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The transmission bottleneck is defined as the number of viral
particles transmitted from one host to another. Genome se-
quence data has been used to evaluate the size of the trans-
mission bottleneck between humans infected with the influenza
virus, however, the methods used to make these estimates have
some limitations. Specifically, approaches using viral allele fre-
quency data may not fully capture a process which involves the
transmission of entire viral genomes. Here we set out a novel ap-
proach for inferring viral transmission bottlenecks; our method
combines haplotype reconstruction, a method for inferring the
composition of genomes in a viral population, with two maxi-
mum likelihood methods for bottleneck inference, tailored for
small and large bottleneck sizes respectively. Our method al-
lows for rapid calculation, and performs well when applied to
data from simulated transmission events, being robust to errors
in the haplotype reconstruction process. Applied to data from a
previous household transmission study of influenza A infection
we confirm the result that the majority of transmission events
involve a small number of viruses, albeit with slightly looser bot-
tlenecks being inferred, with between 1 and 13 particles trans-
mitted in the majority of cases. While influenza A transmission
involves a tight population bottleneck, the bottleneck is not so
tight as to universally prevent the transmission of within-host
viral diversity.
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Introduction
Viral populations experience large fluctuations in population
size. During the course of an infection many thousands of
viruses may be produced by each infected cell (1), yet in the
process of transmission only a small number of viruses may
get through to found a new infection (2). The size of the
bottleneck undergone by a viral population at the moment of
transmission has an important impact on the evolution of that
virus. Where larger numbers of viral particles are involved
in transmission, a greater amount of genetic diversity is
preserved between hosts; where smaller numbers of particles
are transmitted, between-host evolution becomes more of a
stochastic process (3). Studying transmission at the scale of
individual hosts therefore gives an insight into larger-scale
patterns of viral evolution.

Genetic data provides an invaluable insight into processes
of viral evolution (4). Such data has been at the core of
a variety of approaches for the quantitative analysis of
population bottlenecks, typically using observations of
minority variants, or their allele frequencies, to make a
statistical inference. For example, counting the number of
minority variants shared between hosts can be informative of
whether transmission occurred between specific hosts (5, 6).
If the route of transmission is known, the same count can be
used to estimate the size of the population bottleneck (7).
A model of genetic drift may also be applied: smaller or
larger changes in the composition of a viral population
suggest that a larger or smaller number of viruses were
transmitted (3, 8–11). In some situations, engineered viruses
with genetic markers have been used to directly evaluate
transmission events (12, 13)

Recent studies of influenza transmission between human
hosts have used metrics based upon changes in allele frequen-
cies to evaluate the bottleneck at transmission (3, 11, 14, 15).
Such metrics have limitations; transmission is ultimately
an event in which whole viruses, rather than independent
alleles, are passed from one host to another. Neglecting
genetic linkage in this way can skew the results of inference
methods (16). Inspired by this, a recent study on the
assessment of viral transmissibility used sequence data to
evaluate transmission at the level of viral genomes (17).

Accounting for genetic linkage between alleles becomes
more difficult as the diversity of a viral population increases.
In modelling the action of selection on a diverse population,
the large number of potential genome sequences can make
calculations infeasible. Considering cases in which selection
among transmitted variants is not the dominant effect at
transmission (3) we here set out an alternative approach
for the inference of population bottlenecks, incorporating
the true genetic structure of viruses. Our approach has two
components. Firstly, given sequence data collected before
and after a transmission bottleneck, we apply a method
of haplotype reconstruction, using a maximum likelihood
framework to calculate a parsimonious reconstruction of the
viral population, as observed before and after transmission.
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A broad variety of computational tools have previously
been described for the purpose of haplotype reconstruction
in various contexts (18–23); ours fits naturally into the
bioinformatic framework we have outlined in previous
publications (24, 25). Secondly we use the haplotype
reconstruction to infer a bottleneck size at transmission; our
framework contains two alternative approaches optimised for
smaller and larger bottleneck sizes respectively. We test our
method against simulated data describing viral transmission
events with a broad range of population bottlenecks. Finally,
we re-evaluate data from a previous study of influenza
transmission between human hosts (3). Our study supports
the hypothesis of a generally small transmission bottleneck
for influenza viral populations (3, 26) albeit with fractionally
higher bottleneck sizes inferred from the same data.

Results
Before considering data from a study of human infection,
we applied our method to simulated transmission data,
examining the haplotype reconstruction and bottleneck
inference steps.

Allele-based versus haplotype-based inference. An
initial example of a transmission bottleneck highlights
the potential pitfalls of the use of single-allele models for
evaluating transmission (Figure 1). In this simulated system
data were collected from before and after a transmission
bottleneck. While during transmission the viral population
changed substantially at the genotype level, these changes
were not fully reflected in the allele frequency data from
each population. As a consequence, inferences of the
bottleneck at transmission, calculated using haplotype- and
allele-frequency methods, differed by close to two orders of
magnitude. Although the population used in this analysis is
something of an artificial construction, the result highlights
a fundamental point of biology. Rather than independent
alleles, viral transmission involves the transmission of
complete viral genomes, and approaches which neglect this
may be flawed in their outcome. We are therefore motivated
to consider the transmission of viruses on the genotype level.

