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Abstract. Gene Regulatory Networks (GRNs) control many aspects of cellular processes including
cell differentiation, maintenance of cell type specific states, signal transduction, and response to stress.
Since GRNs provide information that is essential for understanding cell function, the inference of these
networks is one of the key challenges in systems biology. Leading algorithms to reconstruct GRN utilize,
in addition to gene expression data, prior knowledge such as Transcription Factor (TF) DNA binding
motifs or results of DNA binding experiments. However, such prior knowledge is typically incomplete
hence resulting in missing values. Therefore, the integration of such incomplete prior knowledge with
gene expression to elucidate the underlying GRNs remains difficult.

To address this challenge we introduce NetREX-CF – Regulatory Network Reconstruction using
EXpression and Collaborative Filtering – a GRN reconstruction approach that brings together a
modern machine learning strategy (Collaborative Filtering model) and a biologically justified model of
gene expression (sparse Network Component Analysis based model). The Collaborative Filtering (CF)
model is able to overcome the incompleteness of the prior knowledge and make edge recommends for
building the GRN. Complementing CF, the sparse Network Component Analysis (NCA) model can use
gene expression data to validate the recommended edges. Here we combine these two approaches using
a novel data integration method and show that the new approach outperforms the currently leading
GRN reconstruction methods.

Furthermore, our mathematical formalization of the model has lead to a complex optimization problem
of a type that has not been attempted before. Specifically, the formulation contains `0 norm that can
not be separated from other variables. To fill this gap, we introduce here a new method Generalized
PALM (GPALM) that allows us to solve a broad class of non-convex optimization problems and prove
its convergence.
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1 Introduction

Regulation of gene expression is central to cellular function. The regulatory relationships between
transcription factors (TFs) and the genes they target (TGs) are captured by the Gene Regulatory
Network (GRN). Inference of these cell type specific GRNs is a current challenge in systems biology.
Earlier work focused on predicting regulatory networks using gene expression data alone, but these
methods tend to have poor predictive power [1, 2]. Indeed, inference of network edges based solely
on gene expression data is challenging; network reconstruction uses an enormous search space,
and the underlying biology is multilayered with many factors including post-transcriptional and
post-translation regulation contributing to TF’s activity. We and others have found that network
accuracy is drastically improved by including additional biological data such as chromatin structure
(i.e., ATAC-Seq and ChIP-Seq), TF DNA binding motifs, and DNA sequence conservation scores
[3, 4, 5, 2, 6, 7].

Additional biological data have been used as a prior to inform network model selection in a
variety of contexts [7, 8, 9]. MerlinP [5] uses network priors to influence the objective function for
model selection. While, Inferelator [3], a method built on network component analysis (NCA), uses
given gene expression data and a network prior to estimate TF activity. Furthermore, Inferelator
predicts the GRN by uncovering the relationship between TF activity and their target genes’
expression. We recently developed NetREX [2], which is also based on the NCA model, but NetREX
simultaneously estimates TF activity while modifying the prior network by adding and removing
edges.

Because of the NCA model’s simplicity yet biological relevance, this approach becomes the
foundation of the current state-of-the-art methods for GRN reconstruction [10, 11, 12, 3, 4, 2, 13,
14]. NCA uses the prior network’s structure to inform the decomposition of gene expression into
TF activities [10]. Specifically, TF activities are modelled as a hidden variable accounting for the
complex and often unknown relationships between TF expression and TF regulatory activity. TF
activity is more robust and has been proved to be superior to TF gene expression in the task of
GRN reconstruction [3]. However, NCA-based methods heavily rely on the quality of the prior
network. If a prior network is very noisy, NCA-based methods cannot reliably predict TF activity,
and in such circumstances the GRNs predicted by those methods are not trustworthy [2]. Therefore,
building a reliable prior network becomes the key factor to employ the NCA-based methods.

A GRN prior is typically built by integrating various types of biological data, but construction
of a quality prior is challenging due to the incompleteness of available data. For example, we can
build a prior network by using TF-DNA binding data (e.g. ChIP-seq). However, we often only
have access to ChIP-seq data for a fraction of TFs. Therefore, all interactions with TFs that do
not have ChIP-seq data are considered as missing values. Similarly, computational mapping of TF-
DNA binding motifs may miss true physical binding sites due to the problem of multiple testing,
leading to incompleteness in the TF-DNA motif prior. Current methods for building GRNs by
integrating multiple sources of prior knowledge do not directly account for the fact that there is
missing data [7]. However, in the last decade we have witnessed a rapid development of machine
learning methods capable dealing with large amounts of missing data. One particularly successful
approach is Collaborative Filtering (CF), the method used by NETFLIX’s movie recommendation
system [15, 16]. Given incomplete information about a user’s preferences, CF infers informative
features and then applies them to provide movie recommendation for other users in the absence of
complete information.

In this work, we present NetREX-CF – Regulatory Network Rconstruction using EXpression
and Collaborative Filtering – a GRN reconstruction approach that uses the idea of CF in a com-
pletely novel way, namely by combining such recommendation system with expression-based model
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optimization. Similar to its precursor, NetREX, NetREX-CF selects a network model by simultane-
ously optimizing network topology and its NCA-based fit of gene expression data. However, rather
than arriving to a final network by reprogramming the edges in the prior network, NetREX-CF uses
a joint optimization function to directly integrate expression data with other types of prior knowl-
edge using CF. We demonstrate that CF takes the fullest advantage of the prior data, and when
combined with the biologically relevant NCA-based model, provided a remarkable improvement
over existing approaches.

Mathematically, the simultaneous optimization of network topology, fit of the NCA model, and
feature selection for the CF yielded a complex optimization problem of a type that has not been
attempted before. Specifically, the optimization is non-convex and non-smooth due to the binary
nature of presence/absence of network edges. More importantly, the optimization contains `0 norm
that can not be separated from other variables that need to be optimized. While the recently
introduced PALM method [17] can solve a certain class of such non-convex optimization problems,
where the `0 norm is separable (in particular the one used in NetREX), a simultaneous optimization
of all three sets of parameters yields a problem that cannot be solved by PALM. To fill this gap,
we introduce GPALM (Generalized PALM), a new provably convergent method for solving a broad
class of non-convex optimization problems with an inseparable `0 norm. Therefore, in addition to
introducing a new method to reconstruct GRNs that outcompetes previous methods, this work also
provides a solution to an important class of optimization problems.

2 NetREX-CF - Method Overview

The NetREX-CF model is a novel data integration framework for reconstructing GRNs by organi-
cally utilizing both gene expression E and a set of prior networks P = {P 1, ...P d}. The main idea
behind the NetREX-CF model is an integration of two complementary optimization strategies: (i)
a machine learning component designed based on Collaborative Filtering that is able to identify
hidden features from the current observed prior networks P and utilize these features to recommend
an improved GRN and (ii) a sparse NCA-based network remodelling component that can refine the
topology of a GRN based on given gene expression E. These two computational components oper-
ate alternatively. The CF component recommends new edges to the current GRN and the sparse
NCA-based network remodelling component screens the recommended edges and keeps the edges
that are essential to explain the given gene expression. Once the sparse NCA-based network re-
modelling component confirms some of the recommended edges, the CF component further utilizes
those retained recommended edges to make new edge recommendations for the sparse NCA-based
network remodelling component to further examine (illustrated in Fig. 1).

Computationally, this is achieved by a simultaneous optimization of the following sets of vari-
ables: (i) the activities of TFs (matrix A), (ii) a weighted GRN (matrix S), and (iii) two feature
matrices: the hidden features for target genes (X where the ith row xi represents the hidden feature
vector for gene i) and the hidden features for TFs (Y where the jth row yj represents the hidden
feature vector for TF j). The matrix A is optimized by the sparse NCA-based network remodelling
component while the matrices X and Y are optimized by the Collaborative Filtering component.
Notably, matrix S is the connection between the two components and should be optimized by
considering both components.

Formally, E ∈ Rn×l is the matrix of expression data of n genes in l experiments and prior
network P k ∈ Rn×m, ∀k is a weighted adjacency matrix of the bipartite graph that records the
prior knowledge of regulations between m TFs and n genes. Matrix A ∈ Rm×l is the TF activity
for m TFs in l samples and S ∈ Rn×m is a weighted GRN. We further define penalty matrix C and
observation matrix B based on the set of prior networks P . Each element in C can be computed by
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Sparse NCA-based network modeling and refinement
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Fig. 1: Method Overview. Collaborative Filtering (CF) and NCA-based gene expression modelling alternatively inform
each other during a joint optimization process: CF recommends edges to be confirmed by the NCA model and used
to improve CF.

