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Abstract: 

CD4+ T cells, which provide adaptive immunity against pathogens and abnormal cells, are also 

associated with various immune related diseases. CD4+ T cells’ metabolism is dysregulated in 

these pathologies and represents an opportunity for drug discovery and development. However, 

we currently lack clear view of the target space in this area. ​Genome-scale metabolic modeling 

offers an opportunity to accelerate drug discovery by providing high-quality information about 
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possible target space in the context of a modeled disease. Here, we develop genome-scale 

models of naive, Th1, Th2 and Th17 CD4+ T cell subtypes to map metabolic perturbations in 

three autoimmune disease, rheumatoid arthritis, multiple sclerosis, and primary biliary 

cholangitis. ​We subjected these models to ​in silico​ simulations for drug response analysis of 

existing FDA-approved drugs, and compounds. Integration of disease-specific differentially 

expressed genes with altered reactions in response to metabolic perturbations identified 68 drug 

targets for the three autoimmune diseases.  Modulation of forty percent of these targets has 

been observed to lead to suppression of CD4+ T cells, further increasing their potential impact 

as therapeutic interventions.  

Introduction: 

CD4+ T cells are essential components of the human immune system that fight against 

pathogenic invaders and abnormal cells by producing cytokines, and stimulating other cells, 

such as B cells, macrophages, and neutrophils ​(Zhu and Paul, 2008)​. During immune response, 

CD4+ T cells are activated and proliferate, and their metabolism adjusts to fulfill increased 

bioenergetic and biosynthetic demands. For example, activated effector CD4+ T cells are highly 

glycolytic ​(Michalek et al., 2011)​ and use aerobic glycolysis and oxidative phosphorylation 

(OXPHOS) for proliferation ​(Chang et al., 2013)​. On the other hand, naïve, resting, and 

regulatory CD4+ T cells are less glycolytic and use OXPHOS and fatty acid oxidation (FAO) for 

energy generation. Accordingly, metabolically dysregulated CD4+ T cells were observed in 

several diseases such as diabetes ​(Granados et al., 2017)​, atherosclerosis ​(Lü et al., 2018)​, 

cancers ​(Le Bourgeois et al., 2018)​, and autoimmune diseases such as rheumatoid arthritis 

(RA) ​(Okano et al., 2018; Yang et al., 2013)​, multiple sclerosis (MS) ​(Gerriets et al., 2015)​, 

primary biliary cholangitis (PBC) ​(Jones, 1996)​, and systemic lupus erythematosus (SLE) ​(Yang 

et al., 2015; Yin et al., 2015)​. Furthermore, metabolism of Type 1 T helper (Th1), Type 17 T 
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helper (Th17), and inducible regulatory T cells have been found to be dysregulated in MS 

(Hedegaard et al., 2008)​. Controlling CD4+ metabolic pathways can be important in fighting 

against some immune diseases. For example, CD4+ T cells are hyperactive in systemic lupus 

erythematosus (SLE), and inhibiting glycolysis as well as the mitochondrial metabolism 

improved the outcome in an animal model ​(Yin et al., 2016)​. Together, this evidence suggests a 

significant role of CD4+ T cell metabolism in immune-mediated diseases.  

Repurposing existing drugs for novel indications represents a cost-effective approach for the 

development of new treatment options ​(Pushpakom et al., 2019)​. Several studies have recently 

demonstrated the potential for drug repurposing in CD4+ T cell-mediated diseases ​(Bettencourt 

and Powell, 2017; Soria-Castro et al., 2019)​. For example, 2-deoxy-D-glucose (anticancer 

agent) and metformin (antidiabetic drug) were shown to reverse SLE  in a mouse model ​(Yin et 

al., 2016)​. However, drug repurposing, as well as drug discovery and development efforts for 

targeting T cell metabolism have been limited due the lack of knowledge about the key 

molecular targets in this context.  

In recent years, analysis of large-scale biological datasets has emerged as a powerful strategy 

for discovery of novel mechanisms, drug targets, and biomarkers in human diseases ​(Geyer et 

al., 2017; Puniya et al., 2013, 2016b, 2016a)​. Here, we develop a computational modeling 

approach that integrates multi-omic data with systematic perturbation analyses of newly 

constructed whole-genome metabolic models of naïve CD4+ T cells, and Th1, Th2, and Th17 

cells. This led to identification of potential drug targets for CD4+ T cell-mediated diseases (RA, 

MS, and PBC).  
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Results 

Identification of genes expressed in the CD4+ T cells 

We used the computational approach shown in Fig.1 (see also ​Supplementary Methods 1​) to 

construct metabolic models of naïve and effector CD4+ T cells. To identify metabolic genes 

expressed across CD4+ T cell subtypes (Naïve, Th1, Th2, and Th17 cells), we integrated 

transcriptomics and proteomics data (​Supplementary Data 1​).​ ​The ​ ​comparison of genes 

expressed in CD4+ T cell subtypes identified by different datasets are shown in ​Supplementary 

Figure 1​. The analysis showed that between 675 and 836 metabolic genes were expressed 

depending on the CD4+ T cell subtype (​Supplementary Data 2​). Of these, 530 genes were 

expressed in all subtypes (Fig. 2a). On the other hand, 16, 25, 7, and 96 genes were specific to 

naïve, Th1, Th2, and Th17 cells, respectively. Pathway enrichment analysis using active 

metabolic genes suggested 6 enriched KEGG pathways common across all subtypes:​ ​carbon 

metabolism, TCA cycle, oxidative phosphorylation (OXPHOS), amino sugar and nucleotide 

sugar metabolism, and valine, leucine and isoleucine degradation (Fig. 2b).  Fatty acid 

degradation and pentose phosphate pathway were enriched in naïve CD4+ T cells only, and 

fatty acid metabolism was enriched in the naïve, Th2, and Th17 subtypes. No specific KEGG 

pathways were found enriched solely in Th1, and Th17 cells. Among the enriched pathways 

shared by all CD4+ T cells, TCA cycle was enriched more than two-fold in naïve, Th1, and Th2 

subtypes. Similarly, OXPHOS was enriched more than two-fold in naïve and Th1 subtypes (Fig. 

2c). These results suggest that key metabolic pathways are active across all the subtypes. 

Importantly, the metabolism of various CD4+ T cell subtypes can be different with respect to 

these pathways’ levels of activity and the number of reactions active within the pathways.  
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Development and validation of genome-scale metabolic models of CD4+ T cells 

To further examine these issues, we developed constraint-based metabolic models specific to 

naïve CD4+ T cells, Th1, Th2, and Th17 cells. Our genome-scale metabolic models comprised 

of 3,956 to 5,282 reactions associated with 1,055 to 1,250 genes (Table 1; ​Supplementary 

Dataset 1)​. The number of internal enzyme-catalyzed reactions were 2,501, 1,969, 2,549, and 

2,640 for naïve, Th1, Th2, and Th17 models respectively, distributed across 84 metabolic 

pathways (​Supplementary Figure 2; note that transport and exchange reactions were excluded​). 

The models include more genes associations than active genes identified from the data 

because the model-building algorithm inserts some reactions that are not supported by data but 

required for the model to achieve essential metabolic functions for biomass production (see 

STAR Methods​).  

We validated the models based on the active pathways and gene essentiality. We first identified 

pathways that are known to be active in different CD4+ T cell subtypes (see ​STAR Methods​) 

and searched for their activity (with non-zero fluxes) in the corresponding models through Flux 

Balance Analysis (FBA). Several major pathways were in agreement with the literature. These 

include glycolysis, TCA cycle, glutaminolysis and pyruvate to lactate conversion (aerobic 

glycolysis) that showed non-zero flux in all the models (Fig. 3 a-d). Effector CD4+ T cells (Th1, 

Th2, and Th17) showed more flux through fatty acid biosynthesis and less flux through fatty acid 

β oxidation than naïve CD4+ T cells. A schematic representation of all major pathways active 

across CD4+ T cells is shown in Fig. 4a. Also, in all the models, limiting glucose from the 

environment resulted in decreased growth rate (Fig. 4b). It’s important to note that the activity of 

some pathways in the models was not in agreement with the literature. Specifically, we did not 

observe a significant effect on growth rate when glutamine ​(Buck et al., 2015)​ was removed 

from exchange reactions in the effector CD4+ T cell models (Fig. 4c). This discrepancy can be 
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explained by the presence of functional glutamine synthase (GLNS) that can convert glutamate 

to glutamine in the absence of glutamine uptake in the model. We also observed that the growth 

rate of naïve CD4+ T cells was more dependent on the glucose and glutamine uptake than in 

the other subtypes (Fig. 4b - d), which is also not in agreement with the literature.  