Haplotype reconstruction. Applied to simulated data
our method showed a reasonably good ability to correctly
identify haplotypes with a correct inference of all haplotypes
being made in more than half of the cases tested (Figure
2). Our approach uses a maximum likelihood method
to infer the most parsimonious reconstruction of a viral
population, given sequence data. To test our approach we
simulated data describing the transmission of an influenza
viral population, from a host to a recipient individual. Each
segment in the population was modelled as containing six
distinct haplotypes, applying a method for generating data
described in a previous study (17). Simulated sequence data
from the viral populations in each host were used to infer
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Fig. 1. A. Simulated system of viral transmission. A population comprising seven
viral genotypes transmits to a new host, leading to a population in the recipient
which includes six of the seven genotypes. A plot shows the sampled frequencies
of the distinct genotypes, or haplotypes, before and after transmission, reported to
four significant figures. Our explicit model of viral transmission based on haplotype
frequencies (described in the text) infers a population bottleneck of 17 viruses from
these data. B. An alternative analysis of the same population samples allele fre-
quencies from the population before and after the transmission event; these are
shown in an equivalent plot. A calculation of the population bottleneck from these
data infers a value nearly two orders of magnitude larger than that of our previous
calculation.
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Fig. 2. Numbers of inferred and correctly inferred haplotypes given simulated se-
quence data. A total of 6 haplotypes were included in each of 800 simulations
tested.

which haplotypes were present in the transmission event and
their frequencies. Combining data across segments the most
common outcome was a correct reconstruction of all of the
haplotypes in the population.

Inference of population bottlenecks. Our two methods
for bottleneck inference produced good results when applied
to simulated viral transmission data (Figure 3). As described
in the Methods section, the two methods we apply gener-
alise in turn the approaches of two previously-described
single-locus methods for bottleneck inference (11, 14).
Our "compound method" uses a model of genetic drift in a
continuous space of genotype frequencies, in which smaller
changes in frequencies correspond to a lesser amount of
stochasticity in transmission, and hence a larger population
bottleneck (14). Our "explicit method" explicitly evaluates
all of the possible outcomes of a transmission event across
a discrete space: the fact that an integer number of viruses
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Fig. 3. Transmission bottleneck sizes inferred from simulated data using different
input data and methodologies. Inferences are shown in colour according to the data
and method used. Calculations with inferred haplotypes took as input data gener-
ated from a haplotype reconstruction method applied to simulated sequence data, in
which both the haplotypes and their frequencies before and after transmission were
inferred. Calculations with the correct haplotypes took as input data from a haplo-
type reconstruction in which the identities of the correct haplotypes were given, with
only their frequencies being inferred. Inferences from the explicit method were only
calculated for smaller population bottleneck sizes as the method does not scale well
to evaluating larger bottlenecks. Results from the explicit method were so accurate
as to not have a meaningful interquartile range: numbers displayed in these cases
indicate the number of inferences giving a precisely-correct inference of the popu-
lation bottleneck. Horizontal dashed lines indicate the simulated bottleneck sizes.

of each genotype are transmitted is used to weigh up the
likelihood of different potential bottlenecks (11).

Applying these methods to simulated data, the compound
method generally did well, inferring transmission bottle-
necks that were close to the simulated values. One advantage
of this method is that its running time does not increase
with the bottleneck size, enabling the analysis of very high
potential bottleneck sizes. A disadvantage of the method
is that, despite improvements made with respect to its
predecessor (17), the mathematical approximations made in
its construction mean that it does not always perform so well
at low bottleneck sizes, producing a visible underestimate
of bottlenecks of size 10. Further inferences of bottleneck
size were made using reconstructions of haplotypes in
which the correct simulated haplotypes were pre-specified,
learning only their frequencies. Using these improved data
did not produce a noticeable improvement in the infer-
ence of the bottleneck size, suggesting that our inference
of bottleneck size is robust to errors that arise from our
haplotype reconstruction method. Bottleneck sizes in each
case were calculated across eight independent viral segments.

Given our simulated data, the explicit method outperformed
the compound method at low bottleneck sizes, inferring
exactly correct values in the majority of cases with very
little error. A disadvantage of the explicit method is that
in requiring the evaluation of all possible outcomes of a
transmission event, the computational time it requires grows
very rapidly as the bottleneck size increases. For this reason,
we did not apply it to data from higher simulated population
bottlenecks. As with the compound method performance
did not greatly improve given frequencies inferred using the

correct viral haplotypes; errors in haplotype reconstruction
did not have a strong effect on the inferred bottleneck sizes.