Cij = 1+a
∑

k P
k
ij (a = 60 suggested by [16]) and each element in B is binary and can be computed

by Bij = 1 if
∑

k P
k
ij 6= 0 and Bij = 0 otherwise. X ∈ Rn×h contains feature vector xi for gene i

and Y ∈ Rm×h contains feature vector yj for TF j. Then, our optimization problem is formalized
as following:

min
S,A,X,Y

H(S,A) + λF(S,X, Y )

s.t. ‖xi‖2 ≤ 1, ∀i
‖yj‖2 ≤ 1, ∀j.

(1)

where:

– H(S,A) := ‖E − SA‖2F + λA‖A‖2F + λS‖S‖2F +
∑

ij ηij‖Sij‖0 is the sparse NCA-based network

remodelling component; λA‖A‖2F +λS‖S‖2F are standard regularization terms and
∑

ij ηij‖Sij‖0
induces sparsity of a given prior GRN and therefore only essential edges that help to minimize
H(S,A) are retained. ‖Sij‖0 is the `0 norm that is 1 if Sij 6= 0 and 0 otherwise.

– F(S,X, Y ) :=
∑

i,j Ωij(Θij−xTi yj)2 optimizes the hidden features X and Y of the Collaborative
Filtering component; Θij is a binary matrix of edges to be predicted by the hidden features in
the given iteration and Ωij encodes penalties that guide the predictions. Both Θij := ‖Sij‖0⊕Bij
and Ωij := C̄ij‖Sij‖0 + Cij(1 − ‖Sij‖0) are defined based on ‖Sij‖0 and the prior information
(Cij). Detailed explanation of Θij and Ωij are provided in Method Details section. For the
initialization step, both Θij and Ωij are defined based on the prior networks only while in
the subsequent steps they also take into account the results of the sparse NCA-based network
remodelling component (illustrated in Fig. 1 and Fig. 3).

To solve problem (1), we first put all continuous terms together and defineH(S,A) := ‖E − SA‖2F+
λA‖A‖2F + λS‖S‖2F and non-continuous terms together and define F (S,X, Y ) :=

∑
i,j Ωij(‖Sij‖0 ⊕
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Bij − xTi yj)2 +
∑

ij ηij‖Sij‖0. Then the optimization problem has a general format of an objective
function as Φ(S,A,X, Y ) = H(S,A)+F (S,X, Y ), where H(S,A) is continuous but non-convex and
F (S,X, Y ) is a composite function of `0 norm of elements of S and other variables so it is neither
continuous nor convex. More importantly, ‖Sij‖0 is coupled with xi and yj , so that ‖Sij‖0 can not
be separated from F (S,X, Y ) as a separated term. To the best of our knowledge, there has been
no known method that can optimize such a complex and non-convex function involving inseparable
`0 norm. To fill this gap, we propose here a new algorithm, Generalized PALM (GPALM) that
generalizes the so called PALM method [17] and solves a class of problems of the format above,
under the assumption that F (S,X, Y ) is lower semi-continuous (see Supplementary Material A).
In the Supplementary Material B, we propose the new GPALM method and prove its convergence.

3 Experimental Results

To demonstrate the capability of our proposed GRN reconstruction method, we collect multiple
datasets that measure different perspectives of the gene regulation in yeast. These datasets include
TF ChIP [5, 18, 19], TF DNA binding motif [5, 20], genetic knockout [5, 21, 22], and yeast gene
expression [5, 23, 24, 25]. TF ChIP, motif, and genetic knockout datasets serve as prior knowledge
for TF-gene interactions in the yeast GRN. The details of these priors are summarized in Table 1
and the overlap among priors is illustrated in Table 1. We further utilize TF-gene interactions
extracted from YEASTRACT database [26] as a gold standard to validate the performance of
GRN reconstruction. These gold standard TF-gene interactions are supported by both DNA binding
and expression evidence. The details of the gold standard TF-gene interactions and their overlap
with the prior datasets are shown in Table 1. Results generated by NetREX-CF are benchmarked
against the results obtained from the published sequential methods. In the following, we detail the
comparison between NetREX-CF, MerlinP [5], NetREX [2], LassoStARS [4], the original CF [16],
and the summation of all prior knowledge (PriorSum). For a detailed description of parameter
selection for competing methods, we refer the reader to the Supplementary Material D.

To ensure an impartial comparison, we use average percentile ranking scores. For each method
and for each gene i, we can obtain a list of TFs that are predicted to regulate gene i and sort
these TFs by the confidence of the prediction (most confident at the top). We use rgij to denote
the percentile-ranking of TF j within the ordered list of all TFs for gene i. Thus, rgij = 0% means
that TF j is predicted with the highest confidence to regulate gene i, preceding all other TFs in
the list. Based on the gold standard TF-gene interaction dataset I, we set Iij = 1 if TF j regulates
gene i in the gold standard dataset and Iij = 0 otherwise. For any gene i, we use the average rank
of the gold standard edges in the list of TF predicted to regulate gene i as the measure quality of
the prediction:

rank
g
i =

∑
j r

g
ijIij∑
j Iij

(2)

Table 1: Overlap between prior networks and the gold standard network.

Network # Genes # TFs # Edges
#Overlap
with Motif

#Overlap
with Knockout

#Overlap
with ChIP

#Overlap
with YEASTRACT

Motif 5,506 197 187,079 187,079 (100%) 9,236 (8.4%) 8,717 (3.5%) 3,497 (31.0%)
Knockout 5,543 262 96,809 9,236 (4.6%) 96, 809 (100%) 7,027 (2.9%) 3,050 (27.0%)

ChIP 5,557 318 229,936 8,717 (4.3%) 7,027 (6.4%) 229,936 (100%) 2,656 (23.5%)
YEASTRACT 3,731 148 10,525 3,497 (1.7%) 3050 (2.8%) 2,656 (1.1%) 10,525 (100%)
The last four columns show overlap between different networks and parentheses shows the corresponding percentage.
YEASTRACT is the gold standard network we used for performance comparison.
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Fig. 2: Performance comparison for all competing algorithms on the yeast dataset. (a) The performance of the methods
on the task of predicting regulating TFs: for each algorithm, we compute for each gene the rankings of gold standard
edges rank

g
i adjacent to it, sort them in descending order, and plot the sorted average rankings. (b) The performance

of the methods on the task of predicting regulated genes using a measure similar as in (a) but focusing on genes
regulated by TFs. (c) The performance of the methods on the task of predicting regulating TFs that are not observed
in prior data. The procedure is the same as in (a) but only the gold standard edges that are not included in the
prior knowledge are used for the evaluation. (d) The performance of the methods on the task of predicting regulated
genes not observed in prior data (similar to (c) but focusing on genes regulated by TFs). (e) Overlap between priors.
(f) Venn diagram for gold standard dataset and the union of the three prior datasets. (g) Summary of the average
rankings of each algorithm for tasks reported in panels (a), (b), (c), and (d).

Lower values of rank
g
i are more preferable, as they indicate gold standard TFs for gene i have lower

rank than others. Furthermore, the over all ranking considering all genes can be computed by

rank
g

=

∑
i rank

g
i

# genes in I
(3)

The denominator is the number of genes that have gold standard TFs in dataset I.
Similarly, for each TF we can measure the quality of the sorted list of genes predicted to be

regulated by it:

rank
t
j =

∑
i r
t
ijIij∑
i Iij

, rank
t

=

∑
j rank

t
j

# TFs in I
, (4)

where rtij denotes the percentile-ranking of gene i with in the ordered list of all genes for TF j and

rank
t
j is the average rankings for the gold standard genes for TF j. rank

t
is the overall average

rankings considering all TFs.
Fig. 2 (a) illustrates the comparison between the competing algorithms in terms of average

rankings of gold standard TFs for each target gene. As shown, the sorted average ranking curve
for NetREX-CF is below all other methods, indicating that the average rankings of gold standard
TFs predicted by NetREX-CF for each gene are much lower than the rankings predicted by other
methods. In the average rankings of gold standard genes among the genes predicted to be regulated
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by each TF, surprisingly, PriorSum (the weighted edge summation of three priors) outperforms
all previous computational methods by a large margin. In contrast, NetREX-CF is competitive
with PriorSum ( Fig. 2 (b)) indicating that it takes the best advantage of the prior data. Notably,
NetREX-CF outperforms the original CF, which demonstrates that the integration of CF model
and sparse NCA-based model is beneficial.

