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Abstract Voltage imaging enables monitoring neural activity at sub-millisecond and
sub-compartment scale, and therefore opens the path to studying sub-threshold activity, synchrony,
and network dynamics with unprecedented spatio-temporal resolution. However, high data rates
(>800MB/s) and low signal-to-noise ratios have created a severe bottleneck for analysis of such
datasets. Here we present VolPy, the first turn-key, automated and scalable pipeline to pre-process
voltage imaging datasets. VolPy features fast motion correction, memory mapping, segmentation,
and spike inference, all built on a highly parallelized and computationally efficient framework that
optimizes memory and speed. Given the lack of single cell voltage imaging ground truth examples,
we introduce a corpus of 24 manually annotated datasets from different preparations and voltage
indicators. We benchmark VolPy against this corpus and electrophysiology recordings,
demonstrating excellent performance in neuron localization, spike extraction, and scalability.

Introduction

While several methods have been developed to process voltage imaging data at mesoscopic scale
and multi-unit resolution (Marshall et al., 2016; Carandini et al., 2015; Akemann et al., 2012), to
date there is no established pipeline for large-scale single cell analysis, which was only recently
necessitated by sensitive new voltage indicators (Knépfel and Song, 2019; Abdelfattah et al., 2019;
Adam et al., 2019; Kannan et al., 2018; Piatkevich et al., 2019, 2018; Roome and Kuhn, 2018).
Indeed, voltage imaging datasets present significant new challenges compared to calcium imaging,
calling for new approaches. On the one hand, dataset sizes have increased one or two orders of
magnitude (Tens of GBs vs TBs per hour), and on the other hand, assumptions of existing calcium
imaging analysis methods may be inappropriate. For instance, non-negative matrix factorization
(NMF) methods (Giovannucci et al., 2019) fail when applied to voltage imaging data for three
reasons (Buchanan et al., 2018): (i) while good segmentation approaches exist for somatic imaging,
these fail for other imaging modalities, (ii) it is difficult to separate weak components from noise
using current NMF approaches; (iii) since voltage traces typically display both positive and negative
fluctuations around the baseline resting potential, the NMF framework, based on non-negativity in
both spatial and temporal domains, is not readily applicable to voltage imaging data.

1 of 21


agiovann@email.unc.edu
podgorskik@janelia.hhmi.org
https://doi.org/10.1101/2020.01.02.892323
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprlnt doi: https //d0| org/lO 1101/2020 01 02.892323; this version posted January 3, 2020 The copyright holder for thls preprlnt

40

4

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

7

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

[ us ini SukSAkie o CLJf’

Related work

Some relevant methods are beginning to populate the literature. For instance, ad-hoc solutions
presented in (Abdelfattah et al., 2019) provide interesting starting points to extract and denoise
spikes semi-automatically, but suffer from some drawbacks. First, they require manual or semi-
manual selection of neurons, which is both labor intensive and prone to irreproducibility. Second,
the algorithms do not scale well in computational time and memory. Finally, these algorithms
are not embedded into a reusable and well documented format, which hinders their reuse by a
broad community (Teeters et al., 2015). A more standardized approach is provided by (Adam et al.,
2019; Buchanan et al., 2018). However, this method does not embed an adaptive and automated
mechanism for spike extraction and is not integrated in a robust, scalable and multi-platform
framework. Further, lack of ground truth datasets has so far hindered the validation of all these
approaches. In summary, no validated, complete, scalable and automatic analysis pipeline for
voltage imaging data analysis exists to date.

