

1 **SMRT sequencing yields the chromosome-scale**
2 **reference genome of tea tree, *Camellia sinensis***
3 **var. *sinensis***

4

5 Qun-Jie Zhang^{1*}, Wei Li^{1*}, Kui Li^{2,3*}, Hong Nan^{4,5*}, Cong Shi^{4,5*}, Yun Zhang⁴, Zhang-
6 Yan Dai⁶, Yang-Lei Lin^{4,5}, Xiao-Lan Yang^{4,5}, Yan Tong⁴, Dan Zhang¹, Cui Lu¹, Chen-
7 feng Wang¹, Xiao-xin Liu¹, Wen-Kai Jiang², Xing-Hua Wang⁷, Xing-Cai Zhang⁸,
8 Zhong-Hua Liu⁹, Evan E. Eichler¹⁰, and Li-Zhi Gao^{1,4#}

9

10 1. Institution of Genomics and Bioinformatics, South China Agricultural University,
11 Guangzhou 510642, China
12 2. Novogene Bioinformatics Institute, Building 301, Zone A10 Jiuxianqiao North
13 Road, Chaoyang District, Beijing 100083, China
14 3. School of Life Sciences, Nanjing University, Nanjing 210023, China
15 4. Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese
16 Academy of Sciences, Kunming 650204, China
17 5. University of the Chinese Academy of Sciences, Beijing 100039, China
18 6. Agro-biological Gene Research Center, Guangdong Academy of Agricultural
19 Sciences, Guangzhou, 510640, China
20 7. Yunnan Pu'er Tea Tree Breeding Station, No. 212, Zhenxing Avenue, Simao
21 District, Pu Er 665099, Yunnan, China
22 8. John A. Paulson School of Engineering and Applied Sciences, Harvard University,
23 Cambridge, MA 02138, USA
24 9. Hunan Agricultural University, Changsha 410128, China
25 10. Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195,
26 USA

27

28 *** Authors who have made equal contributions**

29 **# Corresponding Author:** Li-Zhi Gao Tel/Fax: +86-871-65223277; E-mail:
30 Lgaogenomics@163.com

31 **Abstract**

32 Tea is the oldest and most popular nonalcoholic beverage consumed in the world. It
33 provides abundant secondary metabolites that account for its diverse flavors and health
34 benefits. Here we present the first high-quality chromosome-length reference genome
35 of *C. sinensis* var. *sinensis* using long read single-molecule real time (SMRT)
36 sequencing and Hi-C technologies to anchor the ~2.85-Gb genome assembly into 15
37 pseudo-chromosomes with a scaffold N50 length of ~195.68 Mb. We annotated at least
38 2.17 Gb (~74.13%) of repetitive sequences and high-confidence prediction of 40,812
39 protein-coding genes in the ~2.92-Gb genome assembly. This accurately assembled
40 genome allows us to comprehensively annotate functionally important gene families
41 such as those involved in the biosynthesis of catechins, theanine and caffeine. The
42 contiguous genome assembly provides the first view of the repetitive landscape
43 allowing us to accurately characterize retrotransposon diversity. The large tea tree
44 genome is dominated by a handful of Ty3-gypsy long terminal repeat (LTR)
45 retrotransposon families that recently expanded to high copy numbers. We uncover the
46 latest bursts of numerous non-autonomous LTR retrotransposons that may interfere
47 with the propagation of autonomous retroelements. This reference genome sequence
48 will largely facilitate the improvement of agronomically important traits relevant to the
49 tea quality and production.

50

51 **Key words:** Comparative genomics; genome evolution; LTR retrotransposon; tea
52 flavors; tea tree.

53

54 Introduction

55 Tea is the oldest (since 3000 BC) and most popular nonalcoholic beverage in the world.
56 It is one of the most economically important crops grown in China, India, Sri Lanka,
57 and Kenya with approximately 3.0 million metric tons of dried tea produced annually
58 (Chen et al., 2007; Soni et al., 2015). Besides a wealth of health benefits, it has also
59 long affected the culture, health, medicine, and trade around Asia, and even the world
60 (Banerjee, 1992; Liu et al., 2019; Mondal et al., 2004). The tea tree *Camellia sinensis*
61 L. O. Kuntze, a member of the genus *Camellia* in the Theaceae family, is the source of
62 commercially grown tea for nearly 5,000 years, (Taniguchi et al., 2014; Wheeler and
63 Wheeler, 2004). Besides other wild species of the section *Thea* cultivated in small
64 quantities, such as *C. taliensis*, *C. grandibracteata*, *C. sinensis* var. *dehungensis*, *C.*
65 *sinensis* var. *pubilimba* and *C. ptilophylla*, the most widely grown tea tree (*C. sinensis*)
66 includes the two major varieties: *C. sinensis* var. *sinensis* (CSS; Chinese type) and *C.*
67 *sinensis* var. *assamica* (CSA; Assam type) (Ming and Bartholomew, 2007). CSS is a
68 slow-growing shrub with small leaves and can tolerate cold climates, making it
69 adaptable to a broad geographic range, and has become the most popular elite tea tree
70 cultivar in China (~67%) (Willson and Clifford, 2012). CSA is quick-growing with large
71 leaves and mainly cultivated in tropical and subtropical regions, due to high sensitivity
72 to cold weather, such as Yunnan Province in China and India (Willson and Clifford,
73 2012).

74 The health-promoting functions of tea are attributable to the presence of bioactive
75 compounds with strong antioxidant properties (Liu et al., 2019). Among a large number
76 of metabolites, the most characteristic are catechins (a subgroup of flavan-3-ols),
77 theanine (γ -glutamylethylamide) and caffeine. Catechins mainly confer an astringent
78 taste to tea, theanine contributes to the umami and sweet tastes of tea infusions, while
79 caffeine offers a bitter taste (Narukawa et al., 2008). The ratio of phenol to ammonia
80 usually forms a basis for the choice of tea processing procedures. CSA is usually
81 processed into black tea for its high content of catechins, and catechins are polymerized

82 to theaflavins and thearubigins by a “fermentation” that leads to oxidation of the
83 catechins, while *CSS* can be processed into green tea, which retain the astringency and
84 the antioxidant activity of catechins (Li et al., 2013).

85 Considering the tremendously economic importance of the tea tree, there have
86 been constant efforts to explore the genetic basis of the biosynthesis of natural
87 metabolites that determine health benefits as well as the formation of diverse tea flavors
88 (Li et al., 2015; Liu et al., 2019; Shi et al., 2011; Xia et al., 2017). Modern
89 improvements to biotic resistance and abiotic tolerance in the tea tree-breeding
90 programs are necessary not only for tea quality and yields but also for the consumer
91 safety on tea from harmful organisms and pesticide residues. The progress in tea tree
92 genomics is an essential solution, which largely relies on the completion of a high-
93 quality reference genome sequence. We released the first draft genome sequence of *C.*
94 *sinensis* var. *assamica* cv. *Yunkang-10* (CSA-YK10) using whole-genome shotgun
95 Illumina sequencing technology, providing the first insights into the genomic basis of
96 tea flavors and global adaptation (Xia et al., 2017). The second tea tree draft genome
97 was followed by sequencing *C. sinensis* var. *sinensis* cv. *Shuchazao* (CSS-SCZ) using
98 the same sequencing platform and then filling gaps with PacBio long reads (Wei et al.,
99 2018). However, obtaining a high-quality tea tree genome assembly remains a great
100 challenge, because short Illumina reads and even hybrid assembly strategies have
101 always been problematic to *de novo* assemble any complex plant genome having highly
102 heterozygous and repetitive DNA sequences. As one of the longest transposable
103 elements (TEs), long terminal repeat (LTR) retrotransposons are insoluble for short
104 Illumina reads. However, the abundance makes them serve as an important driver of
105 the genome size variation in flowering plants (Piegu et al., 2006; Vitte and Panaud,
106 2005). LTR retrotransposons in the tea tree genome, for example, represent the majority
107 (~67.21%) of the CSA-YK10 genome assembly (Xia et al., 2017).