Next, in order to demonstrate the advantages of NetREX-CF in predicting ranks for missing
data (edges that does not appear in the prior knowledge datasets), we identified all edges that are
in gold standard dataset but are not supported by any prior dataset. Indeed, as shown in Fig. 2 (f),
a large portion of gold standard dataset (4,064 out of 10,525 gold standard TF-gene interactions)
are not covered by any prior dataset. Therefore, we can use these gold standard interactions with
missing prior data to compare the ability of the competing methods in recovering rankings under
the assumption of missing data. As shown in Fig. 2 (c) and (d), NetREX-CF achieves much lower
rankings for those missing data. The curves of NetREX-CF in Fig. 2 (c) and (d) are below curves
of other methods by large margins except for Fig. 2 (d), where NetREX-CF is marginally better
than the original CF demonstrating the benefits of integrating the CF method for predicting target
genes. As shown in Fig. 2 (g), NetREX-CF achieves the lowest overall average ranking scores for
all but one task where its performance is competitive with the winning method.

4 Method Details

We now describe our method in more detail. We first elucidate the NetREX-CF model presented
in (1). Then, we illuminate the specified GPALM algorithm we developed to solve the NetREX-CF
model.

4.1 NetREX-CF Model

Before describing the mathematical foundation of the NetREX-CF model, we provide a brief
overview of Collaborative Filtering model and the sparse NCA-based network remodelling model,
respectively. Next we formally introduce the integration of these two models.

Collaborative Filtering Model As illustrated in Fig. 3, to reconstruct GRNs we might have
access of several prior networks, each of which reflects different perspective of the gene regulation
process. Here we illustrate three prior networks: the Motif prior network, the Knockout prior net-
work, and the ChIP prior network. In general, the prior networks are partial observation of the gene
regulation process and therefore incomplete. The incompleteness of prior networks can be further
demonstrated by Table 1, where there are only a small number of overlaps between the yeast prior
networks and the gold standard GRN. Previous prior-based GRN reconstruction methods [7] typi-
cally make efforts to preserve those edges in the prior networks into the final GRN reconstruction
but are unable to predict new edges to resolve the incompleteness of the prior networks.

Collaborative filtering, a machine learning technique, is an approach to mitigate the incom-
pleteness of the prior networks. Collaborative filtering is able to make prediction based on partial
observation. Given a set of prior networks P = {P 1, ...P d}, the mathematical formulation of col-
laborative filtering can be presented by

min
xi,yj

:
∑
i,j

Cij
(
Bij − xTi yj

)2
s.t. ‖xi‖2 ≤ 1, ∀i
‖yj‖2 ≤ 1, ∀j.

(5)
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Fig. 3: The overview of the information flow in the NetREX-CF optimization .

We recall that xi and yj are hidden feature vectors for gene i and TF j, respectively, and Bij
is a binary number that equals to 1 when we observe the edge between gene i and TF j in any
prior and equals to 0 otherwise. Bij encodes that predictions that feature vectors need to make.
Cij = 1 +a

∑
k P

k
ij is the penalty for learning the edge between gene i and TF j. Larger Cij implies

Bij = 1 and also encourages the dot product xTi yj between gene feature vector xi and TF feature
vector yj to be xTi yj = 1. Details of the CF model is illustrated in Fig. 3 top left panel.

After solving the optimization problem (5), we can use xTi yj , ∀i, j to predict edges that are
not in the prior networks. Because of the constraints in (5), we know xTi yj ∈ [−1, 1] based on
Cauchy–Schwarz inequality. xTi yj is close to 1 implies that the collaborative filtering method rec-
ommends the edge between gene i and TF j. However, to obtain reliable predictions, it is beneficial
that the correctness of the edge recommendation is further confirmed by other methods.

Sparse NCA-based Network Remodelling Model Other than utilizing prior information,
such as binding properties, we can use gene expression to help build reliable GRNs. Currently, the
state-of-art methods to use gene expression for reconstructing GRNs are NCA-based approaches [10,
11, 12, 3, 4, 2, 13, 14]. However, in order to use the NCA model, we need a prior network in addition
to gene expression data. Given gene expression E ∈ Rn×l for n genes in l samples and a prior network
S ∈ Rn×m, the sparse NCA-based network remodelling model can be presented as

min
S,A

: ‖E − SA‖2F + λA‖A‖2F + λS‖S‖2F +
∑
i,j

ηij ‖Sij‖0 , (6)

where the first term is the basic NCA model [10] (A ∈ Rm×l is the TF activity for m TFs in
l samples) and the second and third terms are standard regularization terms and the last term
involving `0 norm that is able to induce sparsity of the given prior network. Therefore, solving (6)
would yield a refined GRN that only retains key edges from the prior network. The details of the
sparse NCA-based network remodelling model is illustrated in Fig. 3 bottom left panel. Since for
most of cases, we do not have a prior network, we need to build a reliable prior based on multiple
sources of prior information.

Formulation of the NetREX-CF Model Here we propose to integrate both CF model and
Sparse NCA-based Network Remodelling model. As we mentioned that the CF model needs a way
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to confirm the recommended edges and the sparse NCA-based network remodelling model needs a
prior network to work with. Therefore, it is very natural to combine theses two models together.
The CF model can recommend a prior network for the sparse NCA-based network remodelling
model, and as a reward, the sparse NCA-based network remodelling model is able to confirm the
recommend edges and thus allow the CF model to predict new edges. The mathematical formulation
of the NetREX-CF model is

min
S,A,xi,yj

:

‖E − SA‖2F + λA‖A‖2F + λS‖S‖2F +
∑
i,j

ηij ‖Sij‖0

+ λ

∑
i,j

Ωij
(
Θij − xTi yj

)2
s.t. ‖xi‖2 ≤ 1, ∀i
‖yj‖2 ≤ 1, ∀j.

(7)

The first square bracket is the sparse NCA-based model and the second square bracket is the CF
model. λ is the balance between these two models. In the NetREX-CF model, we define Θij =
‖Sij‖0⊕Bij = ‖Sij‖0 + (1−‖Sij‖0)Bij (⊕ is XOR operation) to let the CF model not only predict
edges in the prior networks Bij , but also take into account the edges confirmed by the sparse NCA-
based model Sij . Furthermore, Ωij is defined as Ωij = C̄ij‖Sij‖0 +Cij(1−‖Sij‖0), where C̄ij is the
user defined penalty for edges confirmed by the sparse NCA-based model Sij 6= 0 and Cij is the
penalty for edges not in S (Sij = 0). The details of the NetREX-CF model is illustrated in Fig. 3
right panel. The details of how to select all the user defined parameters of the NetREX-CF model
are elaborated in the Supplementary Material D.

Once we put the definition of Ωij and Θij into (7) and we put
∑

ij ηij‖Sij‖0 into the second
square bracket, we have

min
S,A,xi,yj

:

[
‖E − SA‖2F + λA‖A‖2F + λS‖S‖2F

]

+ λ

∑
i,j

C̄ij‖Sij‖0 + Cij(1− ‖Sij‖0)
(
‖Sij‖0 + (1− ‖Sij‖0)Bij − xTi yj

)2
+
∑
i,j

ηij ‖Sij‖0


s.t. ‖xi‖2 ≤ 1, ∀i
‖yj‖2 ≤ 1, ∀j.

(8)
Then the function in the first square bracket is continuous and we define it as H(S,A). The function
in the second square bracket is lower semi-continuous (Supplementary Material D.6) and we define
it as F (S,X, Y ). Clearly, we cannot separate ‖Sij‖0 from xi and yi and put every term involving
‖Sij‖0 together as a separated term. To the best of our knowledge, there is no known method
that is able to solve the optimization problem (8). In the following, we elaborate the algorithm we
developed to solve the NetREX-CF model.

