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Abstract 
Oxford Nanopore (ONT) is a leading long-read technology which has been revolutionizing 
transcriptome analysis through its capacity to sequence the majority of transcripts from 
end-to-end. This has greatly increased our ability to study the diversity of transcription 
mechanisms such as transcription initiation, termination, and alternative splicing. However, ONT 
still suffers from high error rates which have thus far limited it scope to reference-based 
analyses. When a reference is not available or is not a viable option due to reference-bias, error 
correction is a crucial step towards the reconstruction of the sequenced transcripts and 
downstream sequence analysis of transcripts. ​In this paper, we present a novel computational 
method to error-correct ONT cDNA sequencing data, called isONcorrect. IsONcorrect is able to 
jointly use all isoforms from a gene during error correction, thereby allowing it to correct reads at 
low sequencing depths. We are able to obtain an accuracy of 98.7-99.5%, demonstrating the 
feasibility of applying cost-effective cDNA full transcript length sequencing for reference-free 
transcriptome analysis.  
 

Introduction 
The sequencing of the transcriptome using long reads has proven to be a powerful method for 
understanding the transcriptional landscape of a cell ​(Wyman et al., n.d.; Bayega et al. 2018; 
Byrne, Cole, et al. 2019)​. Long-read technologies allow sequencing most transcripts end-to-end, 
thus overcoming the complex transcriptome assembly step required with short reads ​(Gordon et 
al. 2015; Liu et al. 2017)​. In particular, the Oxford Nanopore (ONT) platform is a leading 
technology for long read transcriptome sequencing, due to its portability, low cost, and high 
throughput ​(Sessegolo et al. 2019; Jenjaroenpun et al. 2018)​. It has enabled the study of 
alternative splicing patterns ​(Byrne et al. 2017)​, allele-specific expression ​(Byrne et al. 2017)​ or 
typing ​(Cole et al. 2019)​, RNA modifications ​(Leger et al. 2019; Sessegolo et al. 2019; 
Wongsurawat et al., n.d.)​, the discovery of novel isoforms ​(Workman et al. 2019; Clark et al. 
2019; Sessegolo et al. 2019)​, and species identification in metatranscriptomic samples 
(Semmouri et al. 2019)​.  
 
However, the scope of ONT transcriptome studies to date has been limited because of its 
relatively high error rate — about 14% for both direct RNA and cDNA sequencing ​(Workman et 
al. 2019)​. The most common approach to overcome this limitation is to align the reads against a 
reference transcriptome (e.g. GENCODE for human) ​(Wyman et al., n.d.; Workman et al. 2019)​. 
This makes the technology of limited use when a high-quality reference is not available, ruling 
out many non-model organisms. In addition, even when a reference is available, it does not 
usually capture sequence differences between individuals, cells, or  environments, causing 
misalignment of reads from missing or highly variable loci. This has been shown to be 
particularly problematic in complex gene families, where a reference does not capture the high 
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sequence diversity between individuals ​(Sahlin et al. 2018)​. There are several experimental 
approaches to reducing the error rate ​(Lebrigand et al. 2019; Cole et al. 2019; Volden et al. 
2018)​, but these typically come at a cost of decreased throughput and experimental overhead.  
 
Computational error correction, on the other hand, is a highly promising approach to reduce 
error rates without affecting throughput or the need to customize experimental protocols. There 
are tools designed to correct errors in  genomic reads (​(Koren et al., n.d.)​,​(Tischler and Myers, 
n.d.)​, ​(Salmela et al. 2016)​, ​(Xiao et al. 2017)​, ​(Chin et al. 2013)​). But, transcriptomic error 
correction is challenging and differs from the genomic case because of structural variability 
within reads from the same gene or gene-family locus and because of highly variable and 
region-specific coverage within reads due to, e.g., alternative splicing, variable transcription start 
and end sites, and variable transcript abundances. In fact, a recent study found that applying 
error correctors designed for genomic reads to ONT transcriptome data had undesirable 
downstream effects, such as altering the isoform landscape by omitting or adding exons through 
over-correction, or by splitting reads at low coverage sites ​(Lima et al. 2019)​. To achieve the 
potential of error correction on ONT transcriptomic data, custom algorithms have to be 
designed. Recent papers have tackled clustering ​(Sahlin and Medvedev 2019; Marchet et al. 
2019)​ and orientation problems for this data ​(Ruiz-Reche et al. 2019)​ but there is currently no 
tool available for error correction of ONT transcriptomic reads.  
 
In this paper, we present a method for error correction transcriptome cDNA ONT data that 
reduces the error rate to about 1%, thereby demonstrating the feasibility of applying 
cost-effective cDNA full transcript length sequencing for reference-free transcriptome analysis. 
We are able to achieve these error rates through a novel computational error correction method 
called isONcorrect, which leverages the sequence regions shared between reads originating 
from distinct isoforms. IsONcorrect is available for download at 
https://github.com/ksahlin/isONcorrect​. We evaluate the method using Drosophila cDNA data 
generated using a modified stranded PCS109 protocol, PCS109 spike-in (SIRV) data, and ​in 
silico ​data. Our method opens the door for much broader application of ONT transcriptome 
sequencing. 

Results 
We used one biological, one synthetic, and one simulated dataset (Table 1) to investigate the 
effects of error correction on read quality, error type, splice site accuracy. We also measured the 
effect of read depth and parameters on the correction algorithm's accuracy and runtime and 
memory usage. We present the results in this section and refer the reader to the Experimental 
Methods and Data Analysis Methods subsections for the relevant respective details. 
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Error rate analysis 
We sequenced the transcriptome of a Drosophila sample using ONT, with a total of 4,350,977 
reads with median length 538nt (Table 1). From these, we identified 3,747,729 reads as being 
end-to-end, which we call full length, and error corrected them with isONcorrect. To measure the 
error rate before and after correction, we aligned the reads to the Drosophila reference genome 
(assembly ​BDGP6​.​22)​ using the spliced mode of minimap2 and counted the number of 
mismatches (defined as any insertion, deletion, or substitution in the alignment). We compute 
the error rate as the number of mismatches divided by alignment length. Errors in the reads are 
reflected by mismatches in the alignment; however, mismatches may also result from true 
biological variation in the sample and from alignment errors or artifacts. Nevertheless, we expect 
the mismatch numbers to be a reasonable proxy for the relative improvement in error rates. 
Results for before and after error correction with isONcorrect are shown in Fig. 1A. The 
mismatch rate decreased from a median of 7.0% to a median of 1.3% (Table 1).  
 
