protein in scattered ectodermal cells all over the body column and in the 

tentacles of the animals, with particularly strong labelling in the tips of the tentacles. This 

pattern of transgene expression is maintained in juvenile and adult polyps (not shown). 

Next, we generated double transgenic animals by crossing the NvPOU4::memGFP line to 

other previously characterized neuronal reporter lines. To clarify the relationship between 

NvSoxB(2) and NvPOU4 expressing cells, we generated NvSoxB(2)::memOrange; 

NvPOU4::memGFP double transgenics. At both gastrula and planula stage, nearly all 

NvPOU4::memGFP cells were also labelled with the NvSoxB(2) reporter transgene (Figure 3 

D-E).  This supports the scenario in which the two genes are expressed sequentially in the same 

cells, with NvSoxB(2) expression preceding that of NvPOU4. We also noted that the overlap of 

the two transgenes is not absolute: while the NvSoxB(2)::memOrange transgene is expressed 
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more broadly, there are also some cells that are positive for NvPOU4::memGFP, but not for 

NvSoxB(2)::memOrange (Fig. 3D). 

 

The previously characterized NvNcol3::mOrange2 line labels differentiating cnidocysts - 

the extrusive capsules of the cnidocytes (Sunagar et al., 2018). In double transgenic animals 

(NvPOU4::memGFP, NvNcol3::mOrange2) (Figure 4A-F), GFP positive membranes surround 

all mOrange2 positive cnidocysts throughout the animal from mid-planula to polyp stage. Most 

of the ectodermal memGFP+ cells appear to contain a cnidocyst and are therefore differentiating 

or differentiated cnidocytes (Figure 4B, E, F). However, this co-expression is not absolute, and 

some memGFP+ cells do not contain a developing cnidocyst and have a long apical cilium 

(Figure 4C). The NvPOU4 transgene is thus expressed in developing cnidocytes and potentially 

other cell types.  

 

Fig. 3 A transgenic reporter line recapitulates the expression of NvPOU4. (A-C) 

Confocal microscopy images of the NvPOU4::memGFP transgenic line, memGFP is 

detected by anti-GFP antibody (green). All images are lateral views with the aboral pole to 

the left. All images are Imaris snapshots from the 3D reconstructions. Expression of 

memGFP is detected from gastrula stage on and is consistent with the in situ hybridization 

signals (Figure S3). (D-E) Double transgenic animals with NvPOU4::memGFP (green) and 

NvSoxB(2)::mOrange2 (magenta). Lateral views with aboral pole to the left. At planula 

stage the NvPOU4::memGFP+ cells are also mOrange+. (E-E'') shows a double-positive 

putative sensory cell in the ectoderm. Scale bars represent 20 μm 
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To gain further insight into the nature of these other NvPOU4 expressing cells, we generated 

NvPOU4::memGFP, NvElav1::mOrange double transgenic animals (Figure 4G-L). The 

NvElav1::mOrange transgenic line labels a subset of sensory and ganglion cells but not 

cnidocytes (Nakanishi et al., 2012). From early planula stage, we could note ectodermal cells 

that expressed both fluorescent proteins, suggesting that a subset of sensory cells expresses 

NvPOU4 (Figure 4 H, I). The co-expression of the two transgenes is more prominent at primary 

polyp stages, with much of the NvElav1::mOrange-positive endodermal nerve net also 

expressing the memGFP protein (Figure 4J-L), including cells with the morphology of ganglion 

cells (arrow in Fig. 4K'). We also generated double transgenics of NvPOU4::memGFP with the 

Fig. 4 NvPOU4::memGFP identifies neural cell types. (A-F) Double transgenic 

animals with NvPOU4::memGFP (green) and NvNCol3::mOrange2 (magenta) and DAPI in 

blue. Lateral view with aboral pole to the left. (A-C) planula stage. (E-F) live images at 

primary polyp stage. (A,B,D,E,F) from gastrula to primary polyp stage the 

NvNCol3::mOrange2+ capsules are surrounded by the memGFP suggesting that 

NvPOU4::memGFP identifies cnidocytes. (C) Some NvPOU4::memGFP+ cells do not 

contain a NvNCol3::mOrange2+ capsules, suggesting that the NvPOU4::memGFP line 

identifies cnidocytes and other cell types. In (B-C and E-F), NvPOU4 and NvNCol3 stand 

for NvPOU4::memGFP and NvNCol3::mOrange2, respectively. (A, D) are projections of 

stacks, (B-C'' and E-F'') are single confocal sections. 

(G-L) Double transgenic animals with NvPOU4::memGFP (green) and 

NvElav1::mOrange (magenta). Lateral views with aboral pole to the left. (G-I) At planula 

stage, some ectodermal cells are positive for both reporter proteins, these cells have an apical 

cilium. (J-L) At primary polyp stage the endodermal nerve net expresses both fluorescent 

proteins. Arrow in (K') indicates an endodermal cell with ganglion cell-like morphology. 

