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Abstract 38 

Accumulating evidence shows that auditory cortex (AC) of humans, and other primates, is involved in 39 

more complex cognitive processes than feature segregation only, which are shaped by experience-40 

dependent plasticity and thus likely show substantial individual variability. However, thus far, individual 41 

variability of ACs has been considered a methodological impediment rather than a phenomenon of 42 

theoretical importance. Here, we examined the variability of ACs using intrinsic functional connectivity 43 

patterns in humans and macaques. Our results demonstrate that in humans, functional variability is 1) 44 

greater near the non-primary than primary ACs, 2) greater in ACs than comparable visual areas, and 3) 45 

greater in the left than right ACs. Remarkably similar modality differences and lateralization of variability 46 

were observed in macaques. These connectivity-based findings are consistent with a confirmatory task-47 

based fMRI analysis. The quantitative proof of the exceptional variability of ACs has implications for 48 

understanding the evolution of advanced auditory functions in humans. 49 
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Introduction 55 

Association areas of brain that underlie complex cognitive qualities such as speech and language 56 

demonstrate considerable individual variability (Mueller et al., 2013; Stoecklein et al., 2019). In contrast, 57 

sensory areas of the cerebral cortex, which are evolutionarily old (Kaas, 2006) and maturate at early stages 58 

of human development (Hill et al., 2010), have been considered to be relatively similar across individuals. 59 

Emerging evidence, however, suggests that the auditory system represents an exception to this rule (King 60 

and Nelken, 2009). The basic attributes of auditory stimuli are processed much more thoroughly in 61 

subcortical nuclei than those of visual stimuli (Masterton, 1992). Even in primary ACs, neurons have 62 

dense integrative lateral connections (Lu and Wang, 2004) and strong preference for complex sound 63 

patterns rather than isolated features only (Moerel et al., 2013; Nelken, 2004). In contrast to early visual 64 

cortex (VC) areas, relatively early aspects of ACs are involved in complex perceptual functions, such as 65 

speech and music processing (Griffiths and Warren, 2002; Mesgarani et al., 2008; Norman-Haignere et 66 

al., 2015), which are strongly modified by the individuality of our lifelong experiences (Herholz and 67 

Zatorre, 2012; Ressel et al., 2012). Systematic investigation of individual functional variability could, 68 

thus, offer a way to examine the hierarchical arrangement of human ACs and to enhance our understanding 69 

of how their unique properties differ from other sensory areas of the brain.  70 

Previous studies have considered individual variability of ACs as a methodological impediment rather 71 

than a phenomenon of theoretical importance. Pioneering studies of human AC anatomy, which were 72 

based on three-dimensional (3D) stereotactic anatomical normalization, were complicated by the 73 

substantial individual variability of Heschl’s gyrus (HG), the primary anatomical landmark of ACs (for a 74 

review, see Moerel et al., 2014). Today, this problem can be greatly alleviated thanks to more precise 75 

surface-based inter-subject alignment methods (Coalson et al., 2018; Fischl and Sereno, 2018), as recently 76 

verified by using non-invasive measures of AC myeloarchitecture (De Martino et al., 2015; Dick et al., 77 

2012). Functional alignment of AC areas has, in turn, remained a problem due to the lack of a definite 78 

localizer paradigm. Whereas the subarea boundaries of VC can be functionally mapped based mirror-79 

symmetric representations of the visual field polar angle and eccentricity (Sereno et al., 1995), in AC the 80 

problem is that the topographic representation of cochlea is one dimensional. Although great advances in 81 

our understanding of human AC have been recently achieved by using novel data-driven approaches (Kell 82 

and McDermott, 2019; Moerel et al., 2013; Norman-Haignere et al., 2015), the exact layout of AC still 83 

remains an open question. Due to the lack of unequivocal mapping paradigm, the degree of individual 84 

variability of different AC areas has also remained a widely shared belief rather than quantified fact. 85 
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A powerful way to characterize the individuality of our brains, which has so far been largely 86 

unexploited in human AC mapping, is the analysis of their functional connectome (Seung, 2012). In 87 

previous studies, such analyses have been conducted using resting state functional connectivity MRI 88 

(fcMRI) (Mueller et al., 2013; Stoecklein et al., 2019). A remarkable and highly replicable finding of these 89 

fcMRI studies has been that despite their variability at the group level, within any individual brain the 90 

intrinsic functional connectivity patterns are highly robust and reliable, to a degree that a specific person 91 

can be identified from a larger group of subjects based on fcMRI (Finn et al., 2015). The smaller number 92 

of fcMRI studies that have so far been conducted in the auditory domain show that, consistently with 93 

neurophysiological recordings in VCs (Kenet et al., 2003), within the early ACs the intrinsic functional 94 

connectivity patterns are consistent with feature-topographic pathways (Cha et al., 2016; Lumaca et al., 95 

2019). The inter-individual variability, and the within-individual diversity of longer-range connections 96 

across neighboring voxels, could however significantly increase as a function of hierarchical level 97 

(Mueller et al., 2013). Thus, by controlling for the variability of anatomical properties such as cortical 98 

folding measures, as well as for the noise introduced by within subject functional variability, it could 99 

possible to estimate the individual variability of different levels of AC processing and to compare it to 100 

other sensory areas, independent of anatomical biases and regional differences in MRI data quality 101 

