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Abstract 
Summary: We report SparkINFERNO (Spark-based INFERence of the molecular mechanisms of NOn-coding ge-
netic variants), a scalable bioinformatics pipeline characterizing noncoding GWAS association findings.  SparkIN-
FERNO prioritizes causal variants underlying GWAS association signals and reports relevant regulatory elements, 
tissue contexts, and plausible target genes they affect.  To achieve this, the SparkINFERNO algorithm integrates 
GWAS summary statistics with large-scale collection of functional genomics datasets spanning enhancer activity, 
transcription factor binding, expression quantitative trait loci, and other functional datasets across more than 400 
tissues and cell types.  Scalability is achieved by an underlying API implemented using Apache Spark and Giggle-
based genomic indexing. We evaluated SparkINFERNO on large GWAS studies and show that SparkINFERNO is 
more than 60-times efficient and scales with data size and amount of computational resources. 
Availability: SparkINFERNO runs on clusters or a single server with Apache Spark environment, and is available 
at https://bitbucket.org/wanglab-upenn/SparkINFERNO or https://hub.docker.com/r/wanglab/spark-inferno.  
Contact: lswang@pennmedicine.upenn.edu  

 
 

1 Introduction 
Genome-wide association studies (GWASs) have successfully identified 
over 70,000 genetic variants associated with more than 3,000 human dis-
eases and phenotypes (Buniello et al., 2019). Interpretation of these asso-
ciations remain difficult (Watanabe et al., 2017; Amlie-Wolf et al., 2018) 
as most GWAS hits are in the noncoding genome. Resolution of GWAS 
is limited as neighboring variants have similar associations due to linkage 
disequilibrium (LD) (Amlie-Wolf et al., 2018). Our recently developed 
INFERNO method (Amlie-Wolf et al., 2018) focuses on identifying po-
tentially causal variants underlying observed GWAS associations by inte-
grating with hundreds of functional genomics datasets. The current 
INFERNO implementation is not optimized for big data, and a scalable 
framework for annotating genetic variants and genomic regions generated 
by various human genetic studies in a high throughput manner is in need 
for systematic large scale genomic and genetic analyses.  

The scale and heterogeneity of functional genomics datasets and anno-
tations necessitate systematic, integrative analysis and interpretation of 
GWAS association findings. For example, while INFERNO (Amlie-Wolf 
et al., 2018) uses relatively small set of  functional genomics datasets, pro-
jects such as GTEx (Aguet et al., 2017), FANTOM5 (Andersson et al., 
2014) , ENCODE (Bernstein et al., 2012) and Roadmap Epigenomics 
(Consortium et al., 2015) produce >60,000 experimental datasets across 
>1,100 tissues, cell types, biological conditions, each with millions to bil-
lions of records across the genome. In order to pair these functional anno-
tations with modern population-level studies such as UK Biobank 
(500,000 individuals with >2,500 phenotypes), we need a scalable, high-
throughput, robust and easy to use software that can systematically inter-
pret hundreds of millions of genotypes across millions of participants. 

We implemented SparkINFERNO as a scalable, high-throughput auto-
mated workflow that integrates a large-scale functional genomics data re-
pository and processes GWAS results by performing LD analysis, func-
tional evidence evaluation and aggregation, Bayesian co-localization anal-
ysis of GWAS and eQTL signals, characterize the downstream regulatory 
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effects including the tissue contexts, regulatory elements, and target genes 
that they affect. We applied SparkINFERNO on inflammatory bowel dis-
ease (IBD) (Liu et al., 2015) and the International Genomics of Alz-
heimer’s disease (AD) GWAS datasets (Lambert et al., 2013) and show 
that this scalable framework is at least 60-times more efficient and able to 
identify the molecular mechanisms underlying noncoding GWAS signals. 

2 Methods 
We chose Apache Spark (Zaharia et al., 2016) and Python for a scalable 

implementation of INFERNO (Amlie-Wolf et al., 2018) (see Supplemen-
tary Table 1). The new SparkINFERNO is highly scalable, modular, and 
coupled with an integrated functional genomics data repository (Figure 1; 
Supplementary Figure S1; Supplementary Tables S1, S2). Analysis mod-
ules perform various types of genomic data integration to produce func-
tional evidence including tissue-specific regulatory elements (enhancers), 
transcription factor (TF) activity, chromatin states, and genetic regulation 
(eQTL) information. SparkINFERNO implements scalable genomic que-
rying (Supplementary Figures S2, S3) using Spark parallel transfor-
mations and Giggle-based genomic indexing (Layer et al., 2018). 
SparkINFERNO can be extended with additional annotation data and/or 
customized evaluation modules. Results are reported by individual evalu-
ation modules and as combined summaries (Supplementary Methods).  