108 Here, we present a highly contiguous tea tree genome assembly of an elite tea tree
109 cultivar, *C. sinensis* var. *sinensis* cv. *Biyun* (CSS-BY), based on long-read single-
110 molecule real-time sequencing (SMRT) and Hi-C technologies. We obtain accurate

111 genomic information for almost all gene families, such as those involved in the
112 biosynthesis of flavonoids, theanine and caffeine that contribute to tea flavors and
113 health benefits, providing novel insights into the evolution of non-autonomous long
114 terminal repeat (LTR) retrotransposons that affect the increasing of the large genome
115 size.

116

117 **Results and Discussion**

118 *De novo* sequencing and assembling the highly heterozygous tea tree genome have long
119 been challenging as a result of its self-incompatible nature (Xia et al., 2017). We
120 employed the Illumina short-read technology with paired-end libraries on the HiSeq X
121 Ten sequencing platform to screen 12 representative tea tree cultivars. This generated
122 raw sequence data sets of 1,679.6 Gb, thus yielding approximately 508.76-fold high-
123 quality sequence coverage for all varieties (**Supplementary Table 1**). We thus selected
124 the commercial variety (*CSS-BY*) for long-read genome sequencing due to its relatively
125 low heterozygosity (1.22%). We estimated that the genome size of *CSS-BY* is 3.25 Gb
126 using 17-mer analysis (**Supplementary Figure 1**; **Supplementary Table 1**). We
127 performed a whole-genome shotgun sequencing (WGS) analysis with the PacBio
128 SMRT sequencing platform. This generated clean sequence data sets of 417.95 Gb with
129 an average read length of 11.9 Kb and yielded approximately 127.66-fold coverage
130 (**Supplementary Table 2**). Then, ~282.94 Gb high-quality next-generation sequencing
131 (NGS) data with 86.42-fold genome coverage using the Illumina HiSeq X Ten platform
132 were employed to polish the assembled genome (**Supplementary Table 1**). A total of
133 909,454,810 Hi-C reads (**Supplementary Table 3**) were used to connect pseudo-
134 chromosomes by using LACHESIS (Burton et al., 2013) and JUICEBOX (Durand et
135 al., 2016; Robinson et al., 2018). This final assembly of the tea tree genome was
136 ~2.92 Gb, accounting for ~89.85% of the estimated genome size; ~2.85-Gb of the
137 genome assembly (~97.88%) was anchored into 15 pseudo-chromosomes (**Figure 1**;
138 **Table 1**; **Supplementary Figure 2**; **Supplementary Tables 4-6**). The assembly

139 comprised 13,006 contigs with a contig N50 length of 625.11 Kb, ~9.32 times longer
140 than the previously reported genome assembly of *C. sinensis* var. *sinensis* cv.
141 *Shuchazao* (CSS-SCZ) (~67.07 Kb) that was assembled by Illumina reads and then
142 filled gaps with PacBio single-molecule long reads (Wei et al., 2018) and 31.32 times
143 longer than *C. sinensis* var. *assamica* cv. *Yunkang-10* (CSA-YK10) (19.96 Kb) that was
144 assembled by Illumina reads only (Xia et al., 2017) (**Table 1**). The assembly was
145 comprised of 4,153 scaffolds with a scaffold N50 length of 195.68 Mb, ~140.78 times
146 longer than the previously reported genome assembly of *C. sinensis* var. *sinensis* cv.
147 *Shuchazao* (CSS-SCZ) (~1.39 Mb), which was assembled by Illumina reads and then
148 gaps filled with PacBio SMRT long reads (Wei et al., 2018) (**Table 1**). The lengths of
149 15 chromosomes of the CSS-BY genome ranged from ~253 Mbp (Chr01) to ~128 Mbp
150 (Chr15) with an average size of ~190 Mbp (**Figure 1**; **Supplementary Table 6**). Our
151 results showed that 98.22% of NGS reads could be unambiguously represented with an
152 expected insert size distribution spanning 98.44% of the assembled genome, indicating
153 a high confidence of genome scaffolding (**Supplementary Table 7**). We further applied
154 CEGMA (Core Eukaryotic Gene Mapping Approach) (Parra et al., 2007) to assess the
155 quality of the genome assembly. CEGMA assessment showed that 227 of 248 core
156 eukaryotic genes (91.53%) were completely assembled, and only 9 genes (3.63%) were
157 partially presented (**Supplementary Table 8**). We finally assessed core gene statistics
158 using BUSCO (Benchmarking Universal Single-Copy Orthologs) (Simão et al., 2015)
159 to verify the sensitivity of gene prediction, completeness and propriety of removing
160 redundant sequences of the genome assembly. Our predicted genes resolved 88.13% of
161 complete BUSCOs and only 3.68% of fragmented BUSCOs in the Embryophyta
162 lineage (**Supplementary Table 9**).

163 We annotated approximately 2,164.89 Mb (~74.13%) of repetitive sequences in
164 the CSS-BY genome assembly (**Supplementary Figure 3A; Supplementary Table 10**).
165 The total content of repetitive sequences in the CSS-BY genome is apparently larger
166 than the formerly reported CSS-SCZ genome assembly (~64.77%, 2,008.28 Mb) (Wei
167 et al., 2018), consistent with a more comprehensive *de novo* assembly of genomic

168 regions containing highly repetitive sequences using long PacBio reads
169 (**Supplementary Figure 3A; Supplementary Table 10**). We annotated 32,367 full-
170 length LTR retrotransposons in the *CSS-BY* genome, which are ~2.5 times more
171 abundant than *CSS-SCZ* (13,119) (**Supplementary Figure 3D; Supplementary Table**
172 **11**). All these results together demonstrate that, besides the possibility of genome size
173 variation among tea tree cultivars, high-quality PacBio-only *CSS-BY* genome assembly,
174 has improved the detection of repeat content when compared to the previous NGS-
175 based genome assemblies (*CSA-YK10* and *CSS-SCZ*) (**Supplementary Table 10**).

176 We combined *ab initio* prediction and transcriptome sequence alignments from
177 RNA-seq data for five tissues, including young leaf (YL), tender shoot (TS), flower bud
178 (FB), fruit (FR), and stem (ST) to annotate protein-coding genes (**Supplementary**
179 **Tables 12-13**). Using rigorous filter parameters, we totally predicted 40,812 protein-
180 coding genes (**Table 1**), of which 34,722 (85.08%) genes were supported by
181 transcriptome-based evidence (**Supplementary Table 14**). The average gene length
182 and exon number were 6,263 bp and 5.2 per gene, which are much higher than those in
183 *CSS-SCZ* with 4,053 bp and 3.3 per gene, respectively (**Table 1; Supplementary**
184 **Figure 4**). Of them, 95.64%, 78.39%, 73.17%, 17.98%, 60.12% and 21.62% could be
185 functioned with InterProScan (Jones et al., 2014), SwissProt (Boeckmann et al., 2003),
186 Pfam (Finn et al., 2013), KEGG (Kanehisa and Goto, 2000), GO (Ashburner et al., 2000)
187 and TmHMM (Möller et al., 2001) databases, respectively (**Supplementary Table 14;**
188 **Supplementary Figures 5-6**).

189 The annotation of noncoding RNA (ncRNA) genes yielded 659 transfer RNA
190 (tRNA), 2,845 ribosomal RNA (rRNA), 471 small nucleolar RNA (snoRNA), 207 small
191 nuclear RNA (snRNA) and 139 microRNA (miRNA) genes (**Supplementary Table**
192 **15**). For miRNAs, a total of 2,016 miRNA target sites were predicted using
193 psRNATarget server (**Supplementary URLs**). The annotation using GO and KEGG
194 databases showed that these miRNA target genes were enriched in signaling (GO:
195 0023052), catalytic activity (GO: 0003824) and binding (0005488) (**Supplementary**
196 **Figure 7**), and were enriched in genetic information processing, organismal systems,

197 carbohydrate metabolism and environmental information processing (**Supplementary**
198 **Figure 8**). We annotated 1,673,577 simple sequence repeats (SSRs), which may
199 provide valuable genetic markers to assist future tea tree genetic improvement programs
200 (**Supplementary Table 16; Supplementary Figure 9**).