Due to the confounding of sequencing error with biological variation, we also generated a 
simulated dataset. We extracted 10,367 distinct transcripts from the ENSEMBL annotation of 
human chromosome 6 and simulated full length reads at controlled abundances (in the range of 
1 to 100) from transcripts (Table 1) (for details of the simulations, see Supplementary Note B). 
Since sequencing errors were annotated as part of the simulated sequencing process, we could 
measure the error rate directly. As with real Drosophila data, we found that isONcorrect 
significantly reduces errors, with the median error rate decreasing from 6.95 to 0.6 (Table 1). 
 
Unfortunately, while eliminating the effect of biological variability on error rate measurement, 
simulated data does not capture the full scope of errors and biases present in the real data. We 
therefore also evaluated isONcorrect on ​SIRV E0 (Spike-in RNA Variant Control Mixes)​ data. 
Our ​SIRV data​set consists of 68 synthetic transcripts from 7 different loci sequenced with ONT 
R9 technology (see Experimental Methods for details). The transcripts from each locus differ in 
their splicing pattern but not in any other mutation. With the SIRV dataset, we have the 
properties of real sequencing errors and eliminate the confounding effect of biological variation 
on measuring error rate. The downside of SIRV is that it does not represent the mutational 
complexity of a real genome. With these caveats in mind, we measured the error rate by 
aligning the reads to the sequences of the 68 true transcripts using minimap2 and assuming 
that any alignment mismatch is due to an error (see Data Analysis in Methods for details). 
Results for before and after error correction on the full SIRV dataset with isONcorrect are shown 
in Fig. 1B. The median error rate was 6.9% before error correction and 0.5% after (Table 1), a 
significant reduction.  

Error profiles  
We also investigated the error profiles of the datasets before and after correction. The SIRV 
dataset enabled us to measure the profile of sequencing errors without the confounding effect of 

 

see manuscript DOI for details

WITHDRAWN

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 8, 2020. ; https://doi.org/10.1101/2020.01.07.897512doi: bioRxiv preprint 

https://www.lexogen.com/sirvs/
https://www.lexogen.com/sirvs/
https://doi.org/10.1101/2020.01.07.897512
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

biological variations. We note that the overall error rate prior to correction (about 7%, Table 1) 
was lower than previously published cDNA ONT datasets (about 14%, ​(Workman et al. 2019)​), 
likely due to improvements in the base calling software. The median substitution, insertion, and 
deletion rate was 2.2%, 1.9%, and 2.6%, respectively (Fig. 1C). We observed a similar 
distribution for Drosophila (2.3%, 1.7%, and 2.8%), with the caveat that it also includes true 
biological variation (Fig. 1C). Error-correction substantially reduced the error rate in each 
category. The median substitution, insertion, and deletion rates of SIRV reads fell to 0.0%, 
0.0%, and  0.3%, respectively, after correction (Fig. 1C). Most of the remaining errors were 
deletions, indicating that this is the hardest error type for isONcorrect to correct. 

Effect of read depth 
The amount of reads generated from a transcript (i.e. its read depth or simply depth) is typically 
an important factor in determining whether a tool can correct the errors in the read. To explore 
this in isONcorrect, we first used simulated data, for which we know the precise read depth per 
transcript. As expected, the post-correction error rate decreased as a function of depth (Fig. 
2A). Compared to the median pre-correction rate of about 6.95%, the median post-correction 
rate ranged from about 3% for depth of one, 2% for depth of 2 to 3, and 0.5% for depths of 10 or 
more. Next, we looked at the SIRV data. Since the SIRV dataset has very high coverage, we 
used a subsampling strategy to investigate the error rate per sampled transcript depth (details in 
Data Analysis in methods section) . The error rate decreased consistently for read depth up to 
10, but did not improve for larger read depths (Fig. 2B).  
 
We note that isONcorrect remains very effective at low read depths, i.e. for read depth one, the 
error rate is already reduced from 7% down to 4% in SIRV and to 3% in simulated data. This is 
due to isONcorrect's ability to jointly use all isoforms from a gene during error correction, which 
combines information across all the transcripts with shared or similar exons. For example, the 
SIRV data has 7 gene loci with several splice variants each (between 6-18), meaning that each 
exon will have higher coverage than any individual transcript.  

Splice site accuracy and transcript recovery 
One of the potential benefits of error correction is obtaining nucleotide-level resolution of splice 
sites. Simultaneously, correction around borders of splice junctions is known to be challenging 
and may alter the splice site, particularly if it is present only at low abundances ​(Lima et al. 
2019)​. Since the Drosophila reference genome has high quality gene annotations, we used 
alignments to classify each read according to how it matches the annotated splice sites, using 
the terminology of ​(Tardaguila et al. 2018)​ (see Data Analysis in Methods). 
 
As expected, we observed more reads fully matching an annotated transcript (FSM) after 
correction (Fig. 3A). We did not see any novel combinations of splice sites (NIC) in the reads 
before or after correction. This is not surprising given the high quality annotation of the 
Drosophila genome. However, it did underscore a positive aspect of ONT sequencing, which is 
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that no artificial transcripts have been constructed in the experimental steps of generating the 
data, such as ​reverse transcriptase template switching​.  
 
We did observe slightly more reference transcripts that have at least one FSM read in the 
original reads compared to corrected reads (13,062 and 12,990, respectively, with 173 lost and 
101 gained) and investigated the lost transcripts after correction as a function of how abundant 
they were in the original reads (Fig. 3B). Out of the 173 transcripts that were not captured by a 
FSM read after correction, 108 and 36 of them had only one and two FSM original reads, 
respectively, and all of them occurred in less than 12 original reads. Therefore, a consequence 
of our correction algorithm is that the lowest abundant transcripts may be mis-corrected. 
However, we also observed 101 transcripts had no FSM support before correction but did after 
error-correction. As the error correction is reference agnostic, this is likely due to reads from 
annotated transcripts that were misaligned around splice sites prior to correction, and highlights 
the benefit of reference-free error correction.  

