

1 **Title: Cell-specific and targeted delivery of RNA moieties**

2
3 **Short title:** CTB-mediated delivery of RNAi

4
5 Aditi Bhargava^{1*}, Peter Ohara², Luc Jasmin³

6
7 ¹The Osher Center for Integrative Medicine, University of California, San Francisco, San
8 Francisco, CA, United States of America

9 ²Department of Anatomy, University of California, San Francisco, San Francisco, CA, United
10 States of America

11 ³Department of Oral and Maxillofacial Surgery, University of California, San Francisco, San
12 Francisco, CA, United States of America

13
14
15
16
17 *: Corresponding author

18
19 Email: Aditi.bhargava@ucsf.edu (AB)

20
21

22 **Abstract**

23

24 Delivery of therapeutic moieties to specific cell types, such as neurons remains a
25 challenge. Genes present in neurons are also expressed in non-neuronal cell types such as glia
26 where they mediate non-targeted related functions. Thus, non-specific targeting of these
27 proteins/channels has numerous unwanted side effects, as is the case with current small
28 molecules or drug therapies. Current methodologies that use nanoparticles, lipid-mediated uptake,
29 or mannitol in conjunction with lipids to deliver double-stranded RNA (dsRNA) have yielded
30 mixed and unreliable results. We used a neuroanatomical tracer (B subunit of Cholera Toxin
31 (CTB)) that binds to the ganglioside receptors (GM1) expressed on cells, including primary
32 sensory neurons to deliver encapsulated dsRNA. This approach greatly improved delivery of
33 dsRNA to the desired cells by enhancing uptake, reducing vehicle-mediated toxicity and
34 protecting nucleotides from degradation by endonucleases. The delivery complex is internalized,
35 and once inside the cell, the dsRNA naturally dissociates itself from the carrier complex and is
36 very effective in knocking down cognate targets, both *in vivo* and *in vitro*. Past methods have
37 used CTB-fusion proteins or chemically modified oligos or DNA moieties that have been
38 covalently conjugated to CTB. Furthermore, CTB conjugated to an antigen, protein, or
39 chemically modified nucleic acid is a potent activator of immune cell (T and B cells,
40 macrophages) response, whereas CTB admixed with antigens or unmodified nucleic acids does
41 not evoke this immune response. Importantly, in our method, the nucleic acids are *not covalently*
42 *linked* to the carrier molecules. Thus, our method holds strong potential for targeted delivery of
43 therapeutic moieties for cell types expressing GM1 receptors, including neuronal cell types.

44

45 **Introduction**

46

47 Targeted delivery of a therapeutic molecule to specific cells is highly desirable due to the
48 associated advantages. For example, the targeted delivery of the therapeutic molecule might
49 reduce systemic side effects resulting from off target effect of the therapeutic molecule as well as
50 immune response to the therapeutic molecule. Additionally, if a therapeutic molecule can be
51 targeted to a particular cell where the activity of the therapeutic molecule is needed, a lower
52 amount of the therapeutic molecule could be used, thereby lowering the cost of the treatment.

53

54 Although other methods for targeted delivery of therapeutic molecules have been
55 proposed [1], there is still a need for specific complexes that provide effective delivery of the
56 therapeutic molecule. The lack of methods for targeted delivery of nucleic acids *in vitro* and *in*
57 *vivo* is a limiting factor in the development of localized treatment. Gene therapy mediated by
58 RNA interference (RNAi) faces three major challenges: (1) delivery, (2) off-target and/or
59 immune effects, and (3) stability and efficacy of small interfering RNAs (siRNAs). To address
60 these challenges, we have developed a method for targeted delivery of nucleic acids (DNA,
61 RNA) to mammalian cells, specifically neurons. This method involves encapsulating
62 unmodified nucleic acids and linking the resultant nanoparticles to carrier molecules (e.g.,
63 proteins or glycoproteins). This approach is different from current delivery methods such as
64 lipofectamine or other lipid-based systems [2, 3], which lack cell selectivity because they
65 distribute the nucleic acids to all cell types. Our method delivers nucleic acids to a subset of cells
66 in a selective and reproducible manner. This cell selectivity is possible because the carrier is
67 cell-specific. The targeted cells internalize the carrier-nucleic acid complex and once inside the

68 cells, the nucleic acids dissociate from the carrier complex and perform their expected biologic
69 activity.

70

71 Currently, two forms of RNA are widely considered as candidates for RNAi. One is
72 micro RNAs (miRs), a naturally occurring class of small non-coding RNAs that have imperfect
73 homology to target mRNAs and usually regulate expression of many targets, rendering their use
74 for specific gene silencing challenging. The other form is small interfering RNAs (siRNAs),
75 which are synthetic double-stranded RNAs (dsRNAs) introduced to bypass the first few steps of
76 RNAi (supposedly to avoid immune activation), and are incorporated into the RNA-induced
77 silencing complex (RISC) to bring about gene silencing[4]. While siRNAs can be effective and
78 potent in silencing gene function, they can also evoke immune responses[5]. Several siRNA
79 sequences for a target mRNA need to be tested to confirm effective protein knockdown, and
80 siRNAs can often degrade cognate mRNA without affecting protein expression [6]. siRNAs have
81 been chemically modified (with 2' fluoro or 2' O methyl) to increase stability [7], but these
82 siRNAs are often less effective or have side effects [8]. To further complicate their functional
83 significance, siRNAs were recently shown to possess activation function (RNAa) in addition to
84 their well-known suppressor function [9].

85

86 A third form of RNAi, long dsRNA (LdsRNA) has been largely overlooked.
87 Complementary, long, antisense RNAs transcribed from the non-coding strand occur naturally in
88 many mammalian cell types, yet their function is poorly understood. We postulate that these
89 naturally occurring antisense transcripts can pair with their sense mRNA, forming LdsRNAs that
90 serve as endogenous substrates for *in vivo* RNAi to regulate gene expression and function.

91 Others and we have shown that LdsRNA works with equal, if not better potency than siRNA *in*
92 *vivo* in mammalian cells [10-16]. This finding questions the dogma that LdsRNA only works in
93 invertebrates such as worms and flies [17], and because it uses an endogenous mechanism, has
94 the advantage of fewer off-target effects and less immune activation. Moreover, because the
95 LdsRNAs that we use are 300-500bp long (displaying 100% sequence identity with the target
96 mRNA), they potentially yield numerous siRNAs after dicer cleavage. Thus, designing multiple
97 LdsRNAs is not required, and LdsRNAs have the potential to overcome most of the
98 shortcomings of siRNAs and advance the field of RNAi-mediated therapy.

99

100 The therapeutic areas that can be targeted with this delivery method, could include any
101 nervous system related disease. Additionally, since cholera toxin is a gut pathogen and enters
102 the gut via epithelial cells expressing the cognate GM1 receptor via its non-toxin subunit B
103 (CTB), RNAi encapsulated in CTB can be targeted for gastrointestinal disorders.

