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Abstract

Oxford Nanopore (ONT) is a leading long-read technology which has been revolutionizing
transcriptome analysis through its capacity to sequence the majority of transcripts from
end-to-end. This has greatly increased our ability to study the diversity of transcription
mechanisms such as transcription initiation, termination, and alternative splicing. However, ONT
still suffers from high error rates which have thus far limited it scope to reference-based
analyses. When a reference is not available or is not a viable option due to reference-bias, error
correction is a crucial step towards the reconstruction of the sequenced transcripts and
downstream sequence analysis of transcripts. In this paper, we present a novel computational
method to error-correct ONT cDNA sequencing data, called isONcorrect. IsONcorrect is able to
jointly use all isoforms from a gene during error correction, thereby allowing it to correct reads at
low sequencing depths. We are able to obtain an accuracy of 98.7-99.5%, demonstrating the
feasibility of applying cost-effective cDNA full transcript length sequencing for reference-free
transcriptome analysis.

Introduction

The sequencing of the transcriptome using long reads has proven to be a powerful method for
understanding the transcriptional landscape of a cell (Wyman et al., n.d.; Bayega et al. 2018;
Byrne, Cole, et al. 2019). Long-read technologies allow sequencing most transcripts end-to-end,
thus overcoming the complex transcriptome assembly step required with short reads (Gordon et
al. 2015; Liu et al. 2017). In particular, the Oxford Nanopore (ONT) platform is a leading
technology for long read transcriptome sequencing, due to its portability, low cost, and high
throughput (Sessegolo et al. 2019; Jenjaroenpun et al. 2018). It has enabled the study of
alternative splicing patterns (Byrne et al. 2017), allele-specific expression (Byrne et al. 2017) or
typing (Cole et al. 2019), RNA modifications (Leger et al. 2019; Sessegolo et al. 2019;
Wongsurawat et al., n.d.), the discovery of novel isoforms (Workman et al. 2019; Clark et al.
2019; Sessegolo et al. 2019), and species identification in metatranscriptomic samples
(Semmouri et al. 2019).

However, the scope of ONT transcriptome studies to date has been limited because of its
relatively high error rate — about 14% for both direct RNA and cDNA sequencing (Workman et
al. 2019). The most common approach to overcome this limitation is to align the reads against a
reference transcriptome (e.g. GENCODE for human) (Wyman et al., n.d.; Workman et al. 2019).
This makes the technology of limited use when a high-quality reference is not available, ruling
out many non-model organisms. In addition, even when a reference is available, it does not
usually capture sequence differences between individuals, cells, or environments, causing
misalignment of reads from missing or highly variable loci. This has been shown to be
particularly problematic in complex gene families, where a reference does not capture the high
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sequence diversity between individuals (Sahlin et al. 2018). There are several experimental
approaches to reducing the error rate (Lebrigand et al. 2019; Cole et al. 2019; Volden et al.
2018), but these typically come at a cost of decreased throughput and experimental overhead.

Computational error correction, on the other hand, is a highly promising approach to reduce
error rates without affecting throughput or the need to customize experimental protocols. There
are tools designed to correct errors in genomic reads ((Koren et al., n.d.),(Tischler and Myers,
n.d.), (Salmela et al. 2016), (Xiao et al. 2017), (Chin et al. 2013)). But, transcriptomic error
correction is challenging and differs from the genomic case because of structural variability
within reads from the same gene or gene-family locus and because of highly variable and
region-specific coverage within reads due to, e.g., alternative splicing, variable transcription start
and end sites, and variable transcript abundances. In‘fact, a recent study found that applying
error correctors designed for genomic reads to ONT transcripiome data had undesirable
downstream effects, such as altering the isoform landscape by omitting or adding exons through
over-correction, or by splitting.reads'at low coverage sites (Lima et al. 2019). To achieve the
potential of error correction on ONT transcriptomic data, custom algerithms have to be
designed. Recent papers have tackled clustering (Sahlin and'Medvedev 2019; Marchet et al.
2019) and orientation problems for this data (Ruiz-Reche et al. 2019) but there is currently no
tool available for error correction of ONT transcriptomic reads.

In this paper, we present.a method for error correction transcriptome cDNA ONT data that
reduces the error rate,torabout 1%, thereby demonstrating the feasibility of applying
cost-effective cDNA full transcript length sequencing for reference-free transcriptome analysis.
We are able to achieve these error rates through a novel computational error correction method
called isONcorrect, which leverages the sequence regions shared between reads originating
from distinct isoforms. IsONcorrect is available for download at
https://github.com/ksahlin/isONcorrect. We evaluate the method using Drosophila cDNA data
generated using a modified stranded PCS109 protocol, PCS109 spike-in (SIRV) data, and in
silico data. Our method opens the door for much broader application of ONT transcriptome
sequencing.

Results

We used one biological, one synthetic, and one simulated dataset (Table 1) to investigate the
effects of error correction on read quality, error type, splice site accuracy. We also measured the
effect of read depth and parameters on the correction algorithm's accuracy and runtime and
memory usage. We present the results in this section and refer the reader to the Experimental
Methods and Data Analysis Methods subsections for the relevant respective details.
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Error rate analysis

We sequenced the transcriptome of a Drosophila sample using ONT, with a total of 4,350,977
reads with median length 538nt (Table 1). From these, we identified 3,747,729 reads as being
end-to-end, which we call full length, and error corrected them with isONcorrect. To measure the
error rate before and after correction, we aligned the reads to the Drosophila reference genome
(assembly BDGP6.22) using the spliced mode of minimap2 and counted the number of
mismatches (defined as any insertion, deletion, or substitution in the alignment). We compute
the error rate as the number of mismatches divided by alignment length. Errors in the reads are
reflected by mismatches in the alignment; however, mismatches may also result from true
biological variation in the sample and from alignmenterrors or artifacts. Nevertheless, we expect
the mismatch numbers to be a reasonable proxy for the relative improvement in error rates.
Results for before and after error correction with isONcorrect are shown in Fig. 1A. The
mismatch rate decreased from a median of 7.0% to a median of 1.3% (Table 1).