Next, we validated essential genes predicted by models against independent data. Gene 

deletion analysis predicted 84, 95, 81, and 84 genes as essential in the naïve, Th1, Th2, and 

Th17 models respectively (​Supplementary Data 3​). More than 70% of these predictions agreed 

with genes experimentally defined as essential and conditionally essential ​(Chen et al., 2017)​. 

The models achieved an accuracy (ratio of ​true positives​ and ​true negatives ​to the whole pool) 

of ~60% and precisions (ratio of ​true positives​ to ​true positives ​and ​false positives​) ranging from 

72% to 75% (​Supplementary Figure 3​). Additional validations based on CD4+ T cell-specific 

essential functions are presented in ​Supplementary Methods 3​. Overall, the validation confirmed 

that our constraint-based metabolic models specific to naïve CD4+ T cells, Th1, Th2, and Th17 

cells represent relevant and realistic systems to examine drug response and predict drug 

targets. 

Mapping existing, and identifying potential drug targets in CD4+ T cells  

We used the validated CD4+ T cell-specific models to predict potential drug targets and 

combined it with  the publicly available drug repurposing and tool compound data set from the 

Connectivity Map (cMap) database and mapped the approved drugs, clinical drug candidates 

and tool compounds in the dataset with the metabolic genes in the models (Fig. 5a). Next, we 

performed ​in silico ​knock-outs of the associated drug target genes. Due to the presence of 

isozymes, not all the deleted target genes influenced the reaction(s). We identified 86, 79, 86, 

and 90 target genes whose deletion blocks at least one reaction in naïve, Th1, Th2, and Th17 
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models, respectively (Fig. 5b). Of these, 62 were common among four CD4+ T cell subtypes 

(Fig. 5c). Twenty-five genes were targets only in Th1 cells. All modeled gene deletions resulted 

in altered flux distributions that were quantified using flux ratios. For each drug target deletion, 

we classified all reactions into three categories (see ​STAR Methods​): (1) reactions with 

decreased fluxes (down-reactions), (2) reactions with increased fluxes (up-reactions), and (3) 

reactions without any changes. We used these flux ratios to identify potential drug targets 

specific for immune diseases, by exploring how disease-specific metabolic functions are 

affected upon each drug target inhibition.  

First, we identified disease-specific metabolic functions for RA, MS, and PBC using differential 

gene expression analysis of publicly available patients’ data (Case-Control studies) (see ​STAR 

Methods​). We identified 852, 1,459, and 553 differentially expressed genes (DEGs) for RA, MS, 

and PBC, respectively (​Supplementary Data 4​). From these DEGs, we selected genes relevant 

to our metabolic models. For example, 36 metabolic genes were upregulated and 27 genes 

were downregulated in RA (Fig. 6a). Biological process enrichment analysis identified purine 

metabolism, and starch sucrose metabolism as enriched in upregulated genes. On the contrary, 

lysine degradation, fatty acid elongation, and carbon metabolism were downregulated. Enriched 

metabolic pathways for all three diseases are shown in ​Supplementary Data 4​. 

To identify potential drug targets for the aforementioned diseases, we looked for target genes 

whose deletion (inhibition) would have the appropriate effect on diseases’ DEGs. For each gene 

inhibition, we specifically investigated the decrease in metabolic flux through reactions 

controlled by genes upregulated in disease, and increase in metabolic flux through reactions 

controlled by genes downregulated in disease (Fig. 6b). Using flux ratios of metabolic DEGs, we 

calculated a ​perturbation effect score​ (PES; see ​STAR Methods​) for each drug target gene in 
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each pair model/disease. PES represents the effect of gene inhibition on both upregulated and 

downregulated genes. A positive PES value for the drug target gene means that its inhibition 

decreases more fluxes controlled by genes upregulated in disease than it increases or 

increases more fluxes controlled by genes downregulated in disease than it decreases. As 

such, inhibition of that gene target reverses the fluxes controlled by disease DEGs. In contrast, 

a negative PES means that the inhibition of a target gene increases more fluxes controlled by 

upregulated genes or decrease the more fluxes controlled by downregulated genes than the 

opposite. Among the different combinations of cell types and diseases, the PESs range was 

from -2 to 2 (​Supplementary Figure 4​). Based on these considerations, genes with higher 

positive PES can serve as potential drug targets for the disease.  

Using PES as a measure of target relevance, we identified 62 potential drug targets that were 

common to our models (Fig. 5c). These genes displayed various PES ranks across models and 

diseases. To choose drug targets that performed better across different CD4+ T cells, we 

considered PES ranks of the four subtype-specific models. First, we normalized the PES ranks 

by transforming them to Z-scores in each model. Since the studied diseases typically involve 

more than one type of CD4+ T cell subtype, we next summed up  the Z-scores of all the models 

within a disease for each drug target (​Supplementary Figure 4​). A minimum aggregate Z-score 

represents overall high PES ranks predicted across four cell types. Therefore, a gene with a 

minimum aggregated Z-score could be a potential high confidence drug target. We used a 

Z-score cutoff of -1 (1 standard deviation lower than the mean aggregated Z-score) and 

identified 17, 27, and 24 potential drug targets for RA, MS, and PBC, respectively (Table 2). 

Ranking based on aggregated Z-scores is provided in ​Supplementary Data 5​. Taken together, 

our combined use of the disease-matched genome-scale metabolic models of CD4+ T cells and 
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the well target-annotated public dataset of bioactive compounds generated a manageable list of 

potential drug targets suitable for deeper analysis and follow-up. 

 Analysis and validation of predicted drug targets 

To further analyze and validate our target list, we performed a comprehensive literature survey 

(Table 2). Among the 17 suggested drug targets for RA, dihydroorotate dehydrogenase 

(DHODH) and Acetyl-CoA acetyltransferase (ACAT1)​ ​have been already explored as targets in 

drug development efforts ​(Breedveld and Dayer, 2000; Tian et al., 2011)​, and 15 genes were 

newly identified. Among these, eight (LSS, NAMPT, FDPS, SQLE, EPHX2,  CAT, CS, SOD2) 

have been found to inhibit CD4+ T cell proliferation upon deletion (Table 2). The product of the 

reaction catalyzed by 4-Aminobutyrate Aminotransferase (ABAT) is linked to RA. Dysregulation 

of other genes, such as pyruvate dehydrogenase E1 (PDHB), Farnesyl-diphosphate 

farnesyltransferase 1 (FDFT1), Oxoglutarate Dehydrogenase (OGDH), alpha- galactosidase 

(GAA), has not been previously reported to impact CD4+ T cell proliferation. 

Furthermore, we predicted 27 possible drug targets for MS. Of these, glutathione reductase 

(GSR), and dihydrofolate reductase (DHFR) were already explored as targets using the 

experimental autoimmune encephalomyelitis (EAE) model ​(Ashtari and Savoj, 2011; Lian et al., 

2018)​ and  25 genes were newly identified. Among these, 12 (CAT, IDH2, HMGCR, PKM, 

ABAT, LSS, FASN, PPAT, PNP, CS, CAD, SQLE) have been previously reported to inhibit 

CD4+ T cell proliferation upon deletion. Genes that were not previously reported to affect CD4+ 

T cells upon deletion include Carnitine O-palmitoyltransferase 2 (CPT2), MP cyclohydrolase 

(ATIC), Ornithine decarboxylase (ODC1), Dihydropyrimidine dehydrogenase (DYPD), and 

Farnesyl-diphosphate farnesyltransferase (FDFT1).  
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Finally, we identified 24 possible drug targets for PBC. None of them was previously explored 

as a drug target in PBC. Deletion of seven of these potential gene targets (NAMPT, EPHX2, 

FASN, ADA, SLC2A3, TXNRD1, ACLY) has been reported to affect CD4+ T cells in the 

literature. Genes that have not yet been reported to affect CD4+ T cells upon deletion include 

Long-chain-fatty-acid--CoA ligase 3 (ACSL3), Adenosine kinase (ADK), and 

S-adenosylmethionine decarboxylase proenzyme (AMD1).  