(Mueller et al., 2013). 102 

The inter-individual differences in AC could be related to understanding of the evolution of our 103 

unique, human-specific auditory-cognitive skills. There is increasing evidence that not only humans, but 104 

also non-human primates show communication behaviors that cannot be explained without the existence 105 

of a highly advanced auditory system (Belin, 2006; Ghazanfar and Santos, 2003). For example, the 106 

vocalizations that non-human primates use for group communication show subtle but rich variability 107 

depending on the social context (Aboitiz, 2018), across different populations of the same subspecies 108 

(Arcadi, 1996), and even between different individuals within a specific population (Salmi et al., 2014). 109 

The ability to interpret these modulations has evolved alongside an increasingly complex ACs (Hackett et 110 

al., 2001), which has a strong capacity for adaptive plasticity (Cheung et al., 2005) and which, thus, also 111 

likely show considerable functional variability between individuals.  112 

Here, to elucidate the individual variability in the functional organization of the AC, we quantified 113 

variability based on resting state connectivity patterns and investigated whether variability increases as a 114 

function of processing hierarchy in individual subjects. In all these analyses, we used the individual 115 

variability of cortical folding patterns as well as the within-subject variability of functional connectivity 116 
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estimates as covariates, to control for biases caused by regional differences in anatomical variability, 117 

physiological noise, and MRI data quality. We further tested whether inter-subject variability is greater in 118 

the AC than in VC and reflects some features of higher-order processing, such as hemispheric 119 

lateralization. The results obtained in humans were compared to a resting-state fMRI data obtained in the 120 

macaque, which offered a way to verify the inter-species consistency of AC vs. VC differences in a model 121 

that lacks the additional 3D variability caused by HG, a structure that is found only in humans.  122 

 123 

Results 124 

Substantial inter-subject variability in the human and macaque auditory cortex  125 

Functional connectivity, and its individual variability, was estimated in human AC using a resting-126 

state fMRI dataset that consists of 30 young healthy adults (the CoRR-HNU dataset (Zuo et al., 2014), 15 127 

females,  age 24 ± 2.41 yrs). Each subject underwent ten scanning sessions (10 min resting-state fMRI 128 

each session, i.e., 100 min fMRI data per subject, see Materials and Methods) over approximately one 129 

month. For each vertex in the AC, its connectivity with all other vertices in the cerebral cortex was 130 

calculated using the data of each session and then averaged across 10 sessions. Inter-subject variability of 131 

functional connectivity was quantified at each vertex based on the dissimilarity of the seed-based 132 

connectivity maps between subjects, using the strategy described in (Mueller et al., 2013). Specifically, to 133 

control for the impact of noise and other technical confounds, inter-subject variability in connectivity was 134 

corrected by linearly regressing out the mean intra-subject variability (Mueller et al., 2013), which was 135 

quantified in each subject based on the variation of connectivity maps across 10 sessions. We replicated 136 

the previous finding of inter-subject variability in functional connectivity in the human brain, which 137 

indicated high variability in the association cortices but low variability in the visual and sensorimotor 138 

areas (Figure 1A). Values below the global mean are shown in cool colors, while values above the global 139 

mean are shown in warm colors. 140 

Focusing on the auditory cortex, we found that inter-subject variability is relatively low in Heschl’s 141 

gyrus (HG) but much greater laterally in the superior temporal gyrus (STG), which could be near the 142 

human homolog of monkey parabelt areas (Figure 1B). This suggests that the non-primary auditory areas 143 

may be more variable across individuals than the primary auditory areas. Seed-based connectivity analysis 144 

indicated that a region in the low variability area is strongly connected to the sensorimotor cortex, whereas 145 

a nearby region in the high variability area shows strong connectivity to the frontal lobe (see Figure S1). 146 

For comparison purposes, we then quantified inter-subject variability in the VC (Figure 1B). Critically, 147 
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we found that inter-subject variability in the AC is significantly larger than that in the VC (Figure 1C, 148 

p<0.0001, Wilcoxon Rank Sum test, the curves represent fitted data using a kernel distribution). We then 149 

replicated the findings in an independent dataset (MSC dataset) (Gordon et al., 2017), which included 10 150 

healthy young adults (5 females, age 29.1 ± 3.3 yrs). Each subject underwent 10 scanning sessions (30 151 

min resting state fMRI each session, see Materials and Methods) on 10 separate days. Although the two 152 

datasets differ in the subjects’ ethnicities and scanning parameters, we found that the spatial distribution 153 

of inter-subject variability in the AC was highly replicable (r = 0.836, p <0.0001, see Figure S2A & S2B). 154 
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 156 

We then investigated inter-subject variability in functional connectivity across four macaque 157 

monkeys. Two subjects were scanned for eight 10-min fMRI runs under anesthesia (see Materials and 158 

Methods) and the other two subjects were scanned for eight 30-min fMRI runs under anesthesia (Xu et 159 

al., 2018) but only the first 10-min of each run was retained for analyses thus the data length was kept the 160 

same for all subjects. The procedure for evaluating inter-subject variability in macaque is identical to the 161 

procedure for the human data as described above (see Materials and Methods and Figure S3 for the 162 

definition of auditory mask in macaques (Markov et al., 2012)). We found that inter-individual variability 163 

in macaque monkeys demonstrated the similar principal of the spatial distribution with that in humans, 164 

i.e., associated areas in the frontal, parietal and temporal lobes show marked inter-individual variability 165 

while primary areas such as sensorimotor and VCs demonstrate low variability. Note that the color scale 166 

of variability has been scaled differently for two species so the gradient within each species can be better 167 

appreciated (Figure 1D). Importantly, the macaque auditory areas showed substantial inter-subject 168 

variability (Figure 1E), which is significantly higher than that in the VC (Figure 1F, p<0.0001, Wilcoxon 169 