Due to the confounding of sequencing error with biological variation, we also generated a
simulated dataset. We extracted 10,367 distinct transcripts from the ENSEMBL annotation of
human chromosome 6 and simulated fulltength reads at controlled abundances (in the range of
1 to 100) from transcripts (Table-1) (for details of the simulations, see Supplementary Note B).
Since sequencing errors were annotated as part of the simulated sequencing process, we could
measure the error rate directly. As with real Drosophila data, we found that isONcorrect
significantly reduces errors, with the median error rate decreasing from 6.95 to 0.6 (Table 1).

Unfortunately, while eliminating the effect of biological variability on error rate measurement,
simulated data does not capture the full scope of errors and biases present in the real data. We
therefore also evaluated isONcorrect on SIRV EO (Spike-in RNA Variant Control Mixes) data.
Our SIRV dataset consists of 68 synthetic transcripts from 7 different loci sequenced with ONT
R9 technology (see Experimental Methods for details). The transcripts from each locus differ in
their splicing pattern but not in any other mutation. With the SIRV dataset, we have the
properties of real sequencing errors and eliminate the confounding effect of biological variation
on measuring error rate. The downside of SIRV is that it does not represent the mutational
complexity of a real genome. With these caveats in mind, we measured the error rate by
aligning the reads to the sequences of the 68 true transcripts using minimap2 and assuming
that any alignment mismatch is due to an error (see Data Analysis in Methods for details).
Results for before and after error correction on the full SIRV dataset with isONcorrect are shown
in Fig. 1B. The median error rate was 6.9% before error correction and 0.5% after (Table 1), a
significant reduction.

Error profiles

We also investigated the error profiles of the datasets before and after correction. The SIRV
dataset enabled us to measure the profile of sequencing errors without the confounding effect of
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biological variations. We note that the overall error rate prior to correction (about 7%, Table 1)
was lower than previously published cDNA ONT datasets (about 14%, (Workman et al. 2019)),
likely due to improvements in the base calling software. The median substitution, insertion, and
deletion rate was 2.2%, 1.9%, and 2.6%, respectively (Fig. 1C). We observed a similar
distribution for Drosophila (2.3%, 1.7%, and 2.8%), with the caveat that it also includes true
biological variation (Fig. 1C). Error-correction substantially reduced the error rate in each
category. The median substitution, insertion, and deletion rates of SIRV reads fell to 0.0%,
0.0%, and 0.3%, respectively, after correction (Fig. 1C). Most of the remaining errors were
deletions, indicating that this is the hardest error type for isONcorrect to correct.

Effect of read depth

The amount of reads generated from a transcript (i.e. its read depth or simply depth) is typically
an important factor in determining whether a tool can correct the errors in the read. To explore
this in isONcorrect, we first used simulated data, for which we know the precise read depth per
transcript. As expected; the post-correction error rate decreased‘as-a function of depth (Fig.
2A). Compared to the median pre-correction rate of about 6.95%, the median post-correction
rate ranged from about 3% for depth of one, 2% for depth of 2 to 3, and 0.5% for depths of 10 or
more. Next, we looked at the SIRV data. Since the SIRV dataset has very high coverage, we
used a subsampling strategy to investigate the error rate per sampled transcript depth (details in
Data Analysis in methods-section) . The error rate decreased consistently for read depth up to
10, but did not improve-for larger read depths (Fig. 2B).

We note that isONcorrect remains very effective at low read depths, i.e. for read depth one, the
error rate is already reduced from 7% down to 4% in SIRV and to 3% in simulated data. This is
due to isONcorrect's ability to jointly use all isoforms from a gene during error correction, which
combines information across all the transcripts with shared or similar exons. For example, the
SIRV data has 7 gene loci with several splice variants each (between 6-18), meaning that each
exon will have higher coverage than any individual transcript.

Splice site accuracy and transcript recovery

One of the potential benefits of error correction is obtaining nucleotide-level resolution of splice
sites. Simultaneously, correction around borders of splice junctions is known to be challenging
and may alter the splice site, particularly if it is present only at low abundances (Lima et al.
2019). Since the Drosophila reference genome has high quality gene annotations, we used
alignments to classify each read according to how it matches the annotated splice sites, using
the terminology of (Tardaguila et al. 2018) (see Data Analysis in Methods).

As expected, we observed more reads fully matching an annotated transcript (FSM) after
correction (Fig. 3A). We did not see any novel combinations of splice sites (NIC) in the reads
before or after correction. This is not surprising given the high quality annotation of the
Drosophila genome. However, it did underscore a positive aspect of ONT sequencing, which is
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that no artificial transcripts have been constructed in the experimental steps of generating the
data, such as reverse transcriptase template switching.

We did observe slightly more reference transcripts that have at least one FSM read in the
original reads compared to corrected reads (13,062 and 12,990, respectively, with 173 lost and
101 gained) and investigated the lost transcripts after correction as a function of how abundant
they were in the original reads (Fig. 3B). Out of the 173 transcripts that were not captured by a
FSM read after correction, 108 and 36 of them had only one and two FSM original reads,
respectively, and all of them occurred in less than 12 original reads. Therefore, a consequence
of our correction algorithm is that the lowest abundant transcripts may be mis-corrected.
However, we also observed 101 transcripts had no FSM support before correction but did after
error-correction. As the error correction is reference-agnostic, this is likely due to reads from
annotated transcripts that were misaligned around splice sites prior to.correction, and highlights
the benefit of reference-free error correction.