104

105 **Materials and methods**

106 **Animals**

107 Adult male Sprague-Dawley rats weighing 250-280 grams were used for isolation of
108 dorsal root ganglia (DRG) after intrathecal injection. All animals were housed on a 12-hour
109 light-dark cycle and had *ad libitum* access to food and water. The UCSF Institutional Animal
110 Care and Use Committee approved all protocols used in this study.

111

112 **Materials**

113 Cholera toxin B subunit was purchased from Sigma (Cat # C9903, St. Louis, MO). PEG-
114 maleimide was purchased from JenKem Technology, USA (Plano, TX).

115

116 **dsRNA synthesis**

117 cDNA of genes of interest were generated by reverse transcription of 1 µg of total RNA
118 followed by a 30-cycle PCR using gene-specific primers. These cDNAs were then cloned into a
119 pTOPO vector (Invitrogen, Carlsbad, CA) and sequenced to confirm identity. The forward and
120 reverse primer sequences used to make P2X3R and NR2B dsRNA were as follows: P2X3R
121 Forward primer: 5' CACCTACGAGACTACCAAGTC 3' and Reverse primer 5'
122 CTCAGCCTCCATCATGATAGG 3' corresponding to nucleotides 205-688 (488 bp, GenBank
123 accession number NM_031075), annealing temperature of 61°C. NR2B (GenBank accession
124 number XM_017592439) Forward primer: 5' GCTACAACACCCACGAGAAGAG 3' and
125 Reverse primer: 5' GAGAGGGTCCACGCTTCC 3' corresponding to nucleotides 1760-2073
126 (313 bp) and annealing temperature of 65°C. Sense and antisense RNA were synthesized from
127 cDNA inserts by using MegaScript RNA kit (Ambion, Austin, TX) according to the specification
128 of the manufacturer and as previously described [11].

129

130 **Encapsulation of dsRNA and formation of complex Q (CQ)**

131 The complex was generated in two separate steps. In the first step, the dsRNA (2-30µg)
132 was mixed with the PEG-linker moiety (100-150mg) in a solution containing 0.2M NaCl, pH 6.8
133 at room temperature for 2 hours. This step allows dsRNA to be encapsulated within PEG linker.
134 Since dsRNA does not have any phosphorothioate (Sulphur) modification, it cannot be

135 covalently linked with meleimide groups on PEG. In the second step, the linker-dsRNA is
136 incubated with CTB in 0.2M NaCl, pH7.0. This allows for CTB to become conjugated to the
137 maleimide on PEG linker, resulting in CQ-LdsRNA (Fig. 1). A reaction between PEG-
138 maleimide and CTB (CQ shell) is referred to as the carrier.

139

140 **Figure 1 legend. Schematic showing concept for encapsulation of dsRNA inside CTB**
141 **without covalent linkage.** In step 1, LdsRNA is incubated with PEG-meleimide in specific salt
142 concentration and pH, resulting in coating of dsRNA moieties with PEG-meleimide. In step 2,
143 PEG-Maleimide coated dsRNA is incubated with CTB to give CQ-dsRNA complex. CQ alone is
144 obtained by incubating CTB with PEG-Maleimide in presence of 0.2M NaCl, pH 6.8.

145

146 **Cell lines and cell culture**

147 Neuro2A mouse neuroblastoma cells were obtained from ATCC (CCL131). Neuro2A
148 cells were grown in Eagle's Minimum Essential Medium (MEM) supplemented with 10% fetal
149 bovine serum (FBS) and incubated at 37°C in 5% CO₂. Cells were seeded on coverslips and
150 differentiated by reducing serum concentration to 1% FBS for 16-20 hours followed by serum
151 starvation for 6 hours. Subsequently, cells were maintained in MEM with 5% FBS.
152 Differentiated Neuro2A cells were incubated with CQ-dsRNA (10µg) in 2 mL of culture
153 medium with 5% FBS for two more days. Cells were washed, fixed with 4% paraformaldehyde
154 and processed for immunofluorescence.

155

156 **Intrathecal injection of CQ-dsP2X3R**

157 DsP2X3R (10 μ g) was encapsulated within CQ and 10 μ L of CQ-dsP2X3R was injected
158 intrathecally in the lumbar vertebrae (L4). Five days later, rats were deeply anesthetized
159 transcardially perfused with 4% paraformaldehyde. Dorsal root ganglia corresponding to lumbar
160 region L1-L4 were isolated and used for sectioning and immunostaining.

161

162 **Immunofluorescence and microscopy**

163 Fifty micrometer-thick DRG sections were cut on a freezing microtome and
164 immunofluorescence was performed on DRG sections and Neuro2A cell as described previously
165 [18] using antibody dilutions optimized in the lab. Primary antisera directed against the
166 following: CTB (Goat anti-CTB, dilution 1:3000, List Biologic, Campbell, CA), P2X3R
167 (Guinea pig anti-P2X3R, dilution 1:4000, Neuromics, Edina, MN), β III tubulin (anti-mouse,
168 dilution 1:20,000, Promega, Madison, WI), and NR2B (anti-rabbit, dilution 1:1000, Millipore
169 Sigma).

170

171 **Results**

172 **Formation of CQ-dsRNA complex**

173 Modification of either CTB or dsRNAs (siRNA, LdsRNA or miRNA) modifies their
174 properties compromises function and is immunogenic. To avoid modification steps, we first
175 incubated LdsRNA with PEG-maleimide linker that resulted in formation of LdsRNA coated
176 with linker, but not covalently linked [19] as the RNA could be separated from the linker on a
177 native polyacrylamide gel by electrophoresis (Fig. 2A). In the second step of this reaction, we
178 utilized the maleimide group on PEG to link it to the cysteine residues that served as the NH₂

179 donor in CTB. The reaction is pH-dependent and takes about 40 min of incubation at 25°C. Once
180 CTB reacts with maleimide groups, a shift in electromobility on a native PAGE can be seen
181 between CQ-LdsRNA vs. CQ alone, with the former migrating slower than the latter (Fig. 2B).
182 dsRNA-PEG linker complexes can be made up to one month in advance and the CQ-LdsRNA
183 complex is stable for at least a week at 4°C.

184

185 **Figure 2 legend. dsRNA in CQ-complex is not covalently linked to PEG-meleimide.** CQ-
186 dsRNA for P2X3 receptor along with dsP2X3R-PEG-Meleimide, CTB-PEG meleimide, or CTB
187 were electrophoresed on a 7% Native polyacrylamide gel. (A) Gel was stained with ethidium
188 bromide to visualize dsRNA. (B) Gel was stained with Coomassie blue to visualize CQ protein
189 complex. Lanes: 1: Marker, 2: dsP2X3R, 3: dsP2X3R-PEG-meleimide, 4: CQ-dsP2X3R, 5: CTB
190 alone, 6: CQ (CTB-PEG-meleimide).

