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Abstract:

CD4+ T cells, which provide adaptive immunity against pathogens and abnormal cells, are also
associated with various immune related diseases. CD4+ T cells’ metabolism is dysregulated in
these pathologies and represents an opportunity for drug discovery and development. However,
we currently lack clear view of the target space in this area. Genome-scale metabolic modeling

offers an opportunity to accelerate drug discovery by providing high-quality information about
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possible target space in the context of a modeled disease. Here, we develop genome-scale
models of naive, Th1, Th2 and Th17 CD4+ T cell subtypes to map metabolic perturbations in
three autoimmune disease, rheumatoid arthritis, multiple sclerosis, and primary biliary
cholangitis. We subjected these models to in silico simulations for drug response analysis of
existing FDA-approved drugs, and compounds. Integration of disease-specific differentially
expressed genes with altered reactions in response to metabolic perturbations identified 68 drug
targets for the three autoimmune diseases. Modulation of forty percent of these targets has
been observed to lead to suppression of CD4+ T cells, further increasing their potential impact

as therapeutic interventions.

Introduction:

CD4+ T cells are essential components of the human immune system that fight against
pathogenic invaders and abnormal cells by producing cytokines, and stimulating other cells,
such as B cells, macrophages, and neutrophils (Zhu and Paul, 2008). During immune response,
CD4+ T cells are activated and proliferate, and their metabolism adjusts to fulfill increased
bioenergetic and biosynthetic demands. For example, activated effector CD4+ T cells are highly
glycolytic (Michalek et al., 2011) and use aerobic glycolysis and oxidative phosphorylation
(OXPHOQOS) for proliferation (Chang et al., 2013). On the other hand, naive, resting, and
regulatory CD4+ T cells are less glycolytic and use OXPHOS and fatty acid oxidation (FAO) for
energy generation. Accordingly, metabolically dysregulated CD4+ T cells were observed in
several diseases such as diabetes (Granados et al., 2017), atherosclerosis (LU et al., 2018),
cancers (Le Bourgeois et al., 2018), and autoimmune diseases such as rheumatoid arthritis
(RA) (Okano et al., 2018; Yang et al., 2013), multiple sclerosis (MS) (Gerriets et al., 2015),
primary biliary cholangitis (PBC) (Jones, 1996), and systemic lupus erythematosus (SLE) (Yang

et al., 2015; Yin et al., 2015). Furthermore, metabolism of Type 1 T helper (Th1), Type 17 T
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helper (Th17), and inducible regulatory T cells have been found to be dysregulated in MS
(Hedegaard et al., 2008). Controlling CD4+ metabolic pathways can be important in fighting
against some immune diseases. For example, CD4+ T cells are hyperactive in systemic lupus
erythematosus (SLE), and inhibiting glycolysis as well as the mitochondrial metabolism
improved the outcome in an animal model (Yin et al., 2016). Together, this evidence suggests a

significant role of CD4+ T cell metabolism in immune-mediated diseases.

Repurposing existing drugs for novel indications represents a cost-effective approach for the
development of new treatment options (Pushpakom et al., 2019). Several studies have recently
demonstrated the potential for drug repurposing in CD4+ T cell-mediated diseases (Bettencourt
and Powell, 2017; Soria-Castro et al., 2019). For example, 2-deoxy-D-glucose (anticancer
agent) and metformin (antidiabetic drug) were shown to reverse SLE in a mouse model (Yin et
al., 2016). However, drug repurposing, as well as drug discovery and development efforts for
targeting T cell metabolism have been limited due the lack of knowledge about the key

molecular targets in this context.

In recent years, analysis of large-scale biological datasets has emerged as a powerful strategy
for discovery of novel mechanisms, drug targets, and biomarkers in human diseases (Geyer et
al., 2017; Puniya et al., 2013, 2016b, 2016a). Here, we develop a computational modeling
approach that integrates multi-omic data with systematic perturbation analyses of newly
constructed whole-genome metabolic models of naive CD4+ T cells, and Th1, Th2, and Th17
cells. This led to identification of potential drug targets for CD4+ T cell-mediated diseases (RA,

MS, and PBC).
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Results

Identification of genes expressed in the CD4+ T cells

We used the computational approach shown in Fig.1 (see also Supplementary Methods 1) to
construct metabolic models of naive and effector CD4+ T cells. To identify metabolic genes
expressed across CD4+ T cell subtypes (Naive, Th1, Th2, and Th17 cells), we integrated
transcriptomics and proteomics data (Supplementary Data 1). The comparison of genes
expressed in CD4+ T cell subtypes identified by different datasets are shown in Supplementary
Figure 1. The analysis showed that between 675 and 836 metabolic genes were expressed
depending on the CD4+ T cell subtype (Supplementary Data 2). Of these, 530 genes were
expressed in all subtypes (Fig. 2a). On the other hand, 16, 25, 7, and 96 genes were specific to
naive, Th1, Th2, and Th17 cells, respectively. Pathway enrichment analysis using active
metabolic genes suggested 6 enriched KEGG pathways common across all subtypes: carbon
metabolism, TCA cycle, oxidative phosphorylation (OXPHQOS), amino sugar and nucleotide
sugar metabolism, and valine, leucine and isoleucine degradation (Fig. 2b). Fatty acid
degradation and pentose phosphate pathway were enriched in naive CD4+ T cells only, and
fatty acid metabolism was enriched in the naive, Th2, and Th17 subtypes. No specific KEGG
pathways were found enriched solely in Th1, and Th17 cells. Among the enriched pathways
shared by all CD4+ T cells, TCA cycle was enriched more than two-fold in naive, Th1, and Th2
subtypes. Similarly, OXPHOS was enriched more than two-fold in naive and Th1 subtypes (Fig.
2c). These results suggest that key metabolic pathways are active across all the subtypes.
Importantly, the metabolism of various CD4+ T cell subtypes can be different with respect to

these pathways’ levels of activity and the number of reactions active within the pathways.
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Development and validation of genome-scale metabolic models of CD4+ T cells

To further examine these issues, we developed constraint-based metabolic models specific to
naive CD4+ T cells, Th1, Th2, and Th17 cells. Our genome-scale metabolic models comprised
of 3,956 to 5,282 reactions associated with 1,055 to 1,250 genes (Table 1; Supplementary
Dataset 1). The number of internal enzyme-catalyzed reactions were 2,501, 1,969, 2,549, and
2,640 for naive, Th1, Th2, and Th17 models respectively, distributed across 84 metabolic
pathways (Supplementary Figure 2; note that transport and exchange reactions were excluded).
The models include more genes associations than active genes identified from the data
because the model-building algorithm inserts some reactions that are not supported by data but
required for the model to achieve essential metabolic functions for biomass production (see

STAR Methods).