Inference of bottleneck size for a segment was not possible
in two cases. Firstly, if our haplotype reconstruction found
evidence for only a single viral haplotype, no inference
was possible, insufficient information about the event being
available. Secondly, if the viral population in the recipient
was inferred to have arisen purely from a de novo haplotype,
which had swept to fixation in the population between the
establishment of the infection and the collection of the
sequence data, this result was uninformative in identifying
a bottleneck. In either of these circumstances, data from
a viral segment was ignored, inferences conducted for
the remaining segments being combined to infer the final
bottleneck size.

In considering the differences in inferences achieved by the
two methods at low bottleneck sizes, it is perhaps helpful
to consider the simple case where a single allele frequency
changes from 50% frequency in the donor to 5% in the re-
cipient. Within the compound method this represents a large
change in allele frequency, corresponding to a large amount
of genetic drift, and hence a low bottleneck size. By contrast
under the explicit method variation at a frequency of 5% is
difficult to achieve given a low population bottleneck; a case
in which 20 viruses were transmitted, one of which had the
minority variant, would give a more coherent explanation

Application to data from a household study. Our
transmission model was applied to data collected from a
previously published household study (3). This study used a
single-locus inference model to identify narrow bottlenecks
in human-to-human transmission, with all but a single event
being inferred to involve the transmission of between one
and four viral particles. Short-read data from this study
was filtered and processed into variant data before being
fed into our method. Having identified polymorphic loci
in pairs of transmission data using an allele frequency
cutoff of 2% we generated multi-locus reads from the data
using the SAMFIRE sofware package (25), using these to
generate an inference of haplotype frequencies before and
after transmission. These frequencies were used to infer
population bottleneck sizes for each transmission event.

We confirm the previous inference of tight population
bottlenecks in all cases (Figure 4). In the majority of
transmission events (29 out of 38 events for which we
obtained an inference), bottlenecks of size NT = 1 were
inferred by both of our methods, consistent with all of the
diversity of the viral population in the original host being
lost at transmission. While not implying that these infections
were started by a single viral particle, these results are con-
sistent with the hypothesis of a generally tight bottleneck at
transmission. In eight out of the remaining nine transmission
events, intermediate bottleneck sizes were inferred, with a
range from 2 to 7 in the compound method and from 2 to
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Fig. 4. Bottleneck sizes inferred from the data presented by (3). Dots indicate the
maximum likelihood bottleneck size inferred for each of the 38 systems in this work
for which we were able to infer a bottleneck. Vertical bars represent confidence
intervals equivalent to a cut-off of 2 log likelihood units.

13 in the explicit method. Evidence from simulated data
suggests that the explicit method is probably more accurate
in this range. Finally, there was a single case in which a
bottleneck size of 200 or more was inferred; this was set as
the upper limit considered by our study. Our inference in
this case matched the original analysis of the data. A further
statistical analysis of the samples collected before and after
transmission indicated a greater degree of similarity between
allele frequencies than was previously found in a case where
replicate clinical samples were processed and sequenced in
parallel (27). Whereas in the previous study, measurements
of allele frequencies from samples split from the cDNA
synthesis step onwards were consistent with an effective
read depth (that is equivalent to an error-free sample depth)
of one thousand or more, here an effective depth in excess
of 20,000 was inferred, demonstrating that the before- and
after-transmission samples were extremely similar. This case
could represent either a very unusual transmission event,
in which an extreme number of viruses were transmitted,
or potentially an isolated error in the processing of a large
number of sequence samples.

Cases in which the explicit method inferred larger bottleneck
sizes than the compound method could be explained in terms
of the preservation of allele frequencies at relatively low
frequencies; as explained above the explicit method can
favour a higher bottleneck in such cases.

Our approach was not able to infer a population bottleneck
in five of the transmission cases analysed by the original
study. In these cases a low level of polymorphism observed
before transmission was no longer present after transmission.
Application of our haplotype reconstruction method in these
cases did not find statistical evidence for more than one
haplotype (plus noise) in these systems, at least two specific
haplotypes being required for an inference of bottleneck size.
We understand this in terms of our haplotype reconstruction
method being less sensitive to detecting variation than is the
2% allele frequency cutoff used in the original study; the
presence of a variant allele at 2% frequency was not always

sufficient evidence for our code to infer the existence of two
specific genetic variants in the population. In these cases, the
loss of host genetic variance at transmission would lead our
methods to the conclusion that a bottleneck of NT = 1 best
explained the observed data, strengthening our main result
of a tight bottleneck size. The sensitivity of our method in
calling additional haplotypes can be somewhat arbitrarily
tuned.

Discussion
We have here set out a haplotype-based approach for the
inference of transmission bottlenecks, and demonstrated
its application using data from a study of transmission
of influenza A infection. Our approach uses a haplotype
reconstruction approach to infer the composition of the
viral population before and after transmission; by requiring
substantial evidence to add an additional haplotype to the
model, the approach limits the complexity of the inferred
viral population, improving the feasibility of bottleneck
inference relative to a previous approach (17). While our
haplotype reconstruction method was not perfect in repro-
ducing the details of a viral population, errors resulting from
this method did not greatly harm our inference of population
bottleneck sizes.