Contributions

To address these shortcomings, we established objective performance evaluation benchmarks and
a new analysis pipeline for pre-processing voltage imaging data, which we named VolPy. First, in
order to establish a common validation framework and to automate neuron segmentation, we
created a corpus of annotated datasets with manually segmented neurons. Second, we used
this benchmark to train a supervised algorithm to automatically localize and segment cells via
convolutional networks (He et al., 2077). Third, we introduced an improved algorithm to denoise
fluorescence traces and extract single spikes, which builds upon the SpikePursuit prototype (Ab-
delfattah et al., 2079). We modified the core SpikePursuit algorithm to achieve better performance
and scalability, both by speeding up the underlying optimization algorithm, and by building the
infrastructure to parallelize it efficiently and with low memory requirements. Notably, the algorithm
is automatically initialized using the neural network for localizing and segmenting neurons, a task
that was previously performed manually. Fourth, we quantitatively evaluated Vo/Py neuron segmen-
tation, spike extraction and scalability. Segmentation was evaluated on 24 datasets, encompassing
different brain areas, animal preparations and voltage indicators (Tables 1 and 2). The performance
of VolPy on the validation set was high for datasets with more training samples, but progressively
degraded when less data was available. When compared with electrophysiology data, VolPy spike
extraction featured F, scores mostly above 90% on three example neurons. The computational
performance of VolPy was evaluated on the largest dataset available to us and showed promising
results in terms of computational time (up to 66 frames/sec) and memory requirements (down to
1.5X RAM of the original dataset size).

We integrated our methods within the CalmAn ecosystem (Giovannucci et al., 2019), a popular
suite of tools for single cell resolution brain imaging analysis. This integration allowed us to use
and extend CalmAn's tools for motion correction and memory mapping to enable scalability of our
algorithms. In particular, we adapted CalmAn to perform motion correction (Pnevmatikakis and
Giovannucci, 2017), memory mapping (Giovannucci et al., 2019), and run the modified SpikePursuit
algorithm on voltage imaging data. Besides the obvious computational advantages, this made
VolPy immediately available to the research labs already relying on the CalmAn ecosystem.

In summary, we have developed a validated, scalable, turn-key, documented and easily installed
voltage imaging analysis pipeline that has been packaged into a popular open source software suite.
This will enable an increasing number of laboratories to exploit the advantages provided by voltage
imaging and therefore accelerate the pace of discovery in neuroscience.

The paper is organized as follows. We first report the new methods developed in Vo/Py, then we
benchmark their performance, and finally we discuss some implications. We leave most of the fine
implementation details for the Material and Methods section.
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Table 1. Properties of three heterogeneous types of datasets. For each type of dataset the name, organism,
brain region, source, imaging rate, voltage indicator, and the total number of neurons selected by the manual
annotators are given.

Name Organism  Brain region Source Rate (Hz) Indicator # neurons

L1 Mouse L1 cortex Abdelfattah et al. (2019) 400 Voltron 523

TEG Zebrafish ~ Tegmental Abdelfattah et al. (2019) 300 Voltron 107

HPC Mouse Hippocampus Adam et al. (2019) 1000 paQuasAr3-s 41
Methods

Creation of a corpus of annotated datasets

To date there is no metric to establish whether voltage imaging algorithms for single cell localization
and/or segmentation perform well in practice. To overcome this problem, and with the goal of
developing new supervised algorithms, we generated a corpus of annotated datasets (Ground
truth, GT) in which neurons are manually segmented. GT is constructed by human labelers from
two summary images (mean and local correlation images, Figure 1 B and C) and a pre-processed
movie that highlights active neurons (local correlation movie, Suppl Movie 1). More specifically,
after motion correction, we generate a mean image, a correlation image and a correlation video as
follows:

Mean image. To compute the mean image, we average the movie across time for each pixel and
normalize by the pixel-wise z-score.

Correlation image. The correlation image is a variation of that implemented in (Smith and Hdusser,
2010), which is applied to a baseline-subtracted movie. To estimate the baseline of the movie,
frames are first binned according to the window length (a parameter set to 1 second). We compute
the 8 running percentile of the signal for each pixel. Intermediate values of the baseline are
inferred by spline interpolation, which is a fast approximation of a running window. After removing
the baseline of the movie, we compute the correlation image of the movie by averaging the temporal
correlation of each pixel with its eight neighbor pixels. We also normalize the correlation image by
z-scoring when fed to the neural network.

Correlation movie. We introduce a novel type of denoising operation, the correlation movie. The
correlation movie is essentially a running version of the correlation image computed over over-
lapping chunks of video frames. This new type of denoising significantly improves the visibility of
spikes in voltage imaging movies (see Movie 1). There are two parameters governing the creation
of the correlation movie, the chunk size (number of frames over which each correlation image is
computed) and stride (the number of frames to skip between consecutive chunks).

We implemented parallelized routines which allow to compute efficiently summary images and
correlation movies. These routines need only to load in memory small contiguous chunks of the
input movies and can process them efficiently in parallel over multiple cores.