Rank Sum test). 170 

Lateralization of inter-individual variability in the AC 171 

One of the important functions of the human AC is speech processing, which is lateralized at the 172 

population level but varies across individuals. Here, we investigated whether ACs in two hemispheres 173 

show similar levels of individual variability, or if one hemisphere is more variable than the other.  Inter-174 

subject variability in functional connectivity was quantified in the left and right ACs using the CoRR-175 
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HNU dataset (Figure 2A). While both hemispheres showed similar spatial distributions of inter-subject 176 

variability with low variability in HG and high variability near the STG, variability is much greater 177 

(p<0.001, Wilcoxon Rank Sum test) in the left AC than in the right AC (Figure 2B). This finding was then 178 

successfully replicated in the MSC dataset (p<0.001, Wilcoxon Rank Sum test, see Figure S2c & S2D). 179 

These observations imply that the left AC may be more involved in higher-order functional processing 180 

than the right AC. 181 

We next investigated whether inter-individual variability is lateralized in the macaque AC. Strikingly, 182 

in macaques, left AC also demonstrated significantly greater variability than right AC (Figure 2C & 2D, 183 

p<0.001, Wilcoxon Rank Sum test), indicating the lateralization pattern observed in the human AC might 184 

have an evolutionary trace.  185 

Inter-subject variability in task-evoked activations in the human AC 186 

Recent studies have indicated that individual differences in resting state connectivity are related to 187 

individual differences in task-evoked activity (Tavor et al., 2016). Here, we examined whether the spatial 188 

distribution of individual variability in the AC could also be observed in task-evoked activity. Inter-subject 189 

variability in task-evoked fMRI activations was assessed in the AC using the Human-voice dataset 190 

(N=218, see Materials and Methods).  Subjects were scanned while passively listening to vocal and non-191 

vocal stimuli (Pernet et al., 2015). Inter-subject variability was estimated as the standard deviation of the 192 

z-values from task activation across all subjects, with the mean z-values regressed out (see Figure S4). 193 

Interestingly, we also found low inter-subject variability in HG and higher variability in the lateral STG 194 

(i.e., the possible human homolog of the monkey parabelt area). Furthermore, task fMRI variability of 195 

both vocal and non-vocal stimulus were significantly correlated with resting-state functional connectivity 196 

variability (Figure 3A & Figure 3C, for non-vocal stimulus, r = 0.504, p <0.0001; for vocal stimulus, r = 197 

0.502, p < 0.0001). Moreover, inter-individual variability in task-evoked fMRI activations in ACs also 198 

showed left lateralization. Left AC demonstrated significantly greater variability in task-evoked activity 199 

than right AC (Figure 3B and Figure 3D, for both stimuli, p < 0.001, Wilcoxon Rank Sum test). 200 

 201 

 202 
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 205 

Relationship between functional and anatomical variability in the AC 206 

Anatomical variability in the human AC has been well recognized in the literature. We therefore 207 

investigated how functional variability may be related to known anatomical variability. Inter-subject 208 

variability in sulcal depth and cortical thickness was assessed using intraclass correlation (ICC), with 209 

intra-subject variance properly accounted for (Mueller et al., 2013). We found that variability in functional 210 

connectivity showed a moderate correlation with variability in sulcal depth (Figure 4, r = 0.36, p <0.0001), 211 

but not with cortical thickness (r = -0.04, p = 0.084). 212 

 213 

Discussion 214 

Unveiling the complex functional organization in the human AC remains a major challenge in 215 

neuroscience research, largely due to marked individual variability in the AC.  Here, we used resting state 216 

and task-based fMRI to investigate the individual variability of AC functions in humans and macaque 217 

monkeys. The results reveal a unique spatial distribution of variability in the AC that likely follows the 218 

auditory processing hierarchy, i.e., regions near the primary auditory areas demonstrated lower individual 219 

variability than non-primary areas. Compared to the VC, the AC demonstrated much greater individual 220 

variability in functional connectivity, suggesting that certain parts of the AC are more similar to higher-221 
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order association areas than early sensory regions in both primate species. Furthermore, we found that the 222 

left AC is more variable than the right AC, which may be related to its role in some lateralized, higher-223 

order functions, such as primate auditory-vocal communication that has evolved to speech and language 224 

in humans. The spatial distribution of individual variability in AC function could also be observed using 225 

task fMRI data in humans, confirming that non-primary AC areas are more variable than primary AC 226 

areas. Taken together, our findings reveal a putative functional hierarchy in the primate AC and indicate 227 

that portions of the AC are particularly variable across individuals and possess some characteristics of 228 

areas associated with complex cognitive functions.  229 

Functional hierarchy in the human and macaque AC 230 

One of the most widely accepted organizational principles of sensory systems is parallel/hierarchical 231 

processing. Different stimulus attributes are first segregated to separate pathways, and then integrated step 232 

by step to increasingly complex object representations. Our previous work demonstrates that functional 233 

connectivity is relatively consistent across individuals in those unimodal sensory and visual areas but 234 

varies substantially in multimodal association areas (Mueller et al., 2013). Inter-subject variability is also 235 

closely related to evolutionary expansion, developmental expansion, and hemispheric specialization 236 