(L) The cnidocytes (red arrows in (L-L') appear to be the only cells that do not co-express 

both transgenes. In (H-I and K-L), NvPOU4 and NvNCol3 stand for NvPOU4::memGFP 

and NvNCol3::mOrange2, respectively. (G, J) are projections of stacks, (H-I'' and K-L'') are 

single confocal sections. Scale bars represent 20 μm. 
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NvFoxQ2d::mOrange line, in which a small subpopulation of ectodermal sensory cells is 

labelled (Busengdal and Rentzsch, 2017). We did not observe co-expression of 

NvPOU4::memGFP with NvFoxQ2d::mOrange (data not shown). 

Thus, the NvPOU4 transgenic reporter line labels cnidocytes and a subset of sensory and 

ganglion cell types, and transgene expression is maintained at the polyp stage. 

 

NvPOU4 is required for neural differentiation  

To identify the function of NvPOU4, we generated a mutant line using the CRISPR/Cas9 

system. We targeted the beginning of the POU domain with a sgRNA (Figure 5A). Genotyping 

of F1 animals derived from one founder polyp revealed a prevalent deletion of 31bp, causing a 

frame shift and a premature stop codon that truncates the encoded protein before the DNA 

binding domain (Figure 5A and S4). We denote this allele as NvPOU41 and refer to it in the 

text as NvPOU4-. We collected F1 animals with this 31bp deletion and then crossed them to 

obtain 25% homozygous F2 mutants. Light microscopic observation of the F2 animals showed 

that 26% of them lacked elongated cnidocyst capsules at primary polyp stage (n=97 animals). 

We extracted DNA and sequenced the NvPOU4 gene of those animals and of their siblings that 

possessed cnidocysts (Figure 5B, C). This showed that 90% of the animals without cnidocysts 

were NvPOU4-/-, whereas all sibling controls with cnidocysts were NvPOU4+/+or NvPOU4+/-. 

This confirmed that NvPOU4 homozygous mutants lack cnidocysts. These polyps were unable 

to catch prey and did not survive beyond the primary polyp stage. To better characterize the 

cnidocyte phenotype, we performed stainings to distinguish developing from mature 

cnidocytes. An antibody against NvNCol3 detects the cnidocysts throughout their development, 

but does not detect the fully mature cnidocyst capsules (with very few exceptions) (Babonis 

and Martindale, 2017; Zenkert et al., 2011). The matrix of the mature cnidocysts is specifically 

labelled by incubation with a high concentration of 4′,6-diamidino-2-phenylindole (DAPI) in 
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the presence of EDTA (Szczepanek et al., 2002). We noticed that NvPOU4-/- polyps do have 

patches of NvNCol3 staining but lack any of the well-defined, elongated capsules that form 

during cnidocyte differentiation. Such capsules were neither visible by staining with the 

NvNCol3 antibody nor by the high concentration of DAPI (Figure 5D-K). We confirmed this 

observation by generating NvPOU4-/-, NvNCol3::mOrange2 animals; in these animals NvNCol3 

is expressed but mature capsules fail to differentiate (Figure S5). The diffuse nature of 

NvNCol3 staining in the mutants made quantification of the stained cells difficult, thus we 

cannot exclude an effect on the number of NvCol3 expressing cells. These experiments suggest, 

however, that NvPOU4 is primarily required for the terminal differentiation of cnidocytes in 

Nematostella. 

 

We next studied the role of NvPOU4 during the development of other neural cell types 

(ganglion and sensory cells) identified by the NvPOU4::memGFP reporter line. To do so, we 

generated NvPOU4-/-, NvElav1::mOrange animals by crossing NvPOU4+/- to NvPOU4+/-, 

NvElav1::mOrange polyps. We collected primary polyps with NvElav1::mOrange expression 

Fig. 5 The loss of NvPOU4 prevents cnidocyte differentiation. (A) Schematic of the 

CRISPR/Cas9 targeting strategy. Exons are in grey boxes, the POU domain is shown as a 

green box and the homeodomain (HD) as a yellow box. The sgRNA targets the start of the 

POU domain (red dashed line) and generated a deletion of 31bp causing a frame shift and 

the appearance of a premature STOP codon. (B, C) Bright field picture of the tentacle tips 

of (B) primary polyps control (NvPOU4+/+ and NvPOU4+/-) vs (C) NvPOU4-/-. A red arrow 

highlights an elongated cnidocyst. (D-K) antibody staining of NvNCol3 (magenta), mature 

capsules (yellow) and nuclei (grey) in controls (D, F, H, I) vs NvPOU4-/- (E, G, J, K). 