191

192 **CQ-dsRNA can be used *in vivo* to target specific neuronal
193 populations in dorsal root ganglion**

194 To test whether the CQ-dsRNA complex is viable as an *in-vivo* delivery method, we used
195 CQ-dsP2X3R dsRNA to test efficacy of delivery and knockdown of P2X3R expression in dorsal
196 root ganglion (DRGs). P2X3R is a purinergic receptor found on primary sensory neurons of
197 DRGs. We injected 10µl of a CQ-dsP2X3R complex intrathecally around the lumbar spinal cord
198 of adult rats (Fig. 3). Five days later, the rats were euthanized and the DRGs from the lumbar
199 spinal nerves were examined using immunocytochemistry. As seen in Fig. 3 from a lumbar
200 dorsal root ganglion, many DRG neurons contained CTB and many DRG neurons expressed
201 P2X3R immunoreactivity (Fig. 3). However, cells containing CTB expressed no, or very

202 reduced P2X3R immunoreactivity (Fig. 3, arrows), indicating that CQ-mediated delivery of
203 dsP2X3R to the neurons is a viable option and efficacious in knocking down expression of the
204 P2X3R protein in subpopulations of neurons.

205

206 **Figure 3 legend. CQ-dsP2X3R uptake by dorsal root ganglion neurons.** Intrathecal injection
207 of CQ-dsP2X3R resulted in uptake of the complex in large and medium diameter neurons as
208 reflected by presence of CTB immunoreactivity (CTB-IR) in subsets of DRG neurons. a, b, c, are
209 examples of neurons that contain CTB but show no P2X3R expression. Some neurons (e.g.
210 arrow) are CTB positive and show reduced expression of P2X3R immunoreactivity. Neurons
211 that strongly express P2X3R (e.g. d, e) do not contain CTB. Scale bar = 30 mm.

212

213 **Carrier or CQ by itself does not alter protein expression *in vitro***

214 Next, we tested whether neurons in culture can take up CQ and that CQ (carrier) itself
215 does not alter expression of target receptors by examining the NMDA receptor subunit NR2B
216 expression in Neuro2A cells. Immunofluorescence shows that Neuro2A cells differentiated into
217 neuronal phenotype to project neurites and express β III tubulin immunoreactivity and co-
218 express NR2B (Fig. 4A). CQ carrier alone added to the culture medium is taken up by
219 efficiently by differentiated Neuro2A cells (Fig. 4B, CTB immunoreactivity) and does not alter
220 the expression of NR2B.

221

222 **Figure 4 legend. Differentiated Neuro2A cells take up CQ-dsRNA complex.** (A) Neuro2A
223 cells can be differentiated and express β III tubulin, a marker for neurons. In addition, all
224 Neuro2A cells express NR2B subunit and co-localize with β III tubulin (merge). (B) Incubation

225 of CQ in culture medium resulted in uptake of CTB by Neuro2A cells, but did not affect NR2B
226 expression, suggesting that CTB-PEG meleimide by itself does not alter expression of proteins.
227 Scale bar: 50 μ m.

228

229 ***In vitro* uptake of CQ-dsRNA by neuronal cell line Neuro2A**

230 Since all Neuro2A cells express NR2B, if CQ-dsNR2B is selectively taken up by a subset
231 of neurons, we should expect knockdown of NR2B in those subsets of neurons that take up CQ
232 complex. Cells were incubated with CQ-dsNR2B complex for 7-24 hours, and then transferred
233 to normal culture medium without CQ-dsNR2B. Seven hours after incubation with CQ-dsNR2B,
234 uptake was evident, but no knockdown of NR2B immunoreactivity was evident at this short time
235 point (Fig. 5A). Two days after incubation with CQ-dsNR2B complex, Neuro2A cells showed
236 knockdown of NR2B in all cells that were positive for CTB immunoreactivity (Fig. 5B). In cells
237 that did not take up CQ-dsNR2B, immunoreactive NR2B was clearly visible (Fig. 5B merge).

238

239 **Figure 5 legend. Inhibition of NR2B immunoreactivity by CQ-dsNR2B complex.** (A) Seven
240 hours after incubation of Neuro2A cells with CQ-dsNR2B, uptake was evident as seen by
241 positive staining of cells with CTB, but robust NR2B-IR was evident. (B) Two days after
242 incubation of Neuro2A cells in medium containing CQ-dsNR2B, subsets of Neuro2A cells
243 showed expression of CTB and markedly reduced expression of NR2B-IR, whereas cells that did
244 not contain CTB showed robust NR2B-IR. Scale bar: 50 μ m

245

246 **Discussion**

247 Here we show that the non-toxin subunit B of Cholera toxin, CTB that is routinely used
248 as a neuroanatomical tracer can be used to deliver potentially therapeutic moieties to sub-
249 populations of neurons. Given the selective uptake of CTB-dsRNA complex in cultured cells,
250 this method has the potential to be a powerful way to study gene expression and cell signaling in
251 a subpopulation of neurons, even in a mixed population of cells, and in their natural milieu.
252 Currently, no such technique is available with this capacity.

253

254 Other toxins, peptides and receptors expressed on specific cell types or neurons have
255 been used in past to deliver plasmid DNA to specific populations of cells or neurons; delivery of
256 dsRNA (siRNA or miRNA) to neurons remains a challenge. Boulis' group developed a peptide
257 (Tet1) that is similar to tetanus toxin, is specifically taken up by motor neurons, and is
258 retrogradely delivered to cell soma. Tet1-poly(ethylenimine) (Tet1-PEI) and neurotensin (NT)-
259 PEI complexed with plasmid DNA have been evaluated as a neurontargeted delivery vehicle[20].
260 Plasmid DNA has also been conjugated to μ opioid receptor-liposome complexes for cell-
261 specific delivery, but as is becoming apparent, chemical modification or fusion bacterial-
262 mammalian proteins are immunogenic, and none of these methods can deliver unmodified
263 nucleic acids or proteins.

264

265 Although here we focused on CTB as the carrier molecule, our method potentially allows
266 us to encapsulate our resultant dsRNA/DNA nanoparticles with other carrier molecules such as
267 isolectin B4 (IB4). IB4 is also used as a neuroanatomical tracer and targets a different population
268 of neurons other than CTB. Potentially, IB4 and CTB can also be used in combination as carrier

269 molecules to increase targeted populations of neurons. Consequently, our method has wide
270 therapeutic potential.

271
272 The therapeutic areas that can be targeted with this delivery method could include any
273 nervous system related disease. Additionally, since cholera toxin is a gut pathogen and enters
274 the gut via epithelial cells expressing the cognate GM1 receptor, RNAi encapsulated in CTB can
275 be targeted for gastrointestinal disorders.