Overcorrection

One pitfall of using an alignment-based evaluation method is when the error correction
algorithm maodifies non-erroneous positions of.a read in a way that the read more closely aligns
to the reference genome. A typical example is when there are two highly similar transcripts A
and B and a read that comes from transcript A but is corrected by the algorithm to transcript B.
Such overcorrection‘is ‘an undesirable artifact because it misrepresents the biological sample;
however, when using an alignment-based evaluation method, overcorrection can go undetected
because it can actually improve the inferred error rate. Nevertheless, we were able to measure
the presence of overcorrection using our simulated dataset, where the true transcript is known.
We classified a read as overcorrected if the read has an edit distance smaller to a transcript
other than the true transcript. This is computed by first aligning reads with minimap2, and then
comparing the edit distance of minimap2’s primary alignments to the edit distance to the true
transcript. The overcorrected reads made up less than 1.0% (374 out of 59,440) of the total
reads. Note that a small fraction of the reads, particularly from highly similar transcripts, may be
included in our definition of overcorrected because initial sequencing errors made them more
similar to another transcript then the original one; these are really instances of not enough
correction rather than overcorrection.

To investigate further, we measured how much closer the overcorrected reads were to the
incorrect transcript. We computed the overcorrection distance for a read as the edit distance of
the read to its true transcript minus the edit distance to its closest aligned transcript. We then
plotted the overcorrection distance together with the abundance of the true transcript, for the
overcorrected reads (Fig. 4). We found that this distance was small for the vast majority of the
reads, i.e. 5 or less positions in >76% of the overcorrected reads. In addition, the overcorrection
was mostly limited to reads at low abundances, with 55% of overcorrected reads coming from
transcripts with an abundance of < 5. This indicates that overcorrection was mostly limited to

transcripts at very low abundances, as opposed to larger exon-level miscorrections.
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Effect of heuristics and parameters

For large clusters, isONcorrect uses a heuristic approximate algorithm (see Methods). While this
reduces the runtime, it has the potential to reduce the quality of the results. We therefore
investigated the accuracy between the approximate and exact mode using controlled
subsampled reads from the SIRV dataset (see Data Analysis for details). As expected, we
observed a decrease in accuracy in approximate mode compared to exact mode-across all
different £ and w, with the difference in accuracy decreasing as read depth increases (Fig. S1).
However, the accuracy differences between the two modes were negligible compared to the
improvements over the uncorrected reads.

We also investigated the effect of parameter choices for the k-mer size k, and window size w,
and the maximum anchor distance x,,,.. We observed minor effects across-different £ and w
(Fig. S1). However, isONcorrect performs well over all the tested values of kand w, with the
difference being minor compared to the overall effect of correction and of the read depth
Overall, we obtained slightly better results for £ =9-which we set as the default value to
isONcorrect. As for the maximum anchor distance, we saw a minor improvement in longer
spans (80-100) compared to 40 (Fig. S2),-and this informed us to set default value of x,,,, = 80.
We generally conclude, however, that parameter values within the tested ranges have only a
minor effect on accuracy.

Runtime and memory

We measured runtime and memory of isONclust and isONcorrect (Table 2). We used a machine
with an x86_64 system running Linux v3.2.0-4-amd64 and equipped with 32 2-threaded cores
and 512 GB RAM. We allowed isONclust to use 50 threads and isONcorrect to use 62 threads.
While isONclust is relatively fast, the correction with isONcorrect takes significant time (over 2
days). Given the time investment into the sequencing protocol, we consider this time expense
tolerable. However, we hope to speed up isONcorrect in the future by allowing parallelization
across nodes, making it possible to speed up correction by running it on a multi-node cluster.
For the full SIRV dataset, the runtime was dominated by the largest cluster with contained
roughly half of the reads (597,877). In such extreme cases, the reads could be partitioned into
sub-clusters and parallelized, possibly with expense to accuracy.

As for memory usage, the current memory usage require a large memory cluster to run. We
note that in our simulated data, some transcripts were very long (>20,000 nucleotides). This
resulted in a relatively large memory consumption given the number of reads, compared to the
SIRV and Drosophila data. It is possible to decrease memory usage in several ways, such as
increasing w or decreasing x4, at the potential cost of accuracy. However, the memory
footprint can be greatly reduced by implementing isONcorrect in C++ or storing minimizers and
paired anchors in more efficient data structures (Chikhi, Holub, and Medvedev 2019).
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Methods

isONcorrect algorithm

Algorithm overview

The input to our algorithm is a cluster of reads originating from transcripts of a single gene
family. Such clusters can be generated from a whole-transcriptome dataset by using our
previously published tool isONclust (Sahlin and Medvedev 2019). Each cluster is then
processed individually and in parallel with-isONcorrect: The goal of isONcorrect is to correct all
the sequencing errors. The challenge that makes this problem different from error-correction of
genomic data is the highly.uneven coverage within different regions-of the read, and structural
differences of similarreads, both arising from'exons differences due to alternative splicing, as
well as alternative start and stop sites.

Our ideais to partition each read into intervals and then error correct each interval separately
where the intervals should not-cross exon and intron boundaries. Our strategy for partitioning of
the read into separate intervals is based on a related idea used in the context of genomic error
correction (Morisse et'al. 2019), but we adapt it to the transcriptomic context. As structural
differences and variable coverage is at the heart of transcriptomic error correction, we solve the
partitioning problem by formulating it as a global (with respect to the read) k-mer anchor
optimization problem over anchor depth.