Guided by these three visual cues, two annotators marked the contours of neurons using the
Image] Cell Magic Wand tool plugin (Walker, 2074). For neurons to be selected both annotators had
to agree on the selection, which had to fulfill the following criteria: (i) neurons were very clear on
at least one of the three cues; (ii) Neurons were moderately clear in one of the summary images
and exhibited a spatial footprint in selected frames of the local correlations movie (see Figure 8).
Summary information about the annotated datasets is reported in Table 1. Examples of manual
annotations are reported in Figure 3 (red contours).

A novel analysis pipeline for voltage imaging

Voltage imaging is characterized by high data rates (up to 800 MB/sec). This often leads to the
creation of movies that are difficult to manage using conventional computers. Even though scalable
algorithms for calcium imaging exist (Giovannucci et al., 2019), they fail when applied to voltage
imaging. Here we propose a novel scalable pipeline for automated analysis that performs prepro-
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Figure 1. Analysis pip eline for voltage imaging data. (a) Four pre-processing steps are required to extract spikes
and neuron locations from voltage imaging movies. (b) Correlation image (front) and mean image (back) of one
of the Layer1 neocortex movies as the input of the segmentation step. (c) The segmentation step outputs class
probabilities, bounding boxes and contours. The results are overlaid to the correlation image in (b). (d) Result of
trace denoising and spike extraction. The gray dashed horizontal line represents the inferred spike threshold.

cessing steps required to extract spikes and sub-threshold activity from voltage imaging movies. In
Figure 1 we illustrate the proposed standard pipeline for analyzing voltage imaging data. First, input
data is processed to remove motion artifacts with parallelized algorithms, and saved into a memory
map file format that enables efficient concurrent access. In a second stage, VolPy localizes candidate
neurons using supervised algorithms (Figure 1a and c). Finally, VolPy denoises fluorescence traces,
infers spatial footprints, and extracts neural activity of each neuron through unsupervised learning
(Figure 1a and d). Notice that the presented framework is modular, and therefore allows for easy
testing of new algorithms by replacing individual components of the pipeline. In what follows we
present each stage of the VolPy pipeline in detail.

Motion correction and memory mapping

First, movies need to be corrected for sample movement. We performed this registration relying on a
variation of the algorithm described in (Giovannucci et al., 2019; Pnevmatikakis and Giovannucci,
2017), which exploits multi-core parallelization and memory mapping to register frames to a
template based on cross-correlation. The only variation with respect the original algorithm is that
the new implementation can perform motion correction on a large number of small files containing
a single image (a typical output format of fast imaging cameras). This avoids the memory-intensive
job of transforming single image files into multi-page files, and limitations of file size. Motion
correction, similarly to (Giovannucci et al., 2019), is performed in parallel over multiple segments of
the same movie and the result is directly stored in a memory mapped file that is efficiently readable
frame-by frame (Fortran (F) order, see Materials and Methods). Relying on the algorithms of Ca/mAn,
we then efficiently create a second copy of the file that allows rapid pixel by pixel reads (C order, see
Materials and Methods) instead of frame by frame (memory mapping, Figure 1a). This enables a
fundamental feature of VolPy, that is the ability to quickly read arbitrary portions of the field of view
in any direction without having to load the full movie into memory. In summary, the first two steps
of the pipeline generate two copies of the motion corrected movie, one efficiently and concurrently
read frame-by-frame, and one pixel by pixel. This allows parallelization of all the operations which
are required to generate summary images and denoise the signal, as specified below.
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Table 2. All annotated datasets for segmentation of Vo/Py. For each dataset the name, size of datasets and
number of neurons.