NvPOU4-/- animals lack elongated mature capsules. They still show NvNCol3 antibody 

staining, suggesting that cnidocytes are specified but do not differentiate properly, 

highlighted by the shape of the NvNCol3-positive capsule (I and K). (D-K) are projections 

of stacks of confocal sections. Scale bars represent 20 μm 
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and inspected them for the cnidocyte phenotype. Despite a lack of mature cnidocytes, these 

putative NvPOU4-/-, NvElav1::mOrange animals displayed no gross aberration of their 

NvElav1+ nervous system (Figure 6A-D). For quantification, we randomly imaged 

NvElav1::mOrange+ polyps, counted the number of mOrange+ cells in a 100 μm × 100 μm 

square in the body column and determined the presence or absence of mature cnidocytes by 

light microscopy a posteriori. We did not find a statistically significant difference in the number 

of mOrange+ cells between polyps with and without mature capsules, respectively (Figure S6). 

This suggests that NvPOU4 does not have a major role in the specification or gross 

morphological development of the NvElav1+ neurons.  

 

Loss of NvPOU4 affects the transcriptomes of NvNCol3 and NvElav1-expressing neural 

cells 

To characterize the function of the NvPOU4- in more detail, we decided to analyze 

transcriptional changes using RNA sequencing. We compared cnidocyst-lacking NvPOU4-/- 

animals at primary polyp stage and compared them to their cnidocyst-containing siblings 

(consisting of NvPOU4+/+ and NvPOU4+/- animals). RNA sequencing of four biological 

replicates confirmed that NvPOU4-/- animals only generate transcripts of this gene with the 31bp 

deletion (Figure S7). In total, 1217 genes were differentially regulated (p-adjusted value <0.05, 

no threshold for fold-change), with 576 being down- and 641 being up-regulated in the 

NvPOU4-/- polyps (Figure 6E and Table S1). An analysis of Gene Ontology (GO) terms 

identified 21 terms that are overrepresented among the downregulated genes, with “ion channel 

activity”, “extracellular ligand-gated ion channel activity”, “potassium channel activity”, 

“acetylcholine binding”, “calcium ion binding” and “voltage-gated potassium channel activity” 

being overrepresented in the GO domain “Molecular function” (Figure 6F). The only term that 

is overrepresented among the up-regulated genes is “endoplasmic reticulum” in the GO domain 
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“Cellular component”. While this is consistent with a role for NvPOU4 in nervous system 

development, the low proportion of Nematostella genes that are associated with a GO term 

(39.4% of all differentially expressed genes) limits the power of the analysis.  

 

Fig. 6 Loss of NvPOU4 affects the transcriptomes of NvNCol3 and NvElav1 

expressing neural cells. (A-D) NvPOU4-/- animals were distinguished based on the absence 

of cnidocyte capsules. (B'-D'') Confocal images of anti dsRed antibody staining (detecting 

mOrange, shown in magenta) in NvPOU4-/-, NvElav1::mOrange+/- polyps (10 dpf), 

phalloidin in green, DAPI in blue. Scale bars represent 50 μm. This experiment suggested 

that the NvElav1+ cells are specified properly in the absence of NvPOU4. (E) MA plot of 

the RNA sequencing comparing NvPOU4-/- animals with their sibling control (selection 

based on the cnidocyte phenotype, four biological replicates). In total 1217 genes were 

differentially expressed (p-adjusted <0.05, no minimal fold change), 641 were found up-

regulated (red) and 576 were found down-regulated (blue). (F) GO term analysis of the 

NvPOU4-/- vs siblings (with p<0,05). GO terms overrepresented among downregulated 

genes in blue, those overrepresented among upregulated genes in red. (G-H) Comparison of 

the genes differentially expressed in NvPOU4-/- with the published NvNCol3::mOrange2 

transcriptomes (Sunagar et al.2018). NvNCol3+ represents the genes expressed in 

differentiating cnidocytes (358), NvNcol3++ represents the genes expressed in fully 

differentiated cnidocytes (593) and NvNcol3+/NvNcol3++represents the genes that are 

expressed in both, differentiating and differentiated cnidocytes (613). (G) 85.6% (113/132) 

of the differentially expressed genes common to the NvPOU4 mutant and the NvNcol3+ 

transcriptomes are up-regulated in the NvPOU4 mutants. (H) 64.5% (60/93) of the 

differentially expressed genes common to NvPOU4 mutant and the NvNcol3+/NvNcol3++ 

transcriptome are down-regulated in the NvPOU4 mutants. (I) 85.6% (55/62) of the 

differentially expressed genes common to the NvPOU4 mutant and the NvNcol3++ 

transcriptome are down-regulated in the NvPOU4 mutants. (J) Comparison of the genes 

differentially expressed in NvPOU4-/- with the NvElav1::mOrange transcriptome. 73.7% 