Overcorrection 
One pitfall of using an alignment-based evaluation method is when the error correction 
algorithm modifies non-erroneous positions of a read in a way that the read more closely aligns 
to the reference genome. A typical example is when there are two highly similar transcripts A 
and B and a read that comes from transcript A but is corrected by the algorithm to transcript B. 
Such overcorrection is an undesirable artifact because it misrepresents the biological sample; 
however, when using an alignment-based evaluation method, overcorrection can go undetected 
because it can actually improve the inferred error rate. Nevertheless, we were able to measure 
the presence of overcorrection using our simulated dataset, where the true transcript is known. 
We classified a read as overcorrected if the read has an edit distance smaller to a transcript 
other than the true transcript. This is computed by first aligning reads with minimap2, and then 
comparing the edit distance of minimap2’s primary alignments to the edit distance to the true 
transcript. The overcorrected reads made up less than 1.0% (374 out of 59,440) of the total 
reads. Note that a small fraction of the reads, particularly from highly similar transcripts, may be 
included in our definition of overcorrected because initial sequencing errors made them more 
similar to another transcript then the original one; these are really instances of not enough 
correction rather than overcorrection.  
 
To investigate further, we measured how much closer the overcorrected reads were to the 
incorrect transcript. We computed the ​overcorrection distance​ for a read as the edit distance of 
the read to its true transcript minus the edit distance to its closest aligned transcript. We then 
plotted the overcorrection distance together with the abundance of the true transcript, for the 
overcorrected reads (Fig. 4). We found that this distance was small for the vast majority of the 
reads, i.e. 5 or less positions in >76% of the overcorrected reads. In addition, the overcorrection 
was mostly limited to reads at low abundances, with 55% of overcorrected reads coming from 
transcripts with an abundance of . This indicates that overcorrection was mostly limited to≤ 5  
transcripts at very low abundances, as opposed to larger exon-level miscorrections.  
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Effect of heuristics and parameters 
For large clusters, isONcorrect uses a heuristic approximate algorithm (see Methods). While this 
reduces the runtime, it has the potential to reduce the quality of the results. We therefore 
investigated the accuracy between the approximate and exact mode using controlled 
subsampled reads from the SIRV dataset (see Data Analysis for details). As expected, we 
observed a decrease in accuracy in approximate mode compared to exact mode across all 
different  and , with the difference in accuracy decreasing as read depth increases (Fig. S1).k w  
However, the accuracy differences between the two modes were negligible compared to the 
improvements over the uncorrected reads. 
 
We also investigated the effect of parameter choices for  the -mer size , and window size ,k k w  
and the maximum anchor distance . We observed minor effects across different  and x max k w  
(Fig. S1). However, isONcorrect performs well over all the tested values of and , with thek w  
difference being minor compared to the overall effect of correction and of the read depth 
Overall, we obtained slightly better results for  which we set as the default value tok = 9  
isONcorrect. As for the maximum anchor distance, we saw a minor improvement in longer 
spans (80-100) compared to 40 (Fig. S2), and this informed us to set default value of .x 0 max = 8  
We generally conclude, however, that parameter values within the tested ranges have only a 
minor effect on accuracy. 

Runtime and memory 
We measured runtime and memory of isONclust and isONcorrect (Table 2). We used a machine 
with an x86_64 system running Linux v3.2.0-4-amd64 and equipped with 32 2-threaded cores 
and 512 GB RAM. We allowed isONclust to use 50 threads and isONcorrect to use 62 threads. 
While isONclust is relatively fast, the correction with isONcorrect takes significant time (over 2 
days). Given the time investment into the sequencing protocol, we consider this time expense 
tolerable. However, we hope to speed up isONcorrect in the future by allowing parallelization 
across nodes, making it possible to speed up correction by running it on a multi-node cluster. 
For the full SIRV dataset, the runtime was dominated by the largest cluster with contained 
roughly half of the reads (597,877). In such extreme cases, the reads could be partitioned into 
sub-clusters and parallelized, possibly with  expense to accuracy. 
 
As for memory usage, the current memory usage require a large memory cluster to run. We 
note that in our simulated data, some transcripts were very long  (>20,000 nucleotides). This 
resulted in a relatively large memory consumption given the number of reads, compared to the 
SIRV and Drosophila data. It is possible to decrease memory usage in several ways, such as 
increasing  or decreasing , at the potential cost of accuracy. However, the memoryw x max  
footprint can be greatly reduced by implementing isONcorrect in C++ or storing minimizers and 
paired anchors  in more efficient data structures ​(Chikhi, Holub, and Medvedev 2019)​.  
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Methods 

isONcorrect algorithm 

Algorithm overview 
The input to our algorithm is a cluster of reads originating from transcripts of a single gene 
family. Such clusters can be generated from a whole-transcriptome dataset by using our 
previously published tool isONclust ​(Sahlin and Medvedev 2019)​. Each cluster is then 
processed individually and in parallel with isONcorrect. The goal of isONcorrect is to correct all 
the sequencing errors. The challenge that makes this problem different from error-correction of 
genomic data is the highly uneven coverage within different regions of the read, and structural 
differences of similar reads, both arising from exons differences due to alternative splicing, as 
well as alternative start and stop sites.  
 
Our idea is to partition each read into intervals and then error correct each interval separately 
where the intervals should not​ cross exon and intron boundaries.​ Our strategy for partitioning of 
the read into separate intervals is based on a related idea used in the context of genomic error 
correction ​(Morisse et al. 2019)​, but we adapt it to the transcriptomic context. As structural 
differences and variable coverage is at the heart of transcriptomic error correction, we solve the 
partitioning problem by formulating it as a global (with respect to the read) k-mer anchor 
optimization problem over anchor depth.  
 
It is desirable that each interval is found in as many reads as possible for improving the power 
of error correction. ​For a given cluster, we obtain intervals spanned by paired minimizers (as 
described in previous section). Then, for each read, roughly speaking, we find the set of 
non-overlapping intervals that jointly covers as much of the read as possible, and are found in 
as many of the other reads a possible. We solve this problem by solving the ​Weighted Interval 
Scheduling​ (WIS) problem. 
 