201 Comparative analyses of the *CSS-BY* and *CSS-SCZ* genome assemblies
202 surprisingly detected only 16,313 collinear genes (21.80% in a total of 74,822 genes)
203 at the scaffold level using MCScanX (Wang et al., 2012) (**Supplementary Table 17**).
204 Such an unbelievably low genome collinearity between the two varieties of *C. sinensis*
205 var. *sinensis* (*CSS-BY* and *CSS-SCZ*) hints that at least one of the two genome
206 assemblies are most likely to be incorrectly assembled. Statistics of assembled contigs
207 revealed remarkably higher genome assembly contiguity of the *CSS-BY* assembly than
208 the *CSS-SCZ* assembly, evidenced by much fewer numbers of contigs with longer sizes
209 (**Table 1; Supplementary Figure 10**). Of note, the *CSS-BY* assembly has the longest
210 contig at ~3.91 Mb, while the longest contig for *CSS-SCZ* is only ~0.54 Mb
211 (**Supplementary Figure 11**). The top 136 longer contigs, accounting for ~10% (~300
212 Mb) of the *CSS-BY* assembly, corresponded to 1,355 contigs in the *CSS-SCZ* assembly
213 (**Supplementary Figure 11**). Assembly quality was further evaluated by comparative
214 genomic analyses of the selected homologous regions between the *CSS-SCZ* and *CSS-*
215 *BY* assemblies (**Supplementary Figure 3B; Supplementary Figure 12**). Using
216 MUMmer 4 (Delcher et al., 2003), we annotated an exemplar contig, ctg7832
217 (Chr01:143191430..146616428) (3,424,999 bp) from our *CSS-BY* genome assembly,
218 which corresponded to 35 contigs with an average length of ~64,705 bp derived from
219 up to 14 scaffolds (21,664,538 bp) in the *CSS-SCZ* assembly (**Supplementary Figure**
220 **3B**). The annotation of this *CSS-BY* contig yielded 21 genes, which linked to 19 genes
221 from 15 contigs of the *CSS-SCZ* assembly (**Supplementary Figure 3B**). We also found
222 ctg7832 to be exceedingly abundant in long, high-quality Ty3-gypsy-like
223 retrotransposons (2,159,435 bp, 63.05%) with a high quality, particularly containing
224 rather young retroelements (e.g., *Tekay*, 20.62%) in the *CSS-BY* assembly
225 (**Supplementary Figure 3C**). Our results suggest that, compared to the fragmented

226 draft *CSS-SCZ* assembly with limitations of low contiguity of contigs and poor
227 assembly scaffolding, the SMRT sequencing and assembly strategy has produced a
228 *CSS-BY* assembly of superior contiguity containing accurate long-range information,
229 such as recently generated long repeat sequences.

230 A major motivation for *de novo* tea tree genome assembly is the identification of
231 accurate information of functionally important gene families involved in the
232 biosynthesis of secondary metabolites, such as catechins, theanine and caffeine. With
233 this high-quality genome assembly of *C. sinensis* var. *sinensis* on hand, as a case study,
234 we annotated all 23 gene families encoding enzymes potentially involved in catalyzing
235 reactions of flavonoid, theanine, and caffeine pathways. Our results showed that,
236 besides the four gene families (*UGT84A*, *GS/TS*, *GOGAT* and *AMPDA*) with the same
237 copy number between *CSS-BY* and *CSS-SCZ*, up to fifteen gene families (*PAL*, *C4H*,
238 *4CL*, *CHI*, *F3H*, *F3'H*, *F3'5'H*, *DFR*, *FLS*, *LCR*, *ANS*, *ADC*, *GDH*, *IMPDH* and *NMT*)
239 had more members in *CSS-BY* than *CSS-SCZ*. Phylogenetic analyses of the annotated
240 genes among three tea tree and kiwifruit genome assemblies strongly support the reality,
241 confirmed by high levels of gene expression for most of novel genes (FPKM ≥ 1)
242 (**Supplementary Tables 19-21; Supplementary Figures 13-16**). However, fewer copy
243 numbers were annotated in *CSS-BY* than *CSS-SCZ* for four gene families (*CHS*, *ANR*,
244 *SCPL1A* and *SAMS*) (**Supplementary Table 18**). Taking *SCPL1A*, for example, we
245 only annotated 10 members in *CSS-BY* but 22 in *CSS-SCZ*. A phylogenetic analysis
246 indicates that some branches in *CSS-SCZ* had more copies than *CSS-BY*, which had low
247 expression levels (FPKM < 1) (Wei et al., 2018) (**Supplementary Figures 13 and 16**;
248 **Supplementary Table 19**). This does not exclude the occurrence of false positives of
249 redundant genes caused by short reads generated from the Illumina sequencing platform
250 for a highly heterozygous tea tree genome. Our results suggest that the long-read *CSS-*
251 *BY* genome assembly has undoubtedly promised a reliable annotation of almost all gene
252 families in tea tree.

253 The long reads generated for the SMRT-based *CSS-BY* genome assembly guarantee
254 to identify almost all transposable elements (TEs), revealing the highly repetitive nature

255 of the tea tree genome (**Figure 1**; **Supplementary Figure 3A**) and providing the
256 opportunity to understand how the abundance of LTR retrotransposons has contributed
257 to its large genome size. Ty3-*gypsy* LTR retrotransposon elements dominate the genome
258 with ~34.11% (~996.15 Mb) of the assembled sequence length, ~7.11-fold larger than
259 Ty1-*copia* LTR retrotransposon families (~140.11 Mb; ~4.80%), and ~2.03-fold larger
260 than non-autonomous LTR retrotransposon families (~490.84 Mb; ~16.81%)
261 (**Supplementary Table 10**; **Supplementary Figure 3A**). The long reads generated for
262 the SMRT-based *CSS-BY* genome assembly guarantee to identify almost all full-length
263 transposable elements, making us the first time to obtain the repetitive evolution history
264 of the genome. To track the evolutionary past of LTR retrotransposons we further
265 classified all full-length LTR retrotransposons into 8,844 families, of which the top 111
266 families with more than 10 copies contained 75% full-length LTR retrotransposons
267 and occupied 36.47% of the genome, 328 comprised 2-9 copies, and 8,405 were single-
268 copy families (**Supplementary Table 22**). A total of 13,172 Ty3-*gypsy* and 4,630 Ty1-
269 *copia* RT sequences were extracted to construct phylogenetic trees (**Figure 2A** and **2B**),
270 yielding 11 lineages, consistent with previous results (Hřibová et al., 2010; Llorens et
271 al., 2009; Vitte et al., 2007; Wicker and Keller, 2007). *Tat* and *Tekay* accounted for the
272 98% of Ty3-*gypsy* full-length LTR retrotransposons, indicating a massive expansion
273 during tea tree genome evolution (**Figure 2B**; **Supplementary Figure 20**), while *Ale*,
274 *TAR*, *GMR*, *Maximus*, *Angela*, and *Ivana* of Ty1-*copia* all retained full-length LTR
275 retrotransposons suggesting that Ty1-*copia* has always experienced a long and slow
276 amplification history (**Figure 2A**; **Supplementary Figure 20**). The repetitive nature of
277 the tea tree genome is determined by a handful of LTR retrotransposon families with
278 extremely high copy numbers, for example, the amplification of *Tat* (~671.13Mb;
279 ~22.98%) and *Tekay* (~303.84 Mb; ~10.41%) of Ty3-*gypsy* has largely contributed to
280 the large tea tree genome size (**Supplementary Figure 3B**). Of them, incessant bursts
281 of the *Tat* lineage predominantly came from eight (*TEL001*, *TEL002*, *TEL003*, *TEL006*,
282 *TEL007*, *TEL008*, *TEL011* and *TEL012*) of the top 12 families resulted in ~50% of full-
283 length LTR retrotransposons that accounted for ~29.63% of this genome assembly
284 (**Supplementary Table 22**). The largest family *TEL001*, for instance, contained 4,062

285 full-length LTR retrotransposons with the longest average length of 18,204 bp,
286 contributing most to the genome size (~18.27%) (**Supplementary Figure 3E and 3B**;
287 **Supplementary Table 22**).