Some ​of the 68 predicted drug targets were shared by diseases but 55 were unique:  six drug 

targets (LSS, ABAT, SQLE, FDFT1, CAT, CS) were in common between RA and MS;  five drug 

targets (NAMPT, EPHX2, COMT, HIBCH, GAA) were in common between RA and PBC; and 

two drug target (ADH5, FASN) were in common between MS and PBC. ​Drugs and compounds 

available for these targets are shown in Table 3.  

Taken together our analysis has identified 68 possible drug targets of relevance to metabolic 

regulation of autoimmune diseases. We discuss implications of our results in more detail below. 

Discussion 

Our predicted drug targets were classified into two categories: validated, and novel. We 

considered a target to be validated if previously explored as such in the context of RA, MS 

and/or PBC. Novel targets, those not previously reported as such for the three diseases we 

focused on here, were further classified into two subcategories: target genes that are supported 

with published experimental data, and predicted target genes for which no data is currently 

available. We will discuss select examples of targets in each of these categories to illustrate 

ways in which our model and analysis can be used to advance future drug repurposing as well 

as drug discovery efforts.  
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Our predictions include  three genes ( ​DHODH​,  ACAT1, and ​DHFR ​) that code for proteins 

targeted by approved drugs currently used for treatment of autoimmune diseases ​(Ashtari and 

Savoj, 2011; Breedveld and Dayer, 2000; Kumar and Banik, 2013; Lian et al., 2018; Tian et al., 

2011)​. A strong example of an already validated drug target predicted by our models is 

dihydroorotate dehydrogenase (DHODH), a key enzyme in de novo pyrimidine synthesis 

pathway, and a target of leflunomide, an approved drug for rheumatoid arthritis ​(Breedveld and 

Dayer, 2000; Li et al., 2004)​. ​DHFR (dihydrofolate reductase) is a well-established oncology 

drug target, and also as an immunosuppressant and anti-inflammatory target ​(Schweitzer et al., 

1990)​. Low doses of an FDA-approved DHFR inhibitor methotrexate  have been found effective 

as a treatment for MS, RA, and Crohn's disease ​(Ashtari and Savoj, 2011)​. Mitochondrial 

acetyl-CoA acetyltransferase (ACAT1) is a target for FDA approved anti-inflammatory drug 

sulfasalazine in inflammatory bowel syndrome. Furthermore, this drug is indicated for treatment 

for rheumatoid arthritis and ulcerative colitis ​(Wishart et al., 2018)​.​ ​Taken together, our models 

successfully replicated current clinical practice, further strengthening the value of our approach.  

Interestingly, a major subcategory of gene targets we identified code for proteins that have not 

previously been explored for treatment of RA, MS, and PBC. We can now use these insights to 

formulate novel preclinical and clinical hypothesis. For example, ​ABAT​, which encodes the 

GABA-transaminase enzyme that breaks down γ-aminobutyric acid (GABA; a neurotransmitter), 

was identified in our analysis as a potential target. While ABAT has not been previously 

identified as a drug target for RA, we can hypothesize that its inhibition may increase free GABA 

levels which would, in turn, inhibit CD4+ T cell activation. The relationship between GABA levels 

and suppressions of CD4+ T cell activation has been previously reported, further suggesting a 

link between neurotransmission and immune response ​(Bhandage et al., 2018; Jin et al., 2013; 
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Mendu et al., 2012)​. There are currently two FDA approved drugs, vigabatrin and phenelzine, 

that target ABAT. Although we don’t expect that either one of these agents can be repurposed 

to treat autoimmune disease given that they are an anti-seizure medicine and an 

antidepressant, respectively, we propose that further analysis of relationships between 

neurotransmission and immune response offers an interesting targeting opportunity ​(Tian et al., 

2011)​. Another example is glutathione reductase (GSR), an enzyme that reduces oxidized 

glutathione disulfide to cellular antioxidant GSH ​(Safran et al., 2010)​. It has been shown that 

inhibition of the de novo GSH synthesis can reduce the pathological progression of 

experimental autoimmune encephalomyelitis (EAE) ​(Lian et al., 2018)​. Here, ​carmustine, a 

chemotherapy drug, is FDA approved drug that targets GSR, offering a viable starting point for 

future pre-clinical testing ​ ​(Table 3).​ ​Additional high confidence predictions and target​ ​candidates 

are a group of genes that have been experimentally shown to repress CD4+ T cells upon 

inhibition. This list includes ​nicotinamide phosphoribosyltransferase (NAMPT), which we now 

predict is a drug target for RA. This enzyme is involved in NAD+ synthesis 

(The UniProt Consortium, 2017)​ and was previously explored as a drug target in EAE for MS 

(Bruzzone et al., 2009)​, melanoma, T cell lymphoma, and leukemia ​(Roulston and Shore, 2016)​. 

Given that two ​ ​NAMPT inhibitors, GMX1778 and FK-866, are in phase II clinical trials (Table 3), 

this enzyme represents a target where pre-clinical testing and follow up may lead to drug 

repurposing opportunities. Another example worth highlighting is epoxide hydrolase 2 (EPHX2), 

which converts toxic epoxides to non-toxic dihydrodiols ​(Safran et al., 2010; 

The UniProt Consortium, 2017)​. Its inhibition was reported to result in decreased production of 

proinflammatory cytokines in preclinical evaluation in inflammatory bowel syndrome ​(Reisdorf et 

al., 2019)​. For EPHX2, an inhibitor GSK2256294A is in phase I clinical trial, indicating that 

developing drugs for this target may be possible.​ ​Moreover, our model implicated enzymes such 
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as pyruvate kinase (PKM), which impacts glycolysis, ​ HMG-CoA reductase (HMGCR), which 

regulates cholesterol biosynthesis and adenosine deaminase (ADA), which converts harmful 

deoxyadenosine to not harmful deoxyinosine. Each one of these enzymes has been 

experimentally linked to T cell proliferation and development ​(Alves-Filho and 

Pålsson-McDermott, 2016; Bietz et al., 2017; Flinn and Gennery, 2018)​, and all three targets 

have been the subject of previous drug development campaigns (Table 3)​.​  ​ATP Citrate Lyase 

(ACLY), Catalase (CAT), Farnesyl diphosphate synthase (FDPS), Lanosterol synthase (LSS), 

Squalene epoxidase (SQLE), and Superoxide dismutase 2 (SOD2) also represent targets we 

identified. SQLE is involved in cholesterol biosynthesis, and in general agreement with recent 

reports that inhibiting cholesterol pathways can suppress T cell proliferation ​(Bietz et al., 2017)​. 

The loss of SOD2 can increase superoxides and defective T cell development ​(Case et al., 

2011)​. For all these targets, either preclinical, clinical or approved inhibitors are available, which 

we consider encouraging for further study and drug repurposing (see Table 3 for details).  

Other predicted genes are part of the TCA cycle (Citrate synthase (CS), Isocitrate 

dehydrogenase 2 (IDH2)), ribonucleotide biosynthetic processes (Phosphoribosyl 

pyrophosphate amidotransferase (PPAT), Carbamoyl-phosphate synthetase 2, Aspartate 

transcarbamylase, and Dihydroorotase (CAD)), and lipid biosynthesis (Fatty acid synthase 

(FASN)) that are also important for T cell development. As with examples above, many of these 

potential candidate targets have inhibitors that are in different stages of preclinical and clinical 

development, and some (like PPAT and FASN inhibitors) have been FDA approved (Table 3).  