(137/186) of the differentially expressed genes common to NvPOU4 mutant and the 

NvElav1 transcriptome are down-regulated in the NvPOU4 mutants. 
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Our analysis of double transgenic animals has shown that separate subsets of NvPOU4-

expressing cells give rise to NvNCol3- and NvElav1-expressing cells (Figure 4). We therefore 

used the transcriptomes of NvNCol3::mOrange+ (Sunagar et al., 2018) and NvElav1::mOrange+ 

cells enriched by FACS, to assign genes differentially regulated in NvPOU4 mutants to these 

two different populations of neural cells. For the NvNCol3::mOrange+ cells, different levels of 

fluorescence combined with microscopic examination have previously been used to 

characterize two populations of these cells and to generate transcriptomes of them. One of the 

cell populations is enriched for differentiating cnidocytes (mOrange positive) and the other one 

consists of mature cnidocytes  (mOrange super-positive, with higher fluorescence) (Sunagar et 

al., 2018). Among the genes that were differentially expressed in NvPOU4 mutants, we 

identified 287 genes that were in common with those reported in the NvNCol3::mOrange 

transcriptomes, with 132 genes being differentially expressed only in the positive cells, 62 only 

in the super-positive cells and 93 in both groups of cells (Figure 6G-I and Table S2). 

Interestingly, we noticed a striking difference in the proportion of up- and downregulated genes 

in these three groups of cells. Of the 132 differentially expressed genes (DEGs) present only in 

the mOrange-positive, differentiating cells, 113 (85.6%) were up- and 19 (14.4%) were down-

regulated (Figure 6G) in the NvPOU4 mutants. In contrast, of the 62 DEGs only present in the 

mOrange super-positive, more mature cells, 55 (88.7%) were down-, and only 7 (11.3%) were 

upregulated (Figure 6I). Of the 93 DEGs found in both groups of cells, 60 (64.5%) were down- 

and 33 (35.5%) were upregulated (Figure 6H). This suggests that mutation of NvPOU4 reduces 

the expression of genes involved in the terminal differentiation of cnidocytes and increases the 

expression of genes involved in earlier steps of their development.  

We next generated transcriptomes of NvElav1::mOrange-positive and negative cells at 

primary polyp stage and identified 3538 genes with significantly higher expression level in 

NvElav1::mOrange-positive cells. Of these genes, a total of 186 were differentially regulated in 
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NvPOU4 mutants and among them, 137 (73.7%) were downregulated, but only 49 (26.3%) 

were upregulated in the mutants (Figure 6J). Thus, similar to the situation in the 

NvNCol3::mOrange super-positive cnidocytes, NvPOU4 appears to function mainly as a 

positive regulator of genes expressed in NvElav1::mOrange positive cells. The broad expression 

in NvElav1::mOrange+ neurons suggests that NvPOU4 functions in the differentiation of 

different types of neurons. To support this hypothesis, we selected two genes that are 

downregulated in the NvPOU4 mutants and are upregulated in NvElav1::mOrange expressing 

cells for double fluorescent in situ hybridization with NvPOU4. We found Nve22966 (a putative 

ionotropic glutamate receptor) to be co-expressed with NvPOU4 mainly in endodermal cells 

(Figure 7A,B), whereas the co-expression of NvPOU4 and Nve21438 (a putative GABAA 

receptor subunit) is most prominent in ectodermal cells (Figure 7C, D). This indicates that 

NvPOU4 indeed contributes to the differentiation of different subpopulations of 

NvElav1::mOrange expressing neurons. 

Taken together, our transcriptome analyses show that NvPOU4 is mainly required for the 

expression of genes that are expressed at late stages of cnidocyte and neuron differentiation.  

This is consistent with the morphological observations of the NvPOU4 mutants in the 

Fig. 7 Co-expression of NvPOU4 with glutamate and GABAA receptor genes in 

different populations of cells 

(A-D) Lateral views of double fluorescence in situ hybridization with probes indicated 

on the top and the developmental stage on the left side. (A-B) NvPOU4 is labelled in green 

and Nve22966 (a putative glutamate receptor) in magenta, co-expression is visible in an 

endodermal population of cells. (C-D) NvPOU4 is labelled in green and Nve21438 (a 

putative GABAA receptor subunit) in magenta, co-expression is visible in an ectodermal 

population of cells. This suggests NvPOU4 contributes to the differentiation of different 

subpopulations of NvElav1::mOrange+ cells. Lateral views with the aboral pole to the left. 

(A-A'' and C-C'') are projections of stacks of confocal sections, (B-B'' and D-D'') are single 

confocal sections. Scale bars represent 20 μm. 
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background of the NvNCol3::mOrange2 and NvElav1::mOrange transgenic lines, and suggests 

that NvPOU4 regulates the terminal differentiation of neural cells. 
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DISCUSSION 

In this report we have shown that NvPOU4 is expressed in postmitotic cells that are derived 

from NvSoxB(2) expressing neural progenitor cells and give rise to cnidocytes, sensory cells 

and ganglion cells. Despite its expression from blastula stage on, mutation of NvPOU4 does not 

prevent the initial specification of these cells. Instead, our data suggest that the main function 

of POU4 in Nematostella vectensis is the regulation of the terminal differentiation of neural 

cells.  