288 The availability of the best *CSS* genome assembly of *CSS-BY* so far permits us to
289 investigate how LTR retrotransposons evolve in the tea tree genome. We combined RT
290 sequences from the two major varieties of tea tree, *CSS-BY* and *CSA-YK10*, by adding
291 4,579 *Ty3-gypsy* and 1,406 *Ty1-copia* RT sequences from *CSA-YK10* (**Supplementary**
292 **Figure 17**). Our results showed that they may have experienced a similar evolutionary
293 history except that considerably large numbers of retrotransposons (e.g., *Tat* and *Tekay*
294 lineages) were detected in the SMRT-based *CSS-BY* genome assembly.

295 The resulting 32,367 full-length LTR retrotransposons account for nearly 18.5% of
296 the assembled sequence length and allow us to further trace the very recent evolutionary
297 history of LTR retrotransposons and evolutionary dynamics of the tea tree genome size
298 (**Supplementary Table 10**; **Supplementary Table 22**). The failure to assemble the
299 recently generated retrotransposons by using Illumina short reads for the *CSS-SCZ*
300 genome assembly is evidenced by the detection of a small portion of full-length LTR
301 retrotransposons inserted within the past 1 Myr (**Supplementary Figures 18-19**). In
302 comparison, the SMRT-based *CSS-BY* genome assembly enables us for the first time to
303 date the fairly recent insertion events of LTR retrotransposons, which are necessary to
304 present a clear dynamic history of retrotransposon bursts in the genome. The expansion
305 of *Ty3-gypsy* retrotransposon families makes the genome currently predominate
306 (**Supplementary Figure 3DE**), such as *Tat* members (~22.98% of the assembled
307 genome) of the *Ty3-gypsy* lineage, which have rapidly amplified during the last 1 Myr,
308 and then rapidly declined in recently (**Supplementary Figures 20-21**). Besides the
309 largest family *TEL001* that increased to a total of 4,062 full-length LTR
310 retrotransposons (~6.2-fold more than those annotated in the Illumina-based *CSS-SCZ*
311 genome assembly) during the last 1 Myr (**Supplementary Figures 3D and 3E; Figure**
312 **3A; Supplementary Table 22**), a small number of other multi-copy families belonging
313 to the *Tat* lineage (e.g., *TEL002*, *TEL003*, *TEL006*, *TEL007*, *TEL008*, *TEL011* and

314 *TEL012*) have also expanded to large quantities that dominate the *CSS-BY* genome. The
315 finding is consistent with the rapid growth of the *TL001* family in *CSA-YK10* (Xia et
316 al., 2017); the top family was further classified into *TEL001*, *TEL002*, *TEL003*, *TEL006*,
317 *TEL007* and *TEL008* according to sequence divergence of LTRs (**Supplementary**
318 **Table 22**). We surprisingly observed that the *Tekay* lineage of *Ty3-gypsy* (e.g., *TEL005*,
319 *TEL021* and *TEL022*) and nonautonomous LTR retrotransposon families (e.g., *TEL004*
320 and *TEL010*) (**Supplementary Figures 20-21; Supplementary Table 22**), accounting
321 for ~10.41% and ~16.81% of the genome, respectively (**Supplementary Figure 3A**),
322 were in turn predominant to recently affect dynamic variation of the genome size
323 (**Supplementary Figure 3E**). The retrotransposon abundance is expectedly governed
324 by recent activities of multi-copy LTR retrotransposon families, but it is of great interest
325 to observe fairly recent insertions from a large number of single-copy LTR
326 retrotransposon families (**Supplementary Figure 22**).

327 The degree to which non-autonomous LTR retrotransposons impede the
328 proliferation of autonomous retroelements has key evolutionary impact on the genome
329 size (Zhang and Gao, 2017). We found a rapid and recent propagation of more than
330 4,000 nonautonomous elements (**Figure 2C**). Of them, some were derived from
331 autonomous *Ty3-gypsy* or *Ty1-copia* families that have slowly lost internal protein-
332 coding genes. However, it is difficult to determine counterpart autonomous families
333 for others. The *TEL001* family was selected as an exemplar to show that partial and/or
334 complete loss of internal protein-coding genes has resulted in a quick increase of
335 incomplete autonomous and/or nonautonomous retroelements that have far exceeded
336 autonomous ancestral elements within the last 1 Myr. Based on structural features of
337 *TEL001*, 4,062 full-length LTR retrotransposons were classified into the four groups
338 (**Figure 3B and 3C; Supplementary Figure 23**). Group 1 contained 451 copies with
339 complete sequences of *gag* and *pol* (PR, RT and IN) genes; Group 2 comprised 352
340 copies with the loss of at least one of the *gag*, PR, RT and IN domains; Group 3 had
341 1,063 copies with only the *gag* domain; and Group 4 included 2,196 nonautonomous
342 copies without any internal *gag* and *pol* genes. Due to the dominance of the

343 nonautonomous elements, the proportion of effective retrotransposition-related source
344 proteins possibly declined dramatically, and insertion rates of the entire *TEL001* family
345 largely decreased most recently (**Figure 3B**). In addition to such nonautonomous
346 elements derived from *Ty3-gypsy* or *Ty1-copia* source families, there were many
347 nonautonomous families, such as *TEL004*, which is a very young family that has
348 undergone a large number of recent insertions(**Supplementary Figure 21**). There were
349 also many low-copy and single-copy nonautonomous families reproduced most
350 recently, together making the recent inserted nonautonomous elements far exceed *Ty3-*
351 *gypsy* or *Ty1-copia* copies (**Figure 2C; Supplementary Figure 22; Supplementary**
352 **Figure 24**). We then assessed levels of gene expression of all types of LTR
353 retrotransposons using Illumina RNA-seq data from the five tissues (**Figure 2D;**
354 **Supplementary Tables 12 and 23**). We detected ~16.70% (~7,586) of all expressed
355 transcripts and ~10.38% of all mapped reads, on average, for five tissues that are
356 associated with LTR retrotransposons (**Supplementary Table 23**). ~63.59% of illumina
357 reads mapped to multi-copy nonautonomous LTR retrotransposons families (e.g.,
358 *TEL004*, ~45.88%; *TEL013* ~7.03%; *TEL019*, ~2.45%) exhibited notably high levels
359 of gene expression than *Ty1-copia* and particularly *Ty3-gypsy* families in multi-copy
360 families (**Figure 2D; Supplementary Table 23**). Proteins (including *gag*, PR, RT and
361 IN domains in *pol*) necessary for the retrotransposition were further annotated using
362 Pfam (Finn et al., 2013). Surprisingly, ~94.23% of the expressed LTR retrotransposon-
363 related transcripts were nothing related to encoding *gag* and *pol* genes and only 5.77%
364 of the retrotransposon-related transcripts mapped to at least one of above-mentioned
365 genes (**Supplementary Table 24**). Our findings thus offer one more case that recently
366 increased non-autonomous LTR retrotransposons with high expression levels may limit
367 the efficiency by reducing the supply of enzymes needed for a successful
368 retrotransposition (Zhang and Gao, 2017).

369 In conclusion, we have first generated a highly contiguous and accurate tea tree
370 genome assembly of *C. sinensis* var. *sinensis* cv. *Biyun* using SMRT technology, which
371 is much more improved compared to the formerly reported genome assembly of *C.*

372 *sinensis* var. *sinensis* cv. *Shuchazao*. This effort has added one more successful example
373 that sequencing the highly repetitive and heterozygous and relatively large tea tree
374 genome may be achieved using high-depth long SMRT reads to resolve ambiguous
375 genomic regions harboring predominantly repetitive sequences. Such a high-quality
376 genome assembly of the tea tree is timely and will therefore be welcome to the broad
377 tea research community, which is essential to enable researchers to accurately obtain
378 functionally significant gene families that not only involve in the biosynthesis of
379 numerous metabolites (e.g., catechins, theanine and caffeine) but also determine
380 agronomically important traits relevant to the improvement of tea quality and
381 production. The exceptionally contiguous and precise genome assembly of the tea tree
382 is powerful to fully identify all types of long LTR retrotransposons and almost entirely
383 characterize the abundance of retrotransposon diversity to resolve the nature of
384 repetitive landscape of such a large genome. The evolutionary history of very recently
385 augmented LTR retrotransposon families, which have not been done ever before, could
386 now be tracked genome-wide by dating bursts of non-autonomous LTR
387 retrotransposons and undertaking their interaction with autonomous LTR
388 retrotransposons, afterwards driving the genome evolution.