Furthermore, in addition to gene targets with robust or partial experimental evidence, we 

identified 31 novel gene targets for which no evidence currently exists. These genes are 

involved in glycolysis, TCA cycle, OXPHOS, fatty acid metabolism, pyruvate metabolism, purine, 
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and pyrimidine metabolism, arginine and proline metabolism,and  tyrosine metabolism 

pathways, which are critical for T cell activation and proliferation ​(Almeida et al., 2016; Wang 

and Green, 2012)​. Collectively, our models led to identification of potential high-value targets for 

RA, MS and PBC treatment, and implicated several drugs in current clinical use for drug 

repurposing. 

We would also like to discuss several more technical points regarding our approach. Data 

integration enabled us to build, refine, and validate high-quality cell type-specific models. While 

many of the major pathways important for CD4+ T cell activation and proliferation are commonly 

active across different CD4+ T cell subtypes we tested, the models differ with respect to how 

these pathways are used for growth. For example, higher activity of the fatty acid oxidation 

pathway is more important in naïve but not in effector CD4+ T cells that have elevated glycolysis 

(Wang and Green, 2012)​ and fatty acid synthesis pathways. These models achieved ~60% 

accuracy with gene essentiality  data obtained from different cell lines ​(Chen et al., 2017)​, which 

might further improve with the availability of CD4+ T cell-specific essentiality data. Integration of 

disease-associated DEGs with flux profiles under gene knock-out helped us to select 

disease-specific drug targets. While computational models of signal transduction in CD4+ T 

cells ​(Carbo et al., 2013; Puniya et al., 2018)​ are available, metabolic models of effector and 

regulatory CD4+ T cells have not been developed (except for naïve CD4+ T cells ​(Han et al., 

2016)​). Similar metabolic models were previously used to predict drug targets against 

pathogens ​(Puniya et al., 2013)​ ​and complex diseases such as cancers ​(Jerby and Ruppin, 

2012)​.  

While our approach can be generalized for human diseases and used with any -omics dataset, 

the unavailability of reliable data contributes to some limitations. Because of heterogeneity with 

14 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2020. ; https://doi.org/10.1101/2020.01.02.893164doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?K7s4HN
https://www.zotero.org/google-docs/?K7s4HN
https://www.zotero.org/google-docs/?94D2Nu
https://www.zotero.org/google-docs/?lT6pxL
https://www.zotero.org/google-docs/?IZVAEa
https://www.zotero.org/google-docs/?BBDEBc
https://www.zotero.org/google-docs/?BBDEBc
https://www.zotero.org/google-docs/?Lrhznw
https://www.zotero.org/google-docs/?66iMEa
https://www.zotero.org/google-docs/?66iMEa
https://doi.org/10.1101/2020.01.02.893164
http://creativecommons.org/licenses/by-nd/4.0/


respect to time after stimulation with cytokines in the available datasets, constructed models 

represent inclusive metabolic phenotypes during activation and proliferation for each CD4+ T 

cell subtype. Thus, time-specific data would be required to study metabolic phenotype at a 

specific time point in CD4+ T cell development. In addition, the biomass objective function used 

in our study is not specific to CD4+ T cells. A specific objective function that considers varying 

utilization of precursor metabolites (such as glycolysis intermediates) by different CD4+ T cells 

for biomass production, might further improve the models. However, we have shown that 

changing objective functions (from the Recon3D to macrophage model) had no significant 

impact on the constructed models (see STAR Methods for details). Similarly, reliable 

disease-specific data were unavailable for specific CD4+ T cell subtypes, therefore, building 

subtype specific cell metabolic models under disease conditions was not possible. We mitigated 

this limitation by integrating disease-specific DEGs from sorted CD4+ T cells with models, which 

resulted in metabolic fluxes relevant to diseases. In the future, with the availability of more 

disease and cell type-specific data, our integrative approach may further improve these results. 

Overall, our integrative systems modeling approach has provided a new perspective for the 

treatment of RA, MS, and PBC. Moreover, the newly constructed models may serve as tools to 

explore metabolism of CD4+ T cells. Additionally, our approach is generalizable to other disease 

areas for which reliable disease-specific data are available, making it a potentially important 

computational platform for both novel drug target identification, as well as prioritizing targets for 

drug repurposing efforts.  

STAR Methods 
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High throughput data acquisition and integration 

We collected transcriptomics data from the GEO ​(Barrett et al., 2013)​ database and proteomics 

data ​(Rieckmann et al., 2017)​. A total of 121 transcriptomics ​(Abbas et al., 2005; Bernier et al., 

2013; Bonacci et al., 2012; Gustafsson et al., 2015; Kleinewietfeld et al., 2013; Lund et al., 

2003; Prots et al., 2011; Santarlasci et al., 2012; Zhang et al., 2013)​ and 20 proteomics 

(Rieckmann et al., 2017)​ samples relevant to the CD4+ T cells were selected (​Supplementary 

Data 1​). Transcriptomics data analysis was performed using the ​affy ​(Gautier et al., 2004)​ and 

limma ​(Ritchie et al., 2015)​ R packages. Because we aimed to characterize gene activities 

instead of gene expression levels, the processed transcriptomics data were discretized (active = 

1; inactive = 0) and samples for each cell type were combined together. Genes active in more 

than 50% of the samples in which the probe was present were considered as active (​see 

Supplementary Methods 2​). Similarly, proteins expressed in more than 50% of samples in the 

proteomics dataset were considered as active. In the proteomics datasets, protein IDs were 

mapped to gene IDs.  

Next, we integrated activities from transcriptomics and proteomics datasets. First, biological 

entities that overlapped in both types of data were selected as high-confidence. Second, we 

found that some genes were expressed in the majority of transcriptomics datasets, but 

expressed in less than 50% samples of proteomics data. Similarly, some proteins were 

identified within groups of highly abundant proteins in multiple samples in proteomics datasets 

but expressed in less than 50% samples of transcriptomics datasets. Such non-overlapping 

genes were selected as moderate-confidence based on consensus in single types of -omics 

data (​Supplementary Methods 2.1.1​). Third, moderate-confidence genes exclusively present in 

the transcriptomics data were added to the overlapping genes if expressed in at least 90% of 

samples. Fourth, moderate-confidence genes exclusively present in the proteomics dataset 

16 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2020. ; https://doi.org/10.1101/2020.01.02.893164doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?PLggHm
https://www.zotero.org/google-docs/?9Szqlg
https://www.zotero.org/google-docs/?WJQUu5
https://www.zotero.org/google-docs/?WJQUu5
https://www.zotero.org/google-docs/?WJQUu5
https://www.zotero.org/google-docs/?oT8w1y
https://www.zotero.org/google-docs/?Mjo45f
https://www.zotero.org/google-docs/?45LdmV
https://doi.org/10.1101/2020.01.02.893164
http://creativecommons.org/licenses/by-nd/4.0/


were added if their abundance was ranked in the top 25% (fourth quartile) (​Supplementary 

Methods 2; Supplementary Data 6​). We used these cutoffs to decrease the false negatives 

while not selecting false positives by removing genes and proteins that are not expressed in any 

sample either in transcriptomics or proteomics data.  

Cell type-specific genome-scale metabolic model reconstruction  

We used the GIMME ​(Becker and Palsson, 2008)​ method (in COBRA toolbox) to construct the 

metabolic models of different CD4+ T cells (naïve, Th1, Th2, Th17). The inputs for GIMME were 

the generic human Recon3D ​(Brunk et al., 2018)​ (as a template) and gene expressions based 

on integrated multi-omics data. The template Recon3D was modified prior to constructing CD4+ 

T cell-specific metabolic models. These modifications included gene-protein-reaction (GPR) 

associations (all genes associated with a reaction written using AND​ ​and OR operators), media 

conditions, and reaction directionality. In addition, new reactions involved in the biomass 

objective function were added, and some reactions were removed as described below (See also 

Supplementary Methods 2​). The used transcriptomics and proteomics data have information 

about genes/proteins instead of transcript variants. To map the data obtained for genes, we 

updated transcript IDs provided in Recon3D to Entrez gene IDs. A total of 1,892 genes were 

included in the modified Recon3D model. Furthermore, because different CD4+ T cells have 

different nutrient uptake preferences, we used two types of media conditions (one for each 

naïve and one for all effector T cells). ​For all cell subtypes, in addition to the basal metabolites 

(unconstrained and freely available, i.e. H2O, O2, H, O2S, CO2, Pi, H2O2, HCO3, H2CO3, and 

CO), glucose, glutamine, and other amino acids were set as open (un-constrained) for uptake. 