We validated the models based on the active pathways and gene essentiality. We first identified
pathways that are known to be active in different CD4+ T cell subtypes (see STAR Methods)
and searched for their activity (with non-zero fluxes) in the corresponding models through Flux
Balance Analysis (FBA). Several major pathways were in agreement with the literature. These
include glycolysis, TCA cycle, glutaminolysis and pyruvate to lactate conversion (aerobic
glycolysis) that showed non-zero flux in all the models (Fig. 3 a-d). Effector CD4+ T cells (Th1,
Th2, and Th17) showed more flux through fatty acid biosynthesis and less flux through fatty acid
B oxidation than naive CD4+ T cells. A schematic representation of all major pathways active
across CD4+ T cells is shown in Fig. 4a. Also, in all the models, limiting glucose from the
environment resulted in decreased growth rate (Fig. 4b). It's important to note that the activity of
some pathways in the models was not in agreement with the literature. Specifically, we did not
observe a significant effect on growth rate when glutamine (Buck et al., 2015) was removed

from exchange reactions in the effector CD4+ T cell models (Fig. 4c). This discrepancy can be
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explained by the presence of functional glutamine synthase (GLNS) that can convert glutamate
to glutamine in the absence of glutamine uptake in the model. We also observed that the growth
rate of naive CD4+ T cells was more dependent on the glucose and glutamine uptake than in

the other subtypes (Fig. 4b - d), which is also not in agreement with the literature.

Next, we validated essential genes predicted by models against independent data. Gene
deletion analysis predicted 84, 95, 81, and 84 genes as essential in the naive, Th1, Th2, and
Th17 models respectively (Supplementary Data 3). More than 70% of these predictions agreed
with genes experimentally defined as essential and conditionally essential (Chen et al., 2017).
The models achieved an accuracy (ratio of true positives and frue negatives to the whole pool)
of ~60% and precisions (ratio of true positives to true positives and false positives) ranging from
72% to 75% (Supplementary Figure 3). Additional validations based on CD4+ T cell-specific
essential functions are presented in Supplementary Methods 3. Overall, the validation confirmed
that our constraint-based metabolic models specific to naive CD4+ T cells, Th1, Th2, and Th17
cells represent relevant and realistic systems to examine drug response and predict drug

targets.

Mapping existing, and identifying potential drug targets in CD4+ T cells

We used the validated CD4+ T cell-specific models to predict potential drug targets and
combined it with the publicly available drug repurposing and tool compound data set from the
Connectivity Map (cMap) database and mapped the approved drugs, clinical drug candidates
and tool compounds in the dataset with the metabolic genes in the models (Fig. 5a). Next, we
performed in silico knock-outs of the associated drug target genes. Due to the presence of
isozymes, not all the deleted target genes influenced the reaction(s). We identified 86, 79, 86,

and 90 target genes whose deletion blocks at least one reaction in naive, Th1, Th2, and Th17
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models, respectively (Fig. 5b). Of these, 62 were common among four CD4+ T cell subtypes
(Fig. 5¢). Twenty-five genes were targets only in Th1 cells. All modeled gene deletions resulted
in altered flux distributions that were quantified using flux ratios. For each drug target deletion,
we classified all reactions into three categories (see STAR Methods): (1) reactions with
decreased fluxes (down-reactions), (2) reactions with increased fluxes (up-reactions), and (3)
reactions without any changes. We used these flux ratios to identify potential drug targets
specific for immune diseases, by exploring how disease-specific metabolic functions are

affected upon each drug target inhibition.

First, we identified disease-specific metabolic functions for RA, MS, and PBC using differential
gene expression analysis of publicly available patients’ data (Case-Control studies) (see STAR
Methods). We identified 852, 1,459, and 553 differentially expressed genes (DEGs) for RA, MS,
and PBC, respectively (Supplementary Data 4). From these DEGs, we selected genes relevant
to our metabolic models. For example, 36 metabolic genes were upregulated and 27 genes
were downregulated in RA (Fig. 6a). Biological process enrichment analysis identified purine
metabolism, and starch sucrose metabolism as enriched in upregulated genes. On the contrary,
lysine degradation, fatty acid elongation, and carbon metabolism were downregulated. Enriched

metabolic pathways for all three diseases are shown in Supplementary Data 4.

To identify potential drug targets for the aforementioned diseases, we looked for target genes
whose deletion (inhibition) would have the appropriate effect on diseases’ DEGs. For each gene
inhibition, we specifically investigated the decrease in metabolic flux through reactions
controlled by genes upregulated in disease, and increase in metabolic flux through reactions
controlled by genes downregulated in disease (Fig. 6b). Using flux ratios of metabolic DEGs, we

calculated a perturbation effect score (PES; see STAR Methods) for each drug target gene in
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each pair model/disease. PES represents the effect of gene inhibition on both upregulated and
downregulated genes. A positive PES value for the drug target gene means that its inhibition
decreases more fluxes controlled by genes upregulated in disease than it increases or
increases more fluxes controlled by genes downregulated in disease than it decreases. As
such, inhibition of that gene target reverses the fluxes controlled by disease DEGs. In contrast,
a negative PES means that the inhibition of a target gene increases more fluxes controlled by
upregulated genes or decrease the more fluxes controlled by downregulated genes than the
opposite. Among the different combinations of cell types and diseases, the PESs range was
from -2 to 2 (Supplementary Figure 4). Based on these considerations, genes with higher

positive PES can serve as potential drug targets for the disease.

Using PES as a measure of target relevance, we identified 62 potential drug targets that were
common to our models (Fig. 5¢). These genes displayed various PES ranks across models and
diseases. To choose drug targets that performed better across different CD4+ T cells, we
considered PES ranks of the four subtype-specific models. First, we normalized the PES ranks
by transforming them to Z-scores in each model. Since the studied diseases typically involve
more than one type of CD4+ T cell subtype, we next summed up the Z-scores of all the models
within a disease for each drug target (Supplementary Figure 4). A minimum aggregate Z-score
represents overall high PES ranks predicted across four cell types. Therefore, a gene with a
minimum aggregated Z-score could be a potential high confidence drug target. We used a
Z-score cutoff of -1 (1 standard deviation lower than the mean aggregated Z-score) and
identified 17, 27, and 24 potential drug targets for RA, MS, and PBC, respectively (Table 2).
Ranking based on aggregated Z-scores is provided in Supplementary Data 5. Taken together,

our combined use of the disease-matched genome-scale metabolic models of CD4+ T cells and
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the well target-annotated public dataset of bioactive compounds generated a manageable list of

potential drug targets suitable for deeper analysis and follow-up.

Analysis and validation of predicted drug targets

To further analyze and validate our target list, we performed a comprehensive literature survey
(Table 2). Among the 17 suggested drug targets for RA, dihydroorotate dehydrogenase
(DHODH) and Acetyl-CoA acetyltransferase (ACAT1) have been already explored as targets in
drug development efforts (Breedveld and Dayer, 2000; Tian et al., 2011), and 15 genes were
newly identified. Among these, eight (LSS, NAMPT, FDPS, SQLE, EPHX2, CAT, CS, SOD2)
have been found to inhibit CD4+ T cell proliferation upon deletion (Table 2). The product of the
reaction catalyzed by 4-Aminobutyrate Aminotransferase (ABAT) is linked to RA. Dysregulation
of other genes, such as pyruvate dehydrogenase E1 (PDHB), Farnesyl-diphosphate
farnesyltransferase 1 (FDFT1), Oxoglutarate Dehydrogenase (OGDH), alpha- galactosidase

(GAA), has not been previously reported to impact CD4+ T cell proliferation.