276
277 This delivery platform can also serve as an alternative DNA and RNAi mammalian cell
278 transfection reagents and vectors. Because only specific cell-types will take up the CTB-dsRNA
279 or CTB-DNA complex, primary cultures of mixed populations can be transfected with much
280 higher efficacy and efficiency. Moreover, since it is known that pure populations of neurons do
281 not behave in the same manner as they do in their natural (*in vivo*) environment, this transfection
282 method will allow us to target neurons in cultures that have both the neurons and the glia. Thus,
283 functional studies in those targeted subpopulations of neurons can be performed.

284
285 **Acknowledgements**
286

287 This work was supported by a CTSI pilot grant to AB. The authors wish to thank
288 excellent technical help of Drs. Shilpi Mahajan, Pallavi Mhaske, and Ling-Hsuan Kung.

289 **References**

1. de Fougerolles AR. Delivery vehicles for small interfering RNA in vivo. *Hum Gene Ther.* 2008;19(2):125-32. doi: 10.1089/hum.2008.928. PubMed PMID: 18257677.
2. Love KT, Mahon KP, Levins CG, Whitehead KA, Querbes W, Dorkin JR, et al. Lipid-like materials for low-dose, in vivo gene silencing. *Proceedings of the National Academy of Sciences of the United States of America.* 2010;107(5):1864-9. doi: 10.1073/pnas.0910603106. PubMed PMID: 20080679; PubMed Central PMCID: PMCPMC2804742.
3. Semple SC, Akinc A, Chen J, Sandhu AP, Mui BL, Cho CK, et al. Rational design of cationic lipids for siRNA delivery. *Nat Biotechnol.* 2010;28(2):172-6. doi: 10.1038/nbt.1602. PubMed PMID: 20081866.
4. Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. *Cell.* 2002;110(5):563-74. doi: 10.1016/s0092-8674(02)00908-x. PubMed PMID: 12230974.
5. Whitehead KA, Dahlman JE, Langer RS, Anderson DG. Silencing or stimulation? siRNA delivery and the immune system. *Annu Rev Chem Biomol Eng.* 2011;2:77-96. doi: 10.1146/annurev-chembioeng-061010-114133. PubMed PMID: 22432611.
6. Aleman LM, Doench J, Sharp PA. Comparison of siRNA-induced off-target RNA and protein effects. *RNA.* 2007;13(3):385-95. doi: 10.1261/rna.352507. PubMed PMID: 17237357; PubMed Central PMCID: PMCPMC1800510.
7. Kenski DM, Butora G, Willingham AT, Cooper AJ, Fu W, Qi N, et al. siRNA-optimized Modifications for Enhanced In Vivo Activity. *Mol Ther Nucleic Acids.* 2012;1:e5. doi: 10.1038/mtna.2011.4. PubMed PMID: 23344622; PubMed Central PMCID: PMCPMC3381598.
8. Fluitter K, Mook OR, Baas F. The therapeutic potential of LNA-modified siRNAs: reduction of off-target effects by chemical modification of the siRNA sequence. *Methods Mol Biol.* 2009;487:189-203. doi: 10.1007/978-1-60327-547-7_9. PubMed PMID: 19301648.
9. Li LC, Okino ST, Zhao H, Pookot D, Place RF, Urakami S, et al. Small dsRNAs induce transcriptional activation in human cells. *Proceedings of the National Academy of Sciences of the United States of America.* 2006;103(46):17337-42. PubMed PMID: 17085592.
10. Bhargava A, Clifton MS, Mhaske P, Liao M, Pothoulakis C, Leeman SE, et al. Local injection of dsRNA targeting calcitonin receptor-like receptor (CLR) ameliorates *Clostridium difficile* toxin A-induced ileitis. *Proceedings of the National Academy of Sciences of the United States of America.* 2013;110(2):731-6. doi: 10.1073/pnas.1219733110. PubMed PMID: 23267070; PubMed Central PMCID: PMCPMC3545755.
11. Bhargava A, Dallman MF, Pearce D, Choi S. Long double-stranded RNA-mediated RNA interference as a tool to achieve site-specific silencing of hypothalamic neuropeptides. *Brain Res Brain Res Protoc.* 2004;13(2):115-25. doi: 10.1016/j.brainresprot.2004.03.003. PubMed PMID: 15171994.
12. Clifton MS, Hoy JJ, Chang J, Idumalla PS, Fakhruddin H, Grady EF, et al. Role of calcitonin receptor-like receptor in colonic motility and inflammation. *Am J Physiol Gastrointest Liver Physiol.* 2007;293(1):G36-44. doi: 10.1152/ajpgi.00464.2006. PubMed PMID: 17363466.
13. la Fleur SE, Wick EC, Idumalla PS, Grady EF, Bhargava A. Role of peripheral corticotropin-releasing factor and urocortin II in intestinal inflammation and motility in terminal ileum. *Proceedings of the National Academy of Sciences of the United States of America.* 2005;102(21):7647-52. PubMed PMID: 15883387.

333 14. Liu S, Chang J, Long N, Beckwith K, Talhouarne G, Brooks JJ, et al. Endogenous CRF
334 in rat large intestine mediates motor and secretory responses to stress. *Neurogastroenterol Motil.*
335 2016;28(2):281-91. doi: 10.1111/nmo.12725. PubMed PMID: 26611915; PubMed Central
336 PMCID: PMCPMC4727995.

337 15. Ohara PT, Vit JP, Bhargava A, Jasmin L. Evidence for a role of connexin 43 in
338 trigeminal pain using RNA interference in vivo. *J Neurophysiol.* 2008;100(6):3064-73. doi:
339 10.1152/jn.90722.2008. PubMed PMID: 18715894; PubMed Central PMCID:
340 PMCPMC2604845.

341 16. Vit JP, Ohara PT, Bhargava A, Kelley K, Jasmin L. Silencing the Kir4.1 potassium
342 channel subunit in satellite glial cells of the rat trigeminal ganglion results in pain-like behavior
343 in the absence of nerve injury. *J Neurosci.* 2008;28(16):4161-71. doi:
344 10.1523/JNEUROSCI.5053-07.2008. PubMed PMID: 18417695; PubMed Central PMCID:
345 PMCPMC2533133.

346 17. Grishok A. RNAi mechanisms in *Caenorhabditis elegans*. *FEBS Lett.*
347 2005;579(26):5932-9. doi: 10.1016/j.febslet.2005.08.001. PubMed PMID: 16162338.

348 18. Kung LH, Gong K, Adedoyin M, Ng J, Bhargava A, Ohara PT, et al. Evidence for
349 glutamate as a neuroglial transmitter within sensory ganglia. *PLoS One.* 2013;8(7):e68312. doi:
350 10.1371/journal.pone.0068312. PubMed PMID: 23844184; PubMed Central PMCID:
351 PMCPMC3699553.