Cnidocyte precursors in NvPOU4 mutants still produce NvNcol3 protein. They fail, 

however, to assemble the elongated cnidocysts characteristic of mature cnidocytes. This 

morphological observation suggested that in these cells, NvPOU4 mainly regulates the 

transcription of genes that encode factors required for the final steps of cnidocyte 

differentiation. The availability of separate transcriptomes enriched for cnidocytes at earlier 

stages (at or before the beginning of cnidocyst formation) and at later stages (containing 

elongated cnidocysts) of their development (Sunagar et al., 2018) allowed us to analyze the 

requirement for NvPOU4 in this process in more detail. The preponderance of downregulation 

among genes that are specifically enriched in late-stage cnidocytes matched the observed lack 

of mature cnidocysts. In contrast, we did not expect that many of the genes that are specifically 

expressed in early-stage cnidocytes would be upregulated in NvPOU4 mutants. This included 

the NvNCol3 gene, NvPaxA (a transcription factor that positively regulates NvNCol3 

expression, (Babonis and Martindale, 2017) and NvPOU4 itself. A possible explanation is that 

the failure to produce functional cnidocytes leads to a “compensatory” response that increases 

the number of cells entering the cnidocyte differentiation pathway. An alternative, but not 

mutually exclusive possibility is that NvPOU4 is required for the downregulation of genes that 

are temporarily expressed at an earlier stage of cnidocyte differentiation, resulting in prolonged 

expression of these genes in NvPOU4 mutants.  
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For the NvElav1::mOrange-expressing neurons, we currently cannot separate cells at 

different stages of their differentiation. At the primary polyp stage, all or almost all 

NvElav1::mOrange positive neurons possess neurites and are thus either at a late stage of their 

development or terminally differentiated (Nakanishi et al., 2012). In homozygous NvPOU4 

mutants, there is no significant reduction in the number of NvElav1::mOrange expressing 

neurons and the neurons extend neurites that do not show gross morphological alterations or 

obviously aberrant projection patterns (Figure 6B', D'). These observations suggest that in the 

NvElav1+ endodermal neurons NvPOU4 mainly functions in terminal differentiation, regulating 

for example the repertoire of neurotransmitter receptors. In line with such a function, the 

expression levels of genes encoding glutamate, acetylcholine and GABA receptors are reduced 

in NvPOU4 mutants. We note, however, that NvPOU4 may have other or additional roles in 

subpopulations of NvElav1-expressing neurons.  

Of the 1217 genes differentially expressed in NvPOU4 mutants, only 287 are upregulated 

in the cnidocyte transcriptomes and 186 in the NvElav1::mOrange transcriptome. This is a 

surprising observation since the double transgenic lines suggest that the majority of 

NvPOU4::memGFP expressing cells are included in the NvNCol3::mOrange or 

NvElav1::memOrange-positive cells. A possible explanation is the difference in the age of the 

polyps used for the isolation of cnidocytes (3-4 months, (Sunagar et al., 2018) and the NvPOU4 

mutants (14 days).  The proportion of different types of cnidocytes has been shown to differ 

between primary and adult polyps (Zenkert et al., 2011) and the cnidocyte transcriptomes may 

therefore lack genes that are expressed predominantly at earlier stages. Similarly, only 

cnidocytes from the tentacles were used for generating the cnidocyte transcriptomes, whereas 

NvPOU4 is expressed in both tentacle and body column cnidocytes and these regions have been 

shown to differ in the composition of cnidocyte types (Zenkert et al., 2011). Genes that are 
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expressed in cnidocyte types that are more common in the body column (e.g. basitrichous 

haplonemas) may therefore be underrepresented in the cnidocyte transcriptomes. It will be 

interesting for future studies to understand whether additional populations of NvPOU4-

expressing cells exist outside the NvNCol3 and NvElav1+ cells. 

After functioning in neural development, POU4 genes have been shown to be required for 

the survival of several classes of neurons in C.elegans and in the mouse habenula (Serrano-Saiz 

et al., 2018). Deletion of POU4 in these terminally differentiated neurons results in the loss of 

their neurotransmitter identity and their elimination by apoptosis (Serrano-Saiz et al., 2018), 

suggesting an evolutionarily conserved, post-developmental role for POU4 genes. Whether 

NvPOU4 has a comparable role in Nematostella is currently not clear. A recent single cell RNA 

sequencing study showed that NvPOU4 is expressed in neural cells in adult animals (Sebe-

Pedros et al., 2018), allowing for a role in maintaining neural identity. We observed 

homozygous mutants until 20 days post fertilization (they become primary polyps after 6-7 

days), but did not detect alterations in the number or morphology of NvElav1::mOrange positive 

neurons (data not shown). Due to the lack of cnidocytes, NvPOU4 mutants are unable to catch 

prey and are thus not viable, which prevents long-term observations. Determining whether 

NvPOU4 has a role in the maintenance of the identity of neurons will require the development 

of methods for conditional gene inactivation in Nematostella. 