Intuitively, by optimizing for the most common minimizers pairs, the solution is likely to contain 
only intervals that has (a) good support in other reads to be corrected confidently, and (b) 
minimizers are both correct and can be trusted as anchors in the local regions. Additionally, by 
optimizing over total spanned region, our correction will correct as much of the read as 
confidently possible. An additional feature of locally correcting reads in intervals is that it gives a 
natural way of correcting exon regions, where multiple alignment methods would fail to align 
noisy reads over exon boundaries. 
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The steps of the algorithm are illustrated in Fig. 5. We now give the relevant definitions, then go 
in detail through the steps of the algorithm, and finally describe heuristic modifications to 
improve run-time. 

Definitions 
Let  be a string of nucleotides that we refer to as a read. Given two integers  and  suchr k w  
that , the minimizer of r at position  is the lexicographically smallest substring  r|1 ≤ k ≤ w ≤ | p  

of length  that starts at a position in the interval of  . We then say that  has am k p, p )[  + w r  
minimizer , or, alternatively, has a ​positional minimizer . For example, form m, )( p  

 we have that the ordered set  of positional AGACCAT , k , wr =   = 2  = 3 (m , )}M = { i pi  
minimizers are  Let and be two positive{(AG, 0), (AC, 2), (CA, 4), (AT , 5)}.M =         xmin xmax  
integer parameters, where we call the maximum paired anchor distance . Then we letxmax  

be the ordered set (according to((m , ), (m , ))  | x }W r = { i pi  j pj ∈ M × M min ≤ pj − pi ≤ xmax  
increasing then ) of paired positional minimizers separated by at least  and at mostpi pj xmin  

 nucleotides in . Similarly, we let be thexmax r (m , ) | ((m , ), (m , ))  }StrW r = { i mj i pi  j pj ∈ W r  
sequence of paired minimizers, i.e. with the positions omitted but duplicates retained. ForW r  
example, the above set of minimizers with  gives, x 3xmin = 2  max =   

and((AG, 0), (AC, 2)), ((AC, 2), (CA, 4)), ((AC, 2), (AT , 5)), ((CA, 4), (AT , 5))}W r = {                 
.  Given a set of reads , we let be the unionAG, C), (AC, A), (AC, T ), (CA, T )strW r = ( A  C  A  A R W  

of all for the reads in  and we let be the union of all .W r R trWS trWS r  
 
The weighted interval scheduling problem takes as input  a set of intervals , where, ..i }I  {i=  1 . n  

,   and  , and a weight associated with each . The ​output is aa , ]ij ∈ [ j bj ,aj  bj ∈ R baj <
 j wj ij  

subset  of non-overlapping intervals whose sum of weights is maximized. The weighted ⊆I  I ′  
interval scheduling problem can be solved exactly using a dynamic programming algorithm that 
runs in  time, where is the number of intervals​ ​(Kleinberg and Tardos 2013)(n ) O log n  n  

Algorithm details 
For a given cluster, we first generate all the paired positional minimizers of the reads.trWs  
Then for each read  we will construct a weighted interval scheduling instance (Step 1). Eachr  
positional minimizer pair defines an ​interval​  on  that is spanned by, but(m , ), , ))( 1 p (m2 q ∈ W r r  
does not contain the minimizers, i.e . The interval is given the weight ,p , )[ + k q (q )a 1 − p1 − k  
where  denotes the ​support ​of the interval. We compute the support as the number ofa  
occurrences of in  whose intervals have a similar sequence to the one spannedm , )( 1 m2 strW r  
by in , and this is computed as follows. Let  be a read containing  withm , )( 1 m2 r  ≠ rr′ m , )( 1 m2  
coordinates  in​ and let and  be substrings of  andp , )( ′ q′ r′ [p ]s = r  : q + k   [p ]s′ = r′ ′ : q′ + k   r  

 spanned by, and including, the minimizer windows. We consider that has similar sequencer′ s′  
to  if  , where  is the allowed relative distance decided from the quality values ins |s|

ed( s ,s )  ′ < Q Q  
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and  . Here,  refers to the edit distance between the two segments. We use edlibs s′ d(·)e  
(Šošić and Šikić 2017)​ to calculate the edit distance. If a read has multiple (possibly disjoint) 
intervals matching a single interval of , only the most similar one according to edit distance isr  
considered. 
 
Next, for the read  we send the instance of all intervals and their weights to a  weightedr  
interval scheduler (Step 2) and obtain an optimal solution by solving the weighted interval 
scheduling problem in  time using classic dynamic programming algorithm. Intuitively,(n )O log n  
this gives us a set of disjoint intervals in , with a preference of a combination of intervals thatr  
are highly supported and covering as much of the read as possible. 
 
For each interval obtained in the WIS solution, we send for correction the substring of the read 
and all the supporting substrings. The correction is performed as follows. We create a 
consensus substring  of all the  substrings included in the instance by forming a partial orderc m  
alignment graph ​(Lee, Grasso, and Sharlow 2002)​ using SPOA ​(Vaser et al. 2017)​, then 
choosing the consensus based on the heaviest bundle algorithm ​(Lee 2003)​ (Step 3). We then 
perform error correction of the substring with respect to the consensus (Step 4), as follows. 
First, we create a multi-alignment matrix from pairwise alignment of all the substrings to theA  
consensus (we use the method described in ​(Sahlin et al. 2018)​). We then identify all sufficiently 
covered variations with respect to the consensus and include them as ​alternative references​. 
These alternative references together with the spoa consensus forms the set of sequences that 
we will correct the read subsequence to.  
 
Let  denote the nucleotide at position  in spoa consensus  and  denote the substring ofcj j c cj:j′  
nucleotides between position  and . For each position  in  we construct​ alternativej j′ j c  
references​ as follows. We identify the subset of columns  in  to where the ​kmerA ·, j−k:j+k A  
context​  is aligned. We denote , , and any row  (i.e.,  aligned read)cj−k:j+k cj−k:j+k A., j−k:j+k a ,i  j−k:j+k  

in  as  , , and  for simplicity. Now, as alternative references at position  we store allA ckj akj Ak
j i  

rows in  that occur more than  times as alternative references, together withAk
j

mT
ed( H(c ), H(a ) )k

j
k
j

 

the variant over position  that the alternative reference support. Here is the homopolymerj (·)H  
compression function. We compress contexts to reduce alternative references based on 
homopolymer length differences solely, as these regions are more error prone to deletions. This 
means that, at each position  in  we have one primary variant and reference (based on thej A  
sequence of ), and zero or more alternative references and variants that passed thec  
abundance threshold.  
 