4.2 The NetREX-CF Algorithm

Because current methods can not solve problem (8), we propose a Generalized PALM (GPALM)
algorithm that is an extension of the PALM algorithm [17]. GPALM can be used to solve this class
of optimization problem involving inseparable `0 norm, which is when `0 norm cannot be separated
from other optimized variables as a separated term. The format of the problem that GPALM can
solve is provide in the Supplementary Material A. The GPALM algorithm and its convergence proof
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Algorithm 1: The algorithm for problem (M).

Initialization: A0, S0, X0, Y 0, µ0
A, µ0

S , µ0
X and µ0

Y .
1 for k = 0, 1, ..., K do
2

Ak+1 ∈ prox
H(·,Sk)
µk
A

(
Ak
)

(9)

for i = 0, 1, ..., m do
3

Sk+1
i ∈ prox

F(·,xk,yk)
µk
Si

(
Ski −

1

µkSi

∇SiH
(
Ak+1, Ski

))
(10)

4 end
5

Xk+1 ∈ prox
F(Sk+1,·,yk)
µk
X

(
Xk
)

(11)

Y k+1 ∈ prox
F(Sk+1,xk,·)
µk
Y

(
Y k
)

(12)

6 end

are provided in the Supplementary Material B. Here we directly applied the GPALM algorithm to
solve our NetREX-CF model. The algorithm is listed as follows. The proximal operator used in the
algorithm is defined as:

proxσλ (x) := arg min

{
σ(u) +

λ

2
‖u− x‖ , u ∈ Rd

}
(13)

The proximal operator and proximal gradient methods are often applied to replace conventional
smooth optimization techniques for functions that are not continuous but can be approximated by
well behaving functions (or have other nice bounding properties).

We show in the following that, for all proximal operators used in the above algorithm, we can
compute the corresponding update steps by either using a closed form that we are able to derive
or by reducing the computation to a convex optimization problem.

Update A The proximal operator (9) has a closed form solution.

A ∈ prox
H(·,Sk)
µkA

(
Ak
)

=

(
(Sk)TSk +

2λA + µkA
2

I

)−1(
ETSk +

µkA
2

(Ak)T
)T

, (14)

where µkA is the Lipschitz constant that can be computed by µkA =
∥∥(Sk)TSk + λAI

∥∥
F

. The details
of the derivation related to update A can be found in Supplementary Material C.1.

Update S Similarly, the proximal operator (10) also has a closed form solution.

Sk+1
ij ∈ prox

F(·,xk,yk)
µkSi

(
Ski −

1

µkSi
∇SiH

(
Ak+1, Ski

))
= arg min

{(
Sij − Ukij

)2
+ c2

ij ‖Sij‖0

}
, (15)

where cij =
√

2
µkSij

{
λ
[
C̄ij(1−Bij)(1 + 2(Bij − xTi yj)) + (C̄ij − Cij)(Bij − xTi yj)2

]
+ ηij

}
and µkS

is the Lipschitz constant that can be computed by µkS =
∥∥Ak+1(Ak+1)T + λSI

∥∥
F

. Therefore, the
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closed solution of the above problem is

Sk+1
ij =


Ukij , if

∣∣∣Ukij∣∣∣ > cij ;

{0, cij} , if
∣∣∣Ukij∣∣∣ = cij ;

0, o.w..

(16)

The details of the derivation related to update S can be found in the Supplementary Material C.2.

Update X Each row xi of X needs to be updated by solving the following proximal operator.

xk+1
i ∈ prox

F(Sk+1,·,yk)
µkx

(
xki

)
= arg min

‖xi‖2≤1

{
xTi φxi − ϕxi

}
, (17)

where φ = µkx
2 Ih×h+Y kÃY kT and ϕ = 2S̄iÃY

kT +µkxx
k
i
T

. Ã be the diagonal matrix with the values

Āi1, Āi2, ..Āim on the diagonal, where Āij = λ
(
C̄ij + (C̄ij − Cij)

∥∥∥Sk+1
ij

∥∥∥
0

)
. And S̄i is defined as

S̄i =
[∥∥∥Sk+1

i1

∥∥∥
0
⊕Bi1, ..,

∥∥∥Sk+1
in

∥∥∥
0
⊕Bim

]
. Since the problem becomes a Quadratically Constrained

Quadratic Program (QCQP), we leave the rest to the CVXPY python package [27, 28]. The details
of the derivation related to update X can be found in the Supplementary Material C.3.

Update Y Each row yi of Y needs to be updated by solving the following proximal operator.

yk+1
j ∈ prox

F(Sk+1,xk,·)
µkY

(
ykj

)
= arg min

‖yj‖2≤1

{
yTj φyj − ϕyj

}
, (18)

where φ = Xk+1ÃXk+1T +
µky
2 Ip×p and ϕ = 2S̄Tj ÃX

k+1T +µkyy
k
j
T

. Ã that is also a diagonal matrix

with the values Ā1j , Ā2j , ..Āmj on the diagonal and S̄j =
[∥∥∥Sk+1

1j

∥∥∥
0
⊕Bij , ..,

∥∥∥Sk+1
nj

∥∥∥
0
⊕Bnj

]T
.

Since the problem also becomes a QCQP, we leave the rest to the CVXPY python package. The
details of the derivation related to update Y can be found in the Supplementary Material C.4.

5 Conclusions

Data integration and predictive modelling are the two key tasks of Computational Biology. How-
ever, these two tasks are rarely considered together. GRN reconstruction is an example of an im-
portant and challenging computational biological problem that can benefit from both approaches.
Here we propose a method that combines machine learning based data integration strategy and a
gene expression modelling approach into one global iterative optimization strategy where machine
learning component informs the expression based modeling component and vice versa. Our new
integrative GRN reconstruction method outperforms previous computational methods for this task
demonstrating the power of our integrative approach.

We believe that the general approach presented in this study provides not only an important
step towards reconstructing better GRNs, but it has also a potential to become a paradigm for
addressing other optimization problems in computational biology.
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Supplementary Materials
We extend the original PALM algorithm [17] and propose the GPALM algorithm that can solve

more general problems. The format of the problem that GPALM can solve is explained in section A.
The actual algorithm and the its convergence proof are provided in section B.

A GPALM Preliminary

A.1 The problem and basic assumptions

We are interested in solving the non-convex and non-smooth minimization problem with the fol-
lowing structure

(M) min : Ψ (X,Y, Z) := H (X,Y ) + F (Y,Z) , (19)

where we have the following assumption:

Assumption 1. The assumptions for problem (M) is as follow:

1. H : Rn × Rm → R is a C1 function.
2. F : Rm × Rl → (−∞+∞] is a proper and lower semicontinuous (PLS) function. And F (Y,Z)

has the following structure F (Y,Z) :=
∑m

i=1 pi(Z)gi(Yi) +Q(Z), where pi : Rl → R is Lipschitz
continuous with moduli Li(Z) and pi(Z) > 0, ∀i and gi : R → R is lower semicontinuous
and sup gi(Yi) < λi, ∀i and Q : Rl → R is Lipschitz continuous with moduli LQ(Z). Y =
[Y1, ..., Yi, ..., Ym].

3. infRn×Rm H > −∞ and infRm×Rl F > −∞.

4. For any Y the function X → H(X,Y ) is C1,1
LX(Y ), namely the partial gradient ∇XH(X,Y ) is

globally Lipschitz with moduli L1(Y ), that is

‖∇XH(X1, Y )−∇XH(X2, Y )‖ ≤ L1(Y ) ‖X1 −X2‖ . (20)

Likewise, for any fixed X the function Yi → H(X,Yi) is assumed to be C1,1
LYi (X).

5. For any fixed Y the function Z → F (Y,Z) is assumed to be C1,1
LZ(Y ).

6. ∇H is Lipschitz continuous on bounded subsets of Rn × Rm. In other words, for each bounded
subsets T1 × T2 of Rn × Rm there exist M > 0 such that any (X1, Y1) and (X2, Y2):

‖(∇XH (X1, Y1)−∇XH (X2, Y2) ,∇YH (X1, Y1)−∇YH (X2, Y2))‖ ≤M ‖(X1 −X2, Y1 − Y2)‖ .
(21)

A.2 Subdifferentials of nonconvex and nonsmooth functions

Definition 1. Let σ : Rd → (−∞,+∞] be a PLS function. For a given x ∈ dom σ, the Frechet
subdifferential of σ at x, written ∂̂σ(x), is the set of all vectors u ∈ Rd which satisfy

lim
y 6=x

inf
y→x

σ(y)− σ(x)− < u, y − x >
‖y − x‖

≥ 0. (22)

When x ∈ dom σ, we set ∂̂σ(x) = Ø.