Our inference of bottleneck size comprises two distinct
methods, optimal for distinct transmission bottleneck sizes.
The first of these generalises the approach of Poon et al. (14),
who used a formula based on genetic drift to evaluate
changes in allele frequencies. Our compound method gener-
alises this to changes in haplotype frequencies, which occur
in higher dimensional sequence space; it further incorporates
uncertainty in the inferred haplotype frequencies and genetic
drift arising from within-host population growth. This
method has the advantage of being rapid to calculate at high
bottleneck sizes, but potentially underestimates bottleneck
sizes at low values of NT . Our second method, the explicit
method, generalises the approach of Sobel Leonard et
al. (11), who apply a beta-binomal formula to evaluate
possible discrete outcomes of a transmission process. In
spirit we repeat this approach, summing a likelihood function
over the set of possible outcomes of a transmission of viral
haplotypes. This approach is limited in its application to
systems of higher complexity, becoming slow where there
are many haplotypes or where NT is large, but is likely more
accurate at lower bottleneck sizes.

Some challenges remain in the inference of population
bottleneck sizes from within-host sequence data. In partic-
ular, the dynamics of the very early stages of population
growth, from the initial founder viruses to the large pop-
ulation typical of influenza infection, are not necessarily
well understood. Knowledge of the extent to which this
affects the genetic composition of the viral population would
improve the potential for accurate inference. We note that,
where ethically feasible, the use of neutral markers provides a
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more direct approach for evaluating transmission events (12).

The biological conclusion of our study was that, applying an
improved inference method to sequence data from a house-
hold study of influenza A infection, we largely replicate the
finding that influenza A transmission involves a small num-
ber of viral particles, albeit that our results have a longer tail
of bottleneck sizes inferred to be greater than 1; using our
approach we obtained estimates that up to 13 viruses were
transmitted. While transmission therefore limits the inheri-
tance of viral diversity, its effect in doing so is not absolute;
cases of the transmission of viral diversity do exist and may
have some influence on broader viral evolutionary dynamics.

Methods
Notation. A guide to the notation used in our methods is
shown in Figure 5. Briefly, we represent the populations
before and after transmission by vectors of unknown hap-
lotype frequencies, referred to as qB and qA respectively.
These are separated by transmission with a bottleneck NT ,
forming the founder viral population qF in the recipient,
then within-host growth, represented in our model by a
single generation of genetic drift with effective size NG.
The unknown vectors qB and qA are indirectly observed
via the datasets xB and xA, which are used to generate the
estimated haplotype frequencies q∗B and q∗A.

In generating the variance of our estimates, we use q∗B and
q∗A to generate simulated observations, which we term x∗B

and x∗A. These in turn are used to generate a new round of
estimates q∗∗B and q∗∗A. In so far as q∗∗B , q∗∗A, q∗B ,
and q∗A are all known, they may be used to estimate the
variances of q∗B and q∗A.

Fig. 5. Notation in the transmission model. Transmission of the population qB

with bottleneck NT results in the founder population qF . The founder population
grows under the influence of genetic drift, the effects of which are described by the
effective population sizeNG. Growth results in the population qA. The populations
qB and qA are observed, producing datasets represented by xB and xA, which
are used to reconstruct the original populations in terms of haplotypes. In order
to calculate the variance of the reconstructed populations q∗B and q∗A, datasets
equivalent to xB and xA, denoted x∗B and x∗A are generated and used to infer
sets q∗∗B and q∗∗A.

Haplotype reconstruction. We developed a maximum
likelihood approach for haplotype reconstruction based

upon existing technologies for processing short read
data (24, 25, 27). We here assume that we have short-read
data describing a viral population both before and after a
transmission event. Before commencing haplotype recon-
struction we performed three steps to pre-process the data
using our software package SAMFIRE (25). Firstly, after
alignment to the viral genome using BWA (28), the short
read data were filtered, trimming reads to achieve a median
PHRED score of at least 30, combining data from paired-end
reads, and removing individual base calls with a PHRED
score less than 30. Secondly, the filtered data were used to
identify loci at which a polymorphism existed at significant
frequency, this being defined using a cutoff of 2%. Thirdly,
reads were processed to generate partial haplotypes, which
describe the nucleotides present at each of the polymorphic
loci in each read. Partial haplotype data were divided into
distinct sets of reads, each describing alleles at a distinct
set of loci in the viral genome. As an optional step, an
estimate may be produced of the extent of noise present in
sequence data, inferring a parameter, C, which describes the
precision with which measurements of allele frequencies
may be calculated via sequencing (25). A value of C = 1
here corresponds to a case in which reads are completely
uninformative, while large values of C tend towards the
binomial case in which each read accurately describes the
allele present in a distinct viral genome, sampled in an
unbiased manner from the population. A default value of
C = 200 was used for our simulations.