Furthermore, we predicted 27 possible drug targets for MS. Of these, glutathione reductase
(GSR), and dihydrofolate reductase (DHFR) were already explored as targets using the
experimental autoimmune encephalomyelitis (EAE) model (Ashtari and Savoj, 2011; Lian et al.,
2018) and 25 genes were newly identified. Among these, 12 (CAT, IDH2, HMGCR, PKM,
ABAT, LSS, FASN, PPAT, PNP, CS, CAD, SQLE) have been previously reported to inhibit
CD4+ T cell proliferation upon deletion. Genes that were not previously reported to affect CD4+
T cells upon deletion include Carnitine O-palmitoyltransferase 2 (CPT2), MP cyclohydrolase
(ATIC), Ornithine decarboxylase (ODC1), Dihydropyrimidine dehydrogenase (DYPD), and

Farnesyl-diphosphate farnesyltransferase (FDFT1).
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Finally, we identified 24 possible drug targets for PBC. None of them was previously explored
as a drug target in PBC. Deletion of seven of these potential gene targets (NAMPT, EPHX2,
FASN, ADA, SLC2A3, TXNRD1, ACLY) has been reported to affect CD4+ T cells in the
literature. Genes that have not yet been reported to affect CD4+ T cells upon deletion include
Long-chain-fatty-acid--CoA ligase 3 (ACSL3), Adenosine kinase (ADK), and

S-adenosylmethionine decarboxylase proenzyme (AMD1).

Some of the 68 predicted drug targets were shared by diseases but 55 were unique: six drug
targets (LSS, ABAT, SQLE, FDFT1, CAT, CS) were in common between RA and MS; five drug
targets (NAMPT, EPHX2, COMT, HIBCH, GAA) were in common between RA and PBC; and
two drug target (ADH5, FASN) were in common between MS and PBC. Drugs and compounds

available for these targets are shown in Table 3.

Taken together our analysis has identified 68 possible drug targets of relevance to metabolic

regulation of autoimmune diseases. We discuss implications of our results in more detail below.

Discussion

Our predicted drug targets were classified into two categories: validated, and novel. We
considered a target to be validated if previously explored as such in the context of RA, MS
and/or PBC. Novel targets, those not previously reported as such for the three diseases we
focused on here, were further classified into two subcategories: target genes that are supported
with published experimental data, and predicted target genes for which no data is currently
available. We will discuss select examples of targets in each of these categories to illustrate
ways in which our model and analysis can be used to advance future drug repurposing as well

as drug discovery efforts.
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Our predictions include three genes ( DHODH, ACAT1, and DHFR) that code for proteins
targeted by approved drugs currently used for treatment of autoimmune diseases (Ashtari and
Savoj, 2011; Breedveld and Dayer, 2000; Kumar and Banik, 2013; Lian et al., 2018; Tian et al.,
2011). A strong example of an already validated drug target predicted by our models is
dihydroorotate dehydrogenase (DHODH), a key enzyme in de novo pyrimidine synthesis
pathway, and a target of leflunomide, an approved drug for rheumatoid arthritis (Breedveld and
Dayer, 2000; Li et al., 2004). DHFR (dihydrofolate reductase) is a well-established oncology
drug target, and also as an immunosuppressant and anti-inflammatory target (Schweitzer et al.,
1990). Low doses of an FDA-approved DHFR inhibitor methotrexate have been found effective
as a treatment for MS, RA, and Crohn's disease (Ashtari and Savoj, 2011). Mitochondrial
acetyl-CoA acetyltransferase (ACAT1) is a target for FDA approved anti-inflammatory drug
sulfasalazine in inflammatory bowel syndrome. Furthermore, this drug is indicated for treatment
for rheumatoid arthritis and ulcerative colitis (Wishart et al., 2018). Taken together, our models

successfully replicated current clinical practice, further strengthening the value of our approach.

Interestingly, a major subcategory of gene targets we identified code for proteins that have not
previously been explored for treatment of RA, MS, and PBC. We can now use these insights to
formulate novel preclinical and clinical hypothesis. For example, ABAT, which encodes the
GABA-transaminase enzyme that breaks down y-aminobutyric acid (GABA; a neurotransmitter),
was identified in our analysis as a potential target. While ABAT has not been previously
identified as a drug target for RA, we can hypothesize that its inhibition may increase free GABA
levels which would, in turn, inhibit CD4+ T cell activation. The relationship between GABA levels
and suppressions of CD4+ T cell activation has been previously reported, further suggesting a

link between neurotransmission and immune response (Bhandage et al., 2018; Jin et al., 2013;
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Mendu et al., 2012). There are currently two FDA approved drugs, vigabatrin and phenelzine,
that target ABAT. Although we don’t expect that either one of these agents can be repurposed
to treat autoimmune disease given that they are an anti-seizure medicine and an
antidepressant, respectively, we propose that further analysis of relationships between
neurotransmission and immune response offers an interesting targeting opportunity (Tian et al.,
2011). Another example is glutathione reductase (GSR), an enzyme that reduces oxidized
glutathione disulfide to cellular antioxidant GSH (Safran et al., 2010). It has been shown that
inhibition of the de novo GSH synthesis can reduce the pathological progression of
experimental autoimmune encephalomyelitis (EAE) (Lian et al., 2018). Here, carmustine, a
chemotherapy drug, is FDA approved drug that targets GSR, offering a viable starting point for
future pre-clinical testing (Table 3). Additional high confidence predictions and target candidates
are a group of genes that have been experimentally shown to repress CD4+ T cells upon
inhibition. This list includes nicotinamide phosphoribosyltransferase (NAMPT), which we now
predict is a drug target for RA. This enzyme is involved in NAD+ synthesis

(The UniProt Consortium, 2017) and was previously explored as a drug target in EAE for MS
(Bruzzone et al., 2009), melanoma, T cell ymphoma, and leukemia (Roulston and Shore, 2016).
Given that two NAMPT inhibitors, GMX1778 and FK-866, are in phase Il clinical trials (Table 3),
this enzyme represents a target where pre-clinical testing and follow up may lead to drug
repurposing opportunities. Another example worth highlighting is epoxide hydrolase 2 (EPHX2),
which converts toxic epoxides to non-toxic dihydrodiols (Safran et al., 2010;

The UniProt Consortium, 2017). Its inhibition was reported to result in decreased production of
proinflammatory cytokines in preclinical evaluation in inflammatory bowel syndrome (Reisdorf et
al., 2019). For EPHX2, an inhibitor GSK2256294A is in phase | clinical trial, indicating that

developing drugs for this target may be possible. Moreover, our model implicated enzymes such
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as pyruvate kinase (PKM), which impacts glycolysis, HMG-CoA reductase (HMGCR), which
regulates cholesterol biosynthesis and adenosine deaminase (ADA), which converts harmful
deoxyadenosine to not harmful deoxyinosine. Each one of these enzymes has been
experimentally linked to T cell proliferation and development (Alves-Filho and
Palsson-McDermott, 2016; Bietz et al., 2017; Flinn and Gennery, 2018), and all three targets
have been the subject of previous drug development campaigns (Table 3). ATP Citrate Lyase
(ACLY), Catalase (CAT), Farnesyl diphosphate synthase (FDPS), Lanosterol synthase (LSS),
Squalene epoxidase (SQLE), and Superoxide dismutase 2 (SOD2) also represent targets we
identified. SQLE is involved in cholesterol biosynthesis, and in general agreement with recent
reports that inhibiting cholesterol pathways can suppress T cell proliferation (Bietz et al., 2017).
The loss of SOD2 can increase superoxides and defective T cell development (Case et al.,
2011). For all these targets, either preclinical, clinical or approved inhibitors are available, which

we consider encouraging for further study and drug repurposing (see Table 3 for details).