It is desirable that each interval is found in as many reads as possible for improving the power
of error correction. For a given cluster, we obtain intervals spanned by paired minimizers (as
described in previous section). Then, for each read, roughly speaking, we find the set of
non-overlapping intervals that jointly covers as much of the read as possible, and are found in
as many of the other reads a possible. We solve this problem by solving the Weighted Interval
Scheduling (WIS) problem.

Intuitively, by optimizing for the most common minimizers pairs, the solution is likely to contain
only intervals that has (a) good support in other reads to be corrected confidently, and (b)
minimizers are both correct and can be trusted as anchors in the local regions. Additionally, by
optimizing over total spanned region, our correction will correct as much of the read as
confidently possible. An additional feature of locally correcting reads in intervals is that it gives a
natural way of correcting exon regions, where multiple alignment methods would fail to align
noisy reads over exon boundaries.
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The steps of the algorithm are illustrated in Fig. 5. We now give the relevant definitions, then go
in detail through the steps of the algorithm, and finally describe heuristic modifications to
improve run-time.

Definitions

Let » be a string of nucleotides that we refer to as a read. Given two integers £ and w such
that 1 <k <w <|r|, the minimizer of r at position p is the lexicographically smallest substring
mof length k that starts at a position in the interval of [p, p +w) . We then say that » has a
minimizer m, or, alternatively, has a positional minimizer (m,p) . For.example, for

r = AGACCAT, k=2, w=3 we have that the ordered set M = {(m,,p,)} of positional
minimizers are M = {(AG, 0), (AC, 2), (CA, 4), (AT+'5)}. Let x,,,, and x,., be two positive
integer parameters, where we call x,,,, the. maximum paired anchor distance . Then we let
W= {((m,p), (m;,p))) € M x M | X, <p, —p; <xmax} be the-ordered set (according to
increasing p; then p; ) of paired positional minimizers separated by atlleast x,,, and at most
Xmax NUcleotides in ». Similarly, we let S, = {(m;, m))| (Gmyp;), (m;,p;)) € W, } be the
sequence of paired minimizers, i.e. W, with the pasitions omitted but duplicates retained. For
example, the above set of minimizers with- %, .- = 2, X, = 3 gives

W, ={((AG, 0), (AC, 2)), ((AC, 2)y(CA; 4)), (AC, 2), (AT, 5)), (CA, 4), (AT, 5))} and

strW, =(AG,AC), (AC,CA), (AC,AT), (CA,AT). Given a set of reads R, we let 7 be the union
of all W, for the reads)in' R and we let S#W be the union of all St#W, .

The weighted interval scheduling problem takes as input a set of intervals 7 = {i,,...i,} , where
i; € [a;,b;], a;,b; € R and aq; <b,;, and a weight w; associated with each i;. The output is a
subset I' €I of non-overlapping intervals whose sum of weights is maximized. The weighted

interval scheduling problem can be solved exactly using a dynamic programming algorithm that
runs in O(nlogn) time, where n is the number of intervals (Kleinberg and Tardos 2013)

Algorithm details

For a given cluster, we first generate all the paired positional minimizers st W of the reads.
Then for each read » we will construct a weighted interval scheduling instance (Step 1). Each
positional minimizer pair ((m,,p),(m,,q)) € W,defines an interval on r that is spanned by, but
does not contain the minimizers, i.e [p+k,q). The interval is given the weight a(q, —p, — k),
where a denotes the support of the interval. We compute the support as the number of
occurrences of (m,,m,)in strW, whose intervals have a similar sequence to the one spanned
by (m,,m,)in r, and this is computed as follows. Let »'# r be a read containing (m,,m,) with
coordinates (p',q") in ¥andlet s =r[p :q +k] and s’ =7'[p’ : ¢’ +k] be substrings of r and
r' spanned by, and including, the minimizer windows. We consider that s’ has similar sequence
to s if ==L

Isl

< Q, where Q is the allowed relative distance decided from the quality values in
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s and s'. Here, ed(-) refers to the edit distance between the two segments. We use edlib
(Sosi¢ and Siki¢ 2017) to calculate the edit distance. If a read has multiple (possibly disjoint)
intervals matching a single interval of », only the most similar one according to edit distance is
considered.

Next, for the read r we send the instance of all intervals and their weights to a weighted
interval scheduler (Step 2) and obtain an optimal solution by solving the weighted interval
scheduling problem in O(n logn) time using classic dynamic programming algerithm. Intuitively,
this gives us a set of disjoint intervals in r, with a preference of a combination of intervals that
are highly supported and covering as much of the read as possible.

For each interval obtained in the WIS solution, we send for correction the substring of the read
and all the supporting substrings. The correction is performed as follows. We create a
consensus substring ¢ of all the m ‘substrings included in the instance by forming a partial order
alignment graph (Lee, Grasso, and Sharlow 2002) using SPOA (Vaser'et al. 2017), then
choosing the consensus based on the heaviest bundle algorithm (Lee 2003) (Step 3). We then
perform error correction of the substring with respect'to the consensus (Step 4), as follows.

First, we create a multi-alignment matrix 4 from pairwise alignment of all the substrings to the
consensus (we use the method described in (Sahlin et al. 2018)). We then identify all sufficiently
covered variations with respect to'the consensus and include them as alternative references.
These alternative references together with the spoa consensus forms the set of sequences that
we will correct the read subsequence to.

Let ¢; denote the nucleotide at position j in spoa consensus ¢ and ¢, denote the substring of
nucleotides between position j and j'. For each position j in ¢ we construct alternative

references as follows. We identify the subset of columns 4 in A to where the kmer

L jktk

context ¢; ;. is aligned. We denote ¢, ;.. , 4., 4., and any row a;, ., .., (i.e., aligned read)

in 4 as ckj, akj , and Akj for simplicity. Now, as alternative references at position i we store all
ml

. k . . .
rows in A4 j that occur more than m times as alternative references, together with

the variant over position ;j that the alternative reference support. Here H(:)is the homopolymer

compression function. We compress contexts to reduce alternative references based on
homopolymer length differences solely, as these regions are more error prone to deletions. This
means that, at each position j in 4 we have one primary variant and reference (based on the

sequence of ¢), and zero or more alternative references and variants that passed the
abundance threshold.