Proposition 1. ∂(λf(x)) = λ∂f(x) for any λ > 0.

The proposition can be proved based Definition 1.
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A.3 Proximal map

Let σ : Rd → (−∞,+∞] be a PLS function. Given x ∈ Rd and t > 0, the proximal map associate
to σ id defined by:

proxσλ (x) := arg min

{
σ(u) +

λ

2
‖u− x‖ , u ∈ Rd

}
(23)

The proximal map has the following important property (Lemma 3.2 in []).

Lemma 1. Let h : Rd → R be a continuously differentiable function with gradient ∇h assumed Lh
Lipschitz continuous and let σ : Rd → (−∞,+∞] be a proper and lower semicontinuous function
with infRd σ > −∞. Fix any t > Lh, then for any u ∈ domσ and any u+ ∈ Rd defined by

u+ ∈ proxσt

(
u− 1

t
∇h(u)

)
, (24)

we have

h(u+) + σ(u+) ≤ h(u) + σ(u)− 1

2
(t− Lh)

∥∥u+ − u
∥∥2
. (25)

B GPALM Algorithm and its Convergence Analysis

B.1 The Algorithm

Here we first write out the algorithm that is able to solve problem (M) with convergence guarantee.

Algorithm 2: The algorithm for problem (M).

Initialization: X0, Y 0, and Z0.
1 for k = 0, 1, ..., K do
2

Xk+1 ∈ prox
H(·,Y k)
µk
X

(
Xk
)

(26)

for i = 0, 1, ..., m do
3

Y k+1
i ∈ prox

F(·,Zk)
µk
Yi

(
Y ki −

1

µkYi

∇YiH
(
Xk+1, Y ki

))
(27)

4 end
5

Zk+1 ∈ prox
F(Y k+1,·)
µk
Z

(
Zk
)

(28)

6 end

B.2 Convergence analysis

The proof procedure is followed the proofs introduced in the original PALM algorithm [17].

Theorem 1. Assume Ψ(B) is a PLS function with inf Ψ > −∞, the sequence
{
Bk
}
k∈N is a Cauchy

sequence and converges to a critical point of Ψ(B), if the following four conditions hold []:
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(i) Sufficiently decreasing: there exist some positive constant ρ1 > 0, such that

Ψ(Bk)− Ψ(Bk+1) ≥ ρ1

∥∥∥Bk+1 −Bk
∥∥∥2
, ∀k. (29)

(ii) Relative error: there exist some positive constant ρ2 > 0, such that for any wk ∈ ∂Ψ(Bk),∥∥∥wk∥∥∥ ≤ ρ2

∥∥∥Bk+1 −Bk
∥∥∥ ,∀k. (30)

(iii) Continuity: there exist a subsequence
{
Bkj

}
j∈N and B∗, such that

Bkj → B∗, Ψ
(
Bkj

)
→ Ψ (B∗) , as j → +∞. (31)

(iv) KL property: Ψ satisfies KL property in its effective domain.

By the theorem above, we only need to check that the sequence generated by Algorithm 2 satisfy
the conditions (i) - (iv).

Proposition 2. Algorithm 2 is a global convergence algorithm.

Proof. Follow Theorem 1, we prove Algorithm 2 satisfies conditions (i)- (iv).

Condition (i). Based on (26), we know

Xk+1 ∈ prox
H(·,Y k)
µkX

(
Xk
)

= arg min

{
H
(
X,Y k

)
+

1

µkX

∥∥∥X −Xk
∥∥∥ , X ∈ Rn

}
, (32)

which implies

H
(
Xk+1, Y k

)
+ F

(
Y k, Zk

)
≤ H

(
Xk, Y k

)
+ F

(
Y k, Zk

)
−
µkX
2

∥∥∥Xk+1 −Xk
∥∥∥ (33)

We then apply Lemma 1 to (27),

H
(
Xk+1, Y k+1

i

)
+F

(
Y k+1
i , Zk

)
≤ H

(
Xk+1, Y k

i

)
+F

(
Y k
i , Z

k
)
−1

2

(
µkYi − LY (Xk+1)

)∥∥∥Y k+1
i − Y k

i

∥∥∥
(34)

Similar to the derivation related to X, for Z we get

H
(
Xk+1, Y k+1

)
+ F

(
Y k+1, Zk+1

)
≤ H

(
Xk+1, Y k+1

)
+ F

(
Y k+1, Zk

)
−
µkZ
2

∥∥∥Zk+1 − Zk
∥∥∥ (35)

Let Bk =
(
Xk, Y k, Zk

)
and sum over equations from (33) to (35). We have

Ψ
(
Bk+1

)
≤ Ψ

(
Bk
)
−
µkX
2

∥∥∥Xk+1 −Xk
∥∥∥−∑

i

1

2

(
µkYi − LYi(X

k+1)
)∥∥∥Y k+1

i − Y k
i

∥∥∥−µkZ
2

∥∥∥Zk+1 − Zk
∥∥∥ .

(36)
We know that µkX , µkY , and µkZ have their lower bound and µkYi > LY (Xk+1). Therefore, we can get

ρ1 =
µkY
2 +

∑
i

1
2

(
µkYi − LYi(X

k+1)
)

+
µkZ
2 . Then for Bk =

(
Xk, Y k, Zk

)
we have

Ψ(Bk)− Ψ(Bk+1) ≥ ρ1

∥∥∥Bk+1 −Bk
∥∥∥2
,∀k (37)
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tha proves condition (i).

Condition (ii). Writing down the optimality condition for (26), we have

∇XH
(
Xk−1, Y k−1

)
+ µk−1

X

(
Xk −Xk−1

)
= 0. (38)

Let wkX := −µk−1
X

(
Xk −Xk−1

)
− ∇XH

(
Xk−1, Y k−1

)
+ ∇XH

(
Xk, Y k

)
. It is easy to prove that

wkX ∈ ∂XΨ
(
Xk, Y k, Zk

)
. Then∥∥∥wkX∥∥∥ ≤ µk−1
X

∥∥∥Xk −Xk−1
∥∥∥+

∥∥∥∇XH (Xk, Y k
)
−∇XH

(
Xk−1, Y k−1

)∥∥∥
≤ µk−1

X

∥∥∥Xk −Xk−1
∥∥∥+M

(∥∥∥Xk −Xk−1
∥∥∥+

∥∥∥Y k − Y k−1
∥∥∥)

≤
(
µk−1
X + 2M

)∥∥∥Bk −Bk−1
∥∥∥ .

(39)

The first inequality comes from the fact that∇H is Lipschitz continuous on bounded subset Rn×Rm
as assumed in Assumption 1 (6).
The optimality condition for (27), we have

∇YiH
(
Xk, Y k−1

i

)
+ µk−1

Yi

(
Y k
i − Y k−1

i

)
+ ∂YiF

(
Y k
i , Z

k−1
)

= 0. (40)

Let wkYi := −µkYi
(
Y k+1
i − Y k

i

)
−∇YiH

(
Xk, Y k−1

i

)
+∇YiH

(
Xk, Y k

i

)
−∂YiF

(
Y k
i , Z

k−1
)
+∂YiF

(
Y k
i , Z

k
)
.

Clearly, wkYi ∈ ∂Y Ψ
(
Xk, · · ·, Y k

i−1, Y
k
i , Y

k
i+1, · · ·, Zk

)
, then we have∥∥∥wkYi∥∥∥ ≤ µkYi ∥∥∥Y k+1

i − Y k
i

∥∥∥+
∥∥∥∇YiH (Xk, Y k

i

)
−∇YiH

(
Xk, Y k−1

i

)∥∥∥+
∥∥∥∂YiF (Y k

i , Z
k
)
− ∂YiF

(
Y k
i , Z

k−1
)∥∥∥

≤ µkYi
∥∥∥Y k+1

i − Y k
i

∥∥∥+MYi

∥∥∥Y k+1
i − Y k

i

∥∥∥+
∥∥∥∂Yi (pi(Zk)gi(Yi))− ∂Yi (pi(Zk−1)gi(Yi)

)∥∥∥
≤ (µkYi +MYi)

∥∥∥Y k+1
i − Y k

i

∥∥∥+
∥∥∥∂gi(Yi)(pi(Zk)− pi(Zk−1)

)∥∥∥
≤ (µkYi +MYi)

∥∥∥Y k+1
i − Y k

i

∥∥∥+MZ
i ‖∂gi(Yi)‖

∥∥∥(Zk − Zk−1
)∥∥∥

≤
(
µkYi +MYi +MZ

i UYi

)∥∥∥Bk −Bk−1
∥∥∥ .