Other predicted genes are part of the TCA cycle (Citrate synthase (CS), Isocitrate
dehydrogenase 2 (IDH2)), ribonucleotide biosynthetic processes (Phosphoribosyl
pyrophosphate amidotransferase (PPAT), Carbamoyl-phosphate synthetase 2, Aspartate
transcarbamylase, and Dihydroorotase (CAD)), and lipid biosynthesis (Fatty acid synthase
(FASN)) that are also important for T cell development. As with examples above, many of these
potential candidate targets have inhibitors that are in different stages of preclinical and clinical

development, and some (like PPAT and FASN inhibitors) have been FDA approved (Table 3).

Furthermore, in addition to gene targets with robust or partial experimental evidence, we
identified 31 novel gene targets for which no evidence currently exists. These genes are

involved in glycolysis, TCA cycle, OXPHOS, fatty acid metabolism, pyruvate metabolism, purine,
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and pyrimidine metabolism, arginine and proline metabolism,and tyrosine metabolism
pathways, which are critical for T cell activation and proliferation (Almeida et al., 2016; Wang
and Green, 2012). Collectively, our models led to identification of potential high-value targets for
RA, MS and PBC treatment, and implicated several drugs in current clinical use for drug

repurposing.

We would also like to discuss several more technical points regarding our approach. Data
integration enabled us to build, refine, and validate high-quality cell type-specific models. While
many of the major pathways important for CD4+ T cell activation and proliferation are commonly
active across different CD4+ T cell subtypes we tested, the models differ with respect to how
these pathways are used for growth. For example, higher activity of the fatty acid oxidation
pathway is more important in naive but not in effector CD4+ T cells that have elevated glycolysis
(Wang and Green, 2012) and fatty acid synthesis pathways. These models achieved ~60%
accuracy with gene essentiality data obtained from different cell lines (Chen et al., 2017), which
might further improve with the availability of CD4+ T cell-specific essentiality data. Integration of
disease-associated DEGs with flux profiles under gene knock-out helped us to select
disease-specific drug targets. While computational models of signal transduction in CD4+ T
cells (Carbo et al., 2013; Puniya et al., 2018) are available, metabolic models of effector and
regulatory CD4+ T cells have not been developed (except for naive CD4+ T cells (Han et al.,
2016)). Similar metabolic models were previously used to predict drug targets against
pathogens (Puniya et al., 2013) and complex diseases such as cancers (Jerby and Ruppin,

2012).

While our approach can be generalized for human diseases and used with any -omics dataset,

the unavailability of reliable data contributes to some limitations. Because of heterogeneity with
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respect to time after stimulation with cytokines in the available datasets, constructed models
represent inclusive metabolic phenotypes during activation and proliferation for each CD4+ T
cell subtype. Thus, time-specific data would be required to study metabolic phenotype at a
specific time point in CD4+ T cell development. In addition, the biomass objective function used
in our study is not specific to CD4+ T cells. A specific objective function that considers varying
utilization of precursor metabolites (such as glycolysis intermediates) by different CD4+ T cells
for biomass production, might further improve the models. However, we have shown that
changing objective functions (from the Recon3D to macrophage model) had no significant
impact on the constructed models (see STAR Methods for details). Similarly, reliable
disease-specific data were unavailable for specific CD4+ T cell subtypes, therefore, building
subtype specific cell metabolic models under disease conditions was not possible. We mitigated
this limitation by integrating disease-specific DEGs from sorted CD4+ T cells with models, which
resulted in metabolic fluxes relevant to diseases. In the future, with the availability of more

disease and cell type-specific data, our integrative approach may further improve these results.

Overall, our integrative systems modeling approach has provided a new perspective for the
treatment of RA, MS, and PBC. Moreover, the newly constructed models may serve as tools to
explore metabolism of CD4+ T cells. Additionally, our approach is generalizable to other disease
areas for which reliable disease-specific data are available, making it a potentially important
computational platform for both novel drug target identification, as well as prioritizing targets for

drug repurposing efforts.

STAR Methods
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High throughput data acquisition and integration

We collected transcriptomics data from the GEO (Barrett et al., 2013) database and proteomics
data (Rieckmann et al., 2017). A total of 121 transcriptomics (Abbas et al., 2005; Bernier et al.,
2013; Bonacci et al., 2012; Gustafsson et al., 2015; Kleinewietfeld et al., 2013; Lund et al.,
2003; Prots et al., 2011; Santarlasci et al., 2012; Zhang et al., 2013) and 20 proteomics
(Rieckmann et al., 2017) samples relevant to the CD4+ T cells were selected (Supplementary
Data 1). Transcriptomics data analysis was performed using the affy (Gautier et al., 2004) and
limma (Ritchie et al., 2015) R packages. Because we aimed to characterize gene activities
instead of gene expression levels, the processed transcriptomics data were discretized (active =
1; inactive = 0) and samples for each cell type were combined together. Genes active in more
than 50% of the samples in which the probe was present were considered as active (see
Supplementary Methods 2). Similarly, proteins expressed in more than 50% of samples in the
proteomics dataset were considered as active. In the proteomics datasets, protein IDs were

mapped to gene IDs.

Next, we integrated activities from transcriptomics and proteomics datasets. First, biological
entities that overlapped in both types of data were selected as high-confidence. Second, we
found that some genes were expressed in the majority of transcriptomics datasets, but
expressed in less than 50% samples of proteomics data. Similarly, some proteins were
identified within groups of highly abundant proteins in multiple samples in proteomics datasets
but expressed in less than 50% samples of transcriptomics datasets. Such non-overlapping
genes were selected as moderate-confidence based on consensus in single types of -omics
data (Supplementary Methods 2.1.1). Third, moderate-confidence genes exclusively present in
the transcriptomics data were added to the overlapping genes if expressed in at least 90% of

samples. Fourth, moderate-confidence genes exclusively present in the proteomics dataset
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were added if their abundance was ranked in the top 25% (fourth quartile) (Supplementary
Methods 2; Supplementary Data 6). We used these cutoffs to decrease the false negatives
while not selecting false positives by removing genes and proteins that are not expressed in any

sample either in transcriptomics or proteomics data.

Cell type-specific genome-scale metabolic model reconstruction

We used the GIMME (Becker and Palsson, 2008) method (in COBRA toolbox) to construct the
metabolic models of different CD4+ T cells (naive, Th1, Th2, Th17). The inputs for GIMME were
the generic human Recon3D (Brunk et al., 2018) (as a template) and gene expressions based
on integrated multi-omics data. The template Recon3D was modified prior to constructing CD4+
T cell-specific metabolic models. These modifications included gene-protein-reaction (GPR)
associations (all genes associated with a reaction written using AND and OR operators), media
conditions, and reaction directionality. In addition, new reactions involved in the biomass
objective function were added, and some reactions were removed as described below (See also
Supplementary Methods 2). The used transcriptomics and proteomics data have information
about genes/proteins instead of transcript variants. To map the data obtained for genes, we
updated transcript IDs provided in Recon3D to Entrez gene IDs. A total of 1,892 genes were
included in the modified Recon3D model. Furthermore, because different CD4+ T cells have
different nutrient uptake preferences, we used two types of media conditions (one for each
naive and one for all effector T cells). For all cell subtypes, in addition to the basal metabolites
(unconstrained and freely available, i.e. H20, 02, H, 0O2S, CO2, Pi, H202, HCO3, H2CO3, and
CO), glucose, glutamine, and other amino acids were set as open (un-constrained) for uptake.
Furthermore, the directionality of some reactions was updated based on the Recon 2.2.05

model (Swainston et al., 2016). Because of the lack of CD4+ T cell-specific data, the biomass
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objective function was adopted from the macrophage model iAB-AM@-1410 (Bordbar et al.,

2010) and added to the Recon3D.