(Wang et al., 2015). The gradient of inter-subject variability in the primate brain may thus reflect the 237 

hierarchy of functional processing. Focusing on the human AC, our present results demonstrate in two 238 

independent data sets that functional connectivity is significantly more variable in the lateral part of the 239 

AC in the STG than in areas close to the medial HG (Figure 1 and Figure S2). This sharp transition of 240 

variability was also observed in task fMRI data (Figure 4). These observations suggest that functional 241 

complexity may abruptly increase near the STG. More detailed future studies using similar methods could 242 

thus provide critical information about the functional hierarchy in the human AC, which has so far been 243 

much more difficult to specify than that in the visual and somatosensory cortices, resulting in differing 244 

interpretations of how the human AC processes information (Bizley and Cohen, 2013),  including spoken 245 

language (for a review, see Rauschecker and Scott, 2009).  246 

Previous studies have also provided evidence that a consistent pattern of functional mapping results 247 

is harder to replicate across different subjects in non-primary than primary AC areas (Moerel et al., 2014). 248 

However, in many of these previous studies, there were a number of alternative explanations that could 249 

have accounted for the increased inter-subject variability. For example, in non-primary ACs, the majority 250 

of neurons could have clear broader tuning properties, which might have reduced the SNR and thus 251 

increased the variability of tonotopy mapping results across subjects. Neurons in different parts of the AC 252 
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might also be sensitive to differing stimulation and task parameters, making the conventional tonotopy 253 

mapping less sensitive for mapping subarea boundaries of the higher areas (Phillips et al., 1994). The 254 

present results, which suggest that the intrinsic functional connectivity is less variable in HG than in the 255 

lateral superior temporal cortex, support the interpretation that these previous observations could not be 256 

simply explained by SNR issues. 257 

The human auditory cortex is not just a simple feature processing area 258 

An intriguing finding of the present study is that, although basic perceptual processes and their 259 

cortical substrates vary in the visual domain as well (Farkas et al., 2018), human ACs are significantly 260 

more variable across individuals than comparable hierarchical levels of VC. This is consistent with distinct 261 

pieces of evidence from previous studies, which have suggested that ACs reflect a higher processing stage, 262 

which could be assumed to be more prone to developmental and environmental influences than the 263 

corresponding levels of VC processing. For example, there is evidence that certain parts of ACs 264 

demonstrate a larger degree of distant vs. local connectivity (Mueller et al., 2013) and are preceded by a 265 

larger number of pre-cortical processing steps than comparable cortical stages of visual processing (King 266 

and Nelken, 2009; Masterton, 1992). Moreover, it has been suggested that ACs contain neurons with more 267 

multidimensional activation preferences for both simple and complex stimulus attributes (Chambers et al., 268 

2014), and encode complex object representations even in the primary input areas (Nelken, 2004). These 269 

notions have inspired a theoretical assumption that early human ACs could constitute a higher-level 270 

processing center than early visual (or somatosensory) cortices (Nelken et al., 2003), where functional 271 

properties may be related to individual variability in auditory-behavioral skills that are uniquely advanced 272 

in primates, most prominently so in humans. However, until now, few previous studies had been able to 273 

directly compare the degree to which the functional anatomy varies across AC vs. VC areas. A major 274 

challenge has been that the properties of the human AC must be characterized using techniques suitable 275 

for individual-level studies of dynamic functional networks that also encompass higher cortical areas, 276 

rather than using fMRI localizer designs utilized in traditional sensory-cortex mapping at the group level. 277 

The present results, which are based on model-free functional connectivity analyses, thus significantly 278 

extend current knowledge of the variability of auditory functions as compared to VC functions.  279 

Functional laterality in human and macaque ACs 280 

In the present study, we observed significantly greater individual variability in the left than right 281 

hemisphere in both primate species. This finding is consistent with the presumed hemisphere lateralization 282 

of auditory-verbal communication processes in humans, as well as with the relative expansion of left vs. 283 
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right superior temporal areas that is most prominent in humans (Geschwind and Levitsky, 1968) but also 284 

clearly present in simians. Our finding is also in line with results obtained in task-based studies using 285 

language-related tasks, which have documented very large individual variability in the activation foci of 286 

the left AC areas, comparable to that in the frontal cortices (but see (Bonte et al., 2013) for different 287 

interpretations). Further, previous studies suggest that the individual variability of left AC function is 288 

correlated with idiosyncrasies of not only fundamental “perceptual styles” (Farkas et al., 2018), but also 289 

in voice (Postma-Nilsenová and Postma, 2013) and speech production processes (Franken et al., 2017). 290 