352 19. Evdokimov YM, Pyatigorskaya TL, Kadikov VA, Polyvtsev OF, Doskocil J, Koudelka J,
353 et al. A compact form of double-stranded RNA in solutions containing poly(ethyleneglycol).
354 *Nucleic acids research.* 1976;3(6):1533-47. PubMed PMID: 8770.

355 20. Park IK, Lasiene J, Chou SH, Horner PJ, Pun SH. Neuron-specific delivery of nucleic
356 acids mediated by Tet1-modified poly(ethylenimine). *The journal of gene medicine.*
357 2007;9(8):691-702. PubMed PMID: 17582226.

358

Fig. 1

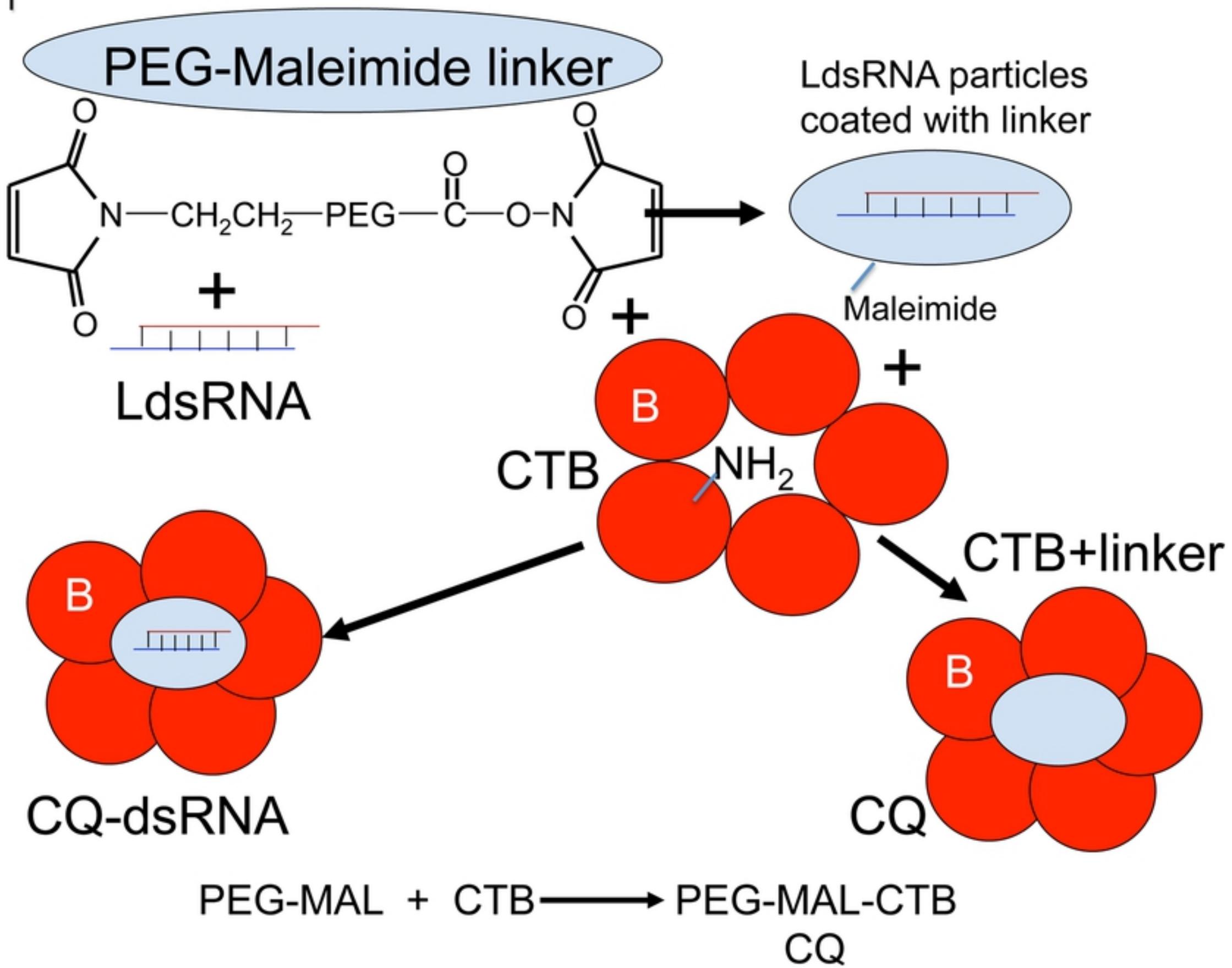
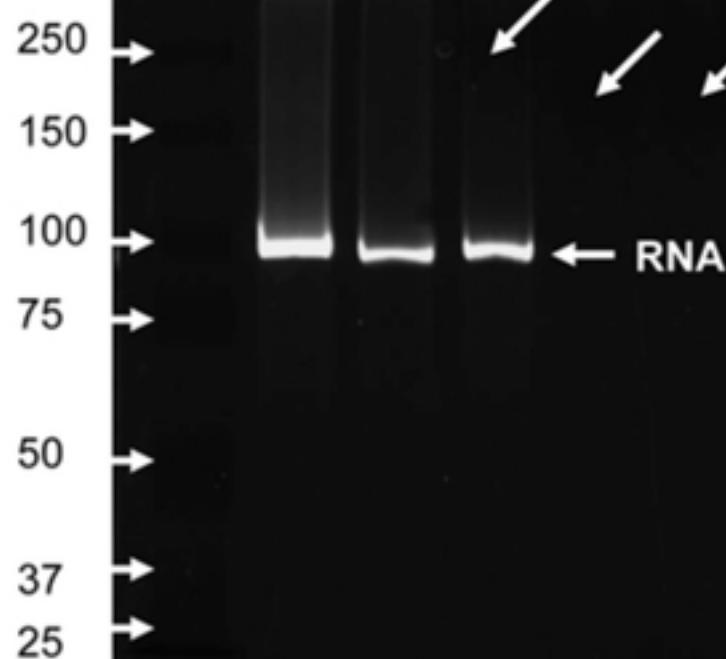