Furthermore, the directionality of some reactions was updated based on the Recon 2.2.05 

model ​(Swainston et al., 2016)​. Because of the lack of CD4+ T cell-specific data,​ t​he biomass 
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objective function was adopted from the macrophage model iAB-AMØ-1410 ​(Bordbar et al., 

2010)​ and added to the Recon3D.  

For each subtype, we constructed three models based on transcriptomics, proteomics, and 

integrated ​(transcriptomics and proteomics data) ​datasets. ​A comparison of these models is 

provided in ​Supplementary Figure 5​ and details can be found in ​Supplementary Methods 2​. The 

models constructed with integrated data were selected for further analysis. ​Additionally, to 

investigate the effect of biomass objective function on constructed models, we built two models 

using biomass objective functions from (1) Recon3D and (2) iAB-AMØ-1410 models. The 

reactions in output models generated based on each biomass function were compared. The 

models based on the two objective functions were not significantly different (​Supplementary 

Figure​ 6) with respect to the numbers of reactions. Biomass objective function from 

iAB-AMØ-1410 consists of few extra precursors that predicted better fluxes through fatty acid 

pathways. Therefore models that are constructed based on biomass reaction adopted from 

iAB-AMØ-1410 were used in subsequent analyses. ​Models were further reduced by removing 

the dead-end reactions. Reactions in the models are distributed across different compartments 

including extracellular, cytoplasm, mitochondria, nucleus, Golgi apparatus, lysosome, and 

endoplasmic reticulum. The models were investigated to perform basic properties using leak 

test, gene deletion and further refined in an iterative manner. ​Refined models were then 

subjected to 460 metabolic tasks that were used with the Recon3D model and included in 

Test4HumanFctExt ​function in COBRA (​Supplementary Data 7​). ​The constructed models were 

simulated using Flux Balance Analysis (FBA) and Flux Variability Analysis (FVA). The final 

numbers of metabolites and reactions are presented in Table 1. ​These models were named as 

TNM1055 (naïve model), T1M1133 (Th1 model), T2M1127 (Th2 model), and T17M1250 (Th17 

model) and can be found as ​Supplementary Dataset 1​.​ They have also been submitted to 
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BioModels database ​(Chelliah et al., 2015)​ under accessions MODEL1909260003, 

MODEL1909260004, MODEL1909260005,  MODEL1909260006.  

Model validation  

Models were validated based on literature knowledge related to active pathways and gene 

essentiality data. CD4+ T cell-specific metabolic functions were searched in the literature using 

PubMed ​(Sayers et al., 2019)​. Naïve CD4+ T cells tend to have low energy demands, and 

mainly rely on ​fatty acid β-oxidation​, oxidation of pyruvate and glutamine via the ​TCA cycle 

(Patsoukis et al., 2016)​. On the other hand, the high bioenergetics demand in effector cells is 

met by shifting ​OXPHOS ​to ​glycolysis ​and ​fatty acid oxidation​ to ​fatty acid synthesis ​(Almeida et 

al., 2016)​. Furthermore, similar to cancer cells, proliferating effector CD4+ T cells convert lactate 

from pyruvate by lactate dehydrogenase enzyme ​(Almeida et al., 2016)​. Thus, we obtained the 

flux distribution of metabolic pathways under wild type conditions using Flux Balance Analysis 

(FBA) and searched the non-zero fluxes through the aforementioned pathways in all the 

models. Flux maps were created using Escher web application (​https://escher.github.io/#/​) ​(King 

et al., 2015; Rowe et al., 2018)​. It has also been observed previously that deficiency in glucose 

and glutamine impairs CD4+ T cell activation and proliferation ​(Macintyre et al., 2014; Ren et al., 

2017)​. We performed this experiment ​in silico​, whereby we varied the flux through exchange 

reactions of glucose (EX_glc[e]) and glutamine (EX_gln_L[e]) in the models and analyzed the 

effect on growth rate. To perform gene essentiality-based validation, we knocked out model 

genes to predict their effect on the growth rate. This was performed using ​singleGeneDeletion ​in 

the COBRA toolbox using the Minimization of Metabolic Adjustment (MoMA) method ​(Segrè et 

al., 2002)​. Because of the unavailability of CD4+ T cell-specific data, predicted essential genes 

were compared with experimentally identified essential genes in humans from different cell 

lines. The data for experimentally tested essential and nonessential genes for human were 
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obtained from the OGEE database ​(Chen et al., 2017)​. In this database, the essentiality data for 

humans was compiled using 18 experiments across various cell lines that include RNAi based 

inhibition, CRISPR, and CRISPR-CAS9 systems. To calculate the predictive power of the 

model, predicted essential genes were compared with experimentally observed essential and 

conditionally essential genes reported in the OGEE database. Essential and conditionally 

essential genes were merged together. Additional validations of models using CD4+ T 

cell-specific essential genes can be found in ​Supplementary Methods 3​.  

Mapping drug targets  

The developed models were used to predict potential drug targets for autoimmune diseases in 

which effector subtypes have been found hyperactive ​(Hoyer et al., 2009; Ivanova and Orekhov, 

2015)​. Therefore, a reasonable drug target should downregulate effector CD4+ T cells. Among 

the metabolic genes of selected models, we first identified targets of existing drugs. The drugs 

and their annotations including target genes were imported from The Drug Repurposing Hub 

(Corsello et al., 2017)​ in the ConnectivityMap (CMap) database ​(Subramanian et al., 2017)​. All 

withdrawn drugs and their annotations were first removed. In this list, the gene symbols of target 

genes of drugs were converted to Entrez IDs. Next, we searched Entrez IDs from CMap data in 

the genes of metabolic models. For each mapped gene in the model, the drugs were listed.  

Metabolic genes differentially expressed in autoimmune diseases 

The lack of reliable data from specific CD4+ T cell subtypes involved in autoimmune disease 

conditions led us to utilize patients’ data (case-control studies) available for autoimmune 

diseases that were collected from peripheral CD4+ T cells. Datasets GSE56649 ​(Ye et al., 

2015)​ (rheumatoid arthritis), GSE43591 ​(Jernås et al., 2013)​ (multiple sclerosis), and 

GSE93170 ​(Nakagawa et al., 2017)​ (primary biliary cholangitis) were obtained from the GEO 

20 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2020. ; https://doi.org/10.1101/2020.01.02.893164doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?FA8tdM
https://www.zotero.org/google-docs/?siL5mF
https://www.zotero.org/google-docs/?siL5mF
https://www.zotero.org/google-docs/?LAIECu
https://www.zotero.org/google-docs/?16sskb
https://www.zotero.org/google-docs/?zfV963
https://www.zotero.org/google-docs/?zfV963
https://www.zotero.org/google-docs/?heyycu
https://www.zotero.org/google-docs/?mtgh97
https://doi.org/10.1101/2020.01.02.893164
http://creativecommons.org/licenses/by-nd/4.0/


database. Raw data files were processed using the ​affy ​and ​limma ​packages ​(Gautier et al., 

2004; Ritchie et al., 2015)​ in Bioconductor/R. The ​limma ​package was used to identify DEGs 

between patients and healthy controls. For significant differential expression, selective cutoffs of 

fold-changes were used with adjusted P-values < 0.05. For differentially expressed genes, we 

used a two-fold cutoff. A cutoff of 1.5 fold was used for datasets where two-fold resulted in a 

very low number to zero differentially expressed metabolic genes.  