For each subtype, we constructed three models based on transcriptomics, proteomics, and
integrated (transcriptomics and proteomics data) datasets. A comparison of these models is
provided in Supplementary Figure 5 and details can be found in Supplementary Methods 2. The
models constructed with integrated data were selected for further analysis. Additionally, to
investigate the effect of biomass objective function on constructed models, we built two models
using biomass objective functions from (1) Recon3D and (2) iAB-AM@-1410 models. The
reactions in output models generated based on each biomass function were compared. The
models based on the two objective functions were not significantly different (Supplementary
Figure 6) with respect to the numbers of reactions. Biomass objective function from
iIAB-AM@-1410 consists of few extra precursors that predicted better fluxes through fatty acid
pathways. Therefore models that are constructed based on biomass reaction adopted from
iIAB-AM@-1410 were used in subsequent analyses. Models were further reduced by removing
the dead-end reactions. Reactions in the models are distributed across different compartments
including extracellular, cytoplasm, mitochondria, nucleus, Golgi apparatus, lysosome, and
endoplasmic reticulum. The models were investigated to perform basic properties using leak
test, gene deletion and further refined in an iterative manner. Refined models were then
subjected to 460 metabolic tasks that were used with the Recon3D model and included in
Test4HumanFctExt function in COBRA (Supplementary Data 7). The constructed models were
simulated using Flux Balance Analysis (FBA) and Flux Variability Analysis (FVA). The final
numbers of metabolites and reactions are presented in Table 1. These models were named as
TNM1055 (naive model), T1IM1133 (Th1 model), T2M1127 (Th2 model), and T17M1250 (Th17

model) and can be found as Supplementary Dataset 1. They have also been submitted to
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BioModels database (Chelliah et al., 2015) under accessions MODEL1909260003,

MODEL1909260004, MODEL1909260005, MODEL1909260006.

Model validation

Models were validated based on literature knowledge related to active pathways and gene
essentiality data. CD4+ T cell-specific metabolic functions were searched in the literature using
PubMed (Sayers et al., 2019). Naive CD4+ T cells tend to have low energy demands, and
mainly rely on fatty acid -oxidation, oxidation of pyruvate and glutamine via the TCA cycle
(Patsoukis et al., 2016). On the other hand, the high bioenergetics demand in effector cells is
met by shifting OXPHOS to glycolysis and fatty acid oxidation to fatty acid synthesis (Almeida et
al., 2016). Furthermore, similar to cancer cells, proliferating effector CD4+ T cells convert lactate
from pyruvate by lactate dehydrogenase enzyme (Almeida et al., 2016). Thus, we obtained the
flux distribution of metabolic pathways under wild type conditions using Flux Balance Analysis
(FBA) and searched the non-zero fluxes through the aforementioned pathways in all the

models. Flux maps were created using Escher web application (https://escher.github.io/#/) (King

et al., 2015; Rowe et al., 2018). It has also been observed previously that deficiency in glucose
and glutamine impairs CD4+ T cell activation and proliferation (Macintyre et al., 2014; Ren et al.,
2017). We performed this experiment in silico, whereby we varied the flux through exchange
reactions of glucose (EX_glc[e]) and glutamine (EX_gIn_L[e]) in the models and analyzed the
effect on growth rate. To perform gene essentiality-based validation, we knocked out model
genes to predict their effect on the growth rate. This was performed using single GeneDeletion in
the COBRA toolbox using the Minimization of Metabolic Adjustment (MoMA) method (Segré et
al., 2002). Because of the unavailability of CD4+ T cell-specific data, predicted essential genes
were compared with experimentally identified essential genes in humans from different cell

lines. The data for experimentally tested essential and nonessential genes for human were
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obtained from the OGEE database (Chen et al., 2017). In this database, the essentiality data for
humans was compiled using 18 experiments across various cell lines that include RNAi based
inhibition, CRISPR, and CRISPR-CAS9 systems. To calculate the predictive power of the
model, predicted essential genes were compared with experimentally observed essential and
conditionally essential genes reported in the OGEE database. Essential and conditionally
essential genes were merged together. Additional validations of models using CD4+ T

cell-specific essential genes can be found in Supplementary Methods 3.

Mapping drug targets

The developed models were used to predict potential drug targets for autoimmune diseases in
which effector subtypes have been found hyperactive (Hoyer et al., 2009; Ivanova and Orekhov,
2015). Therefore, a reasonable drug target should downregulate effector CD4+ T cells. Among
the metabolic genes of selected models, we first identified targets of existing drugs. The drugs
and their annotations including target genes were imported from The Drug Repurposing Hub
(Corsello et al., 2017) in the ConnectivityMap (CMap) database (Subramanian et al., 2017). All
withdrawn drugs and their annotations were first removed. In this list, the gene symbols of target
genes of drugs were converted to Entrez IDs. Next, we searched Entrez IDs from CMap data in

the genes of metabolic models. For each mapped gene in the model, the drugs were listed.

Metabolic genes differentially expressed in autoimmune diseases

The lack of reliable data from specific CD4+ T cell subtypes involved in autoimmune disease
conditions led us to utilize patients’ data (case-control studies) available for autoimmune
diseases that were collected from peripheral CD4+ T cells. Datasets GSE56649 (Ye et al.,
2015) (rheumatoid arthritis), GSE43591 (Jernas et al., 2013) (multiple sclerosis), and

GSE93170 (Nakagawa et al., 2017) (primary biliary cholangitis) were obtained from the GEO
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database. Raw data files were processed using the affy and limma packages (Gautier et al.,
2004; Ritchie et al., 2015) in Bioconductor/R. The limma package was used to identify DEGs
between patients and healthy controls. For significant differential expression, selective cutoffs of
fold-changes were used with adjusted P-values < 0.05. For differentially expressed genes, we
used a two-fold cutoff. A cutoff of 1.5 fold was used for datasets where two-fold resulted in a

very low number to zero differentially expressed metabolic genes.