We now correct the substring a; of aread i at position j (denoted g, ) as follows. If position j
has alternative references, we let a; equal the nucleotide to the primary or alternative reference
with lowest edit distance to akj . In case of only the primary reference, we set a; =c; .
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Heuristic modifications

We refer to the algorithm we have described up to this point as exact. We find that it works fast
in practice for clusters of small and medium size clusters (i.e. for clusters with tens or hundreds
of reads). However, for large clusters with thousands of reads this algorithm can be slow, and in
this section we describe how we modify the exact algorithm to make it faster. We refer to the
modified algorithm as "approximate." The time bottleneck is in steps 1, 3, and 4. Firstly, we
repeatedly call edlib to calculate edit distance for all reads, regions and identical minimizer
combinations. Secondly, we repeatedly do error correction by using spoa and creating the
multi-alignment matrix. We take the following action to reduce -the running time.

Recall that when error correcting a given read segment s, we identify all other read segments s’
that support s and build an alignment matrix A4 . In the approximate version, we use the
opportunity to also error correct all other segments s’, using the same alignment matrix 4. For
each s’, we store the corrected substring, the support of the instance, as well as the start and
end position within the given read as information in a/hash table, indexed by the read id. At the
time of correcting a read, this hash table will be.queried to identify the previously processed
regions in this read. The processed regions may overlap. We do not compute the support for
these processed regions (Step 1),.and instead use the support stored in the hash table. If the
processed region is then selected in the WIS solution, error correction is not done as per steps
3-4; instead, the corrected substring stored in the hash table is used directly. The approximate
algorithm greatly reduces the runtime, as many segments are already computed and corrected
in previous iterations.

We also make other heuristic modifications, in addition to the approximate algorithm. We
introduce a parameter max_seq_to_spoa to limit the amount of sequences that goes into
forming the consensus for very large clusters with spoa (default 200). This reduces runtime
without noticeable effect in accuracy. We also mask positional minimizer pairs that contain only
A’s in both anchors. This is because many transcripts have a poly A tail, leading the minimizer
database to be redundant and repetitive in these regions. Finally, we limit to process max_seq
reads at a time within a cluster (default 1000).

As w will affect runtime and memory, we set appropriate w based on the number of reads in
the batch to correct, where w is chosen as follows: w = k+ floor{|C|/500} where |C| is the
size of the cluster.

Experimental

D. melanogaster total RNA was isolated from adult W1118 flies according to the protocol
outlined in Supplementary Note A and sequenced according to the PCS-109 protocol
(https://community.nanoporetech.com/protocols/cdna-pcr-sequencing_sqgk-pcs109/v/PCS_9085
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~v109_revJ 14Aug2019). Primers were modified so that only the forward primer contained
rapid attachment chemistry, resulting in single end adaption of the cDNA representing the 5' end
of the RNA molecule (stranded sequencing). For amplification of the first strand cDNA, 12
cycles were used and 100 fM of library was loaded onto a FLO-MIN106 flowcell and sequenced
for 48 hrs on the GridlON system. Basecalling was performed in real time using guppy 3.4.8.

Synthetic spike-in transcripts made by Lexogen (SIRV EO): https://www.lexogen.com/store/sirvs
SIRV EO polyA RNA (Lexogen) (1ng) was used as a template for reverse transcription for use in
the PCS-109 cDNA by PCR sequencing kit (Oxford Nanopore) Following.the manufacturer’s
instructions (see link above). For amplification of the first strand cDNA, 12 cycles were used and
100 fM of library was loaded onto a FLO-MIN106 flowcell and sequenced for 48 hrs on the
GridION system. Basecalling was performed in real-time using guppy 3.4.8. Only a subset of
pass reads with mean base quality larger than 7 were uploaded.

The SIRV and Drosophila data has been deposited into the ENA under project accession
number PRJEB34849;.to be released prior to_publication.

Data Analysis

Computational processing of the read data

To identify full length:reads among the reads sequenced with ONT we ran pychopper
(https://github.com/nanoporetech/pychopper, commit 6dca13d) on Drosophila and SIRV
datasets that identifies and removes forward and reverse primers, and splits eventual chimeric
reads containing more than one transcript (barcodes in the middle). Only reads deemed to have
both a forward and reverse primer are used for downstream analysis. Pychopper2 was run with
default parameters and 50 cores.

To process the full length reads into gene-clusters, we ran isONclust with default ONT
parameter settings using the flag ‘--ont’ that sets (-w 20, -k 13). We ran isONcorrect with
parameters (for all datasets) of "k= 9, --xmin 2k, --xmax 80", and w is chosen adaptively.

Inferring read error rates from alignments

For drosophila data, where it is unknown which transcripts are sequenced, and novel transcripts
compared to annotated transcriptome may be present, we infer read error rates by doing a
spliced alignment of reads to the Drosophila reference genome (assembly BDGP6.22) using
minimap2 with parameters: -w4 -k 14 -ax splice --egx. The -w 4 is supposed to be more
sensitive but higher runtime than the recommended parameters for ONT transcript reads. We
then infer insertions, deletions, substitutions from extended cigar strings of the primary
alignments (with reads that are unaligned omitted from the analysis). However, we make the
following modification not to count small introns as deletions. For a deletion in the cigar string of
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the genomic alignment, we check whether the coordinates for the deletion matches a previously
annotated intron from database Ensembl release 97 annotated on assembly BDGP6.22. If the
deletion start and stop coordinates matches the intron annotation, we do not count it towards a
deletion. We then say that for a read, the "% difference to the genome" is the total number of
insertions, deletions, and substitutions divided by the alignment length, which is the total
number of insertions, deletions, substitutions and matches.