Here we showed that neural connectivity at rest is already more variable in the left AC compared to the 291 

right AC. This indicates that the unique wiring pattern in the left AC of each subject may be particularly 292 

important for understanding individual differences in auditory functions. Given that functional 293 

connectivity measured at rest can be related to individual differences in complex cognitive abilities (Finn 294 

et al., 2015), we speculate that connectivity in the left AC may provide valuable predictors of speech and 295 

language development in both abnormal and normal populations. 296 

Interspecies comparisons 297 

Previous architectonic studies suggest that although largely homologous AC subregions are found in 298 

all primates, the degree of individual variability and complexity are larger in great apes and humans than 299 

in monkeys (Hackett et al., 2001). It is thus tempting to conjecture that the human ACs are uniquely 300 

complex, also in terms of the patterns of their individual variability. This speculation receives indirect 301 

support from surface-based MRI mapping studies quantifying the expansion of different neocortical areas 302 

between monkeys and humans (Van Essen and Glasser, 2014), which show indices of larger interspecies 303 

expansion of certain higher AC than VC areas. It is also noteworthy that, even when the account of 304 

language evolution is disregarded, humans differ from other primates more prominently auditory than 305 

visual cognitive skills such as working memory (Scott et al., 2012). However, our data provided strong 306 

evidence that the degree of functional variability of monkey brain function, similarly to humans, is greater 307 

in the AC than VC and, importantly, is also greater in the left than right AC. The existence of such a 308 

human-like cortical distributions of individual variability in our close ancestors could reflect the 309 

neurobiological substrate for processing of complex auditory signals that has, ultimately, contributed to 310 

the evolution of speech communication in humans. 311 

Limitations and caveats 312 

Several limitations of the study are worth mentioning. First, functional variability could be 313 

confounded by errors in image registration in areas whose folding patterns vary across subjects, such as 314 
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in HG (for a review, see Moerel et al., 2014). Specifically, a higher degree of convolution can lead to 315 

lower fidelity of inter-subject alignment (Van Essen, 2005). To investigate this potential confound, we 316 

regressed out sulcal depth variability, which comprises variability due to alignment error, from the 317 

functional variability map. We found that the overall pattern of functional connectivity variability 318 

remained stable after regression. It is also important to note that the hierarchical organization of inter-319 

subject variability within ACs themselves would likely have looked like something completely different 320 

if the fcMRI variability would be a byproduct of anatomical variability only. That is, in contrast to HG 321 

whose folding patterns vary substantially across subjects (for a review, see Moerel et al., 2014), STG has 322 

been considered structurally quite similar across individuals (Coalson et al., 2018), which makes it 323 

relatively robust to align an individual subject's STG to a standard template. However, the degree of fcMRI 324 

inter-subject variability was, nonetheless, much greater at the crest of STG than in HG. Previous studies 325 

have also show that surface-based anatomical alignment does a really good job in early VCs (Hinds et al., 326 

2009), whose folding patterns and anatomical size do, in fact, vary at least equally to those of human 327 

superior temporal plane. (The fact that the same has not yet been shown in ACs could be explained by the 328 

lack of a two-dimensional functional marker of subarea boundaries.) Most importantly, the results found 329 

in the human brain were highly consistent to those found in the macaque who do not have a HG. 330 

The second potential limitation of study is that our quantification of variability in task activations is 331 

limited to a single dataset that used vocal and non-vocal stimuli; thus, our finding may not generalize to 332 

other tasks. Future work based on different auditory tasks is warranted. Third, it also must be noted that 333 

human AC subareas might be smaller than those in the VCs, which could have affected the comparison 334 

of inter-subject variability between the AC and the VC. Further studies with higher-resolution fMRI 335 

techniques that allow for smaller voxel sizes (e.g., sub-millimeter BOLD image using 7 Tesla MRI) could 336 

help resolve this issue. Fourth, inter-subject variability in the macaque brain was estimated using the data 337 

of only four subjects, although each subject had significant amount of data. To examine whether inter-338 

subject variability is dependent on a large sample size, we randomly selected four human subjects and re-339 

estimated inter-subject variability. We found that the results from four subjects were already quite similar 340 

to the results derived from 30 subjects (Pearson correlation r =0.79, see Figure S4). Thus, the data from 341 

four monkeys may be able to accurately reflect inter-subject variability. Fifth, inter-subject variability may 342 

be affected by different states of consciousness (awake vs. anesthetized) (Xu et al., 2019). Further 343 

explorations are needed to gain a better understanding about how the functional variability in auditory 344 

cortex is related to consciousness. Finally, to limit the possible impact of acoustical scanner noise on AC 345 
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functional connectivity, we estimated intra-subject variability based on repeated scans and used it as a 346 

regressor. However, it is possible that the noise effect on inter-subject variability is not fully captured by 347 

intra-subject variability. One way to test this in future studies could be the sparse temporal sampling 348 

technique (Hall et al., 1999). Nevertheless, recent studies using conventional fMRI resolutions show that 349 

topographically organized resting-state functional connectivity patterns also emerge in human ACs (Cha 350 

et al., 2016). The fact that this arrangement is evident even in congenitally deaf individuals during resting-351 

state fMRI (Striem-Amit et al., 2016) suggests that the result is not explainable by the fluctuations caused 352 

by the acoustical noise of fMRI. If anything, the constant background acoustic stimulation should increase 353 

the consistency of activation patterns in ACs, as compared to VCs. 354 

355 
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Materials and Methods 356 

 357 

Participants and data collection 358 

Three fMRI datasets obtained with different imaging parameters were employed in the present study. 359 

CoRR-HNU dataset. The Hangzhou Normal University of the Consortium for Reliability and 360 