We denote the sets of partial haplotype data collected before
and after transmission as xB,Pl and xA,Pl respectively, where
l denotes the partial haplotype set. We now suppose that the
viral population is comprised of a set of distinct haplotypes,
denoted H , which comprises k haplotypes, having the fre-
quencies qB = {qBi } before transmission and qA = {qAi }
after transmission. These frequencies can be converted into
partial haplotype frequencies by projection of the full hap-
lotype space onto each lower-dimensional partial haplotype
space by means of matrices Tl. For example, given the full
haplotypes before transmission {GA,TA,GC,TC} and a set
of partial haplotypes {G-,T-}, we may write

qB,Pl = Tlq
B , (1)

or more explicitly,

(
qB,Pl,1
qB,Pl,2

)
=
(

1 0 1 0
0 1 0 1

)
qB1
qB2
qB3
qB4

 . (2)

In the above instance we note that each partial haplotype can
potentially be emitted from at least one of the haplotypes in
H . In order to generalise our model, we included in each
set H a further haplotype ’X’, describing the cloud of all
potential viral haplotypes of the same length as those in H ,
yet not already defined as being in H . With this inclusion,
we may say that any potential partial haplotype may be
emitted from at least one of the haplotypes in H , being
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emitted either from one of the defined haplotypes or from
’X’.

In this way, we can construct a likelihood for any given set of
haplotypes and frequencies, given the partial haplotype data.
We write:

logL(H) =
∑

t∈{B,A}

∑
l

logLD(xt,Pl |Tlq
t,C), (3)

where LD denotes the Dirichlet multinomial likelihood

LD(x|q,C) = Γ(N + 1)∏
i(xi+ 1)

Γ(
∑
Cqi)

Γ(
∑
xi+Cqi)

∏
i

Γ(xi+Cqi)
Γ(Cqi)

,

(4)
in which N =

∑
ixi.

A two-step optimisation was used to infer the optimal set of
haplotypes and frequencies. To construct an initial set H , a
set of k ≥ 1 unique haplotypes were created in turn, to which
was added the additional X haplotype. The frequencies of
these haplotypes before and after transmission were then
optimised under the constraint that the frequency of the X
haplotype could not be greater than 0.01; this prevents the
inference of trivial solutions to the model. We denote the
inferred haplotype frequencies as q∗B and q∗A. We note
that the frequency of the X haplotype may be effectively
zero; for the purposes of calculation a minimum frequency
of ε= 10−20 was imposed.

Given our likelihood function, a series of changes were made
to the set H , optimising the frequencies each time to find the
optimal haplotype reconstruction. Repeating this for increas-
ing values of k gives a series of fits to the data; we used the
Bayesian Information Criterion (BIC) to distinguish the most
parsimonious explanation for the data:

BICk =−2L∗(H∗
k) +k logN, (5)

where L∗(H∗
k) is the optimum likelihood value for the

optimal set H∗
k of k haplotypes, and N is the total number

of observations in the dataset. Optimisation of the haplotype
set was conducted for increasing values of k until a model
with an additional haplotype produced an improvement of
less than 10 units of BIC, representing a conservative cutoff
point; a smaller required improvement would lead to the
inference of a greater number of haplotypes. We note that
the same haplotypes must explain both the samples collected
before and after transmission; cases where haplotypes died
out in transmission or were created de novo following the
transmission event were inferred.

Estimated error in reconstructed haplotype frequen-
cies. For our compound method for bottleneck inference, we
require an estimate of the variance in the inferred haplotype
frequencies q∗B and q∗A, so as to account for noise in these

parameters when evaluating changes in the population. Vari-
ances were calculated by means of simulated data. Consider-
ing data collected before transmission, we used the frequen-
cies q∗B to generate sets of partial haplotype data x∗B,Pl,j ,
where j is used to index different sets. Each set provided
an independent statistical replicate of the original data; hav-
ing an identical number of sets of partial haplotypes, each
spanning the same loci and containing the total number of
samples. Each set was generated using a random Dirichlet
multinomial sampling process with value C identical to the
original. For each set of data, the haplotype reconstruction
process was repeated, but with the haplotypes H constrained
to those inferred for the original data. This process was re-
peated for 100 sets of data, generating the inferred haplotype
frequencies {q∗∗Bj }. These values were used to calculate the
diagonal elements of a covariance matrix var(q∗B) for q∗B ,
given by:

var(q∗B)i,i = 1
100

100∑
j=1

(
q∗Bi −{q∗∗Bij }

)2
. (6)

For simplicity, off-diagonal elements of this matrix were set
to zero. An identical process was used to generate the matrix
var(q∗A).