389 **Methods**

390 DNA was extracted from a *CSS-BY* individual collected in Yunnan Pu'er Tea Tree
391 Breeding Station, Yunnan, China, for PacBio RSII and Hiseq X Ten sequencing
392 platforms. We performed a PacBio-only assembly using an overlap layout-consensus
393 method implemented in FALCON (version 0.3.0) (Chin et al., 2013). Considering the
394 highly heterozygous nature of the tea tree genome, the pipeline of ‘Purge Haplotigs’
395 (Roach et al., 2018) was used to remove the redundant sequences caused by genomic
396 heterozygosity. SSPACE-LongRead was subsequently employed to build scaffolds
397 (English et al., 2012). The gaps were filled with all Pacbio subreads using PBJelly tool
398 (English et al., 2012). Finally, we used Hi-C data to construct a high-quality
399 chromosome-scale assembly using LACHESIS (Burton et al., 2013) and JUICERBOX

400 (Durand et al., 2016; Robinson et al., 2018).

401 The Maker genome annotation pipeline (Cantarel et al., 2008) and five tissues
402 transcriptome data (young leaf, YL; flower bud, FB; stem, ST; fruit, FR and tender
403 shoot, TS) were used for gene prediction. The expression levels of annotated genes
404 were computed by the pipeline of HISAT2 (V2.1.0) and StringTie (V1.3.5) (Pertea et
405 al., 2016).

406 Five different types of non-coding RNA genes were predicted using various *de*
407 *novo* and homology search methods. RepeatModeler (**Supplementary URLs**) was used
408 to identify and model repeat families and statistic by RepeatMasker (version 4.0.5)
409 (Chen, 2004; Smit et al., 2016) (**Supplementary URLs**). LTR_STRUCT (McCarthy
410 and McDonald, 2003) was applied to identify LTR retrotransposon elements for the
411 construction of *de novo* repeat library. SSRs were identified and located using MISA
412 (**Supplementary URLs**).

413 Homologous genes from different plant species were combined using all *vs* all
414 BLASTP (BLAST+ 2.71) (Altschul et al., 1997; Johnson et al., 2008) and then synteny
415 blocks were identified with MCscanX (Wang et al., 2012). Gene families were clustered
416 with OrthoMCL (Li et al., 2003) .

417

418 **Accession Numbers**

419 Raw PacBio and Illumina sequencing reads of *CSS-BY* have been deposited in the
420 NCBI Sequence Read Archive Database under accession PRJNA381277. Genome
421 assembly, gene prediction, gene functional annotations, and transcriptomic data may be
422 accessed via the web site at: www.plantkingdomgdb.com/CSS-BY/.

423

424 **Supplementary Information**

425 Supplementary Information is available at ***Molecular Plant*** Online.

426

427 **Author Contributions**

428 L.-Z.G. designed and managed the project; C.S., Y.T., H.N., Y.-L.L., X.-L.Y. and X.-H.
429 W. collected materials; C.S., C. L., C.-F.W. and X.-X.L. prepared and purified DNA
430 and RNA samples; K.L. performed the genome assembly; Q.-J.Z., W.L., H.N., Y.Z.,
431 D.Z., W.-K.J. and Z.-Y.D. performed genome annotation and subsequent data analyses;
432 L.-Z.G. and Q.-J.Z. wrote the manuscript; L.-Z.G., Q.-J. Z., Z.-H.L., X.-C.Z. and E.E.E.
433 revised the manuscript.

434

435 **Acknowledgments**

436 We appreciate the anonymous reviewers for their comments on this manuscript. The a
437 uthors thank T. Brown for assistance in editing this manuscript. This study was suppo
438 rted by Startup Grant from South China Agricultural University and Yunnan Innovati
439 on Team Project (to L.Z. G.). E.E.E. is an investigator of the Howard Hughes Medical
440 Institute.

441 **Tables**

442 **Table 1. Global statistics for the assembly and annotation of the two *Camellia sinensis* var.
443 *sinensis* genome assemblies.**

444

	<i>CSS-BY</i>	<i>CSS-SCZ</i>
Assembly		
Estimated genome size (Gb)	3.25	2.98
Total length of scaffolds (Gb)	2.92	3.14
Coverage of the assembled sequences (%)	89.85	1.05
Scaffold number	4,153	14,051
N50 of scaffolds (Mb)	195.68	1.39
N50 of contigs (Kb)	625.11	67.07
GC content of the genome (%)	38.24	37.84
Annotation		
No. of predicted protein-coding genes	40,812	33,932
Average gene length (bp)	6,263	4,053
Average exon length (bp)	251	259
Average exon per gene	5.2	3.3
Mean intron length (bp)	1,168	1,408
tRNAs	659	597
rRNAs	2,845	2,838
snoRNAs	471	NA
snRNAs	207	416
miRNAs	139	355
Masked repeat sequence length (Mb)	2,165	2,008
Percentage of repeat sequences (%)	74.13	64.78

445

446

447 **Figure Legends**

448 **Figure 1. The genome features of *C. sinensis* var. *sinensis* cv. *Biyun*.** (A) Circular
449 representation of the 15 pseudochromosomes. (B) The density of genes. (C) The
450 distribution of TEs. (D) The distribution of Ty3-gypsy LTR-RTs. (E) The distribution
451 of Ty1-copia LTR-RTs. (F) The distribution of DNA TEs. (G) The density of SSRs. (H)
452 The density of transcript expression for young leaf (YL), tender shoot (TS), flower bud
453 (FB), fruit (FR) and stem (ST) from outside to inside. (I) Genomic synteny.

454

455 **Figure 2. The evolutionary landscape of LTR retrotransposons in the *C. sinensis***
456 **var. *sinensis* cv. *Biyun* genome.** The neighbor-joining and unrooted phylogenetic
457 trees were constructed based on 4,630 Ty1-copia (A) and 13,172 Ty3-gypsy (B)
458 aligned sequences corresponding to the RT domains without premature termination
459 codon. (C) Insertion times of Ty1-copia (blue), Ty3-gypsy (green) and non-
460 autonomous (yellow) LTR retrotransposons; The insertion times for LTR
461 retrotransposons were calculated by the formula of $T = K/2r$. T: insertion time; r:
462 synonymous mutations/site/Myr; K: the divergence between the two LTRs. A
463 substitution rate of 5.62×10^{-9} per site per year (Huang et al., 2013; Shi et al., 2010)
464 was used to calculate the insertion times. (D) Expression levels calculated by
465 transcripts read count of LTR retrotransposon families. All transcripts from five
466 tissues were by using TopHat and Cufflinks to classify the LTR retrotransposons
467 related transcripts into different LTR families by BLAST. Then, reads number of each
468 LTR retrotransposon family were counted by HTSeq.

469

470 **Figure 3. Evolutionary dynamics of the top retrotransposon family in the *C.***
471 ***sinensis* var. *sinensis* cv. *Biyun* genome.** (A) Insertion times of LTR retrotransposons.
472 (B) Structural features of the four groups of the top TEL001 retrotransposon family. (C)
473 Length distribution of interior regions of the TEL001 retrotransposon family. Group 1
474 (dark blue) stands for complete retroelements containing *gag* and *pol* (PR, RT and IN)
475 genes; Group 2 (steal blue) stands for any one or more partial open reading frames

476 (ORFs) (but not all) that are not fully encoded; Group 3 (orange) for retroelements with
477 only *gag*; and Group 4 (camel) for retroelements without any ORFs. The four digits in
478 the ‘Description’ represent the *gag* and *pol* (PR, RT and IN) genes in LTR
479 retrotransposon, respectively. The number ‘1’ represents the presence of a Pfam
480 annotation, and ‘0’ indicates the absence. For example, ‘1110’ means that the LTR
481 retrotransposon contain a *gag*, PR and RT without IN.

482

483

484 **References**

485 Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997).
486 Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic acids research* 25:3389-3402.

487

488 Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight,
489 S.S., and Eppig, J.T. (2000). Gene Ontology: tool for the unification of biology. *Nature genetics* 25:25.

490

491 Banerjee, B. (1992). Botanical classification of tea. In: *Tea*: Springer. 25-51.

492 Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M.-C., Estreicher, A., Gasteiger, E., Martin, M.J.,
493 Michoud, K., O'donovan, C., and Phan, I. (2003). The SWISS-PROT protein knowledgebase and
494 its supplement TrEMBL in 2003. *Nucleic acids research* 31:365-370.