Figure 1

Fig. 2

Lanes: 1 2 3 4 5 6

KDa

Lanes: 1 2 3 4 5 6

KDa

Protein complex

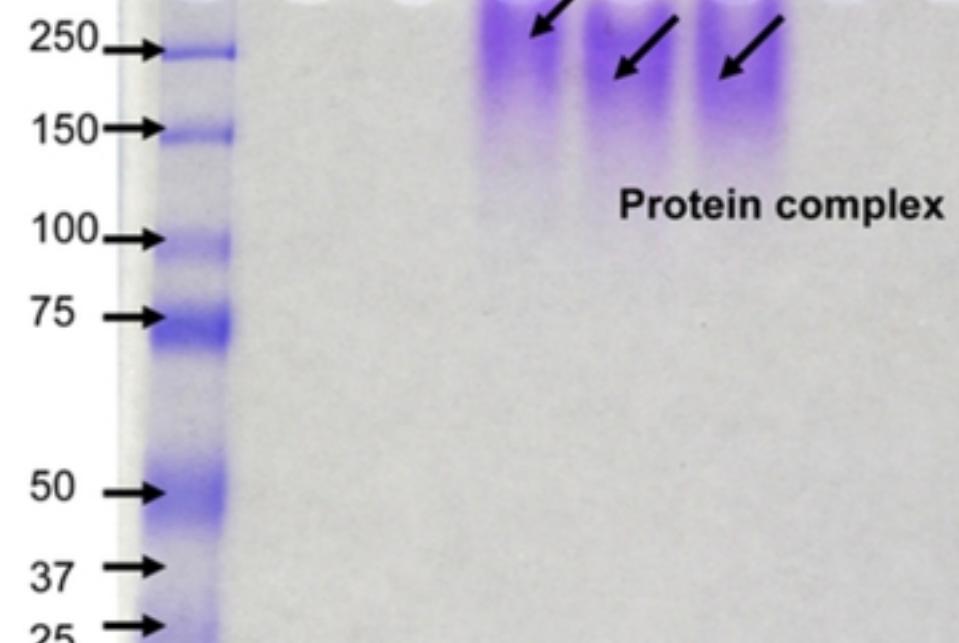


Figure 2

Fig. 3

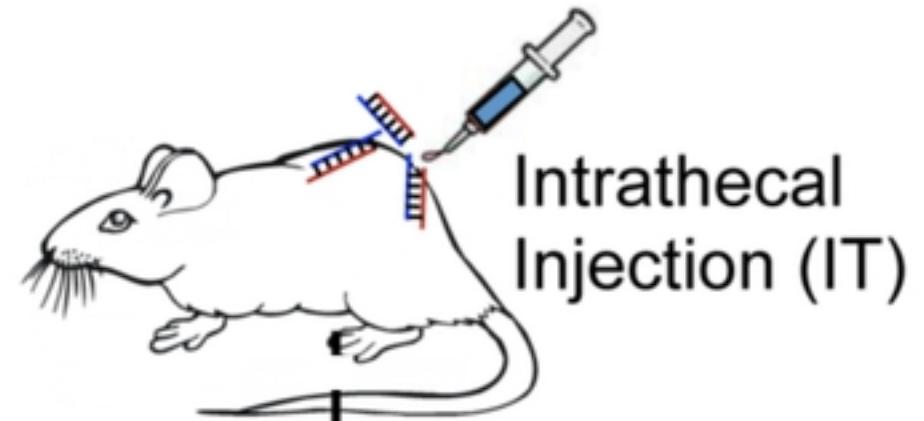
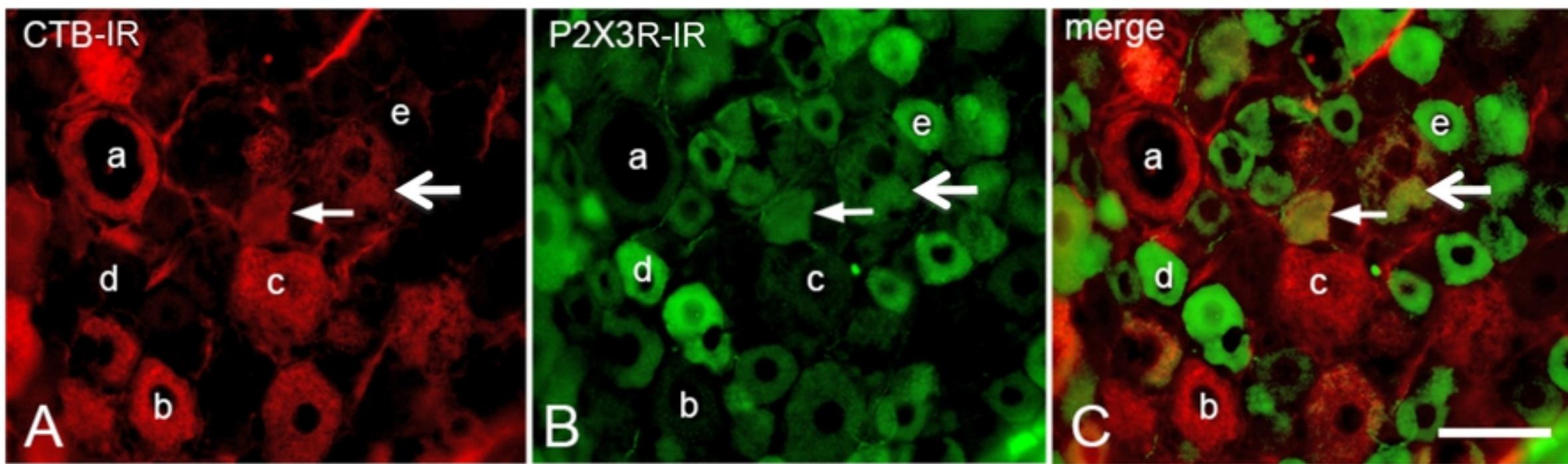
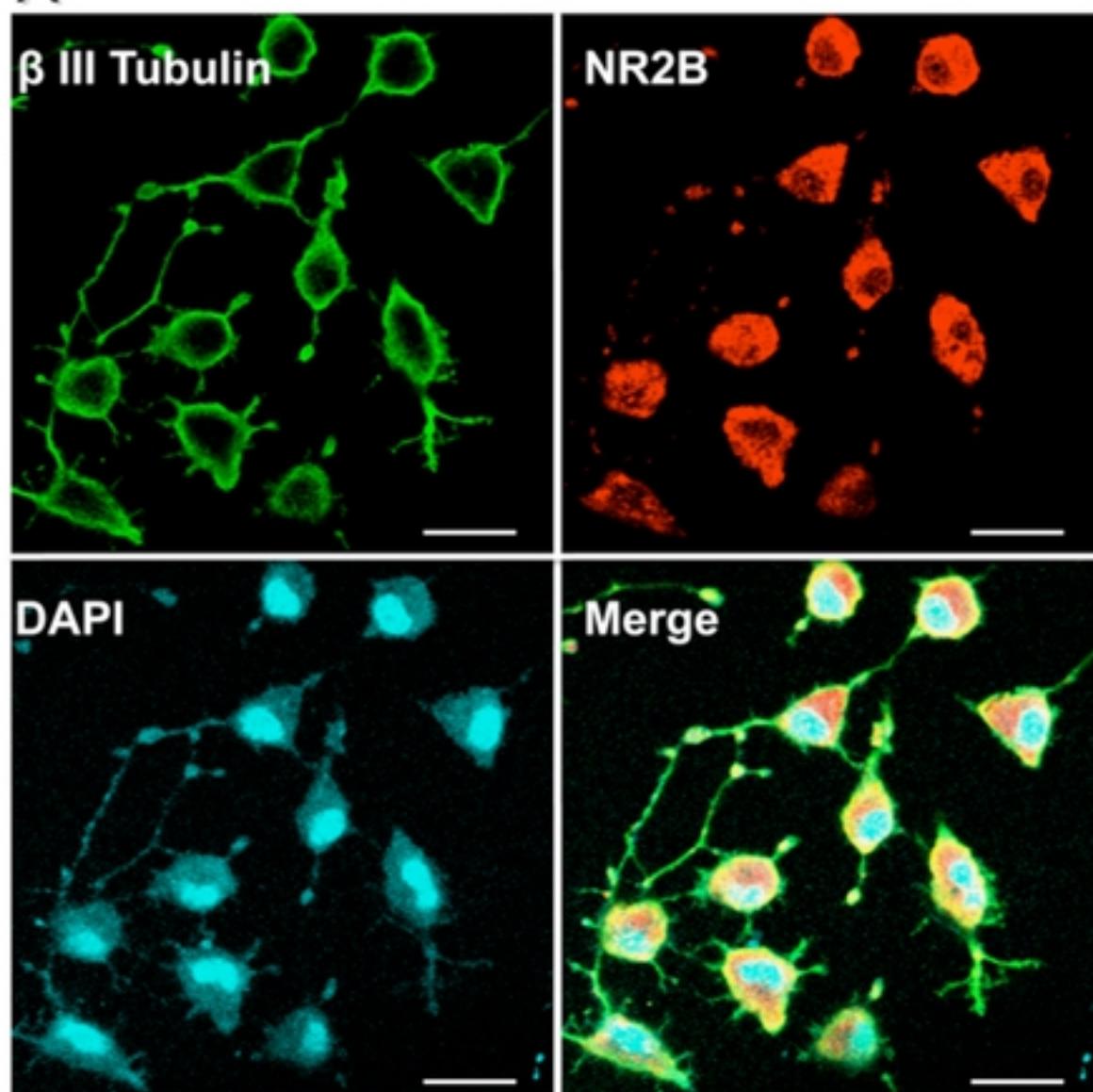