Allele-frequency model of bottleneck inference. In gen-
erating Figure 1 we used a simple single-locus model of bot-
tleneck inference. Given a set of independent allele frequen-
cies qBi in the pre-transmission viral population, and their
equivalent values qAi in the post-transmission population, we
note that in the absence of selection, the mean value of qAi is
given by qBi , while the variance of qAi , arising from genetic
drift in a haploid system is given by

V =
qBi
(
1− qBi

)
N

, (7)

where N is the effective population size of the system (29).

To estimate the bottleneck size at transmission, we made
the approximation that qAi is normally distributed, then max-
imised the sum of the log likelihood values across allele fre-
quencies

L(NT ) =
∑
i

logN
(
qBi ,

qBi (1− qBi )
NT

)
, (8)

where NT is the transmission bottleneck.

Haplotype-based methods of bottleneck inference.
Frequencies inferred from the haplotype reconstruction were
used for the explicit and compound methods for calculating
bottleneck size. As a first step in each method we removed
haplotypes that were inferred to have been created de novo
in the recipient following the transmission by removing
haplotypes for which the pre-transmission frequency fell
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below a threshold frequency δ, set by default to 0.5%.
Elements of the vectors q∗B and q∗A and the respective
rows and columns of their covariance matrices were removed
in this preliminary step.

In so far as we consider influenza transmission, we consider
data from each viral segment independently, calculating first
a likelihood of the bottleneck size given data from each
segment, before combining the likelihoods across segments
to estimate an overall maximum likelihood value for the
transmission bottleneck.

Compound method for bottleneck estimation. In the
case of larger values of NT , an approach building upon
that described in a previous publication (17) was applied.
Briefly, we note that in a neutral transmission bottleneck,
the expected composition of the population in the recipient
is identical to that in the original host. The variance in
this population is then a function of the size of the bot-
tleneck and the extent of genetic drift during within-host
growth, while in the case of inference, variation arising from
the measurement of each population must also be considered.

Similarly to the approach outlined in an earlier work (17), we
calculate a likelihood function with two components:

L(NT |q∗B
,q
∗A
,N

G) =

∫
P (q

∗B |qB)P (q
B)dq

B

×

∫
P (q

∗A|qA)

{∫
P (q

A|NG
,q

F )

×

(∫
P (q

F |NT
,q

B)P (q
B)dq

B

)
dq

F

}
dq

A
,

(9)

where the first integral corresponds to the initial observation
of the system and the second encompass transmission (with
the bottleneck NT ), within-host growth (with drift described
by the effective size NG) and post-transmission sampling.
Each component of the likelihood is relatively simple to
consider, as either a multinomial or Dirichlet-multinomial
process, but the compound is difficult to evaluate. We note
that, in cases where the frequency of a haplotype remains
far from 0 or 1, and in particular as NT , becomes large, the
likelihood can be increasingly well approximated in terms of
a Gaussian distribution, with mean and variance calculated
below.

Our solution makes use of the laws of total expectation and
total variance. Given distributions U in x and V in y, the
compound distribution W takes the form

PW (x) =
∫
PU (x|y)PV (y)dy. (10)

The mean and variance of W are then defined by

EW [x] = EV [EU [x|y]], (11)

and

varW [x] = EV [varU [x|y]] + varV [EU [x|y]], (12)

respectively.

For the pre-transmission component, the calculation of mean
and variance are simple; our haplotype reconstruction pro-
cess gives the estimate

E[qB ]≈ q∗B , (13)

where the right-hand side is the output of the haplotype re-
construction, and

var[qB ]≈ var[q∗B ], (14)

where the right-hand side was calculated using the generation
of the datasets x∗B,Pl,j and the inferences of the frequencies
{q∗∗B}j .

Moving on to the post-transmission component of the
compound distribution in Equation 9, we can carry out the
relevant marginalisations using the law of total expectation
and the law of total variance.

Given that the dynamics governing transmission and within-
host growth are assumed selectively neutral, the mean fre-
quencies of the viral population are unchanged follow-
ing transmission and growth. The mean term is therefore
straightforward to calculate.

E[q∗A] = E[E[q∗A|qA]] = E[qA]
E[qA] = E[E[qA|qF ]] = E[qF ]
E[qF ] = E[E[qF |qB ]] = E[qB ]

(15)

Thus
E[q∗A]≈ q∗B (16)

Calculation of the variance requires a little more effort. The
transmission event can be modelled as a single multinomial
draw with NT number of trials. As a result, the variance of
the founder population is given by

var[qF |qB ] = 1
NT

M(qB), (17)

where M(q) = Diag(q)−qq†.