Reproducibility (CoRR-HNU) dataset (Zuo et al., 2014) consisted of 30 young healthy adults (15 females, 361 

mean age = 24, SD = 2.41). None of the participants had a history of neurological or psychiatric disorders, 362 

substance abuse, or head injury with loss of consciousness. Each subject underwent ten 10-min scanning 363 

sessions over approximately one month. The ethics committee of the Center for Cognition and Brain 364 

Disorders (CCBD) at Hangzhou Normal University approved the study. Written informed consent was 365 

obtained from each participant prior to data collection. MRI data were acquired on a GE MR750 3 T 366 

scanner (GE Medical Systems, Waukesha, WI, USA). Structural images were acquired using a T1-367 

weighted Fast Spoiled Gradient echo (FSPGR: TR = 8.1 ms, TE = 3.1 ms, TI = 450 ms, flip angle = 8°, 368 

field of view = 256 × 256 mm, matrix = 256 × 256, voxel size = 1.0 × 1.0 × 1.0 mm, 176 sagittal slices). 369 

Functional data were obtained using an echo-planar imaging sequence (EPI: TR = 2000 ms, TE = 30 ms, 370 

flip angle = 90°, field of view = 220 × 220 mm, matrix = 64 × 64, voxel size = 3.4 × 3.4 × 3.4 mm, 43 371 

slices). The participants were instructed to relax and remain still with their eyes open, not to fall asleep, 372 

and not to think about anything in particular. The screen presented a black crosshair in the center of a gray 373 

background. 374 

MSC dataset. The Midnight Scanning Club (MSC) dataset (Gordon et al., 2017) included 10 healthy 375 

young adults (5 females, mean age = 29.1, SD = 3.3). Informed consent was obtained from all participants. 376 

The study was approved by the Washington University School of Medicine Human Studies Committee 377 

and Institutional Review Board. For each participant, 30 continuous minutes of resting state were scanned 378 

on 10 separate days on a Siemens TRIO 3 T MRI scanner (Erlangen, Germany). Structural MRI data was 379 

obtained using T1-weighted images (voxel size = 1.0 × 1.0 × 1.0 mm, TE = 3.74 ms, TR = 2400 ms, TI = 380 

1000 ms, flip angle = 8°, 224 sagittal slices). All functional imaging data was acquired using a gradient-381 

echo EPI sequence (TR = 2.2 s, TE = 27 ms, flip angle = 90°, voxel size = 4mm × 4mm × 4 mm, 36 slices). 382 

The participants visually fixated on a white crosshair presented against a black background. 383 

Human-voice dataset. The task dataset (Pernet et al., 2015) included 218 healthy adults (117 males; 384 

mean age = 24.1, SD = 7.0). Participants all provided written informed consent prior to participation, in 385 

accordance with the Declaration of Helsinki. The experiments were approved by the local ethics 386 
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committee at the University of Glasgow. All fMRI data were acquired from a Siemens TRIO 3 T MRI 387 

scanner (Erlangen, Germany) using a single-shot gradient-echo echo-planar imaging sequence (EPI, TR 388 

= 2000 ms, TE = 30 ms, flip angle = 77°, field of view = 210 × 210 mm, matrix = 70 × 70, voxel size = 3 389 

× 3 × 3.3 mm, 32 slices). In addition to the 310 EPI volumes, a high-resolution 3D T1-weighted sagittal 390 

scan was obtained for each subject (voxel size = 1.0 × 1.0 × 1.0 mm, matrix = 256 × 256 × 192). Each run 391 

consisted of 10 min and 20 s block design with forty 8-s long blocks of either vocal (20 blocks) or non-392 

vocal (20 blocks) sounds. The vocal or non-vocal blocks were intermixed randomly with 20 periods of 393 

silence. Subjects were scanned while passively listening to the stimuli and keeping their eyes closed. Other 394 

details of the data collection and task design can be found elsewhere (Pernet et al., 2015). 395 

Macaque dataset I & II. Macaque dataset I included two rhesus monkeys (Macaca mulatta, one male, age 396 

6 years, 6.4 kg; one female, age 7 years, 4.5 kg), which was collected from the Nathan Kline Institute for 397 

Psychiatric Research. All methods and procedures were approved by the NKI Institutional Animal Care 398 

and Use Committee (IACUC) protocol.  MRI images were acquired using a Simens Tim Trio 3T MRI 399 

scanner with an 8-channel surface coil adapted for the monkeys’ head. Structural MRI images were 400 

acquired using T1-weighted images (0.5 mm isotropic voxel, TE = 3.87 ms, TR = 2500 ms, TI=1200 ms, 401 

flip angle=8 degrees). All functional images were acquired utilizing a gradient echo EPI sequence 402 

(TR=2000 ms, TE=16.6 ms, flip angle = 45 degree, 1.5 × 1.5 × 2mm voxels, 32 slices, FOV = 96 × 96 403 

mm). For each macaque, eight resting-state scans (10 min for each scan) from 2 anesthetized sessions 404 

were collected with Monocrystalline iron oxide ferumoxytol (MION). 405 

Macaque dataset II included two male rhesus macaques (Macaca mulatta, one male, age 5 years, 8.6 kg; 406 

one male, age 5 years, 7.6 kg), which was collected from the Oregon Health and Science University. 407 

Animal procedures were in accordance with the National Institutes of Health guidelines on the ethical use 408 

of animals and were approved by the Oregon National Primate Research Center (ONPRC) Institutional 409 