We now correct the substring  of a read  at position  (denoted ) as follows. If position ai i j aij j  
has alternative references, we let  equal the nucleotide to the primary or alternative referenceaij  
with lowest edit distance to . In case of only the primary reference, we set .akj aij = cj  
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Heuristic modifications 
We refer to the algorithm we have described up to this point as ​exact​. We find that it works fast 
in practice for clusters of small and medium size clusters (i.e. for clusters with tens or hundreds 
of reads). However, for large clusters with thousands of reads this algorithm can be slow, and in 
this section we describe how we modify the exact algorithm to make it faster. We refer to the 
modified algorithm as "approximate." The time bottleneck is in steps 1, 3, and 4. Firstly, we 
repeatedly call edlib to calculate edit distance for all reads, regions and identical minimizer 
combinations. Secondly, we repeatedly do error correction by using spoa and creating the 
multi-alignment matrix. We take the following action to reduce the running time.  
 
Recall that when error correcting a given read segment , we identify all other read segments s s′  
that support  and build an alignment matrix . In the approximate version, we use thes A  
opportunity to also error correct all other segments , using the same alignment matrix . Fors′ A  
each ,  we store the corrected substring, the support of the instance, as well as the start ands′  
end position within the given read as information in a hash table, indexed by the read id. At the 
time of correcting a read, this hash table will be queried to identify the previously processed 
regions in this read. The processed regions may overlap. We do not compute the support for 
these processed regions (Step 1), and instead use the support stored in the hash table. If the 
processed region is then selected in the WIS solution, error correction is not done as per steps 
3-4; instead, the corrected substring stored in the hash table is used directly. The approximate 
algorithm greatly reduces the runtime, as many segments are already computed and corrected 
in previous iterations.  
 
We also make other heuristic modifications, in addition to the approximate algorithm. We 
introduce a parameter max_seq_to_spoa to limit the amount of sequences that goes into 
forming the consensus for very large clusters with spoa (default 200). This reduces runtime 
without noticeable effect in accuracy. We also mask positional minimizer pairs that contain only 
A’s in both anchors. This is because many transcripts have a poly A tail, leading the minimizer 
database to be redundant and repetitive in these regions. Finally, we limit to process max_seq 
reads at a time within a cluster (default 1000). 
 
As  will affect runtime and memory, we set appropriate  based on the number of reads inw w  
the batch to correct, where  is chosen as follows:  where  is thew  k f loor{|C |/500}w =  +  C ||  
size of the cluster. 

Experimental 
D. melanogaster total RNA was isolated from adult W1118 flies according to the protocol 
outlined in Supplementary Note A and sequenced according to the PCS-109 protocol 
(https://community.nanoporetech.com/protocols/cdna-pcr-sequencing_sqk-pcs109/v/PCS_9085
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_v109_revJ_14Aug2019). Primers were modified so that only the forward primer contained 
rapid attachment chemistry, resulting in single end adaption of the cDNA representing the 5' end 
of the RNA molecule (stranded sequencing). For amplification of the first strand cDNA, 12 
cycles were used and 100 fM of library was loaded onto a FLO-MIN106 flowcell and sequenced 
for 48 hrs on the GridION system. Basecalling was performed in real time using guppy 3.4.8.  
 
Synthetic spike-in transcripts made by Lexogen (SIRV E0): https://www.lexogen.com/store/sirvs 
SIRV E0 polyA RNA (Lexogen) (1ng) was used as a template for reverse transcription for use in 
the PCS-109 cDNA by PCR sequencing kit (Oxford Nanopore) Following the manufacturer’s 
instructions (see link above). For amplification of the first strand cDNA, 12 cycles were used and 
100 fM of library was loaded onto a FLO-MIN106 flowcell and sequenced for 48 hrs on the 
GridION system. Basecalling was performed in real time using guppy 3.4.8. Only a subset of 
pass reads with mean base quality larger than 7 were uploaded. 
 
The SIRV and Drosophila data has been deposited into the ENA under project accession 
number PRJEB34849, to be released prior to publication. 

Data Analysis 

Computational processing of the read data  
To identify full length reads among the reads sequenced with ONT we ran pychopper 
(https://github.com/nanoporetech/pychopper, ​commit 6dca13d)​ on Drosophila and SIRV 
datasets that identifies and removes forward and reverse primers, and splits eventual chimeric 
reads containing more than one transcript (barcodes in the middle). Only reads deemed to have 
both a forward and reverse primer are used for downstream analysis. Pychopper2 was run with 
default parameters and 50 cores. 
 
To process the full length reads into gene-clusters, we ran isONclust with default ONT 
parameter settings using the flag ‘--ont’ that sets (-w 20, -k 13). We ran isONcorrect with 
parameters (for all datasets) of "k= 9, --xmin 2k, --xmax 80", and w is chosen adaptively.  
 

Inferring read error rates from alignments  
For drosophila data, where it is unknown which transcripts are sequenced, and novel transcripts 
compared to annotated transcriptome may be present, we infer read error rates by doing a 
spliced alignment of reads to the Drosophila reference genome (assembly ​BDGP6​.​22) ​using 
minimap2 with parameters: -w4 -k 14 -ax splice --eqx. The -w 4 is supposed to be more 
sensitive but higher runtime than the recommended parameters for ONT transcript reads. We 
then infer insertions, deletions, substitutions from extended cigar strings of the primary 
alignments (with reads that are unaligned omitted from the analysis). However, we make the 
following modification not to count small introns as deletions. For a deletion in the cigar string of 
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the genomic alignment, we check whether the coordinates for the deletion matches a previously 
annotated intron from database Ensembl release 97 annotated on assembly ​BDGP6​.​22​. If the 
deletion start and stop coordinates matches the intron annotation, we do not count it towards a 
deletion.  We then say that for a read, the "% difference to the genome" is the total number of 
insertions, deletions, and substitutions divided by the alignment length, which is the total 
number of insertions, deletions, substitutions and matches.  
 