We therefore obtain that

var[qF ] = E[var[qF |qB ]] + var[E[qF |qB ]]

= E
[

1
NT

M(qB)
]

+ var[qB ]

= 1
NT

M(E[qB ]) +
(

1− 1
NT

)
var[qB ]

≈ 1
NT

M(q∗B) +
(

1− 1
NT

)
var[qB ].
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The within-host growth dynamics can be modelled as a multi-
nomial draw of depth NG = gNT where g is the growth fac-
tor. From this we obtain the result that

var[qA|qF ] = 1
NG

M(qF ). (18)

Marginalising over qF we obtain the variance

var(q
A) = E[var[qA|qF ]] + var[E[qA|qF ]]

= E
[

1
NG

(
Diag(q

F )−q
F (q

F )†
)]

+ var[qF ]

=
1
NG

(
Diag(E[qF ])−E[qF ]E[qF ]†

)
+
(

1−
1
NG

)
var[qF ]

≈
1
NG

M
(

q
∗B
)

+
(

1−
1
NG

)(
1
NT

M(q
∗B) +

(
1−

1
NT

)
var[q∗B ]

)
=
NT +NG−1
NTNG

M
(

q
∗B
)

+
NTNG−NT −NT + 1

NTNG
var[q∗B ]

≡ γM
(

q
∗B
)

+ δvar[q∗B ],
(19)

where we define γ =
(
NT +NG−1
NTNG

)
and δ =

NTNG−NT−NG+1
NTNG .

Finally we have that

var[q∗A] = E[var[q∗A|qA]] + var[E[q∗A|qA]] = E
[

var[qA]
]

+ var[qA]

= var(q
∗A

) +γM
(

q
∗B
)

+ δvar(q
B). (20)

Together, Equations 15 and 20 define the mean and vari-
ance of a multivariate normal distribution representing the
post-transmission component of the likelihood in Equation 9.
Given our inferences for q∗B and q∗A, we optimised the like-
lihood with respect toNT , generating a maximum likelihood
estimate for the bottleneck size. We note that our approxima-
tion of the likelihood in terms of a multivariate normal dis-
tribution, works best where individual haplotype frequencies
are not too close to zero or one, and whereNT is large. How-
ever, the approach allows for rapid calculation. In this sense
we say that the compound method is optimised for large NT .

Correction for the extinction of haplotypes in the
compound method. Where a haplotype goes extinct in
the transmission process, the likelihood function of the
compound method can provide a poor estimate to the correct
value. In this special case, relevant in our simulated data, we
used a conditional distribution approach to make a correction
to the likelihood.

In the above approximation we generated a multivariate nor-
mal distrbution for q∗A:

q∗A ∼N
(

q∗B ,var(q∗A)
)
. (21)

In this context, we split the vector q∗A into q∗A1 and q∗A2 ,
the latter containing all haplotypes post-transmission with
a frequency lower than the threshold frequency η, which
were considered to have died out during transmission, with
the former containing the ’surviving’ haplotypes. Rows and

columns of the vectors and matrices were rearranged to put
equation 21 into the form[

q∗A1
q∗A2

]
∼N

([
q∗B1
q∗B2

]
,

[
var(q∗A)11 var(q∗A)12
var(q∗A)21 var(q∗A)22

])
. (22)

The frequencies of the components of the vectors
were renormalised, such that q∗A2i = q∗B2i = 0, while∑
iq
∗A
1i =

∑
iq
∗B
1i = 1.

We obtain the result that the conditional distribution of q∗A1
has the mean

µ= q∗B1 + var(q∗A)12(var(q∗A)22)−1(−q∗B2 ), (23)

and covariance matrix

Σ = var(q∗A)11−var(q∗A)12(var(q∗A)22)−1var(q∗A)21.
(24)

Using these parameters to define a Gaussian distribution, we
calculated the likelihood of a bottleneck NT given the data
for the surviving haplotypes represented by q∗A1 .

To account for the haplotypes which became extinct during
transmission, we made the assumption that these died out at
the point of transmission to the founder population, the rapid
growth of the founder population ensuring that no haplotypes
went extinct through genetic drift, and viral sequencing of a
large number of viral particles ensuring that no haplotypes
were missed by the sequencing process. Under this assump-
tion the likelihood of extinction is given by the simple bino-
mial likelihood

log

(1−
∑
i

q∗B2i

)NT . (25)

Summing the log likelihoods calculated for the surviving
and the extinct haplotypes gave the total likelihood of the
bottleneck size NT ; the maximum likelihood value was
identified via a simple optimisation process. To prevent
nonsensical outcomes at very low bottleneck sizes, we
further imposed the constraint that NT could not be less than
the number of haplotypes which survived transmission.

Explicit method for bottleneck estimation. The explicit
method uses the inferred haplotype frequencies for the popu-
lation before transmission to reconstruct the space of possible
outcomes in the recipient individual. Given our inferred hap-
lotype frequencies qB∗i , we assume thatNT viruses are trans-
mitted. The probability that the founding viral population in-
cludes ni copies of the haplotype i, where

∑
ini = NT , is

given by

P
(
n1,n2, . . . ,nk|qB∗

)
=
(

NT

n1n2 . . .nk

)∏
i

(
qB∗i

)ni
,

(26)
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where the first term in the right-hand side of the equation is
the multinomial coefficient.