Animal Care and Use Committee. MRI images were acquired using a Simens Tim Trio 3T MRI scanner 410 

with a 15-channel coil adapted for the monkeys’ head. Structural MRI images were obtained using T1-411 

weighted images (0.5 mm isotropic voxel, TE = 3.33 ms, TR = 2600 ms, TI = 900 ms, flip angle = 8 412 

degrees). All functional data were acquired using a gradient echo EPI sequence (TR = 2070 ms, TE = 25 413 

ms, flip angle = 90 degrees, 1.5 × 1.5 × 1.5 mm voxels, 32 slices, FOV = 96 × 96 mm). For each macaque, 414 

eight 30-min anesthetized scans were acquired with MION.  415 

Other details of the data collection can be found in previous reports of the datasets (Xu et al., 2018). 416 
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Data Preprocessing 417 

CoRR-HNU dataset. Resting-state fMRI data of the 30 subjects in this dataset were processed using 418 

the procedures previously described (Mueller et al., 2013) . The following steps were performed: (i) slice 419 

timing correction (SPM2; Wellcome Department of Cognitive Neurology, London, UK), (ii) rigid body 420 

correction for head motion with the FSL package, (iii) normalization for global mean signal intensity 421 

across runs, and (iv) band-pass temporal filtering (0.01–0.08 Hz), head-motion regression, whole-brain 422 

signal regression, and ventricular and white-matter signal regression. 423 

Structural data were processed using FreeSurfer version 5.3.0. Surface mesh representations of the 424 

cortex from each individual subject’s structural images were reconstructed and registered to a common 425 

spherical coordinate system. The structural and functional images were aligned using boundary-based 426 

registration within the FsFast software package (http://surfer.nmr.mgh.harvard.edu/fswiki/FsFast). The 427 

preprocessed resting-state BOLD fMRI data were then aligned to the common spherical coordinate system 428 

via sampling from the middle of the cortical ribbon in a single interpolation step. FMRI data of each 429 

individual were registered to the FreeSurfer cortical surface template (fsaverage6) that consists of 40,962 430 

vertices in each hemisphere. A 6-mm full-width half-maximum (FWHM) smoothing kernel was then 431 

applied to the fMRI data in the surface space. 432 

MSC dataset. Resting-state fMRI data and structural data of the 10 subjects in this dataset were 433 

preprocessed identically to the CoRR-HNU dataset. 434 

Human-voice dataset. Conventional task-evoked activation maps in this dataset were estimated using 435 

FSL’s FEAT (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT). After slice timing, rigid body correction and 436 

high-pass temporal filtering (100 Hz), task-induced BOLD responses were modeled by convolving the 437 

double-gamma hemodynamic response function with the experimental design. Structural data of the 218 438 

subjects in this dataset were preprocessed identically to the CoRR-HNU dataset. The task-evoked 439 

activation maps of each individual were also projected to fsaverage6. 440 

Macaque dataset. The procedure of the structural data was similar with that of the human datasets but was 441 

edited manually during the tissue segmentation and the surface reconstruction. After generating the native 442 

white-matter and pial surfaces by using FreeSurfer, we then registered the native surfaces to a hybrid left-443 

right template surface (Yerkes19 macaque template (Donahue et al., 2016)). 444 

Resting-state fMRI data were processed by slice timing correction, motion correction and bias filed 445 

correction (for Macaque dataset II), band-pass temporal filtering (0.01-0.1 Hz). Head-motion parameters, 446 

white-matter, ventricular and whole-brain signals were linearly regressed out. We then transformed the 447 
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denoised functional images into the corresponding anatomical images and then into the native mid-448 

thickness surface. A 4 mm FWHM smoothing kernel was then applied on the native surface. The smoothed 449 

data were downsampled to the 10k (10,242 vertices) Yerkes19 template surface. More details about the 450 

preprocessing procedure of the macaque datasets can be found in the previous report (Xu et al., 2018). 451 

Generating Masks for Auditory and Visual Cortices  452 

For the human data, the auditory cortex mask was described in our previous paper (Ahveninen et al., 2016) 453 

and the visual cortex mask was from the published V1-V3 visual cortex mask (Benson et al., 2014). The 454 

Left auditory, right auditory and left visual masks included 2,155 vertices, 1,984 vertices and 2,810 455 

vertices, respectively. The cortical surface was downsampled to 1,175 vertices (i.e., regions of interests, 456 

ROIs) that were approximately uniformly distributed across the two hemispheres.  457 

For the macaque data, the auditory cortex and visual cortex masks were extracted from the 458 

Markov’s cytoarchitectonic cortical parcellation (see Figure S3) (Markov et al., 2012). The auditory cortex 459 

consisted of Core, Lateral Belt (LB), Medial Belt (MB), caudal-part and rostral-part Parabelt (PBc and 460 

PBr) areas. The visual cortex consisted of V1, V2 and V3 parcels. The left auditory, right auditory and 461 

left visual masks included 266 vertices, 246 vertices, 1,684 vertices, respectively. The cortical surface was 462 

downsampled to 1,112 uniformly distributed ROIs, which were generated using similar methods as for 463 

the human data. 464 

Estimating Inter-Individual Variability of Resting-state Functional Connectivity within the Auditory 465 

and Visual Cortices 466 

BOLD fMRI signal time courses were extracted from the auditory and visual cortex masks, respectively. 467 