(41)
The second inequality utilizes the structure of F (Y,X) introduced in Assumption 1 (2). The third
inequality uses Proposition 1. We set MYi > LYi(X), MZ

i > Li(Z), and UYi > Ui.
Similar to things related to X, writing down the optimality condition for (28),

∇ZF
(
Y k, Zk−1

)
+ µk−1

Z

(
Zk − Zk−1

)
= 0. (42)

Let wkZ := −µk−1
Z

(
Zk − Zk−1

)
−∇ZF

(
Y k, Zk−1

)
+∇ZF

(
Y k, Zk

)
. We find that wkZ ∈ ∂ZΨ

(
Xk, Y k, Zk

)
and we have ∥∥∥wkZ∥∥∥ ≤ (µk−1

Z +MZ

)∥∥∥Bk+1 −Bk
∥∥∥ , (43)

where MZ > LZ(Y ).

Let ρ2 = max
{
µk−1
X + 2M,µkYi +MYi +MZ

i UYi , µ
k−1
Z +MZ

}
and sum (39), (41), (43), we have∥∥∥wk∥∥∥ ≤ ρ2

∥∥∥Bk+1 −Bk
∥∥∥ , (44)
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where wk =
(
wkX , ..., w

k
Y , ..., w

k
Z

)
=
(
∂kXΨ, ..., ∂Y k1

Ψ, ..., ∂ZkΨ
)

= ∂Ψ(Xk, Y k, Xk) ∈ ∂Ψ(Bk).

Condition (iii). Summing (37) from k = 0 to N − 1 we have

ρ1

N−1∑
k

∥∥∥Bk+1 −Bk
∥∥∥2
≤ Ψ(B0)− Ψ(BN ) (45)

Since
{
Ψ(BN )

}
is decreasing and inf Ψ > −∞, there exist some Ψ̄ such that Ψ(BN ) → Ψ̄ as

N → +∞. Therefore, let N → +∞ in (45), we have

ρ1

+∞∑
k

∥∥∥Bk+1 −Bk
∥∥∥2
≤ Ψ(B0)− Ψ̄ , (46)

which implies that lim
∥∥Bk −Bk−1

∥∥ = 0. Let B∗ = (X∗, Y ∗, Z∗) be a limit point of
{
Bk
}
k∈N ={

(Xk, Y k, Zk)
}
k∈N. Then (46) indicates that there is a subsequence

{
(Xkj , Y kj , Zkj )

}
j∈N such that

(Xkj , Y kj , Zkj )→ (X∗, Y ∗, Z∗) as j → +∞.
From (27), we know

Y k+1
i ∈ arg min

{
< Y − Y k

i ,∇YiH
(
Xk, Y k

i

)
> +

µkYi
2

∥∥∥Y − Y k
i

∥∥∥2
+ F (Y,Zk)

}
(47)

Let Y = Y ∗i the limiting point of
{
Y k
i

}
k∈N, we have

< Y k+1
i − Y k

i ,∇YiH
(
Xk, Y k

i

)
> +

µkYi
2

∥∥∥Y k+1
i − Y k

i

∥∥∥2
+ F (Y k+1

i , Zk)

≤ < Y ∗i − Y k
i ,∇YiH

(
Xk, Y k

i

)
> +

µkYi
2

∥∥∥Y ∗i − Y k
i

∥∥∥2
+ F (Y ∗i , Z

k)

(48)

Set k = kj − 1, we obtain

< Y
kj
i − Y

kj−1
i ,∇YiH

(
Xkj−1, Y

kj−1
i

)
> +

µ
kj−1
Yi

2

∥∥∥Y kj
i − Y

kj−1
i

∥∥∥2
+ F (Y

kj
i , Zkj−1)

≤ < Y ∗i − Y
kj−1
i ,∇YiH

(
Xkj−1, Y

kj−1
i

)
> +

µ
kj−1
Yi

2

∥∥∥Y ∗i − Y kj−1
i

∥∥∥2
+ F (Y ∗i , Z

kj−1)

(49)

Let j → +∞, we get

lim
j→+∞

supF (Y
kj
i , Zkj−1) ≤ F (Y ∗i , Z

∗) (50)

From the fact that F is a PLS function, we also have

lim
j→+∞

supF (Y
kj
i , Zkj−1) ≥ F (Y ∗i , Z

∗) (51)

Based on (50) and (51), we know limj→+∞ = F (Y ∗i , Z
∗). Arguing similarly with X, we finally have

lim
j→+∞

Ψ(Xkj , Y kj , Zkj ) = lim
j→+∞

H(Xkj , Y kj ) + F (Y kj , Zkj ) = Ψ(X∗, Y ∗, Z∗). (52)

Condition (iv). The function Ψ is a semi-algebraic function, which automatically satisfies the
Kurdyka-Lojasiewicz property [].

asdfasd
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C GPALM Algorithm for NetREX-CF

In this section, we provide the detailed derivation for updating A, S, xi, and yi used in the GPALM
algorithm for NetREX-CF.

C.1 Update A

A ∈ arg min

{∥∥∥E − SkA∥∥∥2

F
+ λA‖A‖2F +

µkA
2

∥∥∥A−Ak∥∥∥2

F

}
(53)

= arg min

{
< E − SkA,E − SkA > +λA < A,A > +

µkA
2
< A−Ak, A−Ak >

}
(54)

= arg min

{
tr(EET − 2ETSkA+ SkAAT (Sk)T ) + λAtr(ATA) +

µkA
2

tr(AAT − 2A(Ak)T +Ak(Ak)T )

}
(55)

= arg min

{
[(Sk)TSk +

2λA + µkA
2

I]AAT − 2[ETSk +
µkA
2

(Ak)T ]A

}
(56)

=

(
(Sk)TSk +

2λA + µkA
2

I

)−1(
ETSk +

µkA
2

(Ak)T
)T

(57)

If we complete the square and disregard the constant we get

= arg min

{
µkA
2

tr

[(
A− (

2

µkA
ETSk + (Ak)T )(

2

µkA
(Sk)TSk + I)−1

)2
]}

(58)

= arg min

{
µkA
2

∥∥∥∥A− (
2

µkA
ETSk + (Ak)T )(

2

µkA
(Sk)TSk + I)−1

∥∥∥∥2

F

}
(59)

=

(
2

µkA
(Sk)TSk + I

)−1( 2

µkA
ETSk + (Ak)T

)T
(60)

The derivative ∇AH
(
Ak, Sk

)
can be computed by 2((Sk)TSkAk + λAA

k − (Sk)TE), which is
Lipschitz continuous with Lipschitz constant µkA =

∥∥(Sk)TSk + λAI
∥∥
F

.