Perturbation of metabolism and perturbation effect score (PES)  

In metabolic models, the knockout of genes that are targets of existing drugs was performed in 

the COBRA toolbox using MoMA ​(Segrè et al., 2002)​. For each knockout, we investigated the 

change in fluxes regulated by DEGs in diseases. The change in fluxes was computed using flux 

ratios of perturbed flux/WT flux, and all fluxes that are affected by each perturbation were 

calculated. We counted fluxes regulated by upregulated genes that are decreased or increased 

after perturbation (UpDec and UpInc) as well as fluxes regulated by downregulated genes that 

are decreased or increased after perturbation (DownDec and DownInc). The total number of 

fluxes for each perturbation also include upregulated genes that were unchanged after 

perturbation (UpUnc) as well as downregulated genes that were unchanged after perturbation 

(DownUnc) (see also ​Supplementary Methods 7​). For each perturbed gene, a perturbation 

effect score (PES) was calculated as: 

ES P =  (UpDec −UpInc)
(UpDec+UpInc+UpUnc) +  (DownInc −DownDec)

(DownInc+DownDec+DownUnc)    

Next, for each disease and model combination, the ranks of PES were computed. The gene 

with the highest PES obtained the top rank and the one with the minimum PES obtained the 

lowest rank. For each disease, we prioritized drug targets by utilizing their ranks across all 

models. The PES ranks in each model were first transformed into Z-score as: 
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core Z − s =  σ
(x − μ)  

where ​x​ is a PES rank, ​μ ​is the mean of PES ranks in a model for one disease, σ is the standard 

deviation of PES ranks obtained by a model for one disease. For each disease type and each 

gene, Z-scores across four models were summed up to calculate an aggregated Z-score. 

Genes were ranked based on minimum to maximum aggregate Z-scores.  

Pathway enrichment analysis 

For biological processes enrichment analysis, we used DAVID V6.8 ​(Huang et al., 2009)​, and 

STRING database ​(Szklarczyk et al., 2017)​ together with Gene Ontology biological processes 

(The Gene Ontology Consortium, 2019)​, KEGG pathways ​(Kanehisa et al., 2016)​, and 

Reactome pathways ​(Fabregat et al., 2018)​. A cutoff of 5% ​(Boyle et al., 2004; Reimand et al., 

2019)​ False Discovery Rate (FDR) was used for significant enrichment. 
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Tables 
 

Table 1: Metabolic models of CD4+ T cells 

 Naïve Th1 Th2 Th17 

Genes 1055 1133 1127 1250 

Reactions 5179 3956 5252 5282 

Internal reactions 
(Enzyme catalyzed) 

2501 1969 2549 2640 

Metabolites 3153 2517 3156 3263 

 

Table 2: Identified CD4+ T cell drug targets for RA, MS, and PBC 

 
Disease Entrez ID Gene 

Symbol 
Gene description Aggregate 

Z-score 
Literature evidences relevant to CD4+ T cells and 
autoimmune diseases 

ChEMBL ​(Gaulton et
al., 2017)​IDs* 
 

29 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2020. ; https://doi.org/10.1101/2020.01.02.893164doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?lQF0Of
https://www.zotero.org/google-docs/?lQF0Of
https://doi.org/10.1101/2020.01.02.893164
http://creativecommons.org/licenses/by-nd/4.0/


RA 4047 LSS Lanosterol synthase -3.35 Inhibition of lanosterol synthase (LSS) might decrease 
the endogenous cholesterol that may lead to impact cell 
division ​(Herring et al., 2007)​. 

CHEMBL3593 

18 ABAT 4-aminobutyrate 
aminotransferase 

-3.20 GABA downregulate inflammatory response in a mouse 
model of RA ​(Tian et al., 2011)​; Inhibition of ABAT 
might increase GABA ​(Soria-Castro et al., 2019)​. 

CHEMBL2044 

10135 NAMPT Nicotinamide 
phosphoribosyltransferase 

-3.11 Nampt inhibition reduces demyelination and disability in 
EAE ​(Bruzzone et al., 2009)​), Lack of NAMPT 
expression affect T cell development ​(Rongvaux et al., 
2008)​. 

CHEMBL1744525 

2224 FDPS Farnesyl pyrophosphate 
synthase 

-2.98 Inhibition of FDPS inhibit T cell cytokine production 
(Marks et al., 2007)​. 

CHEMBL1782 

6713 SQLE Squalene monooxygenase -2.96 Increased Membrane Cholesterol in T cells leads to 
inflammatory response  ​(Surls et al., 2012)​. 

CHEMBL3592 

2222 FDFT1 Farnesyl-diphosphate 
farnesyltransferase 

-2.66  No support CHEMBL3338 

2053 EPHX2 Bifunctional epoxide 
hydrolase 2 

-2.44 Inhibition of EPHX2 pre clinically evaluated as drug 
target for IBD ​(Reisdorf et al., 2019)​. 

CHEMBL2409 

4967 OGDH 2-oxoglutarate 
dehydrogenase 

-2.30  No support CHEMBL2816 

847 CAT Catalase -2.22 Protect T cells against oxidative stress ​(Ando et al., 
2008)​. 

CHEMBL3627594 

1431 CS Citrate synthase -2.17 Inhibition of citrate synthase leads to reduction in citrate 
leading to reduced proliferation ​(MacPherson et al., 
2017)​. 

DB02637 

5162 PDHB Pyruvate dehydrogenase E1 
component subunit beta 

-2.04  No support DB00119 

1312 COMT Catechol 
O-methyltransferase 

-1.80 No support CHEMBL2023 

26275 HIBCH 3-hydroxyisobutyryl-CoA 
hydrolase 

-1.73  No support CHEMBL3817723 

6648 SOD2 Superoxide dismutase [Mn], 
mitochondrial 

-1.32 Loss of SOD2 increased superoxide, and defective T 
cell development ​(Case et al., 2011)​. 

CHEMBL4105776 

1723 DHODH Dihydroorotate 
dehydrogenase 

-1.26 Explored as a potential drug target for RA ​(Breedveld 
and Dayer, 2000)​ and MS ​(Palmer, 2010)​. 

CHEMBL1966 

2548 GAA alpha-glucosidase -1.06  No support CHEMBL2608 
38 ACAT1 Acetyl-CoA 

acetyltransferase, 
mitochondrial 

-1.01 Target of Sulfasalazine that is anti inflammatory 
indicated for treatment of ulcerative colitis and 
rheumatoid arthritis ​(Wishart et al., 2018)​. 

CHEMBL2616 

MS 1376 CPT2 Carnitine 
O-palmitoyltransferase 2 

-3.09 No support CHEMBL3238 

847 CAT Catalase -3.08 Protect T cells against oxidative stress ​(Ando et al., 
2008)​. 

CHEMBL3627594 

498 ATP5F1A ATP synthase subunit alpha -3.04 No support CHEMBL2062351 
506 ATP5F1B ATP synthase subunit beta -2.88 No support CHEMBL2062350 
509 ATP5F1C ATP synthase F1 subunit 

gamma 
-2.71 No support DB04216 

4953 ODC1 Ornithine decarboxylase -2.67  No support CHEMBL1869 
471 ATIC MP cyclohydrolase  -2.66  No support CHEMBL3430882 
513 ATP5F1D ATP synthase subunit delta -2.55  No support DB00228 
515 ATP5PB ATP synthase F(0) complex 

subunit B1 
-2.39  No support BTB06584 (cMap) 

128 ADH5 Alcohol dehydrogenase 
class-3 

-2.19  No support CHEMBL4116 

1806 DPYD Dihydropyrimidine 
dehydrogenase 

-1.83  No support CHEMBL3172 

3418 IDH2 Isocitrate dehydrogenase -1.61 knockdown of IDHl or IDH2 reduces IL-17 producing 
cells (Patent WO2017123808A1) ​(Xu and Ding, 2017)​. 

CHEMBL3991501 

2936 GSR Glutathione reductase -1.59 Inhibition of GSH de novo synthesis reduce the 
pathological progression of EAE ​(Lian et al., 2018)​. 