495 Burton, J.N., Adey, A., Patwardhan, R.P., Qiu, R., Kitzman, J.O., and Shendure, J. (2013). Chromosome-
496 scale scaffolding of de novo genome assemblies based on chromatin interactions. *Nature biotechnology* 31:1119.

497

498 Cantarel, B.L., Korf, I., Robb, S.M., Parra, G., Ross, E., Moore, B., Holt, C., Alvarado, A.S., and Yandell, M.
499 (2008). MAKER: an easy-to-use annotation pipeline designed for emerging model organism
500 genomes. *Genome research* 18:188-196.

501 Chen, L., Zhou, Z.-X., and Yang, Y.-J. (2007). Genetic improvement and breeding of tea plant (*Camellia*
502 *sinensis*) in China: from individual selection to hybridization and molecular breeding. *Euphytica*
503 154:239-248.

504 Chen, N. (2004). Using RepeatMasker to identify repetitive elements in genomic sequences. *Current*
505 *protocols in bioinformatics* 5:4.10. 11-14.10. 14.

506 Chin, C.-S., Alexander, D.H., Marks, P., Klammer, A.A., Drake, J., Heiner, C., Clum, A., Copeland, A.,
507 Huddleston, J., and Eichler, E.E. (2013). Nonhybrid, finished microbial genome assemblies from
508 long-read SMRT sequencing data. *Nature methods* 10:563.

509 Delcher, A.L., Salzberg, S.L., and Phillippy, A.M. (2003). Using MUMmer to identify similar regions in
510 large sequence sets. *Current protocols in bioinformatics*:10.13. 11-10.13. 18.

511 Durand, N.C., Robinson, J.T., Shamim, M.S., Machol, I., Mesirov, J.P., Lander, E.S., and Aiden, E.L. (2016).
512 Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. *Cell*
513 *systems* 3:99-101.

514 English, A.C., Richards, S., Han, Y., Wang, M., Vee, V., Qu, J., Qin, X., Muzny, D.M., Reid, J.G., and Worley,
515 K.C. (2012). Mind the gap: upgrading genomes with Pacific Biosciences RS long-read
516 sequencing technology. *PloS one* 7:e47768.

517 Finn, R.D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Heger, A., Hetherington, K.,
518 Holm, L., and Mistry, J. (2013). Pfam: the protein families database. *Nucleic acids research*
519 42:D222-D230.

520 Hřibová, E., Neumann, P., Matsumoto, T., Roux, N., Macas, J., and Doležel, J. (2010). Repetitive part of
521 the banana (*Musa acuminata*) genome investigated by low-depth 454 sequencing. *BMC plant*
522 *biology* 10:204.

523 Huang, S., Ding, J., Deng, D., Tang, W., Sun, H., Liu, D., Zhang, L., Niu, X., Zhang, X., and Meng, M. (2013).
524 Draft genome of the kiwifruit *Actinidia chinensis*. *Nature communications* 4:2640.

525 Johnson, M., Zaretskaya, I., Raytselis, Y., Merezhuk, Y., McGinnis, S., and Madden, T.L. (2008). NCBI BLAST:

526 a better web interface. *Nucleic acids research* 36:W5-W9.

527 Jones, P., Binns, D., Chang, H.-Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A.,
528 and Nuka, G. (2014). InterProScan 5: genome-scale protein function classification.
529 *Bioinformatics* 30:1236-1240.

530 Kanehisa, M., and Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. *Nucleic acids*
531 *research* 28:27-30.

532 Li, C.-F., Zhu, Y., Yu, Y., Zhao, Q.-Y., Wang, S.-J., Wang, X.-C., Yao, M.-Z., Luo, D., Li, X., and Chen, L. (2015).
533 Global transcriptome and gene regulation network for secondary metabolite biosynthesis of
534 tea plant (*Camellia sinensis*). *BMC genomics* 16:560.

535 Li, L., Stoeckert, C.J., and Roos, D.S. (2003). OrthoMCL: identification of ortholog groups for eukaryotic
536 genomes. *Genome research* 13:2178-2189.

537 Li, S., Lo, C.-Y., Pan, M.-H., Lai, C.-S., and Ho, C.-T. (2013). Black tea: chemical analysis and stability. *Food*
538 & function 4:10-18.

539 Liu, Z., Gao, L., Chen, Z., Zeng, X., Huang, J.a., Gong, Y., Li, Q., Liu, S., Lin, Y., Cai, S., et al. (2019). Leading
540 progress on genomics, health benefits and utilization of tea resources in China. *Nature*.

541 Llorens, C., Munoz-Pomer, A., Bernad, L., Botella, H., and Moya, A. (2009). Network dynamics of
542 eukaryotic LTR retroelements beyond phylogenetic trees. *Biol Direct* 4:41.

543 McCarthy, E.M., and McDonald, J.F. (2003). LTR_STRUC: a novel search and identification program for
544 LTR retrotransposons. *Bioinformatics* 19:362-367.

545 Ming, T., and Bartholomew, B. (2007). Theaceae. In *Flora of China*, Z. Wu, P. Raven, and D. Hong, eds.
546 (Beijing and St. Louis: Science Press and Missouri Botanical Garden):pp. 367–412.

547 Möller, S., Croning, M.D., and Apweiler, R. (2001). Evaluation of methods for the prediction of
548 membrane spanning regions. *Bioinformatics* 17:646-653.

549 Mondal, T.K., Bhattacharya, A., Laxmikumaran, M., and Ahuja, P.S. (2004). Recent advances of tea
550 (*Camellia sinensis*) biotechnology. *Plant Cell, Tissue and Organ Culture* 76:195-254.

551 Narukawa, M., Morita, K., and Hayashi, Y. (2008). L-theanine elicits an umami taste with inosine 5' -
552 monophosphate. *Bioscience, biotechnology, and biochemistry* 72:3015-3017.

553 Parra, G., Bradnam, K., and Korf, I. (2007). CEGMA: a pipeline to accurately annotate core genes in
554 eukaryotic genomes. *Bioinformatics* 23:1061-1067.

555 Pertea, M., Kim, D., Pertea, G.M., Leek, J.T., and Salzberg, S.L. (2016). Transcript-level expression analysis
556 of RNA-seq experiments with HISAT, StringTie and Ballgown. *Nature protocols* 11:1650.

557 Piegu, B., Guyot, R., Picault, N., Roulin, A., Sanyal, A., Kim, H., Collura, K., Brar, D.S., Jackson, S., Wing,
558 R.A., et al. (2006). Doubling genome size without polyploidization: dynamics of
559 retrotransposition-driven genomic expansions in *Oryza australiensis*, a wild relative of rice.
560 *Genome research* 16:1262-1269.

561 Roach, M.J., Schmidt, S.A., and Borneman, A.R. (2018). Purge Haplontigs: allelic contig reassignment for
562 third-gen diploid genome assemblies. *BMC bioinformatics* 19:460.

563 Robinson, J.T., Turner, D., Durand, N.C., Thorvaldsdottir, H., Mesirov, J.P., and Aiden, E.L. (2018). Juicebox.
564 js provides a cloud-based visualization system for Hi-C data. *Cell systems* 6:256-258. e251.

565 Shi, C.-Y., Yang, H., Wei, C.-L., Yu, O., Zhang, Z.-Z., Jiang, C.-J., Sun, J., Li, Y.-Y., Chen, Q., and Xia, T. (2011).
566 Deep sequencing of the *Camellia sinensis* transcriptome revealed candidate genes for major
567 metabolic pathways of tea-specific compounds. *BMC genomics* 12:131.

568 Shi, T., Huang, H., and Barker, M.S. (2010). Ancient genome duplications during the evolution of kiwifruit
569 (*Actinidia*) and related Ericales. *Annals of Botany* 106:497-504.

570 Simão, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V., and Zdobnov, E.M. (2015). BUSCO:
571 assessing genome assembly and annotation completeness with single-copy orthologs.
572 *Bioinformatics* 31:3210-3212.