Functional connectivity profiles were obtained by computing Pearson’s correlation between time courses 468 

of the vertices within each mask and time courses of the cortical ROIs. The profile for a given vertex i 469 

could be denoted as  and is a 1 × 1175 (or 1112 for macaques) vector, s 470 

indicates the subject, v indicates the session and N indicates the number of vertices within the masks. 471 

For a given vertex i, the intrasubject variance was estimated using the V maps derived from all V 472 

sessions of each subjects (e.g., V=10 for both CoRR-HNU and MSC data): 473 

 474 

The intrasubject variance was then averaged across all subjects within any one dataset: 475 

 476 

Fi (s,v),  where  i =1,2...N , iF

Intrai (s) =1− E(corr(Fi (s,vm )Fi (s,vn )),  where n,  m = 1, 2, ...V; n ≠m.

( ( )).i iIntra E Intra s=
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The similarity between S (the number of subjects within each dataset, e.g. S = 30 in the CoRR-HNU 477 

dataset while S = 10 in the MSC dataset) maps derived from all subjects was quantified by averaging the 478 

correlation maps between any two maps: 479 

 480 

To estimate inter-individual variability, the similarity map was inverted (by subtraction from 1) and 481 

then the intrasubject variance was regressed out using a general linear model (GLM). The residual map 482 

could be regarded as the inter-individual variability of resting-state functional connectivity: 483 

 484 

where  and a  are parameters determined by the GLM. Inter-individual variability maps derived 485 

from each session t are averaged. 486 

Estimating Inter-individual Variability of Task Activation within the Auditory Cortex 487 

The task activation z-value maps derived from the Human-voice dataset were extracted from the same 488 

auditory cortex mask that was used for resting-state functional connectivity variability. The standard 489 

deviation of the z values for each task contrast across all 218 subjects was calculated to estimate inter-490 

individual variance, while the average z-value map was estimated by averaging task activation z-value 491 

maps across all subjects. Normalization (z-score) was then applied to both the standard deviation map and 492 

the mean z-value map derived from all subjects within the auditory cortex mask. The normalized mean z-493 

value map was regressed out from the normalized inter-individual standard deviation map to wean off its 494 

dependence on the mean z-value. The resulting residual map may be considered the inter-individual 495 

variability of the task fMRI data. 496 

Relationship to Anatomical Variability 497 

Sulcal depth and cortical thickness measurements were calculated using FreeSurfer. The sulcal depth 498 

estimated by FreeSurfer is the integrated dot product of the movement vector with the surface normal 499 

during inflation. It highlights large-scale geometry as deep regions consistently move outward and have a 500 

positive value while superficial regions move inward and have a negative value. Inter-individual 501 

variability in sulcal depth and cortical thickness was estimated vertex-wise using intraclass correlation 502 

(ICC) with the intrasubject variance regression. Pearson’s correlation coefficient was calculated between 503 

functional variability and anatomical variability across the auditory cortex. 504 

Similarityi (v) = E(corr(F (sp ,v),F (sq ,v)),  where p,q =1,2...S; p ≠ q.

Interi (t) = (1− Similarityi (v))−β1 × Intrai (v)−β0 ,

1b 0b
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Inter-subject variability in Seed-based Functional Connectivity 505 

In order to visualize the differences of the functional connectivity patterns between seed in the high-506 

variability region and seed in the low-variability region, we selected two juxtaposed seeds in the AC but 507 

one of them located in the low-variability region around HG (MNI coordinate: -60, -18, 1) and another 508 

located in the high-variability region in STG (MNI coordinate: -62, -18, -2). We estimated the seed-based 509 

functional connectivity maps for every single individual by using Pearson’s product moment correlation.  510 

We then converted them to z-maps using Fisher’s r-to-z transformation and averaged the z-maps across 511 

all 30 subjects (Figure S1). 512 

Statistics 513 

Wilcoxon rank sum tests were used to compare the functional variability between the AC and the VC, 514 

and between the left and right ACs. Pearson’s correlations were used to evaluate the relationship between 515 

variability in functional connectivity and variability in anatomical features. To test the potential impact of 516 

spatial dependence between neighboring vertices on correlation analysis, we performed a repeated (n = 517 

1,000) random sampling of 7% of the vertices and computed the correlation coefficient on the subsets of 518 

the vertices. For each subset, the Durbin-Watson test was performed to estimate the spatial dependence 519 

(DW > 2). Correlation coefficients were averaged across the 1,000 iterations. 520 

Visualization 521 

All results were projected on the Freesurfer cortical surface template “fsaverage” for visualization 522 

purposes. The VC was cut along the calcarine fissure and flattened using the FreeSurfer command 523 

(mris_flatten).  524 

Data and code availability 525 

The CoRR-HNU dataset is publically available through Consortium for Reliability and Reproducibility 526 

Project (http://fcon_1000.projects.nitrc.org/indi/CoRR/html/hnu_1.html). The MSC dataset is publicly 527 

available through OpenfMRI (https://openfmri.org/dataset/ds000224/). The Human-voice dataset is also 528 

publicly available through OpenfMRI (https://openfmri.org/dataset/ds000158/). MATLAB codes that 529 

support the findings of this study are available from the corresponding authors upon request.  530 

 531 

 532 

 533 

 534 

535 
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