For SIRV data, where we have the true transcripts present in the sequencing material, we infer 
read error rates by aligning reads to the transcriptome consisting of 68 synthetic transcripts 
using minimap2 with parameters -w4 -k 14 -a --eqx. We infer insertions, deletions, substitutions 
from the extended cigar strings of the alignments, but do not make the modification for intron 
deletions as we did for genomic alignments. The mismatch rate is computed as the sum of 
insertions, deletions, and substitutions divided by the alignment length. 

SIRV subsampling experiments 
The 68 SIRV transcripts contain five transcripts that are perfect substrings of other larger 
transcripts. These substring transcripts confound the alignments of the reads and the error rate 
calculations, so we filtered them out for this analysis, We aligned the 1,287,612 full-length SIRV 
reads to the remaining 63 of SIRV transcripts. We then ran 100 experiments, with 10 replicates 
in each. For each value of  between 1 and 100, we subsampled  aligned reads from eachy y  
transcript. This resulted in a dataset of  reads with an expected read depth of . For each36 · y y  

, we did 10 replicates,  to alleviate sampling variation. This gave a total of 1000 experiments.y  
For each experiment, we clustered the reads with isONclust (git commit 8ba49e) with default 
parameters for ONT data. Then, we ran isONcorrect on the clusters, using the default 
parameters k=9, xmin=2*k, xmax=80. We also set the parameter --exact_instance_limit 50, that 
computes exact mode for clusters smaller than 50 reads.  

Splice sites 
To classify Drosophila reads, we use minimap2 to align reads to the Drosophila reference 
genome. We classify as a splice site everything that minimap2 flags as an intron location or any 
deletions (relative to the reference) whose start and stop sites match a true intron annotation in 
the ENSEMBL annotations. The second condition is necessary not to count small introns that 
are preserved in the reads but flagged as deletions in the alignment due to their small size (we 
observed introns as small as only two bases). We then match the splice sites of the alignments 
to existing Drosophila annotations and classify the transcripts according to the four categories 
defined by ​(Tardaguila et al. 2018)​ as follows. A transcript is a full splice match (FSM) if all its 
start and stop splice sites are in the database annotation and the particular combination of start 
and stop splice sites matches that of a known transcript; incomplete splice match (ISM) if all its 
start and stop splice sites are in the database annotation and they match match a consecutive 
subset of start and stop splice sites of an annotated transcript; novel-in-catalogue (NIC) if all the 
individual start and stop splice sites are in the database annotation but they create a new 
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combination of start and stop splice sites, or; novel-not-in-catalogue (NNC) if the transcript has 
at least one splice site that is not in the database. 

Effect of parameters and heuristics experiments 
First we aligned all SIRV reads to the 68 distinct transcripts (we observed the coverage shown 
in plot Figure S2). We then subsampled, without replacement, 3, 5, 10, and 20 reads that had 
unambiguous primary alignments from 4 randomly selected transcripts, with the requirement 
that the transcript had more unambiguous primary alignments than the required subsample size. 
We run isONcorrect on these datasets and measure the error rate of the corrected reads using 
both exact and approximate correction. We repeat the above experiment 10 times to alleviate 
variation from picking specific transcripts and reads.  

Discussion 
We presented​ ​a novel computational tool isONcorrect to error correct cDNA reads from Oxford 
Nanopore Technologies. On a Drosophila dataset, the raw data had an initial mismatch rate of 
7.0%, which isONcorrect further decreased to 1.3%. This is a drastic improvement over 
previously published ONT transcriptome mismatch rates of ​about 14% ​(Workman et al. 2019)​. 
Compared to the R2C2 (Rolling Circle Amplification to Concatemeric Consensus) method, 
which modifies the experimental protocol, our approach does not decrease the throughput and 
achieves a significantly better mismatch rate (2.5% for R2C2) ​(Byrne, Supple, et al. 2019; 
Volden et al. 2018; Byrne, Cole, et al. 2019)​.  
 
Evaluating the error rate of a transcriptome read error-correction tool is a challenge due to, on 
the one hand, the presence of biological variation and alignment ambiguity in real data, and, on 
the other hand, the limitations of simulated and synthetic data. In this paper, we took the kitchen 
sink approach and evaluated isONcorrect's performance on all these datasets. Our results 
showed consistent performance (Table 1), with the resulting mismatch rates between 0.5 - 1.3% 
 
One of the underlying strengths of the isONcorrect algorithm is its ability to error correct reads 
even if there are as little as one read per transcript. The idea ​is to leverage exons that are 
shared between different splice isoforms. To achieve this, we pre-process the reads using our 
isONclust clustering algorithm, which clusters reads according to the gene family of origin. This 
strategy is in sharp contrast to approaches which cluster based on the isoform of origin. Such 
clustering results in low read coverage per transcript ​(Sahlin and Medvedev 2019)​, particularly 
for genes expressing multiple isoforms with variable start and stop sites and makes error 
correction unable to utilize full coverage over shared exons. By using isONclust to cluster at the 
gene family level, each read retains more complete exon coverage and helps the correction 
process preserve allele- or copy-specific small variant differences between transcripts that 
otherwise share the same structure. This effect is shown i​n our experiments, where there is 
already a significant reduction in the error rate (down to 3-4%) for transcripts with just one read.  
 

 

see manuscript DOI for details

WITHDRAWN

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 8, 2020. ; https://doi.org/10.1101/2020.01.07.897512doi: bioRxiv preprint 

https://paperpile.com/c/gV219H/Tnav
https://paperpile.com/c/gV219H/y4KZ+8UJO+xaac
https://paperpile.com/c/gV219H/y4KZ+8UJO+xaac
https://paperpile.com/c/gV219H/CRVy
https://doi.org/10.1101/2020.01.07.897512
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

IsONcorrect relies on two additional key algorithmic components to achieve scalability and high 
accuracy. First, we are able to partition the reads within a cluster into exon-like segments in a 
way that maximizes the read depth of each segment by formulating the problem as an instance 
of the classical weighted interval scheduling problem. This scheduling problem can then be 
solved optimally using an efficient and exact dynamic programming algorithm ​(Kleinberg and 
Tardos 2013)​. IsONcorrect is then able to separately correct the regions produced from the 
scheduling solution, where each region can have highly variable coverage but the coverage 
within a region is roughly equal. Second, we identify heuristic optimizations that drastically 
speed up our algorithm and adaptively apply them when the expected run-time is expected to 
be slow. We show empirically that these heuristics do not significantly reduce the accuracy. 
 