For SIRV data, where we have the true transcripts present in the sequencing material, we infer
read error rates by aligning reads to the transcriptome consisting of 68 synthetic transcripts
using minimap2 with parameters -w4 -k 14 -a --eqx. We infer insertions, deletions, substitutions
from the extended cigar strings of the alignments, but do not make the madification for intron
deletions as we did for genomic alignments. The mismatch rate is computed as the sum of
insertions, deletions, and substitutions divided by the alignment length.

SIRV subsampling experiments

The 68 SIRV transcripts contain five transcripts that are perfect substrings of other larger
transcripts. These substring transcripts confound the'alignments of the reads and the error rate
calculations, so we filtered them out for this analysis, We aligned the 1,287,612 full-length SIRV
reads to the remaining 63 of SIRV transcripts.'"We then ran 100 experiments, with 10 replicates
in each. For each value of y between1 and 100, we subsampled y aligned reads from each
transcript. This resulted in.a dataset of 63 -y reads with an expected read depth of y. For each
vy, we did 10 replicates,” to alleviate sampling variation. This gave a total of 1000 experiments.
For each experiment, we clustered the reads with isONclust (git commit 8ba49e) with default
parameters for ONT data. Then, we ran isONcorrect on the clusters, using the default
parameters k=9, xmin=2*k, xmax=80. We also set the parameter --exact_instance_limit 50, that
computes exact mode for clusters smaller than 50 reads.

Splice sites

To classify Drosophila reads, we use minimap2 to align reads to the Drosophila reference
genome. We classify as a splice site everything that minimap2 flags as an intron location or any
deletions (relative to the reference) whose start and stop sites match a true intron annotation in
the ENSEMBL annotations. The second condition is necessary not to count small introns that
are preserved in the reads but flagged as deletions in the alignment due to their small size (we
observed introns as small as only two bases). We then match the splice sites of the alignments
to existing Drosophila annotations and classify the transcripts according to the four categories
defined by (Tardaguila et al. 2018) as follows. A transcript is a full splice match (FSM) if all its
start and stop splice sites are in the database annotation and the particular combination of start
and stop splice sites matches that of a known transcript; incomplete splice match (ISM) if all its
start and stop splice sites are in the database annotation and they match match a consecutive
subset of start and stop splice sites of an annotated transcript; novel-in-catalogue (NIC) if all the
individual start and stop splice sites are in the database annotation but they create a new
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combination of start and stop splice sites, or; novel-not-in-catalogue (NNC) if the transcript has
at least one splice site that is not in the database.

Effect of parameters and heuristics experiments

First we aligned all SIRV reads to the 68 distinct transcripts (we observed the coverage shown
in plot Figure S2). We then subsampled, without replacement, 3, 5, 10, and 20 reads that had
unambiguous primary alignments from 4 randomly selected transcripts, with the requirement
that the transcript had more unambiguous primary alignments than the required subsample size.
We run isONcorrect on these datasets and measure the error rate of the,corrected reads using
both exact and approximate correction. We repeat the above experiment 10 times to alleviate
variation from picking specific transcripts and reads.

Discussion

We presented a novel computational tool isONcorrect to error correct cDNA reads from Oxford
Nanopore Technologies. On a Drosophila dataset, the raw data had an initial mismatch rate of
7.0%, which isONcorrect further decreased to 1.3%: This is a drastic improvement over
previously published ONT transcriptome mismatchrates of about 14% (Workman et al. 2019).
Compared to the R2C2 (Rolling Circle Amplification to Concatemeric Consensus) method,
which modifies the experimental-protocol, our approach does not decrease the throughput and
achieves a significantly-better mismatch rate (2.5% for R2C2) (Byrne, Supple, et al. 2019;
Volden et al. 2018; Byrne, Cole, et al. 2019).

Evaluating the error rate of a transcriptome read error-correction tool is a challenge due to, on
the one hand, the presence of biological variation and alignment ambiguity in real data, and, on
the other hand, the limitations of simulated and synthetic data. In this paper, we took the kitchen
sink approach and evaluated isONcorrect's performance on all these datasets. Our results
showed consistent performance (Table 1), with the resulting mismatch rates between 0.5 - 1.3%

One of the underlying strengths of the isONcorrect algorithm is its ability to error correct reads
even if there are as little as one read per transcript. The idea is to leverage exons that are
shared between different splice isoforms. To achieve this, we pre-process the reads using our
isONclust clustering algorithm, which clusters reads according to the gene family of origin. This
strategy is in sharp contrast to approaches which cluster based on the isoform of origin. Such
clustering results in low read coverage per transcript (Sahlin and Medvedev 2019), particularly
for genes expressing multiple isoforms with variable start and stop sites and makes error
correction unable to utilize full coverage over shared exons. By using isONclust to cluster at the
gene family level, each read retains more complete exon coverage and helps the correction
process preserve allele- or copy-specific small variant differences between transcripts that
otherwise share the same structure. This effect is shown in our experiments, where there is
already a significant reduction in the error rate (down to 3-4%) for transcripts with just one read.
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IsONcorrect relies on two additional key algorithmic components to achieve scalability and high
accuracy. First, we are able to partition the reads within a cluster into exon-like segments in a
way that maximizes the read depth of each segment by formulating the problem as an instance
of the classical weighted interval scheduling problem. This scheduling problem can then be
solved optimally using an efficient and exact dynamic programming algorithm (Kleinberg and
Tardos 2013). IsONcorrect is then able to separately correct the regions produced from the
scheduling solution, where each region can have highly variable coverage but the coverage
within a region is roughly equal. Second, we identify heuristic optimizations that drastically
speed up our algorithm and adaptively apply them when the expected run-time is expected to
be slow. We show empirically that these heuristics do not significantly reduce the accuracy.