DB0262 

3156 HMGCR 3-hydroxy-3-methylglutaryl-c
oenzyme A reductase 

-1.58 Potential target for autoimmune diseases ​(Arefieva et 
al., 2018)​. 

CHEMBL402 
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2222 FDFT1 Farnesyl-diphosphate 
farnesyltransferase 

-1.55  No support CHEMBL3338 

1719 DHFR Dihydrofolate reductase -1.52 Low dose Methotrexate (inhibitor of DHFR) found 
effective for MS, RA, and Crohn's disease ​(Ashtari and 
Savoj, 2011)​. 

CHEMBL202 

5315 PKM Pyruvate kinase -1.51 Potential target to regulate inflammation ​(Alves-Filho 
and Pålsson-McDermott, 2016)​. 

CHEMBL1075189 

2618 GART phosphoribosylglycinamide 
formyltransferase 

-1.46  No support CHEMBL3972 

18 ABAT 4-aminobutyrate 
aminotransferase 

-1.41 GABA downregulate inflammatory response in mouse 
model of RA ​(Tian et al., 2011)​; Inhibition of ABAT 
might increase GABA ​(Soria-Castro et al., 2019)​. 

CHEMBL2044 

4047 LSS Lanosterol synthase -1.28 Inhibition of lanosterol synthase (LSS) might decrease 
the endogenous cholesterol that may lead to impact cell 
division ​(Herring et al., 2007)​. 

CHEMBL3593 

2194 FASN Fatty acid synthase -1.16 Fatty acid synthase linked to pathogenicity of Th17 cells
(Young et al., 2017)​ . 

CHEMBL4106134 

5471 PPAT phosphoribosyl 
pyrophosphate 
amidotransferase 

-1.15 Knock down of CAD and PPAT promotes regulatory 
CD4+ T cells ​(Metzler et al., 2016)​. 

CHEMBL2362992 

4860 PNP Purine nucleoside 
phosphorylase 

-1.12 inhibition leads to T cell suppression ​(Bantia and 
Kilpatrick, 2004)​. 

CHEMBL4338 

1431 CS Citrate synthase -1.11 Increased Citrate in MS patients ​(Mathur et al., 2014)​. DB02637 
293 SLC25A6 ADP/ATP translocase 3 -1.11 No support CHEMBL4105854 
790 CAD carbamoyl-phosphate 

synthetase 2 
-1.03 Knock down of CAD and PPAT promotes regulatory 

CD4+ T cells ​(Metzler et al., 2016)​. 
CHEMBL3093 

6713 SQLE Squalene monooxygenase -1.00 Increased Membrane Cholesterol in T cells leads to 
inflammatory response ​(Surls et al., 2012)​. 

CHEMBL3592 

PBC 10135 NAMPT Nicotinamide 
phosphoribosyltransferase 

-6.10 Nampt inhibition reduces demyelination and disability in 
EAE ​(Bruzzone et al., 2009)​, Lack of NAMPT 
expression affect T cell development ​(Rongvaux et al., 
2008)​. 

CHEMBL1744525 

3704 ITPA Inosine triphosphate 
pyrophosphatase 

-5.31  No support CHEMBL4105788 

132 ADK Adenosine kinase -4.90  No support CHEMBL3589 
2181 ACSL3 Long-chain-fatty-acid--CoA 

ligase 3 
-4.42  No support DB00159 

1890 TYMP Thymidine phosphorylase -4.13  No support CHEMBL3106 
262 AMD1 S-adenosylmethionine 

decarboxylase proenzyme 
-4.04  No support CHEMBL4181 

353 APRT Adenine 
phosphoribosyltransferase 

-3.89  No support CHEMBL4105819 

128 ADH5 Alcohol dehydrogenase 
class-3 

-3.89  No support CHEMBL4116 

1312 COMT Catechol 
O-methyltransferase 

-3.71  No support CHEMBL2023 

2053 EPHX2 Bifunctional epoxide 
hydrolase 2 

-3.64 Inhibition of EPHX2 pre clinically evaluated as drug 
target for IBD ​(Reisdorf et al., 2019)​. 

CHEMBL2409 

26275 HIBCH 3-hydroxyisobutyryl-CoA 
hydrolase 

-3.64  No support CHEMBL3817723 

2194 FASN Fatty acid synthase -3.62 Fatty acid synthase linked to pathogenicity of Th17 cells
(Young et al., 2017)​ . 

CHEMBL4106134 

2720 GLB1 Beta-galactosidase -3.56  No support CHEMBL2522 
114971 PTPMT1 Phosphatidylglycerophospha

tase and protein-tyrosine 
phosphatase 1 

-3.28  No support CHEMBL2052033 

100 ADA Adenosine deaminase -3.15 ADA is a potential target for treatment of inflammatory 
disorders ​(Antonioli et al., 2012)​. 

CHEMBL1910 

2739 GLO1 Lactoylglutathione lyase -3.10  No support CHEMBL2424 
2539 G6PD Glucose-6-phosphate 

1-dehydrogenase 
-3.06  No support CHEMBL5347 

3251 HPRT1 Hypoxanthine-guanine 
phosphoribosyltransferase 

-2.97  No support CHEMBL3243916 
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2548 GAA  alpha-glucosidase -2.96  No support CHEMBL2608 
6515 SLC2A3 Solute carrier family 2, 

facilitated glucose 
transporter member 3 

-2.51 Glut3 expressed in differentiated cells and resting 
equals to glut1 ​(Macintyre et al., 2014)​. 

CHEMBL5215 

4363 ABCC1 Multidrug 
resistance-associated protein
1 

-2.31  No support CHEMBL3004 

7296 TXNRD1 Thioredoxin reductase 1 -1.99 essential for DNA synthesis during T-cell metabolic 
reprogramming and proliferation ​(Muri et al., 2018)​. 

CHEMBL1927 

6647 SOD1 Superoxide dismutase -1.67  No support CHEMBL2354 
47 ACLY ATP-citrate synthase -1.57 Inactivation of ACLY reduces IL-2-promoted CD4+ 

T-cell growth ​(Osinalde et al., 2016)​. 
CHEMBL3720 

 

*In cases where ChEMBL ids were not available DrugBank ​(Wishart et al., 2018)​ ids of molecules or 
name of molecule provided as given in repurposing tool of cMap database. 

 
Table 3: Drugs and compounds for identified drug targets 
 

Gene Symbol Gene description Drugs/ compound* Status of drugs/Compounds* 

LSS Lanosterol synthase R0-48-8071 Preclinical 

ABAT 4-aminobutyrate aminotransferase Vigabatrin, Phenelzine, valproic acid launched 

NAMPT Nicotinamide phosphoribosyltransferase FK866  Phase 2 

FDPS Farnesyl pyrophosphate synthase Pamidronic acid, Zoledronic acid, Alendronic 
acid, Ibandronate, Risedronic acid  

 Launched 

SQLE Squalene monooxygenase Ellagic-acid Phase 2 

FDFT1 Farnesyl-diphosphate 
farnesyltransferase 

TAK-475 Investigational 

EPHX2 Bifunctional epoxide hydrolase 2 GSK2256294A  Phase 1 

OGDH 2-oxoglutarate dehydrogenase Valproic acid   Launched 

CAT Catalase Fomepizole  Launched 

CS Citrate synthase Oxaloacetate  Phase 2/ Phase 3 

PDHB Pyruvate dehydrogenase E1 component 
subunit beta 

2-oxopropanoate Preclinical 

COMT Catechol O-methyltransferase Entacapone, Nitecapone, Opicapone Launched, Phase 2, phase 3 

HIBCH 3-hydroxyisobutyryl-CoA hydrolase Quercetin Launched 

SOD2 Superoxide dismutase [Mn], 
mitochondrial 

Tetraethylenepentamine Phase 2/ Phase 3 

DHODH Dihydroorotate dehydrogenase Atovaquone, Leflunomide, Teriflunomide, 
Brequinar 