Perturbation of metabolism and perturbation effect score (PES)

In metabolic models, the knockout of genes that are targets of existing drugs was performed in
the COBRA toolbox using MoMA (Segré et al., 2002). For each knockout, we investigated the
change in fluxes regulated by DEGs in diseases. The change in fluxes was computed using flux
ratios of perturbed flux/WT flux, and all fluxes that are affected by each perturbation were
calculated. We counted fluxes regulated by upregulated genes that are decreased or increased
after perturbation (UpDec and Uplinc) as well as fluxes regulated by downregulated genes that
are decreased or increased after perturbation (DownDec and Downlnc). The total number of
fluxes for each perturbation also include upregulated genes that were unchanged after
perturbation (UpUnc) as well as downregulated genes that were unchanged after perturbation
(DownUnc) (see also Supplementary Methods 7). For each perturbed gene, a perturbation

effect score (PES) was calculated as:

(UpDec —Uplnc) (Downlnc —DownDec)
(UpDec+UpInc+UpUnc) (Downlnct+DownDectDownUnc)

PES =

Next, for each disease and model combination, the ranks of PES were computed. The gene
with the highest PES obtained the top rank and the one with the minimum PES obtained the
lowest rank. For each disease, we prioritized drug targets by utilizing their ranks across all

models. The PES ranks in each model were first transformed into Z-score as:
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7 — score = (x;—“)

where x is a PES rank, u is the mean of PES ranks in a model for one disease, o is the standard
deviation of PES ranks obtained by a model for one disease. For each disease type and each
gene, Z-scores across four models were summed up to calculate an aggregated Z-score.

Genes were ranked based on minimum to maximum aggregate Z-scores.

Pathway enrichment analysis

For biological processes enrichment analysis, we used DAVID V6.8 (Huang et al., 2009), and
STRING database (Szklarczyk et al., 2017) together with Gene Ontology biological processes
(The Gene Ontology Consortium, 2019), KEGG pathways (Kanehisa et al., 2016), and
Reactome pathways (Fabregat et al., 2018). A cutoff of 5% (Boyle et al., 2004; Reimand et al.,

2019) False Discovery Rate (FDR) was used for significant enrichment.
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Tables

Table 1: Metabolic models of CD4+ T cells

Naive Th1 Th2 Th17
Genes 1055 1133 1127 1250
Reactions 5179 3956 5252 5282
Internal reactions 2501 1969 2549 2640
(Enzyme catalyzed)
Metabolites 3153 2517 3156 3263

Table 2: Identified CD4+ T cell drug targets for RA, MS, and PBC

Disease

Entrez ID

Gene
Symbol

Gene description

IAggregate [Literature evidences relevant to CD4+ T cells and
Z-score autoimmune diseases

ChEMBL (Gaulton et
al., 2017)IDs*
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RA 4047 LSS Lanosterol synthase -3.35 Inhibition of lanosterol synthase (LSS) might decrease |[CHEMBL3593
the endogenous cholesterol that may lead to impact cell
division (Herring et al., 2007).
18 IABAT 4-aminobutyrate -3.20 GABA downregulate inflammatory response in a mouse|CHEMBL2044
aminotransferase model of RA (Tian et al., 2011); Inhibition of ABAT
might increase GABA (Soria-Castro et al., 2019).
10135 NAMPT Nicotinamide -3.11 Nampt inhibition reduces demyelination and disability in[CHEMBL1744525
phosphoribosyltransferase EAE (Bruzzone et al., 2009)), Lack of NAMPT
expression affect T cell development (Rongvaux et al.,
2008).
2224 FDPS Farnesyl pyrophosphate -2.98 Inhibition of FDPS inhibit T cell cytokine production CHEMBL1782
synthase (Marks et al., 2007).
6713 SQLE Squalene monooxygenase [-2.96 Increased Membrane Cholesterol in T cells leads to CHEMBL3592
inflammatory response (Surls et al., 2012).
2222 FDFT1 Farnesyl-diphosphate -2.66 No support CHEMBL3338
farnesyltransferase
2053 EPHX2 Bifunctional epoxide -2.44 Inhibition of EPHX2 pre clinically evaluated as drug CHEMBL2409
hydrolase 2 target for IBD (Reisdorf et al., 2019).
4967 OGDH 2-oxoglutarate -2.30 No support CHEMBL2816
[dehydrogenase
847 CAT Catalase -2.22 Protect T cells against oxidative stress (Ando et al., CHEMBL3627594
2008).
1431 CS Citrate synthase -2.17 Inhibition of citrate synthase leads to reduction in citrate[DB02637
leading to reduced proliferation (MacPherson et al.,
2017).
5162 PDHB Pyruvate dehydrogenase E1 [-2.04 No support DB00119
component subunit beta
1312 COMT Catechol -1.80 No support CHEMBL2023
O-methyltransferase
26275 HIBCH 3-hydroxyisobutyryl-CoA -1.73 No support CHEMBL3817723
hydrolase
6648 SOD2 Superoxide dismutase [Mn], |-1.32 Loss of SOD2 increased superoxide, and defective T  |CHEMBL4105776
mitochondrial cell development (Case et al., 2011).
1723 DHODH Dihydroorotate -1.26 Explored as a potential drug target for RA (Breedveld |[CHEMBL1966
[dehydrogenase and Dayer, 2000) and MS (Palmer, 2010).
2548 GAA alpha-glucosidase -1.06 No support CHEMBL2608
38 IACAT1 Acetyl-CoA -1.01 Target of Sulfasalazine that is anti inflammatory CHEMBL2616
acetyltransferase, indicated for treatment of ulcerative colitis and
mitochondrial rheumatoid arthritis (Wishart et al., 2018).
MS 1376 CPT2 Carnitine -3.09 No support CHEMBL3238
O-palmitoyltransferase 2
847 CAT Catalase -3.08 Protect T cells against oxidative stress (Ando et al., CHEMBL3627594
2008).
498 IATPSF1A  |ATP synthase subunit alpha |-3.04 No support CHEMBL2062351
506 IATP5F1B  |ATP synthase subunit beta [-2.88 No support CHEMBL2062350
509 IATPS5F1C  |ATP synthase F1 subunit -2.71 No support DB04216
[gamma
4953 ODCA1 Ornithine decarboxylase -2.67 No support CHEMBL1869
471 ATIC MP cyclohydrolase -2.66 No support CHEMBL3430882
513 IATPS5F1D  |ATP synthase subunit delta [-2.55 No support DB00228
515 IATP5PB IATP synthase F(0) complex [-2.39 No support BTB06584 (cMap)
subunit B1
128 IADHS5 IAlcohol dehydrogenase -2.19 No support CHEMBL4116
class-3
1806 DPYD Dihydropyrimidine -1.83 No support CHEMBL3172
[dehydrogenase
3418 IDH2 Isocitrate dehydrogenase -1.61 knockdown of IDHI or IDH2 reduces IL-17 producing  |CHEMBL3991501
cells (Patent WO2017123808A1) (Xu and Ding, 2017).
2936 GSR Glutathione reductase -1.59 Inhibition of GSH de novo synthesis reduce the DB0262
pathological progression of EAE (Lian et al., 2018).
3156 HMGCR 3-hydroxy-3-methylglutaryl-c [-1.58 Potential target for autoimmune diseases (Arefieva et [CHEMBL402
loenzyme A reductase al., 2018).
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2222 FDFT1 Farnesyl-diphosphate -1.55 No support CHEMBL3338
farnesyltransferase
1719 DHFR Dihydrofolate reductase -1.52 Low dose Methotrexate (inhibitor of DHFR) found CHEMBL202
effective for MS, RA, and Crohn's disease (Ashtari and
Savoj, 2011).
5315 PKM Pyruvate kinase -1.51 Potential target to regulate inflammation (Alves-Filho  [CHEMBL1075189
land Palsson-McDermott, 2016).
2618 GART phosphoribosylglycinamide [-1.46 No support CHEMBL3972
formyltransferase
18 IABAT 4-aminobutyrate -1.41 GABA downregulate inflammatory response in mouse |[CHEMBL2044
laminotransferase model of RA (Tian et al., 2011); Inhibition of ABAT
might increase GABA (Soria-Castro et al., 2019).
4047 LSS Lanosterol synthase -1.28 Inhibition of lanosterol synthase (LSS) might decrease [CHEMBL3593
the endogenous cholesterol that may lead to impact cell
division (Herring et al., 2007).
2194 FASN Fatty acid synthase -1.16 Fatty acid synthase linked to pathogenicity of Th17 cellsCHEMBL4106134
(Young et al., 2017) .
5471 PPAT phosphoribosyl -1.15 Knock down of CAD and PPAT promotes regulatory CHEMBL2362992
pyrophosphate CD4+ T cells (Metzler et al., 2016).
amidotransferase
4860 PNP Purine nucleoside -1.12 inhibition leads to T cell suppression (Bantia and CHEMBL4338
phosphorylase Kilpatrick, 2004).
1431 CS Citrate synthase -1.11 Increased Citrate in MS patients (Mathur et al., 2014). |DB02637
293 SLC25A6 |ADP/ATP translocase 3 -1.11 No support CHEMBL4105854
790 CAD carbamoyl-phosphate -1.03 Knock down of CAD and PPAT promotes regulatory CHEMBL3093
synthetase 2 CD4+ T cells (Metzler et al., 2016).
6713 SQLE Squalene monooxygenase [-1.00 Increased Membrane Cholesterol in T cells leads to CHEMBL3592
inflammatory response (Surls et al., 2012).
PBC 10135 NAMPT Nicotinamide -6.10 Nampt inhibition reduces demyelination and disability in[CHEMBL1744525
phosphoribosyltransferase EAE (Bruzzone et al., 2009), Lack of NAMPT
expression affect T cell development (Rongvaux et al.,
2008).
3704 ITPA Inosine triphosphate -5.31 No support CHEMBL4105788
pyrophosphatase
132 IADK IAdenosine kinase -4.90 No support CHEMBL3589
2181 IACSL3 Long-chain-fatty-acid--CoA |-4.42 No support DB00159
ligase 3
1890 ITYMP [Thymidine phosphorylase  |-4.13 No support CHEMBL3106
262 IAMD1 S-adenosylmethionine -4.04 No support CHEMBL4181
[decarboxylase proenzyme
353 IAPRT Adenine -3.89 No support CHEMBL4105819
phosphoribosyltransferase
128 IADHS5 IAlcohol dehydrogenase -3.89 No support CHEMBL4116
class-3
1312 COMT Catechol -3.71 No support CHEMBL2023
O-methyltransferase
2053 EPHX2 Bifunctional epoxide -3.64 Inhibition of EPHX2 pre clinically evaluated as drug CHEMBL2409
hydrolase 2 target for IBD (Reisdorf et al., 2019).
26275 HIBCH 3-hydroxyisobutyryl-CoA -3.64 No support CHEMBL3817723
hydrolase
2194 FASN Fatty acid synthase -3.62 Fatty acid synthase linked to pathogenicity of Th17 cellsCHEMBL4106134
(Young et al., 2017) .
2720 GLB1 Beta-galactosidase -3.56 No support CHEMBL2522
114971 PTPMT1 Phosphatidylglycerophospha [-3.28 No support CHEMBL2052033
tase and protein-tyrosine
phosphatase 1
100 IADA IAdenosine deaminase -3.15 IADA is a potential target for treatment of inflammatory |CHEMBL1910
disorders (Antonioli et al., 2012).
2739 GLO1 Lactoylglutathione lyase -3.10 No support CHEMBL2424
2539 G6PD Glucose-6-phosphate -3.06 No support CHEMBL5347
1-dehydrogenase
3251 HPRT1 Hypoxanthine-guanine -2.97 No support CHEMBL3243916
phosphoribosyltransferase
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2548 GAA alpha-glucosidase -2.96 No support CHEMBL2608
6515 SLC2A3 Solute carrier family 2, -2.51 Glut3 expressed in differentiated cells and resting CHEMBL5215
facilitated glucose equals to glut1 (Macintyre et al., 2014).
transporter member 3
4363 IABCC1 Multidrug -2.31 No support CHEMBL3004
resistance-associated protein
1
7296 [TXNRD1 Thioredoxin reductase 1 -1.99 essential for DNA synthesis during T-cell metabolic CHEMBL1927
reprogramming and proliferation (Muri et al., 2018).
6647 SOD1 Superoxide dismutase -1.67 No support CHEMBL2354
47 ACLY IATP-citrate synthase -1.57 Inactivation of ACLY reduces IL-2-promoted CD4+ CHEMBL3720
T-cell growth (Osinalde et al., 2016).