Figure 3

Fig. 4

A

B

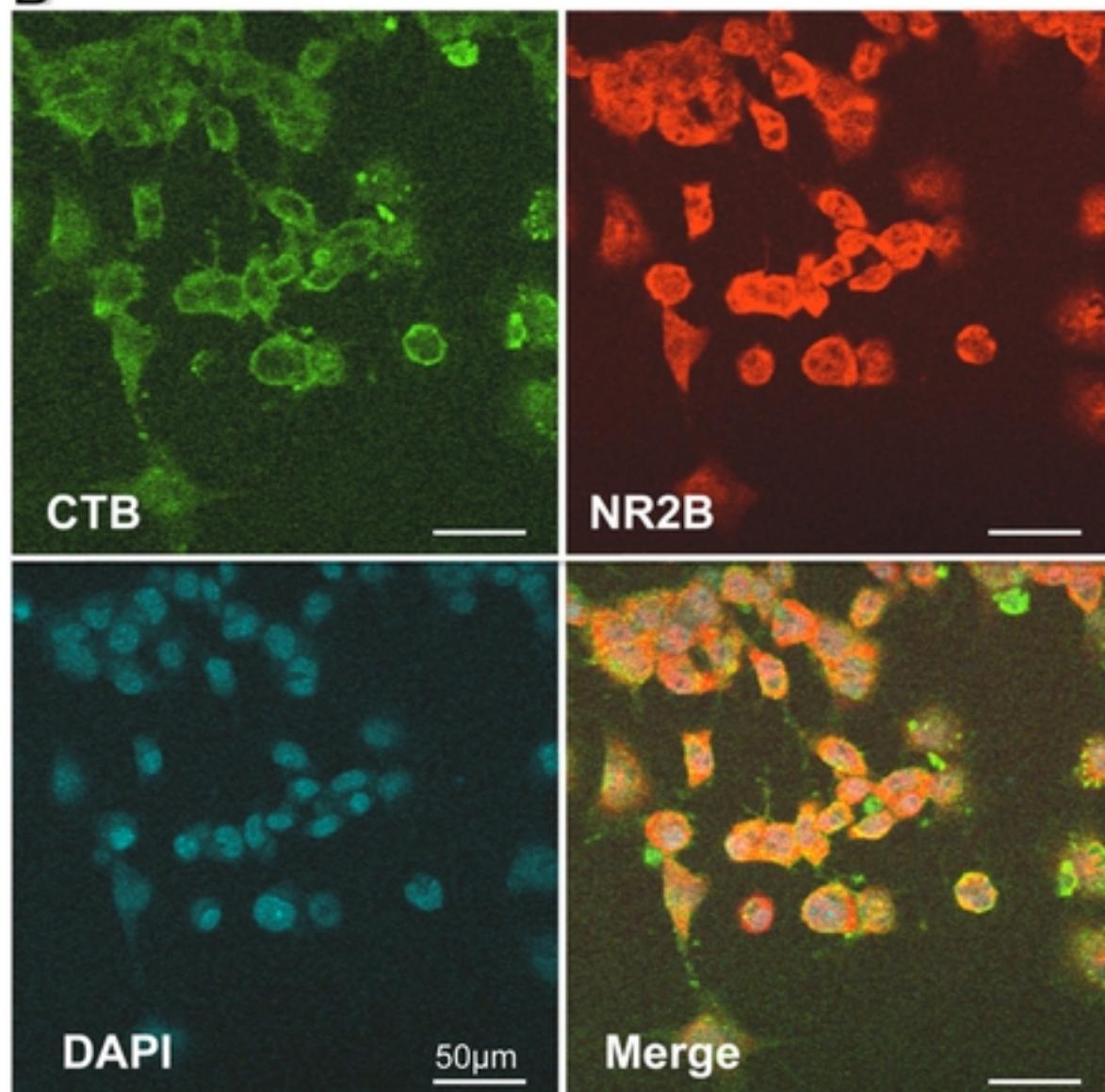
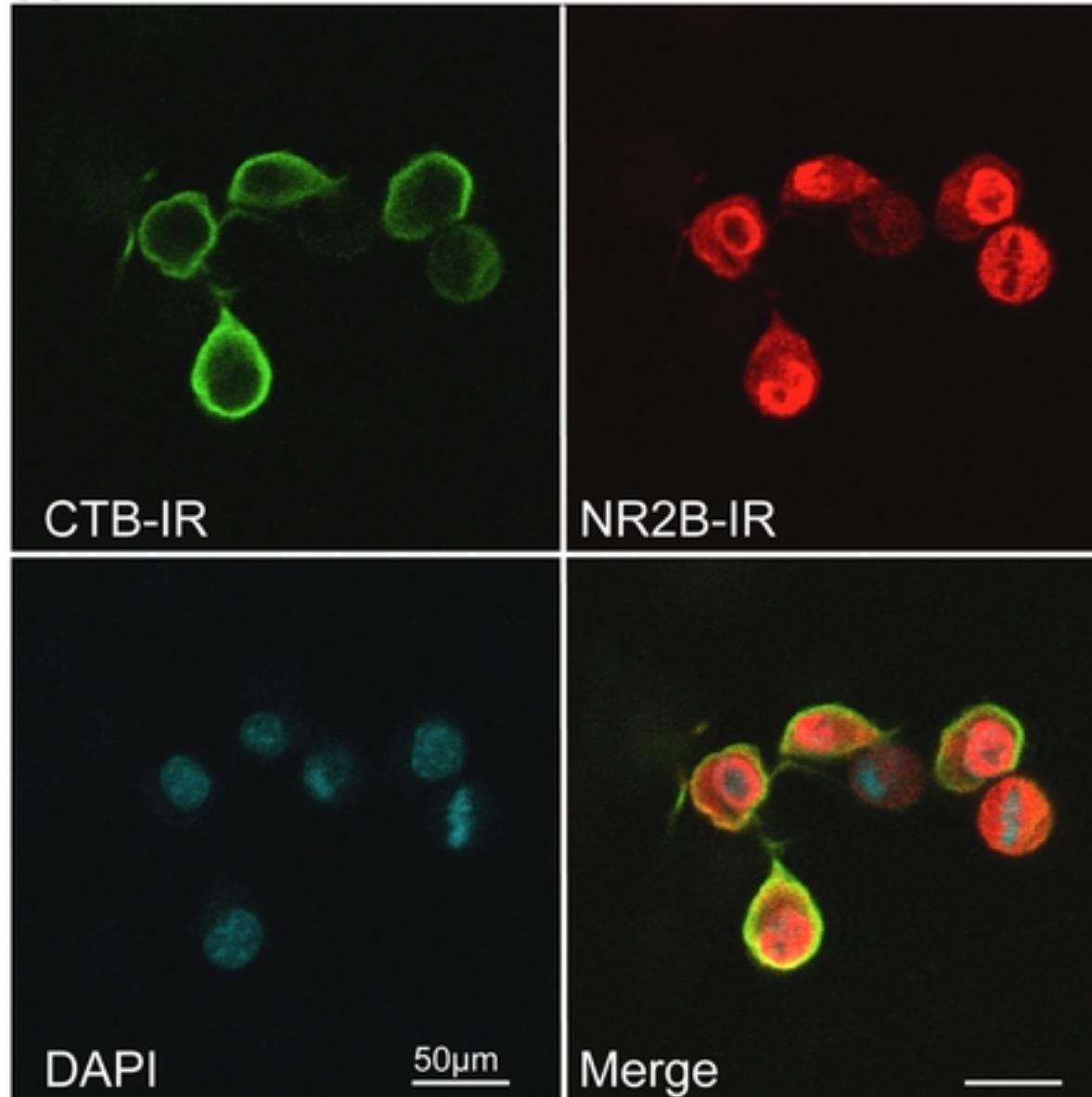