There exist other algorithms for reference-free error correction of long transcriptomic reads that 
are specific to the Pacific Biosciences Iso-Seq platform. These include ToFU/isoseq3 ​(Gordon 
et al. 2015)​ and IsoCon ​(Sahlin et al. 2018)​, which perform both clustering and error correction 
and the final result is predicted unique transcripts. Isoseq3 is inherently limited to Iso-Seq data, 
while IsoCon, which is intended for targeted sequencing data, assumes high exon coverage and 
is not designed to handle variable start/end sites, which are ubiquitous in non-targeted datasets. 
Other approaches use short read data for error correction of long IsoSeq reads ​(Fu et al. 2018; 
Hackl et al. 2014)​. 
 
There also exist several methods for error correction of ONT genomic data, both long-read-only 
and hybrid (short+long reads). We do not compare against these because a recent 
comprehensive benchmark showed that applying these to transcriptome data is problematic 
(Lima et al. 2019)​. While these tools reduced the error rate from about 13% down to 4%, all the 
tools also reduced the number of detected genes, gene family sizes, and the number of 
isoforms; they also reduced the number of detected splice sites and split reads up in low 
coverage regions. Similar findings were also observed in ​(Kuo et al. 2019)​ for genomic error 
correctors applied to PacBio's IsoSeq transcriptome reads. Given that genomic error correction 
tools alter the structural landscape of these reads, we do not consider them useful for most 
transcriptome applications.  
 
The protocol used in this paper is based on the sequencing of cDNA, but there also exists a 
ONT protocol to sequence RNA directly ​(Jenjaroenpun et al. 2018; Smith et al. 2019; Depledge 
et al. 2019; Garalde et al. 2018; Workman et al. 2019)​. Direct RNA sequencing with ONT is a 
promising alternative to cDNA sequencing, but its potential has not yet been realized because of 
higher error rates (14%), low throughput, and the inability to guarantee reads spanning the full 
transcript ​(Workman et al. 2019)​. Because of high error rates, some of the analysis in ​(Workman 
et al. 2019)​, e.g. splice site analysis or allele-specific expression, was done using a combination 
of the GENCODE reference and the sequencing of cDNA from the same sample. On the other 
hand, cDNA sequencing produces high throughput and can, through experimental and 
computational methods, produce reads that are guaranteed to span the full molecule. With the 
method in this paper, the cDNA approach can now achieve error rates of about 1%, making it 
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applicable to reference-free analysis. However, applying isONcorrect to direct RNA reads is a 
direction for future work that should enable the reference-free use of direct RNA reads.  
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Tables and Figures 
 

 
Dataset 

 
Sequencing 
chemistry 

 
# unique 
transcripts 

 
# reads 

 
Median 
read 
length  

 
# full  
length  
reads 

Uncorrected full length 
reads 

Corrected full length 
reads 

#aligned  Median 
diff to 
ref(%) 

#aligned  
 

Median 
diff to 
ref(%) 

chr6 simulated 10,367 59,440 1017 59,440 59,440 7.0 59,440 0.6 

SIRV ONT R9 68 1,680,000 553 1,529,921 1,486,836 6.9 1,501,570 0.5 

Drosophila ONT R10 NA 4,350,977 538 3,747,729 3,327,355 7.0 3,368,963 1.3 

Table 1.​ Datasets used in evaluation of the transcriptomic Oxford Nanopore Sequencing datasets, before 
and after error correction.  
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Dataset 

isONclust isONcorrect 

Peak memory Runtime Peak memory runtime 

Drosophila 34 Gb 2h 05m 256 Gb 56h 20m 

chr6 7 Gb 0h 09m 261 Gb 3h 13m 

SIRV 5 Gb 0h 10m 36 Gb 52h 58m 

Table 2.​ Runtime and memory usage of the error correction pipeline.  

 

see manuscript DOI for details

WITHDRAWN

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 8, 2020. ; https://doi.org/10.1101/2020.01.07.897512doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.07.897512
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
 

A B

C 
 
Figure 1​: Error rates of ONT reads before and after error correction. (A) Alignment difference distribution 
of corrected and original Drosophila reads. Differences can arise both from sequencing errors and 
variation to the reference genome. (B) Error rate distribution of corrected and original SIRV reads, for the 
whole SIRV dataset. (C) Error profiles of the datasets before and after correction, shown on a log scale. 
For Drosophila, the difference to genome is treated as an error rate in this panel. 
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A B  
 
Figure 2:​ Effect of read depth on error rate.  Panel (A) shows the median error rate of simulated read 
experiment based on true read depth of the transcript (i.e. number of reads sequenced from it). Panel (B) 
shows the median error rate of the SIRV data as a function of read depth, obtained via subsampling (see 
Data Analysis in Methods). The shaded areas show the standard deviation of the error rates. 
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Figure 3.​ Splice site accuracy before and after error correction in the Drosophila data. (A) Total number 
of reads classified per splice site category, using the terminology of ​(Tardaguila et al. 2018)​. FSM stands 
for full splice match, ISM stands for incomplete splice match, NIC stands for novel-in-catalogue, and NNC 
stands for novel-not-in-catalogue. (B) For each transcript in the reference, we measure the number of 
reads aligning to it as a FSM, before and after error correction. Each dot represents a distinct transcript 
with at least one FSM in either the original or corrected reads.   
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Figure 4.​ The effect of overcorrection in the simulated data. We bin each overcorrected read according to 
the abundance of its true transcript (y-axis) and its overcorrection distance (x-axis). Each cell shows the 
number of reads in the bin.  
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Figure 5​. Overview of isONcorrect. The input to isONcorrect are reads from a single cluster produced by 
isONclust (or any other software that group reads into gene families of origin). This figure illustrates a 
cluster with five reads (r1 - r5) from three isoforms. isONcorrect finds all intervals with distance between 