For each possible outcome {ni} of this multinomial pro-
cess, we obtained an inference of the haplotype composi-
tion {qAi } of the transmitted population given the relation-
ship qAi = ni/N

T for each haplotype i. We then calcu-
lated the raw likelihood of observing the partial haplotype
data collected post-transmission given this composition us-
ing the Dirichlet multinomial formulation described above,
summing likelihoods over the possible outcomes of the ini-
tial transmission.

∑
n1, . . . , nk∑

ni = NT

P

(
n1, n2, . . . , nk|q

B∗
, N

T
)[

exp

(∑
l

logLD

(
x

A,P
l
|Tlq

A
, C

))]
.

(27)

In this way we evaluate the likelihood of the bottleneck size
NT given the inferred pre-transmission haplotypes qB and
the observed sequence data xA; this is in contrast to the
compound method, which is based on qB and qA. We note
that this approach neglects an explicit accounting for within-
host growth of the population. Different assumptions about
the dynamics of early viral infection can lead to changes in
inferred bottleneck sizes (17); we are not confident that the
biological reality of this phenomenon is well understood.
Modifications to the the Dirichlet multinomial distribution
could potentially be used in this context; increasing the
variance of the likelihood function would soften the effect of
small changes in the underlying population.

This approach has both the advantage and the disadvantage
of explicitly representing the full set of all possible multi-
nomial outcomes of transmission. While in this sense it
remains close to the biological reality, it rapidly becomes
computationally expensive as the number of haplotypes k
increases and as NT becomes large. For this reason we
propose it as being optimal for small values of NT .

We note that, in our application to data from a transmission
study presented here, the case in which a high bottleneck
was inferred involved very limited diversity within viral
segments; this facilitated the application of this method to
consider larger bottleneck sizes.

Generation of simulated data. Simulated data were
generated using a simplified model of influenza transmis-
sion. Viruses were generated to have eight independent
segments, of lengths equal to the segments of the A/H1N1
influenza virus. Each segment had five uniformly distributed
polymorphic loci, making a theoretical total of 32 full
haplotypes. Eight haplotypes were chosen from this set
under the constraint that each of the five loci had to remain
polymorphic. The frequencies of these haplotypes were
then randomly generated under the constraint of a minimum
haplotype frequency of 5%.

Each transmission event was modelled as a simple multi-
nomial draw, selecting a number of viruses equal to the
bottleneck size from the donor population. Within-host
growth was then modelled as a second multinomial draw,
conferring a 22-fold increase in the population size (30).
Partial haplotype data were generated from simulated short
reads of each viral segment. Short reads with lengths
derived from the dataset of a recent influenza study (31)
were generated (mean read length = 119.68, SD read
length = 136.88, mean gap length = 61.96, SD gap length
= 104.48, total read depth = 102825), these reads being
used to calculate the number of reads spanning each set of
consecutive polymorphisms in each segment. Given these
numbers, partial haplotype observations were generated
using a Dirichlet multinomial sampling process.

An inference of the transmission bottleneck was carried out
independently using simulated data from each viral segment.
These inferences were then combined, summing the log
likelihoods across different segments to obtain an overall
maximum likelihood estimate. Within our simulated data a
small number of cases were identified in which the entire
post-transmission population in a segment was inferred to
comprise a haplotype that was not present above the cutoff
frequency in the pre-transmission population, equivalent to
a case where a haplotype arose de novo in the population
and swept to fixation before data could be collected. In
such cases, data for the segment in question were ignored,
calculating the transmission bottleneck across the remaining
segments.

Processing of sequence data. Our method was applied
to data from a recent study of influenza transmission among
individuals in households (3). Data from transmission
pairs identified in this study were aligned using the BWA
software package (28) then filtered using SAMFIRE (25) to
remove reads with a median PHRED score below 30, and
to mask nucleotides with a PHRED score below this value.
Polymorphic sites in coding regions of the virus were then
called at an allele frequency cutoff of 2%, following which
reads were divided into sets of partial haplotype data.

Data describing the within-host evolution of influenza
were used to evaluate the extent of noise in the dataset.
Where multiple samples were collected from a single host,
trajectories were generated describing the change in each
allele frequency over time. We have previously shown that
an over-estimate of the extent of noise in sequence data can
lead to substantial errors in the inference of a transmission
bottleneck (17). Here, we used data from all single-locus
trajectories to generate a provisional estimate of the extent
of noise in the data. Trajectories which, under this estimate,
evolved in a manner consistent with selective neutrality were
then used to produce a final estimate of noise in the data;
we inferred the parameter C = 660. Data from 43 putative
transmission events were evaluated.
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The estimate of an effective read depth for the case in which
a very high bottleneck was inferred was conducted using
SAMFIRE based upon allele frequency data, and using a
cutoff frequency for minority alleles of 2%.
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