C.2 Update S

Sk+1
ij ∈ arg min

{
< Sij − Skij ,∇SijH

(
Ak+1, Skij

)
> +

µkSij
2

∥∥∥Sij − Skij∥∥∥2
+ F (Sij , X

k, Y k)

}
(61)

= arg min

{
(Sij − Skij)∇SijH

(
Ak+1, Skij

)
+
µkSij

2
(Sij − Skij)2 + F (Sij , X

k, Y k)

}
(62)

= arg min

µ
k
Sij

2

(
Sij −

(
Skij −

1

µkSij
∇SijH

(
Ak+1, Skij

)))2

+ F (Sij , X
k, Y k)

 (63)

17

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 8, 2020. ; https://doi.org/10.1101/2020.01.07.898031doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.07.898031
http://creativecommons.org/licenses/by-nc/4.0/


The last equation comes from completing the square and disregarding the constant terms. Now set

Ukij = Skij − 1
µkSij
∇SijH

(
Ak+1, Skij

)
and we have:

arg min

{
µkSij

2

(
Sij − Ukij

)2
+ F (Sij , X

k, Y k)

}
(64)

Put F (S,Xk, Y k) in and after some algebra.

arg min

{(
Sij − Ukij

)2
+

2

µkSij

{
λ
[
C̄ij(1−Bij)(1 + 2(Bij − xTi yj)) + (C̄ij − Cij)(Bij − xTi yj)2

]
+ ηij

}
‖Sij‖0

}
(65)

By setting cij =
√

2
µkSij

{
λ
[
C̄ij(1−Bij)(1 + 2(Pij − xTi yj)) + (C̄ij − Cij)(Bij − xTi yj)2

]
+ ηij

}
,

we obtain the hard thresholding problem:

arg min

{(
Sij − Ukij

)2
+ c2

ij ‖Sij‖0

}
(66)

which has solution

Sk+1
ij =


Ukij , if

∣∣∣Ukij∣∣∣ > cij ;

{0, cij} , if
∣∣∣Ukij∣∣∣ = cij ;

0, o.w..

(67)

The derivative ∇SH
(
Ak+1, Sk

)
can be computed by 2(SkAk+1(Ak+1)T + λSS

k − E(Ak+1)T ),
which is Lipschitz continuous with Lipschitz constant µkS =

∥∥Ak+1(Ak+1)T + λSI
∥∥
F

.

C.3 Update X

xi ∈ arg min

∑
i,j

λ(C̄ij + (C̄ij − Cij) ‖Sij‖0)
(
‖Sij‖0 + (1− ‖Sij‖0)Bij − xTi yj

)2
+
µkx
2

∥∥∥xi − xki ∥∥∥2


(68)

Let Āij = λ
(
C̄ij + (C̄ij − Cij) ‖Sij‖0

)
and Ã be the diagonal matrix with the values Āi1, Āi2, ..Āim

on the diagonal. Let S̄i =
[∥∥∥Sk+1

i1

∥∥∥
0

+ (1−
∥∥∥Sk+1

i1

∥∥∥
0
)Bi1, ..,

∥∥∥Sk+1
in

∥∥∥
0

+ (1−
∥∥∥Sk+1

im

∥∥∥
0
)Bim

]
. We will

show that ∑
i,j

Āij

(∥∥∥Sk+1
ij

∥∥∥
0
− xTi ykj

)2
=
(
S̄i − xTi Y k

)
Ã
(
S̄i − xTi Y k

)T
(69)
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We have(
S̄i − xTi Y k

)
Ã
(
S̄i − xTi Y k

)T
(70)

=

[∥∥∥Sk+1
i1

∥∥∥
0

+ (1−
∥∥∥Sk+1

i1

∥∥∥
0
)Bi1, ..,

∥∥∥Sk+1
in

∥∥∥
0

+ (1−
∥∥∥Sk+1

im

∥∥∥
0
)Bim

]
− xiT

 | |
yk1 . . . y

k
n

| |


Āi1 . . .

Āim


(71)[∥∥∥Sk+1

i1

∥∥∥
0

+ (1−
∥∥∥Sk+1

i1

∥∥∥
0
)Bi1, ..,

∥∥∥Sk+1
in

∥∥∥
0

+ (1−
∥∥∥Sk+1

im

∥∥∥
0
)Bim

]
− xiT

 | |
yk1 . . . y

k
n

| |

T

(72)

= Āi1

(∥∥∥Sk+1
i1

∥∥∥
0
− xiT yk1

)2
+ ...+ Āin

(∥∥∥Sk+1
in

∥∥∥
0
− xiT ykn

)2
(73)

=
∑
i,j

Āij

(∥∥∥Sk+1
ij

∥∥∥
0
− xTi ykj

)2
(74)

We can now rewrite the problem in terms of the matrix formulation:

xi ∈ arg min

{(
S̄i − xTi Y k

)
Ã
(
S̄i − xTi Y k

)T
+ ηiS̄i +

µkx
2

(
xi − xki

)(
xi − xki

)T}
(75)

= arg min

{(
S̄i − xTi Y k

)
Ã
(
S̄i − xTi Y k

)T
+ ηiS̄i +

µkx
2
xTi xi − µkxxTi xki +

µkx
2
xki

T
xki

}
(76)

From here we simplify the problem by expanding the first term and removing the constant terms.

= arg min

{(
S̄iÃ− xTi Y kÃ

)(
S̄Ti − Y kTxi

)
+
µkx
2
xTi xi − µkxxTi xki

}
(77)

= arg min

{
S̄iÃS̄

T
i − S̄iÃY kTxi − xTi Y kÃS̄Ti + xTi Y

kÃY kTxi +
µkx
2
xTi xi − µkxxTi xki

}
(78)

The first term is a constant so we ignore it. Because the third term is a number it is equivalent to its

transpose, so the second and third term are the same. We also note that [Y kÃY kT ] has dimension

h× h, and the second to last term may be rewritten xTi [µ
k
x
2 Ih×h]xi.

= arg min

{
−2S̄iÃY

kTxi + xTi [Y kÃY kT ]xi + xTi [
µkx
2
Ih×h]xi − µkxxTi xki

}
(79)

= arg min

{
−2S̄iÃY

kTxi − µkxxTi xki + xTi [
µkx
2
Ih×h + Y kÃY kT ]xi

}
(80)

We now use the fact that µkxx
T
i x

k
i is a number and it is equivalent to its transpose,

= arg min

{
−(2S̄iÃY

kT + µkxx
k
i
T

)xi + xTi [
µkx
2
Ih×h + Y kÃY kT ]xi

}
(81)
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Finally, we define φ = µkx
2 Ih×h + Y kÃY kT and ϕ = 2S̄iÃY

kT + µkxx
k
i
T

, and the problem becomes a
Quadratically Constrained Quadratic Program (QCQP) of the form

arg min
{
xTi φxi − ϕxi

}
(82)

s.t. ‖xi‖2 ≤ a (83)

Since we know this problem can be solved, we leave the rest to the CVXPY python package. Lastly,
for Q = (S̄i − xTi Y k)Ã(S̄i − xTi Y k)T we find the partial gradient

∇xiQ = (2S̄iÃ(Y k)T )T + Y kÃ(Y k)Txi + (Y kÃ(Y k)T )Txi (84)

= (2S̄iÃ(Y k)T )T + 2Y kÃ(Y k)Txi (85)

which is Lipschitz continuous with Lipschitz constant µkx =
∥∥∥2Y kÃ(Y k)T

∥∥∥
F

.

C.4 Solution for Y

Now, for Y, let Āij and Ã be the same, but Ã will have the values Ā1j , Ā2j , ..Ānj on the diag-
onal. Let Xk+1 be a h × n dimensional matrix where the columns are composed of the vectors

xk+1
1 , xk+1

2 , .., xk+1
n and S̄j =

[∥∥∥Sk+1
1j

∥∥∥
0

+ (1−
∥∥∥Sk+1

1j

∥∥∥
0
)B1j , ..,

∥∥∥Sk+1
nj

∥∥∥
0

+ (1−
∥∥∥Sk+1

nj

∥∥∥
0
)Bnj

]T
. We

show that the matrix formulation for this problem by proving the following:

∑
i,j

Āij

(∥∥∥Sk+1
ij

∥∥∥
0
− xk+1

i

T
yj

)2
=
(
S̄j −Xk+1T yj

)T
Ã
(
S̄j −Xk+1T yj

)
(86)

We have

(
S̄j −Xk+1T yj

)T
Ã
(
S̄j −Xk+1T yj

)
(87)

=



∥∥∥Sk+1

1j

∥∥∥
0

+ (1−
∥∥∥Sk+1

1j

∥∥∥
0
)B1j

...∥∥∥Sk+1
nj

∥∥∥
0

+ (1−
∥∥∥Sk+1

nj

∥∥∥
0
)Bnj

−
 | |
xk+1

1 . . . xk+1
m

| |

T yi

T Ā1j

. . .