573 Smit, A., Hubley, R., and Green, P. (2016). RepeatMasker Open-4.0. 2015. Google Scholar.

574 Soni, R.P., Katoch, M., Kumar, A., Ladohiya, R., and Verma, P. (2015). Tea: Production, composition,
575 consumption and its potential an antioxidant and antimicrobial agent. *International Journal of
576 Food and Fermentation Technology* 5:95.

577 Taniguchi, F., Kimura, K., Saba, T., Ogino, A., Yamaguchi, S., and Tanaka, J. (2014). Worldwide core
578 collections of tea (*Camellia sinensis*) based on SSR markers. *Tree genetics & genomes* 10:1555-
579 1565.

580 Vitte, C., and Panaud, O. (2005). LTR retrotransposons and flowering plant genome size: emergence of
581 the increase/decrease model. *Cytogenet Genome Res* 110:91-107.

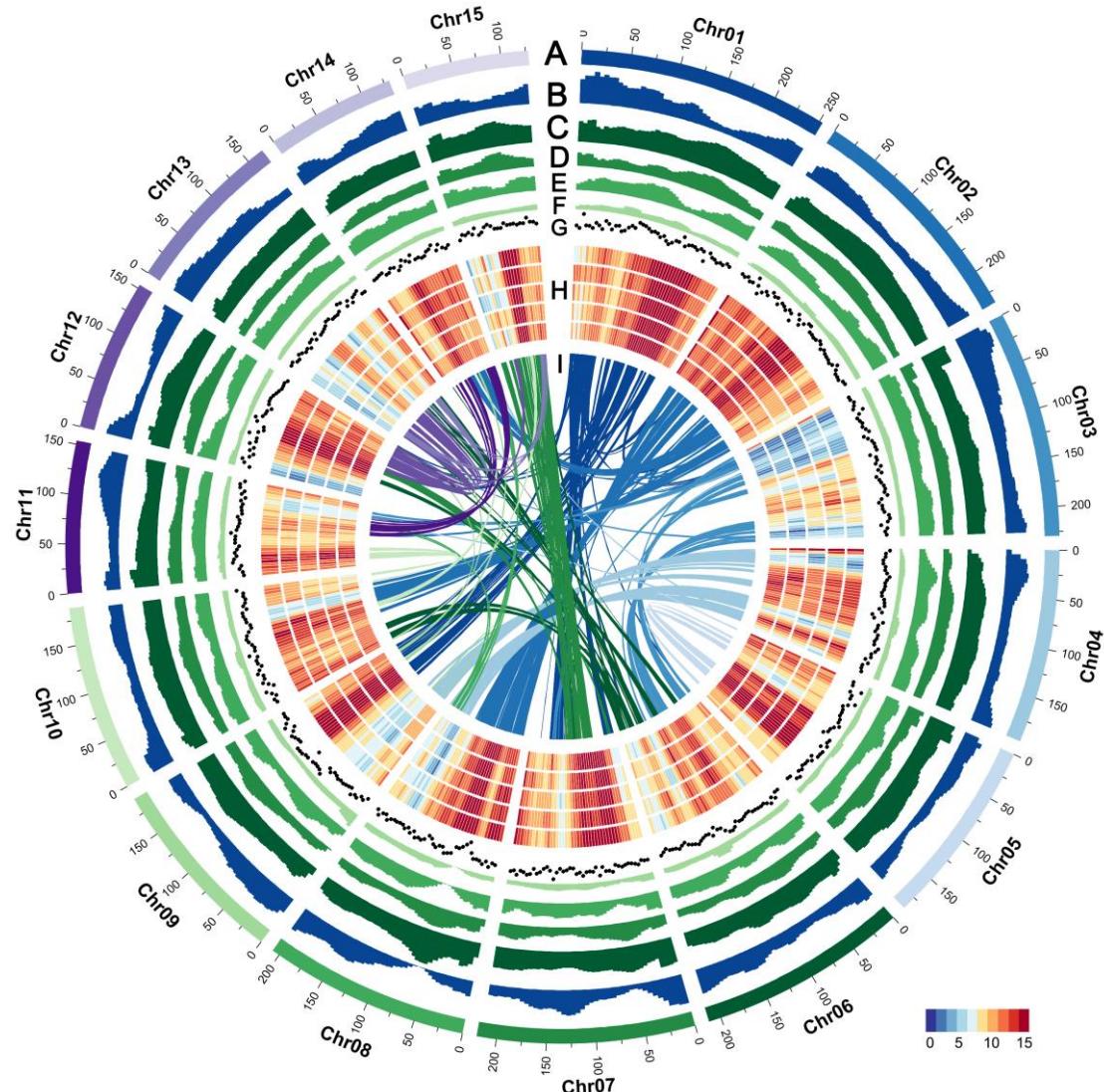
582 Vitte, C., Panaud, O., and Quesneville, H. (2007). LTR retrotransposons in rice (*Oryza sativa*, L.): recent
583 burst amplifications followed by rapid DNA loss. *BMC Genomics* 8:218.

584 Wang, Y., Tang, H., DeBarry, J.D., Tan, X., Li, J., Wang, X., Lee, T.-h., Jin, H., Marler, B., and Guo, H. (2012).
585 MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity.
586 *Nucleic acids research* 40:e49-e49.

587 Wei, C., Yang, H., Wang, S., Zhao, J., Liu, C., Gao, L., Xia, E., Lu, Y., Tai, Y., and She, G. (2018). Draft genome
588 sequence of *Camellia sinensis* var. *sinensis* provides insights into the evolution of the tea
589 genome and tea quality. *Proceedings of the National Academy of Sciences*:201719622.

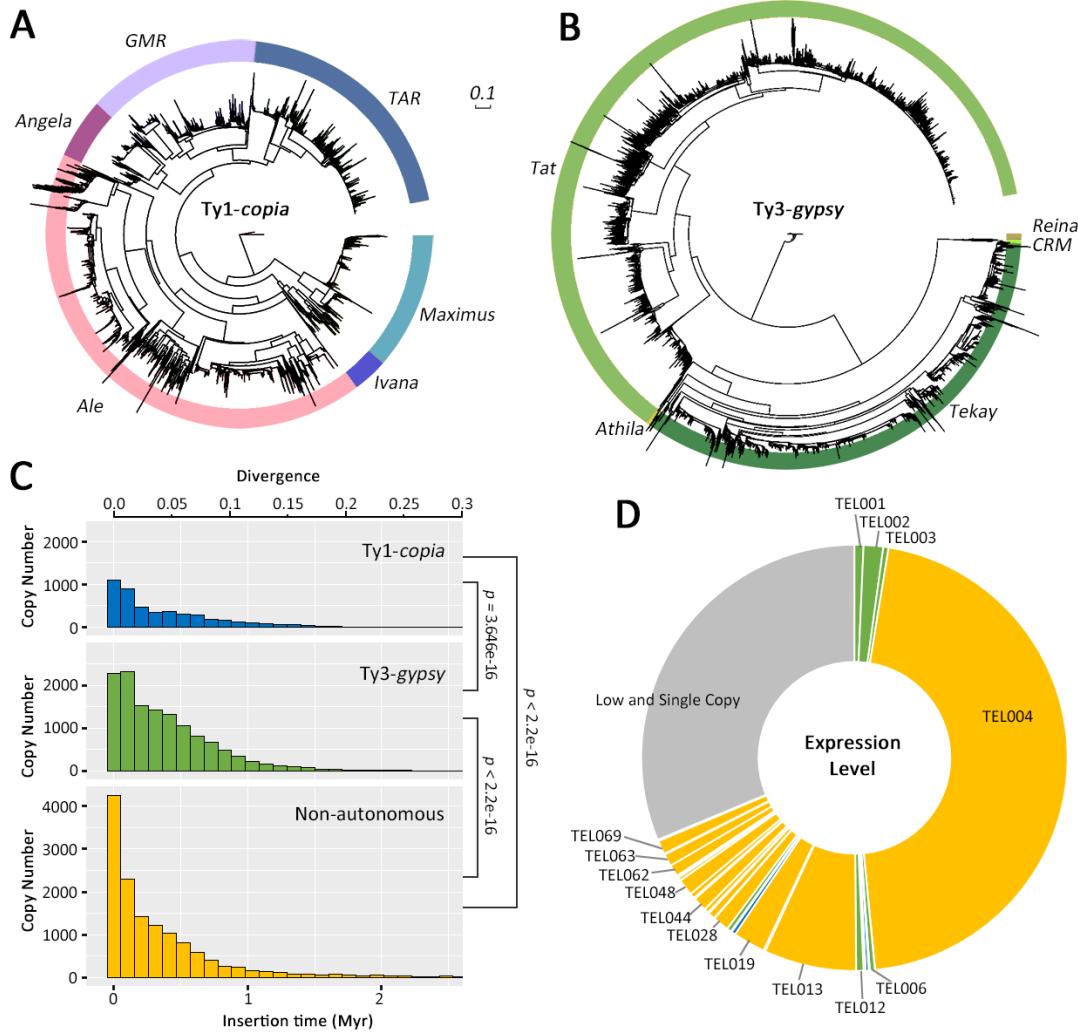
590 Wheeler, D.S., and Wheeler, W.J. (2004). The medicinal chemistry of tea. *Drug development research*
591 61:45-65.