There exist other algorithms for reference-free error.correction of long transcriptomic reads that
are specific to the Pacific Biosciences Iso-Seq platform. These include ToFU/isoseq3 (Gordon
et al. 2015) and IsoCon (Sahlin et al. 2018), which perform both clustering and error correction
and the final result is predicted unique transcripts. Isoseq3 is inherently limited to Iso-Seq data,
while IsoCon, which is-intended fortargeted sequencing data, assumes high exon coverage and
is not designed to handle variable start/end sites, which ‘are ubiquitous in non-targeted datasets.
Other approaches use short read data for error:correction of long IsoSeq reads (Fu et al. 2018;
Hackl et al. 2014).

There also exist several methods for error correction of ONT genomic data, both long-read-only
and hybrid (short+longreads). We do not compare against these because a recent
comprehensive benchmark showed that applying these to transcriptome data is problematic
(Lima et al. 2019). While these tools reduced the error rate from about 13% down to 4%, all the
tools also reduced the number of detected genes, gene family sizes, and the number of
isoforms; they also reduced the number of detected splice sites and split reads up in low
coverage regions. Similar findings were also observed in (Kuo et al. 2019) for genomic error
correctors applied to PacBio's IsoSeq transcriptome reads. Given that genomic error correction
tools alter the structural landscape of these reads, we do not consider them useful for most
transcriptome applications.

The protocol used in this paper is based on the sequencing of cDNA, but there also exists a
ONT protocol to sequence RNA directly (Jenjaroenpun et al. 2018; Smith et al. 2019; Depledge
et al. 2019; Garalde et al. 2018; Workman et al. 2019). Direct RNA sequencing with ONT is a
promising alternative to cDNA sequencing, but its potential has not yet been realized because of
higher error rates (14%), low throughput, and the inability to guarantee reads spanning the full
transcript (Workman et al. 2019). Because of high error rates, some of the analysis in (Workman
et al. 2019), e.g. splice site analysis or allele-specific expression, was done using a combination
of the GENCODE reference and the sequencing of cDNA from the same sample. On the other
hand, cDNA sequencing produces high throughput and can, through experimental and
computational methods, produce reads that are guaranteed to span the full molecule. With the
method in this paper, the cDNA approach can now achieve error rates of about 1%, making it
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applicable to reference-free analysis. However, applying isONcorrect to direct RNA reads is a
direction for future work that should enable the reference-free use of direct RNA reads.
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Tables and Figures

Uncorrected full length | Corrected full length
Dataset Sequencing | # unique # reads Median # full reads reads
chemistry transcripts read length
length reads #aligned Median | #aligned Median
diff to diff to
ref(%) ref(%)
chré simulated 10,367 59,440 1017 59,440 59,440 7.0 59,440 0.6
SIRV ONT R9 68 1,680,000 | 553 1,529,921 1,486,836 6.9 1,501,570 | 0.5
Drosophila | ONT R10 NA 4,350,977 | 538 3,747,729 | 3,327,355 7.0 3,368,963 | 1.3

Table 1. Datasets used in evaluation of the transcriptomic Oxford Nanopore Sequencing datasets, before
and after error correction.
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isONclust isONcorrect
Dataset
Peak memory Runtime Peak memory runtime
Drosophila 34 Gb 2h 05m 256 Gb 56h 20m
chré 7Gb 0h 09m 261 Gb 3h 13m
SIRV 5Gb Oh 10m 36 Gb 52h 58m

Table 2. Runtime and memory usage of the error correction pipeline.
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Figure 1: Error rates of ONT reads before and after error correction. (A) Alignment difference distribution
of corrected and original Drosophila reads. Differences can arise both from sequencing errors and
variation to the reference genome. (B) Error rate distribution of corrected and original SIRV reads, for the
whole SIRV dataset. (C) Error profiles of the datasets before and after correction, shown on a log scale.
For Drosophila, the difference to genome is treated as an error rate in this panel.
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Figure 2: Effect of read depth on error rate. Panel (A) shows the median error rate of simulated read
experiment based on true read depth of the transcript (i.e..number of reads sequenced from it). Panel (B)

shows the median error rate of the SIRV data as a function of read-depth, obtained-via subsampling (see
Data Analysis in Methods). The shaded areas show the standard deviation of the ‘error rates.
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Figure 3. Splice site accuracy before and after error correction in the Drosophila‘data. (A) Total number
of reads classified per splice site category, using the terminology of (Tardaguila et al. 2018). FSM stands
for full splice match, ISM stands foriincomplete splice match, NIC stands for novel-in-catalogue, and NNC
stands for novel-not-in-catalogue. (B) For each transcript in the reference, we measure the number of
reads aligning to it as a FSM, before and after error correction. Each dot represents a distinct transcript
with at least one FSM'in either the original orcorrected reads.
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Figure 4. The effect of overcorrection in the simulated data."We bin each overcorrected read according to
the ‘abundance of its true transcript (y-axis) and'its.overcorrection distance (x-axis). Each cell shows the
number of reads.in the bin.
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Figure 5. Overview of isONcorrect. The input to isONcorrect are reads from a single cluster produced by
isONclust (or any other software that group reads into gene families of origin). This figure illustrates a
cluster with five reads (r1 - r5) from three isoforms. isONcorrect finds all intervals with distance between
X,,in 10 Xpmax using paired minimizer anchors (shown as colored blocks) and adds them to a hash table. To