Launched 

GAA alpha-glucosidase Miglitol, Acarbose Launched 

ACAT1 Acetyl-CoA acetyltransferase, 
mitochondrial 

Sulfasalazine Launched 

CPT2 Carnitine O-palmitoyltransferase 2 Perhexiline Launched 

ATP5F1A ATP synthase subunit alpha Quercetin Launched,  

ATP5F1B ATP synthase subunit beta Quercetin Launched 

ATP5F1C ATP synthase F1 subunit gamma Quercetin Launched 

ODC1 Ornithine decarboxylase MC-1, Putrescine Phase 3, Phase 2 

ATIC MP cyclohydrolase  Pemetrexed Launched 
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ATP5F1D ATP synthase subunit delta Sevoflurane, Enflurane, Methoxyflurane Launched 

ATP5PB ATP synthase F(0) complex subunit B1 BTB06584 Preclinical 

ADH5 Alcohol dehydrogenase class-3 N6022 Phase 1/Phase 2 

DPYD Dihydropyrimidine dehydrogenase 5-fluorouracil, Gimeraci Launched 

IDH2 Isocitrate dehydrogenase AGI-6780 Preclinical 

GSR Glutathione reductase Carmustine Launched 

HMGCR 3-hydroxy-3-methylglutaryl-coenzyme A 
reductase 

Atorvastatin, Fluvastatin, Lovastatin, Meglutol, 
Pitavastatin, Pravastatin, Rosuvastatin, 
Simvastatin, Nadide 

Launched 

DHFR Dihydrofolate reductase Aminopterin, Chlorproguanil, Methotrexate, 
Pralatrexate, Proguanil, Pyrimethamine, 
Sulfameter, Trimethoprim, Pemetrexed 

Launched 

PKM Pyruvate kinase TEPP-46, 2-oxopropanoate Preclinical 

GART phosphoribosylglycinamide 
formyltransferase 

Pemetrexed Launched 

FASN Fatty acid synthase Pyrazinamide, Cerulenin Launched 

PPAT phosphoribosyl pyrophosphate 
amidotransferase 

Azathioprine, Mercaptopurine Launched 

PNP Purine nucleoside phosphorylase Acyclovir, Didanosine Launched 

SLC25A6 ADP/ATP translocase 3 Clodronic-acid Launched 

CAD carbamoyl-phosphate synthetase 2 Sparfosate Phase 3 

ITPA Inosine triphosphate pyrophosphatase Citric-acid Preclinical 

ADK Adenosine kinase ABT-702 Preclinical 

ACSL3 Long-chain-fatty-acid--CoA ligase 3 Icosapent Launched 

TYMP Thymidine phosphorylase Tipiracil Launched 

AMD1 S-adenosylmethionine decarboxylase 
proenzyme 

Ademetionine, Putrescine Launched, Phase 2 

APRT Adenine phosphoribosyltransferase Citric-acid Preclinical 

GLB1 Beta-galactosidase Fagomine Phase 2 

PTPMT1 Phosphatidylglycerophosphatase and 
  protein-tyrosine phosphatase 1 

Alexidine Preclinical 

ADA Adenosine deaminase Cladribine, Pentostatin, Dipyridamole, 
  Fludarabine 

Launched 

GLO1 Lactoylglutathione lyase Indomethacin Launched 

G6PD Glucose-6-phosphate 1-dehydrogenase RRx-001 Phase 2 

HPRT1 Hypoxanthine-guanine 
phosphoribosyltransferase 

Azathioprine, Mercaptopurine Launched 

SLC2A3 Solute carrier family 2, facilitated glucose 
  transporter member 3 

2-deoxyglucose Phase 2 

ABCC1 Multidrug resistance-associated protein 1 Reversan, Ko143 Preclinical 

TXNRD1 Thioredoxin reductase 1 Fotemustine Launched 

SOD1 Superoxide dismutase Tetraethylenepentamine Phase 2/Phase 3 

ACLY ATP-citrate synthase ETC-1002 Phase 3 
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* Data obtained from  repurposing tool ​(Corsello et al., 2017)​ of cMap database and DrugBank ​(Wishart et 
al., 2018)​. 

 

Figures and Figure Legends 
 

Fig. 1 

 

 

 

Fig. 1. Integrative approach for the identification of potential metabolic drug targets 

The computational approach comprised of five major steps: (1) Construction of metabolic 

models using integrated transcriptomics and proteomics data, (2) Identification of metabolic 

34 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2020. ; https://doi.org/10.1101/2020.01.02.893164doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?Q838hY
https://www.zotero.org/google-docs/?GwbRRn
https://www.zotero.org/google-docs/?GwbRRn
https://doi.org/10.1101/2020.01.02.893164
http://creativecommons.org/licenses/by-nd/4.0/


genes that are targets for existing drugs/compounds, (3) ​In silico​ inhibition of targets of existing 

drugs to identify affected reactions, (4) Identification of integrating differentially expressed genes 

(DEGs) in autoimmune diseases and integration with flux ratios obtained by perturbed and WT 

flux comparisons, and (5) Validation with literature and prediction of new targets. 

Fig. 2 

 

Fig 2. Construction of metabolic models in CD4+ T cells 

(a) Active metabolic genes identified using transcriptomics and proteomics data of CD4+ T cell 

subtypes. (b) KEGG pathway enrichment analysis of active genes in each cell type using all 
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1,892 metabolic genes as a background. (c) Fold enrichment of KEGG pathways enriched 

across CD4+ T cell subtypes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 
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Fig 3. Flux maps of metabolic pathways active in CD4+ T cell metabolic models 

Escher maps showing fluxes through glycolysis, glucose to lactate conversion, TCA cycle, 

glutaminolysis in naïve (a), Th1 (b), Th2 (c), and Th17 (d) models. All the models convert 

pyruvate to lactate (aerobic glycolysis). In glycolysis, naïve model had the reverse direction flux 
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through PGI reaction while effector cells have forward direction flux. All the models uptake 

glutamine that ultimately forms α-Ketoglutaric acid (glutaminolysis). GLNtm (glutamine 

transporter) and GLUNm (convert glutamine to glutamate) reactions are active in naïve model 

and not in effector CD4+ T cell models that use different routes for glutamine to glutamate 

conversion.  

 

Fig. 4 

 

Fig. 4: Validation of metabolic models 

(a) Summary of active pathways in the CD4+ T cell subtypes that are in agreement of literature. 

The activity of pathways in a model was determined by ​Flux Balance Analysis​. The pathways 
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shown in the box are active in CD4+ T cell subtypes models, and blue color is used to indicate 

the specific CD4+ T cell subtype. For example, the glycolysis pathway is active in all five T cell 

models. (b, c, and d) The dependency of growth rate (in all models) on glucose (b), glutamine 

(c), and on both glucose and glutamine (d).  

 

Fig. 5 

 

Fig. 5: Drug targets in CD4+ T cell models 

(a) Distribution of metabolic drug target genes, and inhibitory drugs or compounds in each 

model. (b) Number of metabolic genes in the models mapped with inhibitory drugs (blue bars) 

and number of genes among drugs mapped genes that can block at least one reaction upon 
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inhibition (red bars). (c) Comparison of metabolic drug targets that affect reactions upon deletion 

in CD4+ T cell models.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 
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Fig. 6: Identification of potential drug targets for RA, MS, and PBC 

(a) Number of all differentially expressed genes (DEGs) and metabolic DEGs in three diseases 

rheumatoid arthritis (RA), multiple sclerosis (MS), and primary biliary cholangitis (PBC). The 

DEGs were analyzed using three transcriptomics datasets (one dataset per disease). The data 

were obtained from peripheral CD4+ T cells of groups of patients and healthy individuals. (b) 
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Schematic representation of the integration of disease-associated differentially expressed genes 

and affected reaction on each drug target gene perturbation. For each drug target deletion, we 

investigated how many of fluxes regulated by upregulated genes are decreased and fluxes 

regulated by downregulated by increased. We used these numbers to calculate PES 

(perturbation effect score, ​see STAR Methods​).  
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