The C. elegans POU4 gene unc-86 is a prime example of a terminal selector gene and POU4 

genes in other species have comparable functions in the terminal differentiation of neural cell 

types (Ayer and Carlson, 1991; Certel et al., 2000; Clyne et al., 1999; Duggan et al., 1998; 

Erkman et al., 2000; Gan et al., 1996; Gordon and Hobert, 2015; Huang et al., 2001; Huang et 

al., 1999; Serrano-Saiz et al., 2013; Sze et al., 2002). Terminal selectors act in a combinatorial 

manner to regulate terminal effector genes and determine cellular identity (Hobert, 2016). This 

allows individual transcription factors to act as terminal selectors in different types of neurons, 
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for example by cooperative binding to regulatory elements together with other transcription 

factors (Cho et al., 2014; Duggan et al., 1998; Wolfram et al., 2014; Xue et al., 1992). In 

Nematostella, single-cell RNA sequencing has revealed several NvPOU4 expressing 

“metacells” with overall neuron-like transcriptional profiles (Sebe-Pedros et al., 2018). 

Individual NvPOU4+ metacells (likely representing different neural cell types) express different 

combinations of other transcription factors (Sebe-Pedros et al., 2018), some of which may 

function together with NvPOU4 in regulating the terminal differentiation of these cells. In line 

with this scenario, each of the NvPOU4+ metacells expresses at least one transcription factor 

that has not been detected in any other NvPOU4+ metacell (Table S3). While the physical and 

functional interaction with other transcription factors and with regulatory elements of target 

genes remains to be explored in future work, the morphological and molecular analyses 

presented here support the hypothesis that NvPOU4 acts as a terminal selector for different 

neural cell types in Nematostella. 

The advent of single-cell sequencing technologies has led to the elaboration of concepts for 

the evolutionary diversification of cell types. Terminal selector genes are central to such 

concepts as they are part of so-called “core regulatory complexes” (CoRCs) which regulate the 

cellular features that distinguish different cell types (Arendt et al., 2016). It has been 

hypothesized that evolutionary changes occur more slowly in core regulatory complexes than 

in terminal effector genes, which would make them more informative for inferring evolutionary 

relationships between cell types (Arendt et al., 2019; Arendt et al., 2016). Our data show that 

more than 600 million years after the divergence of the cnidarian and bilaterian lineages (dos 

Reis et al., 2015), POU4 genes function in the terminal differentiation of neural cells in 

cnidarians, as they do in bilaterians. NvPOU4 regulates the terminal differentiation of strikingly 

different types of neural cells in Nematostella, the more “typical” NvElav1+ neurons and the 

highly derived, taxon-specific cnidocytes. This is likely due to cell type-specific combinatorial 
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regulation together with other transcription factors and attempts to homologize POU4-

expressing neural cell types will require a more detailed understanding of such combinatorial 

regulation. Nevertheless, we propose that the function of NvPOU4 is derived from an ancestral 

function of POU4 genes as regulators of terminal neural differentiation. We cannot exclude, 

however, that in some cases POU4 genes have been co-opted into comparable roles in different 

cell types.  

In summary, the observation that NvPOU4 functions in the terminal differentiation of neural 

cells in Nematostella supports the hypothesis that the regulation of neurogenesis by conserved 

terminal selector genes is an ancient feature of nervous system development. 
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STAR METHODS 

KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

anti Nematostella NCol3 (Zenkert et al., 2011)  

Rabbit anti dsRed Clontech Cat no 632496 

Mouse anti GFP Abcam Cat no 1218 

Biological Samples   

NvPOU4 homozygous mutants this study  

Siblings of NvPOU4 homozygous mutants (+/- and +/+) this study  

Critical Commercial Assays 

Click-iT™ EdU Cell proliferation kit Thermo Scientific/ 
Molecular Probes 

Cat no C10337 

TruSeq® stranded mRNA library kit Illumina Cat no 20020594 

Deposited Data 

NvPOU4 mutant transcriptome at 12dpf this study E-MTAB-8658 

NvElav1::mOrange+ transcriptome (Torres-Mendez et al., 
2019) 

SRP149913  

Nematostella vectensis genome (Putnam et al., 2007) https://mycocosm.jgi.
doe.gov/Nemve1/Ne
mve1.home.html 

NvNCol3::mOrange2+ transcriptome (Sunagar et al., 2018) PRJNA391807 

Experimental Models: Organisms/Strains 

Nematostella vectensis  (Hand and Uhlinger, 
1992) 

 