correct a single read (e.g. r1), all the paired minimizer anchors found in r1 are queried in the hash table,
and all reads containing this anchor pair are retrieved. In this example, r1 has 11 such paired anchors
(shown in step 1). Each anchor pair is assigned a weight that is the product of its span and the number of
reads containing this anchor pair (with the exception of filtering out anchor pairs of dissimilar regions;
details in methods; step 1). For example, the paired anchor (p1,p2) occurs in three reads (r1, r2, and r3).
The instance is sent to a weighted interval scheduler that finds the set of non-overlapping paired anchors
with the biggest weight (step 2). In this case, four paired anchors are selected. All segments between the
chosen anchor pairs are sent for correction. A reference is created (step 3) using spoa, and eventual
alternative references are created as well (step 4). Each read segment in r1 is corrected to the closest
(alternative) reference (step 5). The segments are inserted back into the original read r1 in what
becomes the corrected read of r1 (step 6). An optional step 7 corrects the segments of the other reads in
the same manner and stores them in a hash table to be retrieved whenever it is their turn to be corrected.
For example, when it is r2’s and r3’s turn to be corrected, the interval spanned by the paired anchor
(p1,p2) may be again encountered in the optimal WIS solution, allowing steps 3-5 to be skipped at that
point.
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Figure S1. The effect on the error rate of parameters k and w, read depth, and the heuristic approximation
algorithm. Each panel is labeled with a fixed value of k and w.
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Figure S2. The effect on the error rate of the maximum anchor distance x,;,, , read depth, and the
heuristic approximation algorithm. Each panel is labeled with a fixed value of x,,,. . The value of k and w
is fixed to 9 in these experiments.
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Sup Note A: Protocol for generating total RNA

1) Add 500 ul of TRIzol to a 1.5 ml Eppendorf with 50 mg of flies and homogenise with a
disposable cell pestle.
2) Add 500 pl of TRIzol and invert multiple times to mix.

3) Incubate at room temperature for 15 minutes.

4) Centrifuge at 40C for 10 minutes at 12000 x g.

5) Transfer supernatant to a new 1.5 ml Eppendorf.

6) Add 200 pl of chloroform and invert to mix.

7) Incubate at room-temperature for 10 minutes.

8) Centrifuge at 40C during 15 minutes at 10000.xg.

9) Transfer supernatant to a new 1.5 ml Eppendorf tube and add 500 pl of ice-cold

isopropanol.

10) Invert several times to mix and incubate 15 minutes at room temperature.

11) Centrifuge at 40C during 10-minutes at. 10000 x g.

12) Discard supernatant and add 1000 ul of 70% ice-cold ethanol.

13) Invert several times to wash the pellet.

14) " Centrifuge at 40C during 5 minutes‘at 10000 x g.

15) Discard the ethanol and use(a sterile wipe to absorb the remaining ethanol from the tube
walls.

16) Elute in 200 pl‘of TE. 150 fM of total RNA was used as a template for reverse transcription
for use in the PCS-109 cDNA by PCR sequencing kit (Oxford Nanopore) Following the
manufacturer’s instructions
(https://community.nanoporetech.com/protocols/cdna-pcr-sequencing_sqgk-pcs109/v/PCS_9085
_v109_revJ_14Aug2019).
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Sup Note B: Simulation design

Before implementing our own transcriptomic read simulator, we explored the possibility of using
already existing read simulators such as NanoSim (Yang et al. 2017), DeepSimulator (Y. Li et
al. 2018), SimLord (Stocker, Koster, and Rahmann 2016), and SNaReSim (“SNaReSim:
Synthetic Nanopore Read Simulator - IEEE Conference Publication” n.d.). However, they are all
genomic read simulators and cannot easily be modified to simulate full-length transcript reads
and to output quality values, as well as to sample reads from transcripts at controlled
abundances.

We downloaded 10,384 ENSEMBL transcripts from human chromosome 6 and filtered them
down to 10,367 distinct transcripts (distinct meaning they.are not identical sequences). We
chose chromosome 6 because it harbors transcripts from difficult instances such as the highly
polymorphic HLA loci. For-each transcript, we assign an abundance from the set

4={1,2,..,10,20,30,..,100} , with the probability of an abundance a being p,_ L~ 32q.

a X 1/b
bEA

The effect of this simulation design is that most transcripts (32%) are expected to have an
abundance of 1, and fewest transcripts{0-32%) are expected to have an abundance of 100.

Once an abundance_acis:chosen for a transcript, we generate a full length reads from that
transcript. Over each base pair in the read we pick a quality value g uniformly at random from
the set { 0.8, 0.9, 0.92, 0.96,0.98, 0.99, 0.995} . The base is assigned the Phred score
corresponding to ¢ . Then, with probability ¢, we make the base erroneous. We simulate the
error type as either deletion, substitution, or insertion with probabilities of 0.45, 0.35, and 0.2,
respectively. These values were chosen to reflect the error profile that we observed in our real
data.

If the error type is a substitution, we uniformly replace the sequenced base with one of the three
alternate bases and set the base's Phred quality score based on q. If the error is an insertion,
we enter an insertion state where we generate an inserted base with probability 0.3, or exit this
state otherwise. Thus, multiple bases are more likely to be inserted consecutively. Inserted
bases are drawn uniformly at random over A, C, G, and T. As for the quality values in an
insertion, the current base and the first insertion will have quality value corresponding to ¢ and
the rest of the inserted bases, if any, will have a Phred quality score corresponding to 0.7, so
that the error rate roughly matches the error rate in the Phred quality values. If the error is a
deletion, the base is simply omitted, however, the quality score will be propagated to the next
base, if the next base is simulated to be correct.
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