Figure 4

Fig. 5

A

B

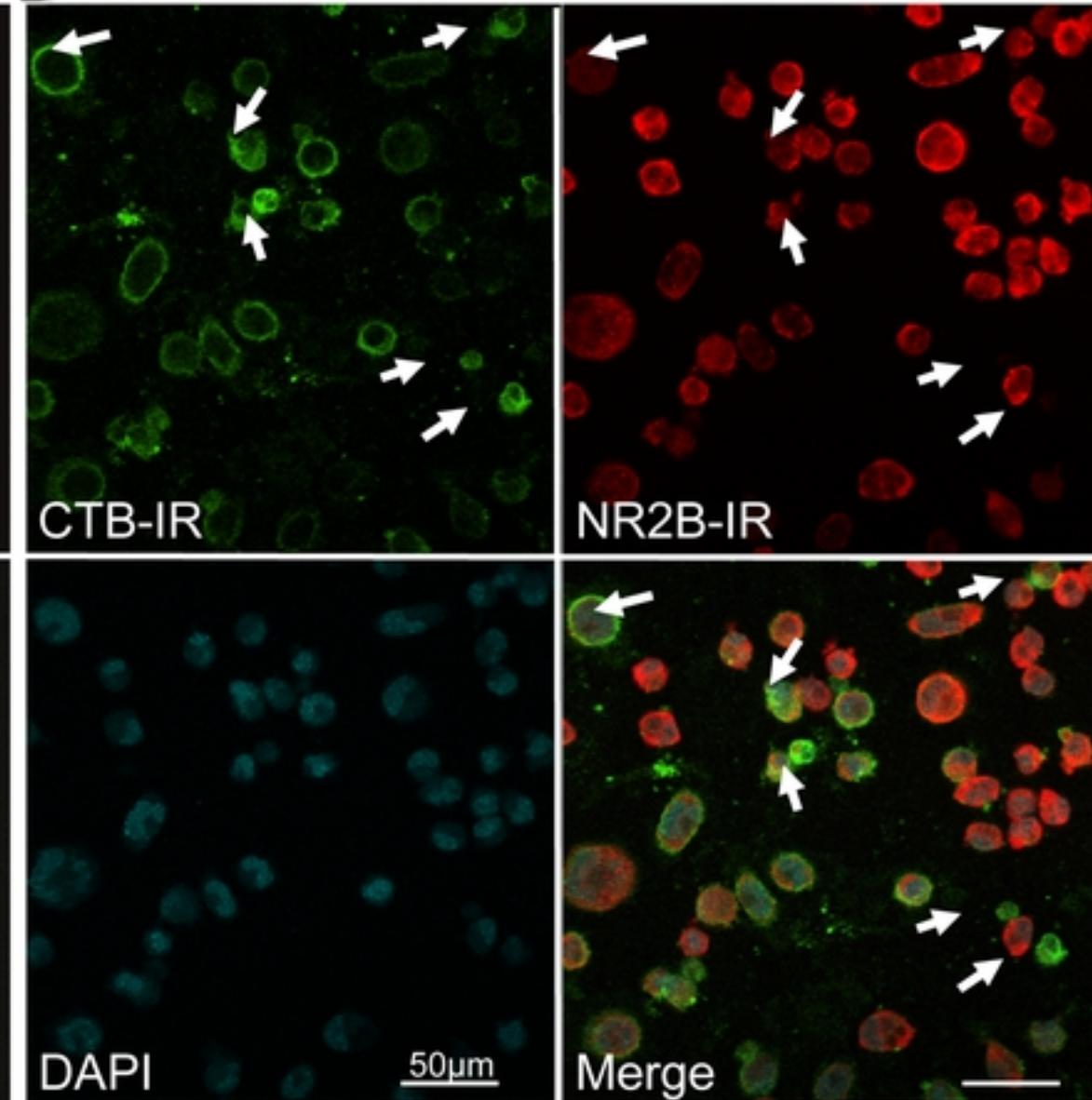


Figure 5