 to using paired minimizer anchors (shown as colored blocks) and adds them to a hash table. Toxmin xmax  
correct a single read (e.g. r1), all the paired minimizer anchors found in r1 are queried in the hash table, 
and all reads containing this anchor pair are retrieved. In this example, r1 has 11 such paired anchors 
(shown in step 1). Each anchor pair is assigned a weight that is the product of its span and the number of 
reads containing this anchor pair (with the exception of filtering out anchor pairs of dissimilar regions; 
details in methods; step 1). For example, the paired anchor (p1,p2) occurs in three reads (r1, r2, and r3). 
The instance is sent to a weighted interval scheduler that finds the set of non-overlapping paired anchors 
with the biggest weight (step 2). In this case, four paired anchors are selected. All segments between the 
chosen anchor pairs are sent for correction. A reference is created (step 3) using spoa, and eventual 
alternative references are created as well (step 4). Each read segment in r1 is corrected to the closest 
(alternative) reference (step 5). The segments are inserted back into the original read r1  in what 
becomes the corrected read of r1 (step 6). An optional step 7 corrects the segments of the other reads in 
the same manner and stores them in a hash table to be retrieved whenever it is their turn to be corrected. 
For example, when it is r2’s and r3’s turn to be corrected, the interval spanned by the paired anchor 
(p1,p2) may be again encountered in the optimal WIS solution, allowing steps 3-5 to be skipped at that 
point. 
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Figure S1. The effect on the error rate of parameters k and w, read depth, and the heuristic approximation 
algorithm. Each panel is labeled with a fixed value of k and w.   
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Figure S2. The effect on the error rate of the maximum anchor distance , read depth, and thexmax  
heuristic approximation algorithm. Each panel is labeled with a fixed value of . The value of k and wxmax  
is fixed to 9 in these experiments.  
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Sup Note A: Protocol for generating total RNA 
1)    Add 500 µl of TRIzol to a 1.5 ml Eppendorf with 50 mg of flies and homogenise with a 
disposable cell pestle.  
2)    Add 500 µl of TRIzol and invert multiple times to mix.  
3)    Incubate at room temperature for 15 minutes.  
4)    Centrifuge at 4oC for 10 minutes at 12000 x g.  
5)    Transfer supernatant to a new 1.5 ml Eppendorf.  
6)    Add 200 µl of chloroform and invert to mix.  
7)    Incubate at room-temperature for 10 minutes.  
8)    Centrifuge at 4oC during 15 minutes at 10000 x g.  
9)    Transfer supernatant to a new 1.5 ml Eppendorf tube and add 500 µl of ice-cold 
isopropanol.  
10)    Invert several times to mix and incubate 15 minutes at room temperature.  
11)    Centrifuge at 4oC during 10 minutes at 10000 x g.  
12)    Discard supernatant and add 1000 ul of 70% ice-cold ethanol.  
13)    Invert several times to wash the pellet.  
14)    Centrifuge at 4oC during 5 minutes at 10000 x g.  
15)    Discard the ethanol and use a sterile wipe to absorb the remaining ethanol from the tube 
walls.  
16)    Elute in 200 µl of TE. 150 fM of total RNA was used as a template for reverse transcription 
for use in the PCS-109 cDNA by PCR sequencing kit (Oxford Nanopore) Following the 
manufacturer’s instructions 
(https://community.nanoporetech.com/protocols/cdna-pcr-sequencing_sqk-pcs109/v/PCS_9085
_v109_revJ_14Aug2019).  
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Sup Note B: Simulation design 
Before implementing our own transcriptomic read simulator, we explored the possibility of using 
already existing read simulators such as NanoSim ​(Yang et al. 2017)​, DeepSimulator ​(Y. Li et 
al. 2018)​, SimLord ​(Stöcker, Köster, and Rahmann 2016)​, and SNaReSim ​(“SNaReSim: 
Synthetic Nanopore Read Simulator - IEEE Conference Publication” n.d.)​. However, they are all 
genomic read simulators and cannot easily be modified to simulate full-length transcript reads 
and to output quality values, as well as to sample reads from transcripts at controlled 
abundances. 
 
We downloaded 10,384 ENSEMBL transcripts from human chromosome 6 and filtered them 
down to 10,367 distinct transcripts (distinct meaning they are not identical sequences). We 
chose chromosome 6 because it harbors transcripts from difficult instances such as the highly 
polymorphic HLA loci. For each transcript, we assign an abundance from the set 

, with the probability of an abundance  being .1, , .., 0, 0, 0, ., 00}A = { 2 . 1 2 3 . 1 a 32apa =
1

a /b∑
 

b∈A
1

≈ .  

The effect of this simulation design is that most transcripts (32%) are expected to have an 
abundance of 1, and fewest transcripts (0.32%) are expected to have an abundance of 100.  
 
Once an abundance  is chosen for a transcript, we generate  full length reads from thata a  
transcript. Over each base pair in the read we pick a quality value uniformly at random fromq  
the set . The base is assigned the Phred score 0.8, 0.9, 0.92, 0.96, .98, 0.99, 0.995}{    0    
corresponding to . Then, with probability , we make the base erroneous. We simulate theq q  
error type as either deletion, substitution, or insertion with probabilities of 0.45, 0.35, and 0.2, 
respectively. These values were chosen to reflect the error profile that we observed in our real 
data. 
 
If the error type is a substitution, we uniformly replace the sequenced base with one of the three 
alternate bases and set the base's Phred quality score based on ​q​. If the error is an insertion, 
we enter an insertion state where we generate an inserted base with probability 0.3, or exit this 
state otherwise. Thus, multiple bases are more likely to be inserted consecutively. Inserted 
bases are drawn uniformly at random over A, C, G, and T. As for the quality values in an 
insertion, the current base and the first insertion will have quality value corresponding to  andq  
the rest of the inserted bases, if any, will have a Phred quality score corresponding to 0.7, so 
that the error rate roughly matches the error rate in the Phred quality values. If the error is a 
deletion, the base is simply omitted, however, the quality score will be propagated to the next 
base, if the next base is simulated to be correct.  
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