Nematostella: NvElav1::mOrange (Nakanishi et al., 
2012) 

 

Nematostella: NvNCOl3::mOrange2 (Sunagar et al., 2018)  

Nematostella: NvPOU4::memGFP this study  

Nematostella: NvPOU4-/- this study  

Oligonucleotides 

Morpholino NvSoxB2 MO1: 
TATACTCTCCGCTGTGTCGCTATGT 

(Richards and 
Rentzsch, 2014) 

 

Oligonucleotides for sgRNA NvPOU4: 
5’TAGGCGTGGGTTCATATCATCGGC; 
5’AAACGCCGATGATATGAACCCACG 

this study  

Primers for melting curve analysis of NvPOU4 mutants: 
forward: 5’CACGCGTTACACTCGGCAATCG 
reverse: 5’TCTTCTTTGCTTGAAGCGTTCCG 

this study  

Primers for sequencing of NvPOU4 locus 
forward: 5’TCCCAAATACCTGACGAAACCAT 
reverse: 5’CGTTTACGTTTCTTGTCGGAGTT 

this study  

Recombinant DNA 

Plasmid: pNvPOU4::memGFP (pUC57 backbone) this study  

Software and Algorithms 

Trimmomatic (Bolger et al., 2014)  

STAR (Dobin et al., 2013)  

Samtools (Li et al., 2009)  

HTseq (Anders et al., 2015)  

DESeq2 (Love et al., 2014)  
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ClusterProfiler (Yu et al., 2012)  

Imaris Bitplane  

 

Nematostella culture 

Adult animals were maintained at 18 °C in 1/3 filtered seawater (=Nematostella medium, 

NM). Spawning induction was performed by light and temperature shift as described in 

(Fritzenwanker and Technau, 2002). Incubation of the fertilized egg packages with a 3% 

cysteine/NM removed the jelly. Embryos were then raised at 21 °C and fixed at 12 hours post 

fertilization (hpf; early blastula), 16hpf (blastula), 20hpf (early gastrula), 24hpf (gastrula), 

30hpf (late gastrula), 48hpf (early planula), 72hpf (planula), 4dpf (late planula); 5dpf (tentacle 

bud); 7dpf (early primary polyp), 12dpf (late primary polyp). 

Morpholino injection 

NvSoxB(2) MO1 is described in (Richards and Rentzsch, 2014). Experiments were 

conducted with four biological replicates, with embryos derived from four independent 

spawnings. 

Generation of transgenic lines 

The NvPOU4::memGFP transgenic reporter line was generated by meganuclease-mediated 

transgenesis as described by (Renfer and Technau, 2017). The genomic coordinates for the 4.7 

kb regulatory region are 1063816-1068603 on scaffold 16 (http:// 

genome.jgi.doe.gov/Nemve1/Nemve1.home.html, accessed 15 April 2019).  This fragment was 

inserted in front of a codon optimized GFP via the HiFi DNA Assembly kit (NEB) with the 

addition of a membrane-tethering CAAX domain at the C-terminus to visualize the morphology 

of the cells expressing the reporter protein. memGFP was detected with an anti-GFP antibody 

(mouse, abcam1218, 1:200). The NvSoxB(2)::mOrange line has been described in (Richards 

and Rentzsch, 2014), NvElav1::mOrange in (Nakanishi et al., 2012), NvNCol3::mOrange in 
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(Sunagar et al., 2018) and NvFoxQ2d::mOrange in (Busengdal and Rentzsch, 2017). An 

overview of the crosses are provided in Table S4. 

Cloning of NvPOU4, in situ hybridization, EdU labelling and immunohistochemistry  

The NvPOU4 sequence is derived from gene model Nve5471, retrieved from 

https://figshare.com/articles/Nematostella_vectensis_transcriptome_and_gene_models_v2_0/

807696. Fluorescent and colorometric in situ hybridizations were performed as described in the 

Supplementary material in (Richards and Rentzsch, 2014). Samples were imaged on either a 

Nikon Eclipse E800 compound microscope with a Nikon Digital Sight DSU3 camera or on a 

Leica SP5 confocal microscope. 

The following primary antibodies were used: to detect NvPOU4::memGFP, anti-GFP 

(mouse, abcam1218, 1:200); to detect mOrange, anti dsRed (rabbit, Clontech 632496, 1:100); 

anti-NCol3 (Zenker et al.2011); mature cnidocytes were labelled with DAPI/EDTA as 

described in (Babonis and Martindale, 2017; Szczepanek et al., 2002). 

EdU labelling was done as 30min pulses followed by fixation as described in (Richards and 

Rentzsch, 2014), using Click-it EdU Alexa fluor 488 kit (Molecular probes C10337). For 

counting NvPOU4+ and EdU+ cells a 100 μm × 100 μm sampling area was defined in the mid-

lateral region of the ectoderm at blastula stage. All the nuclei from this region were scanned via 

confocal microscopy. 