*In cases where ChEMBL ids were not available DrugBank (Wishart et al., 2018) ids of molecules or
name of molecule provided as given in repurposing tool of cMap database.

Table 3: Drugs and compounds for identified drug targets

Gene Symbol Gene description Drugs/ compound* Status of drugs/Compounds*

LSS Lanosterol synthase R0-48-8071 Preclinical

ABAT 4-aminobutyrate aminotransferase Vigabatrin, Phenelzine, valproic acid launched

NAMPT Nicotinamide phosphoribosyltransferase |[FK866 Phase 2

FDPS Farnesyl pyrophosphate synthase Pamidronic acid, Zoledronic acid, Alendronic Launched

acid, Ibandronate, Risedronic acid

SQLE Squalene monooxygenase Ellagic-acid Phase 2

FDFT1 Farnesyl-diphosphate TAK-475 Investigational
farnesyltransferase

EPHX2 Bifunctional epoxide hydrolase 2 GSK2256294A Phase 1

OGDH 2-oxoglutarate dehydrogenase Valproic acid Launched

CAT Catalase Fomepizole Launched

Cs Citrate synthase Oxaloacetate Phase 2/ Phase 3

PDHB Pyruvate dehydrogenase E1 component |2-oxopropanoate Preclinical
subunit beta

COMT Catechol O-methyltransferase Entacapone, Nitecapone, Opicapone Launched, Phase 2, phase 3

HIBCH 3-hydroxyisobutyryl-CoA hydrolase Quercetin Launched

SOD2 Superoxide dismutase [Mn], Tetraethylenepentamine Phase 2/ Phase 3
mitochondrial

DHODH Dihydroorotate dehydrogenase Atovaquone, Leflunomide, Teriflunomide, Launched