Ānj

 (88)



∥∥∥Sk+1

1j

∥∥∥
0

+ (1−
∥∥∥Sk+1

1j

∥∥∥
0
)B1j

...∥∥∥Sk+1
nj

∥∥∥
0

+ (1−
∥∥∥Sk+1

nj

∥∥∥
0
)Bnj

−
 | |
xk+1

1 . . . xk+1
m

| |

T yi
 (89)

=
∑
i,j

Āij

(∥∥∥Sk+1
ij

∥∥∥
0
− xk+1

i

T
yj

)2
(90)
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We follow the same procedure to solve this problem

yj ∈ arg min

{(
S̄j −Xk+1T yj

)T
Ã
(
S̄j −Xk+1T yj

)
+ ηjS̄j +

µky
2

(
yj − ykj

)(
yj − ykj

)T}
(91)

= arg min

{(
S̄j −Xk+1T yj

)T
Ã
(
S̄j −Xk+1T yj

)
+ ηjS̄j +

µky
2
yj
T yj − µkyyjT ykj

}
(92)

= arg min

{(
S̄Tj − yjTXk+1

)(
ÃS̄j − ÃXk+1T yj

)
+ ηjS̄j +

µky
2
yj
T yj − µkyyjT ykj

}
(93)

= arg min

{
S̄Tj ÃS̄j − S̄Tj ÃXk+1T yj − yjTXk+1ÃS̄j + yj

TXk+1ÃXk+1T yj + ηjS̄j +
µky
2
yj
T yj − µkyyjT ykj

}
(94)

Disregard constants

= arg min

{
−S̄Tj ÃXk+1T yj − yjTXk+1ÃS̄j + yj

TXk+1ÃXk+1T yj +
µky
2
yj
T yj − µkyyjT ykj

}
(95)

Once again, we can take the transpose of the second term and last term,

= arg min

{
−2S̄Tj ÃX

k+1T yj + yj
TXk+1ÃXk+1T yj +

µky
2
yj
T yj − µkyyjT ykj

}
(96)

= arg min

{
−(2S̄Tj ÃX

k+1T + µkyy
k
j
T

)yj + yj
T [Xk+1ÃXk+1T ]yj + yj

T [
µky
2
Ih×h]yj

}
(97)

= arg min

{
−(2S̄Tj ÃX

k+1T + µkyy
k
j
T

)yj + yj
T [Xk+1ÃXk+1T +

µky
2
Ih×h]yj

}
(98)

Letting φ = Xk+1ÃXk+1T +
µky
2 Ih×h and ϕ = 2S̄Tj ÃX

k+1T + µkyy
k
j
T

gives us the QCQP

arg min
{
yTj φyj − ϕyj

}
(99)

s.t. ‖yj‖2 ≤ b (100)

which we solve in CVXPY using the same function. To finish the problem we take Q = (S̄j −
Xk+1T yj)

T Ã(S̄j −Xk+1T yj) and find the partial gradient

∇yjQ = (−2S̄jÃ(Xk+1)T )T +Xk+1Ã(Xk+1)T yj + (Xk+1Ã(Xk+1)T )T yj (101)

= (−2S̄jÃ(Xk+1)T )T + 2Xk+1Ã(Xk+1)T yj (102)

which is Lipschitz continuous with Lipschitz constant µky =
∥∥∥2Xk+1Ã(Xk+1)T

∥∥∥
F

.

D Parameter Selection

In this section, we introduce how we select parameters for the competing algorithms.
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D.1 Paramter Selection for PriroSum

PriorSum constructs a predicted GRN by summing over weights from all prior networks P =
{P 1, ..., P d}. Therefore, PriorSum builds a GRN Pij =

∑
k P

k
ij and does not need to select any

parameters.

D.2 Parameter Selection for LassoStARS

LassoStARS [4] is the latest version of Inferelator, it takes an unweighted prior and gene expression
data as input. Because LassoStARS needs an unweighted prior network and the prior networks
we have are weighted prior networks, we choose different cutoffs to construct prior networks for
LassoStARS. We generate prior networks by assigning each gene the top N TFs based on the Pij .
For N , we set N = {10, 20, 30, 40} and we find that N = 10 performs the best and report the
results in Fig. 2. For other parameters used in LassoStARS, LassoStARS proposed a way to select
the optimal parameters, therefore, we do not need to select other parameters.

D.3 Parameter Selection for MerlinP

For reconstructing the GRN for yeast, MerlinP [5] use the same prior networks and gene expression
to build a GRN and reported in the repository https://github.com/Roy-lab/merlin-p. We
directly download the GRN they build and compared it with other methods.

D.4 Parameter Selection for NetREX

NetREX [2] is similar to LassoStARS, taking an unweighted prior and gene expression as input.
So similarly, we generate prior networks for NetREX by assigning each gene the top N TFs based
on the Pij . We set N = {10, 20, 30, 40} and we find that N = 20 performs the best and report
the results in Fig. 2. For the other parameters, we selected based on the suggestion provided in
https://github.com/ncbi/NetREX.

D.5 Parameter Selection for CF

We input CF [16] with Pij =
∑

k P
k
ij . The dimension of the hidden feature vector we set it to be

100, 200, and 300. The regulation term used by CF is set to be 0.1, 1, 10, 100. We try all those
combination and report the result with the best performance.

D.6 Parameter Selection for NetREX-CF

Based on the formulaiton of NetREX-CF (8), we know that we need to select h, λA, λS , ηij , λ,
and C̄ij . h is the dimension of the hidden feature vector. We find that h = {100, 200, 300} does not
change the performance much. For computational consideration, we set h = 100. Because λA and
λS are used as standard regulation to avoid over-fitting, we set λA = 1.0 and λS = 1.0 by default.
We introduce the selection of ηij and C̄ij in the following subsection.
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Selection of ηij We need to make sure F (S,X, Y ) is lower semi-continuous. We can first simplify
the equation into

F (S,X, Y ) = λ

∑
i,j

Ωij
(
‖Sij‖0 + (1− ‖Sij‖0)Bij − xTi yj

)2+
∑
i,j

ηij ‖Sij‖0

= λ

∑
i,j

(Cij + (C̄ij − Cij) ‖Sij‖0)
(
‖Sij‖0 + (1− ‖Sij‖0)Bij − xTi yj

)2+
∑
i,j

ηij ‖Sij‖0

=
∑
i,j

{
λ
[
C̄ij(1−Bij)(1 + 2(Bij − xTi yj)) + (C̄ij − Cij)(Bij − xTi yj)2

]
+ ηij

}
‖Sij‖0

+
∑
ij

Cij(Bij − xTi yj)2

(103)
F (S,X, Y ) is lower semi-continuous when the parameter before ‖Sij‖0 in the above equation is
larger than 0. After several manipulation, we find out we need to set ηij as following to make
F (S,X, Y lower semi-continuous.

ηij =

{
≥ 0, Bij = 1,

≥ λ CijC̄ij
C̄ij−Cij

, Bij = 0.
(104)

Selection of C̄ij Cij is the penalty when we want to use xTi yj to learn Bij = 1. Similarly, C̄ij is
the penalty when we want to use xTi yj to learn ‖Sij‖0 = 1. There are two siutations. First, when
‖Sij‖0 = 1 and Bij = 1, meaning the sparse NCA-based method confirms the edge in the prior,
then intuitively, we need to set C̄ij = αCij , α ≥ 1. Another situation is that ‖Sij‖0 = 1 and Bij = 0,
meaning the sparse NCA-based model confirms an edges recommended by the CF model but not
appeared in the prior networks. For this case, we set C̄ij ∈ [Cij ,max(C)], where max(C) is the
largest element in penalty matrix C. In sum, C̄ij = αCij‖Sij‖0Bij + β‖Sij‖0(1−Bij), where α ≥ 1
and β ∈ [Cij ,max(C)].

Consensus of Different Parameter Selections As explained in the previous, for ηij and C̄ij , we
know the range of these parameters but do not know the exact optimal values. For reconstructing
GRN for the yeast experiment, we set

ηij =

{
≥ θ, Bij = 1,

≥ λ CijC̄ij
C̄ij−Cij

+ θ, Bij = 0,
(105)

where θ = {0.1, 0.5, 1, 2}. And C̄ij = αCij‖Sij‖0Bij + β‖Sij‖0(1 − Bij), where α = {1, 2, 3, 10}
and β = 10, 20, 30, 40. For different set of parameters, we get a GRN and we get a set of GRNs
G = {G1, ...}, where Gi = XTY after applying all theses parameters. The final perdition is the

average overall predictions G∗ =

∑
iG

i

|G|
.
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