CRISPR-Cas9 mediated mutagenesis and genotyping of embryos 

Using published methods (Ikmi et al., 2014; Kraus et al., 2016) sgRNA were synthesized in 

vitro via the Megashortscript T7 kit (Life technologies) using the following oligos: 

5’TAGGCGTGGGTTCATATCATCGGC, 5’AAACGCCGATGATATGAACCCACG 

The reaction mixture (500 ng/μl Cas9 enzyme and 150 ng/μl of the sgRNA) was incubated 

at 37°C for 15min prior to injection.  
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Genomic DNA from embryos or aboral pieces of F1 polyps was extracted using a 

Tris/EDTA/proteinase K buffer. Mutant genotyping was first done via melt-curve analysis after 

PCR amplification of a 90bp region on a BioRad CFX96 RealRime PCR machine. Mutations 

were confirmed by sequencing a 500bp region around the mutation. Primers used are listed in 

the Key Resources Table. 

Generation of transcriptomes from NvPOU4 mutants and siblings 

The presence/absence of cnidocysts was used for sorting animals at primary polyp stage 

(12dpf) into sibling control (NvPOU4+/+ and NvPOU4+/-) and mutants (NvPOU4-/-). Twenty 

primary polyps were pooled for each biological condition and the total RNA was extracted 

using the Direct-zol RNA MicroPrep kit (Zymo Research). Experiments were conducted with 

four biological replicates, with embryos derived from four independent spawnings. Sequencing 

libraries were generated with the TruSeq® stranded mRNA library prep kit (Illumina), 75bp 

single read sequencing was performed on a NextSeq500 machine (Illumina).  

Cell type specific transcriptomes 

NvElav1::mOrange-positive cells were enriched by FACS and RNA was extracted as described 

previously (Torres-Mendez et al., 2019). cDNA was prepared from 400pg of total RNA using 

the Smart-Seq 2 method  with 16 pre-amplification PCR cycles, as described by (Picelli et al., 

2014). NGS libraries were prepared using the home-made tagmentation-based method as 

described by (Hennig et al., 2018). Briefly, 125 ng of cDNA was tagmented using home-made 

Tn5 loaded with annealed linker oligonucleotides for 3 minutes at 55C. Reaction was 

inactivated by adding 1.25ul of 0.2% SDS and incubation for 5 minutes at room temperature. 

Indexing and amplification was done using the KAPA HiFi HotStart PCR kit (Sigma-Aldrich) 

with Index oligonucleotides (sequences were adapted from Illumina). Four biological replicates 
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of mOrange-positive and -negative cells, respectively, were used for 75bp single read 

sequencing on a NextSeq500 machine (Illumina).  

The generation NvNCol3::mOrange2 transcriptomes is described in (Sunagar et al., 2018). 

Transcriptome analyses 

The raw fastq files were initially quality checked and trimmed using Trimmomatic (Bolger et 

al., 2014). Following this they were aligned to the N. vectensis genome 

(https://mycocosm.jgi.doe.gov/Nemve1/Nemve1.home.html) using STAR (Dobin et al., 2013) 

in two-pass mode. Afterwards the produced BAM (Binary Alignment Maps) files were sorted 

and indexed with Samtools (Li et al., 2009) and then gene counting was carried out using HTSeq 

(Anders et al., 2015). Gene models were retrieved from 

(https://figshare.com/articles/Nematostella_vectensis_transcriptome_and_gene_models_v2_0/

807696). 

Differential gene expression testing and subsequent over-representation analysis was done in R 

with DESeq2 (Love et al., 2014) and clusterProfiler (Yu et al., 2012), respectively. 

 

Quantification of NvElav1::mOrange+ cells in NvPOU4 mutants and siblings 

NvElav1::mOrange positive cells (stained with anti dsRed antibody) were counted in an area 

100µm long and located between two mesenteries. The quantification was done in animals from 

four different spawnings and with 5-10 animals per sample. The genotype was inferred a 

posteriori by the presence/absence of cnidocysts. 
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FIGURES 

 

Figure 1 NvPOU4 expression is controlled by NvSoxB(2). 
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Figure 2 NvPOU4 is expressed in differentiating cells. 
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Figure 3 A transgenic reporter line recapitulates the expression of NvPOU4. 
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Figure 4 NvPOU4::memGFP identifies neural cell types. 
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Figure 5 The loss of NvPOU4 prevents cnidocyte differentiation. 

 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 8, 2020. ; https://doi.org/10.1101/2020.01.08.898437doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.08.898437
http://creativecommons.org/licenses/by-nd/4.0/


43 
 

 

Figure 6 Loss of NvPOU4 affects the transcriptomes of NvNCol3 and NvElav1 expressing 

neural cells. 
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Figure 7 Co-expression of NvPOU4 with glutamate and GABAA receptor genes in different 

populations of cells. 
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