Brequinar

GAA alpha-glucosidase Miglitol, Acarbose Launched

ACAT1 Acetyl-CoA acetyltransferase, Sulfasalazine Launched
mitochondrial

CPT2 Carnitine O-palmitoyltransferase 2 Perhexiline Launched

ATP5F1A ATP synthase subunit alpha Quercetin Launched,

ATP5F1B ATP synthase subunit beta Quercetin Launched

ATP5F1C ATP synthase F1 subunit gamma Quercetin Launched

ODCA1 Ornithine decarboxylase MC-1, Putrescine Phase 3, Phase 2

ATIC MP cyclohydrolase Pemetrexed Launched
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ATP5F1D ATP synthase subunit delta Sevoflurane, Enflurane, Methoxyflurane Launched
ATP5PB ATP synthase F(0) complex subunit B1 |BTB06584 Preclinical
ADH5 Alcohol dehydrogenase class-3 N6022 Phase 1/Phase 2
DPYD Dihydropyrimidine dehydrogenase 5-fluorouracil, Gimeraci Launched
IDH2 Isocitrate dehydrogenase AGI-6780 Preclinical
GSR Glutathione reductase Carmustine Launched
HMGCR 3-hydroxy-3-methylglutaryl-coenzyme A |Atorvastatin, Fluvastatin, Lovastatin, Meglutol, Launched
reductase Pitavastatin, Pravastatin, Rosuvastatin,
Simvastatin, Nadide
DHFR Dihydrofolate reductase Aminopterin, Chlorproguanil, Methotrexate, Launched
Pralatrexate, Proguanil, Pyrimethamine,
Sulfameter, Trimethoprim, Pemetrexed
PKM Pyruvate kinase TEPP-46, 2-oxopropanoate Preclinical
GART phosphoribosylglycinamide Pemetrexed Launched
formyltransferase
FASN Fatty acid synthase Pyrazinamide, Cerulenin Launched
PPAT phosphoribosyl pyrophosphate Azathioprine, Mercaptopurine Launched
amidotransferase
PNP Purine nucleoside phosphorylase Acyclovir, Didanosine Launched
SLC25A6 ADP/ATP translocase 3 Clodronic-acid Launched
CAD carbamoyl-phosphate synthetase 2 Sparfosate Phase 3
ITPA Inosine triphosphate pyrophosphatase Citric-acid Preclinical
ADK Adenosine kinase ABT-702 Preclinical
ACSL3 Long-chain-fatty-acid--CoA ligase 3 Icosapent Launched
TYMP Thymidine phosphorylase Tipiracil Launched
AMD1 S-adenosylmethionine decarboxylase Ademetionine, Putrescine Launched, Phase 2
proenzyme
APRT Adenine phosphoribosyltransferase Citric-acid Preclinical
GLB1 Beta-galactosidase Fagomine Phase 2
PTPMT1 Phosphatidylglycerophosphatase and Alexidine Preclinical
protein-tyrosine phosphatase 1
ADA Adenosine deaminase Cladribine, Pentostatin, Dipyridamole, Launched
Fludarabine
GLO1 Lactoylglutathione lyase Indomethacin Launched
G6PD Glucose-6-phosphate 1-dehydrogenase |RRx-001 Phase 2
HPRT1 Hypoxanthine-guanine Azathioprine, Mercaptopurine Launched
phosphoribosyltransferase
SLC2A3 Solute carrier family 2, facilitated glucose |2-deoxyglucose Phase 2
transporter member 3
ABCC1 Multidrug resistance-associated protein 1 |[Reversan, Ko143 Preclinical
TXNRD1 Thioredoxin reductase 1 Fotemustine Launched
SOD1 Superoxide dismutase Tetraethylenepentamine Phase 2/Phase 3
ACLY ATP-citrate synthase ETC-1002 Phase 3
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* Data obtained from repurposing tool (Corsello et al., 2017) of cMap database and DrugBank (Wishart et

al., 2018).

Figures and Figure Legends

Fig. 1

- ] -
: Step 2 £ g —
: - Transcriptomics and

» - - . 50

: H : proteomics datasets

- 0

o | L=

ConnectivityMap ¥ .
Gene targets of . Cell/Tissue specific [ [ [ |0
existing drugs/ : Genome Scale el [ T [

compounds : : Metabolic models —

A . :
& A - .
Drug target ma S inierl, 5 Sl ) : > ili
ofgmetgbolic P ,:—; s Target metabolic : : In silico
&, i : i
AR — genes : =3 pgnurba}ion
enzymes A : ; simulation L
oL = H Metabolic
. H X flux analysis

v

Affected non-target

Step 4
: : genes

Literature mining/ HT i = :
data analysis Pl T
autoimmune % Pl
diseases 0 H i
14101 31 Pl Affected disease (_,_

associated genes

Literature mining for
: A B2
disease associated —
Potential drug targets

genes A
disease wise

Fig. 1. Integrative approach for the identification of potential metabolic drug targets

The computational approach comprised of five major steps: (1) Construction of metabolic

models using integrated transcriptomics and proteomics data, (2) Identification of metabolic
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genes that are targets for existing drugs/compounds, (3) /n silico inhibition of targets of existing
drugs to identify affected reactions, (4) Identification of integrating differentially expressed genes
(DEGSs) in autoimmune diseases and integration with flux ratios obtained by perturbed and WT

flux comparisons, and (5) Validation with literature and prediction of new targets.

Fig. 2
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Fig 2. Construction of metabolic models in CD4+ T cells

(a) Active metabolic genes identified using transcriptomics and proteomics data of CD4+ T cell

subtypes. (b) KEGG pathway enrichment analysis of active genes in each cell type using all
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1,892 metabolic genes as a background. (c) Fold enrichment of KEGG pathways enriched

across CD4+ T cell subtypes.

Fig. 3
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Fig 3. Flux maps of metabolic pathways active in CD4+ T cell metabolic models

Escher maps showing fluxes through glycolysis, glucose to lactate conversion, TCA cycle,
glutaminolysis in naive (a), Th1 (b), Th2 (c), and Th17 (d) models. All the models convert

pyruvate to lactate (aerobic glycolysis). In glycolysis, naive model had the reverse direction flux
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through PGI reaction while effector cells have forward direction flux. All the models uptake
glutamine that ultimately forms a-Ketoglutaric acid (glutaminolysis). GLNtm (glutamine
transporter) and GLUNm (convert glutamine to glutamate) reactions are active in naive model

and not in effector CD4+ T cell models that use different routes for glutamine to glutamate

conversion.

Fig. 4
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Fig. 4: Validation of metabolic models

(a) Summary of active pathways in the CD4+ T cell subtypes that are in agreement of literature.

The activity of pathways in a model was determined by Flux Balance Analysis. The pathways
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shown in the box are active in CD4+ T cell subtypes models, and blue color is used to indicate
the specific CD4+ T cell subtype. For example, the glycolysis pathway is active in all five T cell
models. (b, ¢, and d) The dependency of growth rate (in all models) on glucose (b), glutamine

(c), and on both glucose and glutamine (d).

Fig. 5
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Fig. 5: Drug targets in CD4+ T cell models
(a) Distribution of metabolic drug target genes, and inhibitory drugs or compounds in each
model. (b) Number of metabolic genes in the models mapped with inhibitory drugs (blue bars)

and number of genes among drugs mapped genes that can block at least one reaction upon
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inhibition (red bars). (c) Comparison of metabolic drug targets that affect reactions upon deletion

in CD4+ T cell models.

Fig. 6
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Fig. 6: Identification of potential drug targets for RA, MS, and PBC

(a) Number of all differentially expressed genes (DEGs) and metabolic DEGs in three diseases
rheumatoid arthritis (RA), multiple sclerosis (MS), and primary biliary cholangitis (PBC). The
DEGs were analyzed using three transcriptomics datasets (one dataset per disease). The data

were obtained from peripheral CD4+ T cells of groups of patients and healthy individuals. (b)
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Schematic representation of the integration of disease-associated differentially expressed genes
and affected reaction on each drug target gene perturbation. For each drug target deletion, we
investigated how many of fluxes regulated by upregulated genes are decreased and fluxes
regulated by downregulated by increased. We used these numbers to calculate PES

(perturbation effect score, see STAR Methods).
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