592 Wicker, T., and Keller, B. (2007). Genome-wide comparative analysis of *copia* retrotransposons in
593 *Triticeae*, rice, and *Arabidopsis* reveals conserved ancient evolutionary lineages and distinct
594 dynamics of individual *copia* families. *Genome research* 17:1072-1081.


595 Willson, K.C., and Clifford, M.N. (2012). Tea: Cultivation to consumption: Springer Science & Business
596 Media.

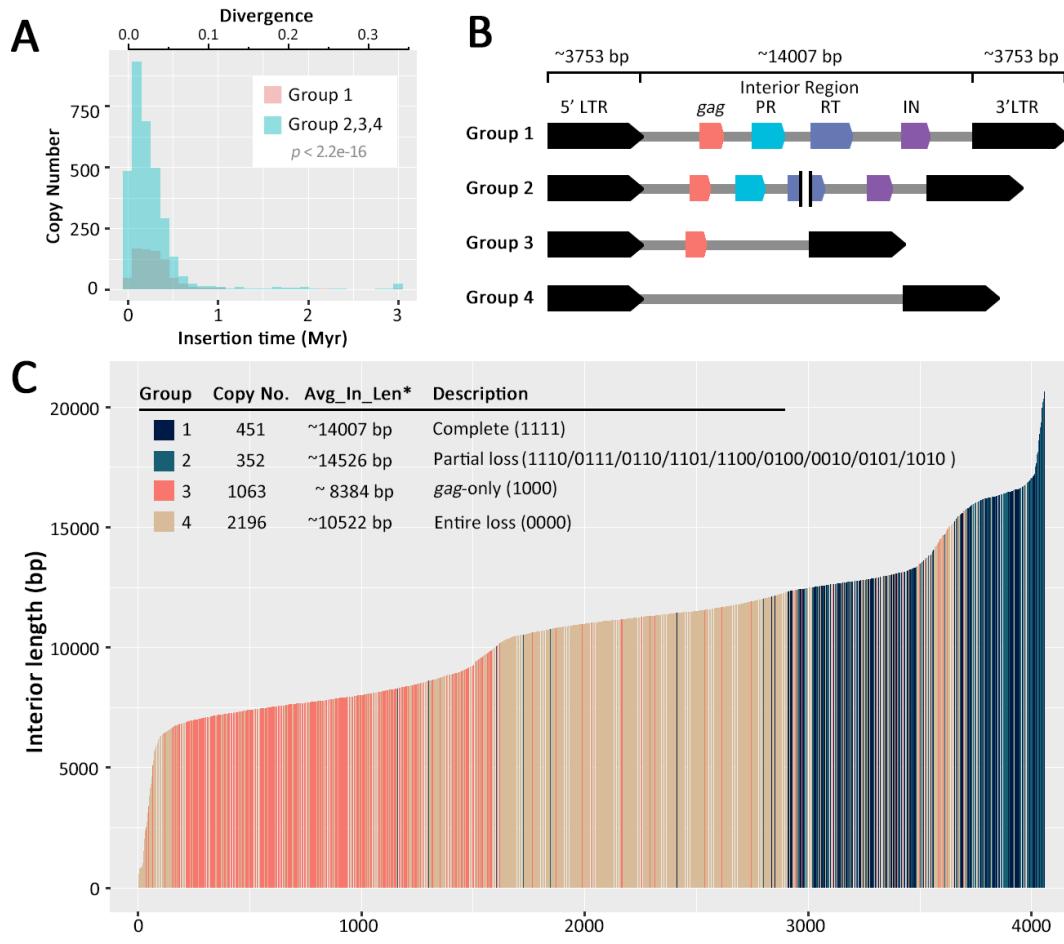
597 Xia, E.-H., Zhang, H.-B., Sheng, J., Li, K., Zhang, Q.-J., Kim, C., Zhang, Y., Liu, Y., Zhu, T., and Li, W. (2017).
598 The tea tree genome provides insights into tea flavor and independent evolution of caffeine
599 biosynthesis. *Molecular plant* 10:866-877.

600 Zhang, Q.-J., and Gao, L.-Z. (2017). Rapid and recent evolution of LTR retrotransposons drives rice
601 genome evolution during the speciation of AA-genome *Oryza* species. *G3: Genes, Genomes,
602 Genetics*:g3. 116.037572.


603 **Figures**

604

605 **Figure 1. The genome features of *C. sinensis* var. *sinensis* cv. *Biyun*.** (A) Circular
606 representation of the 15 pseudochromosomes. (B) The density of genes. (C) The
607 distribution of TEs. (D) The distribution of Ty3-gypsy LTR-RTs. (E) The distribution
608 of Ty1-copia LTR-RTs. (F) The distribution of DNA TEs. (G) The density of SSRs. (H)
609 The density of transcript expression for young leaf (YL), tender shoot (TS), flower bud
610 (FB), fruit (FR) and stem (ST) from outside to inside. (I) Genomic synteny.


611

612

613 **Figure 2. The evolutionary landscape of LTR retrotransposons in the *C. sinensis***
614 **var. *sinensis* cv. *Biyun* genome.** The neighbor-joining and unrooted phylogenetic
615 trees were constructed based on 4,630 Ty1-copia (**A**) and 13,172 Ty3-gypsy (**B**)
616 aligned sequences corresponding to the RT domains without premature termination
617 codon. (**C**) Insertion times of Ty1-copia (blue), Ty3-gypsy (green) and non-
618 autonomous (yellow) LTR retrotransposons; The insertion times for LTR
619 retrotransposons were calculated by the formula of $T = K/2r$. T: insertion time; r:
620 synonymous mutations/site/Myr; K: the divergence between the two LTRs. A
621 substitution rate of 5.62×10^{-9} per site per year (Huang et al., 2013; Shi et al., 2010)
622 was used to calculate the insertion times. (**D**) Expression levels calculated by
623 transcripts read count of LTR retrotransposon families. All transcripts from five
624 tissues were by using TopHat and Cufflinks to classify the LTR retrotransposons

625 related transcripts into different LTR families by BLAST. Then, reads number of each
626 LTR retrotransposon family were counted by HTSeq.
627

628

629 **Figure 3. Evolutionary dynamics of the top retrotransposon family in the *C.***

630 ***sinensis* var. *sinensis* cv. *Biyun* genome. (A)** Insertion times of LTR retrotransposons.

631 **(B)** Structural features of the four groups of the top TEL001 retrotransposon family. **(C)**

632 Length distribution of interior regions of the TEL001 retrotransposon family. Group 1

633 (dark blue) stands for complete retroelements containing *gag* and *pol* (PR, RT and IN)

634 genes; Group 2 (steal blue) stands for any one or more partial open reading frames

635 (ORFs) (but not all) that are not fully encoded; Group 3 (orange) for retroelements with

636 only *gag*; and Group 4 (camel) for retroelements without any ORFs. The four digits in

637 the ‘Description’ represent the *gag* and *pol* (PR, RT and IN) genes in LTR

638 retrotransposon, respectively. The number ‘1’ represents the presence of a Pfam

639 annotation, and ‘0’ indicates the absence. For example, ‘1110’ means that the LTR

640 retrotransposon contain a *gag*, PR and RT without IN.

641

642