SparkINFERNO accepts complete GWAS summary statistics or top 
GWAS association variants as the input and generates a list of potentially 
causal variants, affected tissue-specific enhancers and target gene(s) as the 
output.  The entire workflow consists of four phases (Figure 1): (1) Pre-
processing and QC of GWAS input; (2) Generating candidate set of po-
tentially causal variants, (3) Evaluating functional genomic evidence 
across genomic datasets in a tissue-specific manner including regulatory 
elements (enhancers); eQTL co-localization, transcriptional factor binding 
sites (TFBSs) and others for each GWAS locus/signal; (4) Aggregating 
evidence to infer prioritization of causal variants, including information 
on affected tissues/cell types, regulatory elements, TFs, and target genes. 
See Supplementary Methods for technical details. 

 
Fig. 1. Overview of SparkINFERNO 

 
The Pre-Processing phase takes raw GWAS summary statistics in a 

TSV format as input, resolves reference and alternative alleles, check al-
lele frequencies in the reference population (e.g., 1000 Genomes Project), 
and produce quality control flags. Quality control steps mark GWAS var-
iants with inconsistent alleles that could not be matched with reference 
genotype data (Supplementary Figure S4 and Supplementary Methods). 

The Candidate Set Construction phase expands genome-wide signifi-
cant associations into a putative causal variant set by pruning significant 
variants into a smaller set of independent variants using publicly available 
LD data (e.g. 1000 Genome), and then expanding these signals into puta-
tive causal sets consisting of nearby variants in LD. The user can specify 
the reference population in LD pruning/expansion to match the population 
underlying the input GWAS study. Supplementary Methods and Figure 
S4 provides details of the workflow for generating putative variant sets. 

The Evaluation phase executes Spark-based annotation jobs in parallel 
(Figure 1). SparkINFERNO uses an integrated repository of annotations 
for genomic elements (promoters, exons, introns, etc.), non-coding RNAs, 
regulatory elements such as enhancers, TFBSs, and others (integrated data 
and data repository implementation in Supplementary Table S2 and Figure 
S1).  The current SparkINFERNO implementation contains 3.5 billion ge-
nomic intervals from 2,342 tracks for 32 tissue categories.  

In the final Aggregation phase, SparkINFERNO combines functional 
evidence from individual genomic analyses and produces a list of candi-
date variants, enhancer elements, and genes with which they interact as 
supported by FANTOM5, Roadmap, GTEx, TF binding and other func-
tional evidence. SparkINFERNO performs co-localization analysis (Sup-
plementary Figure S5) of the GWAS and eQTL signals across genome-
wide significant loci using COLOC (Giambartolomei et al., 2014).  

To install SparkINFERNO, users can either install the package 
(https://bitbucket.org/wanglab-upenn/SparkINFERNO) on their own 
Spark cluster, or use a pre-created Docker image (wanglab/spark-inferno). 
To run SparkINFERNO, the user first edits the configuration file and 
provides input GWAS specifications. A complete run of SparkINFERNO 
produces candidate potentially causal variants, target genes, tissue 
contexts, regulatory elements, and detailed BED files documenting 
overlaps with functional genomics and annotation datasets. 

3 Results 
We evaluated SparkINFERNO on our AWS Spark cluster using pub-

licly available IBD and IGAP AD GWAS datasets containing 11,555,676 
and 8,080,502 variants respectively. For the IGAP GWAS dataset, 
SparkINFERNO took 993 seconds on a 16-core Linux server to complete 
the analysis, whereas the original INFERNO took 60,973 seconds.  
SparkINFERNO is 61-times faster (Supplementary Figure S2) and scales 
well with the amount of computational resources (Supplementary Figure 
S3). SparkINFERNO identified 1,418 and 15,343 candidate causal vari-
ants and 149 and 1,002 co-localized target gene-tissue combinations for 
IGAP and IBD, respectively. As can be seen from distribution of identified 
overlaps across functional genomics datasets and tissue types (Supple-
mentary Figures S6 and S7) SparkINFERNO identifies genes and tissues 
that are likely important for the disease etiology. 
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