Name Size # Name Size

L1.00.00  20000%512*128 84 | HPC.29.04 20000*164*96
L1.01.00  20000%512*128 53 | HPC.29.06 20000*228%96
L1.01.35  20000%512*128 69 | HPC.32.01 20000*256*96
L1.02.00 20000*%512*128 61 | HPC.38.05 20000*176%*92
L1.02.80  20000%512*128 43 | HPC.38.03 20000*128+%88
L1.03.00  20000%512*128 79 | HPC.39.07 20000*264%96
L1.03.35  20000%512*128 57 | HPC.39.03 20000*276*96
L1.04.00  20000%512*128 43 | HPC.39.04 20000*336%96
L1.04.50 20000*%512*%128 34 | HPC.48.01 20000%224*96
TEG.01.02 10000%364*320 33 | HPC.48.05 20000*212%96
TEG.02.01 10000%360*%256 29 | HPC.48.07 20000*280%96
TEG.03.01 10000%508*288 45 | HPC.48.08 20000*284%96

W N DBRANMNDMUOOONDDDNNDN|H

Segmentation

The low SNR of voltage imaging data hinders the applicability of the segmentation methods previ-
ously devised for calcium imaging data (Pnevmatikakis et al., 2016). Here we propose to initialize
denoising algorithms with supervised learning approaches. While previous attempts at cell localiza-
tion and segmentation have extended U-Net fully convolutional network architectures (Falk et al.,
2019), in our hands this family of methods failed when facing datasets in which neurons overlap
(Figure 3a). We hypothesize that this happens since U-Net is a semantic segmentation approach,
which aims at separating neurons pixels from the background pixels, and therefore performs poorly
in our instance segmentation task of separating overlapping neurons. We approached the problem
with Mask R-CNN, a convolutional network for object localization and segmentation (He et al., 2017).
Mask R-CNN is a particularly promising architecture as it enables to separate overlapping objects in
a specific area by providing each object with a unique bounding box.

The network, which is trained with a corpus of annotated datasets generated by us, takes sum-
mary images as input and outputs contours and bounding boxes of candidate neurons (Figure 1c),
along with a class probability. An example of the network inference on a validation dataset by
VolPy is shown in Figure 2. The resulting network performs well in our task on widely different
datasets.

Trace denoising and spike extraction

Classical algorithms for denoising calcium imaging movies and extracting spikes from the corre-
sponding fluorescence traces fail when applied to voltage imaging movies. On the one hand, the low
signal-to-noise ratio and the complex background fluorescence require new methods for refining
spatial footprints, and on the other hand, substantially different biophysical models underlie the
temporal dynamics of the fluorescence associated to spikes. To solve both problems, we build
upon and extend the SpikePursuit algorithm (Abdelfattah et al., 2019). In particular, we improve
SpikePursuit in the following directions (see Material and Methods for details):

* While the original version of the algorithm required manual selection of candidate neurons,
VolPy automatically initializes it using the output of the trained Mask R-CNN (Figure 1c and d).

+ A minimal amount of data needs to be loaded in memory thanks to the memory mapping
infrastructure, thereby reducing memory requirements.

+ We increase the reliability of the underlying inference algorithm, by introducing a more robust
estimate of the background.

+ We scale up the performance by improving the algorithms which perform Ridge regression
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Figure 2. Result of processing a mouse L1 neocortex voltage imaging dataset using the VolPy pipeline. (a)
Correlation image (left) and mean image (right) overlaid with contours detected by Vo/Py. (b) Temporal traces
corresponding to neurons in panel (a) extracted by VolPy (left). The dashed gray portion of the traces is
magnified on the right.

during inference of spikes and spatial masks.

Embarrassingly parallel computing in VolPy

Unlike CalmAn, which is based on a Map-Reduce framework to parallelize execution, VolPy relies on
an embarrassingly parallel paradigm (Herlihy and Shavit, 2011). Embarrassingly parallel solutions
exploit the lack of dependence among tasks to efficiently deploy concurrency. Indeed the core of
VolPy algorithms decouples computations so that each neuron is processed independently.

First, motion correction in VolPy is parallelized by processing temporal chunks of movie data
on different CPUs while saved in a memory mapped file which is efficiently read frame-by-frame.
second, the various summary images and correlation movies can be computed in parallel processing
contiguous temporal chunks of the memory mapped movies. Subsequently, the motion corrected
file is processed and saved into another memory mapped file which efficiently read pixel-by-pixel.
Finally, during trace denoising and spike extraction, candidate neurons can be processed in parallel
without significant memory overhead based on the fact that the signal of each neuron is localized
in pixels near to the center of the neuron. Exploiting this locality, VolPy processes in parallel context
regions surrounding each candidate neuron (see Materials and Methods) by reading concurrently
from the pixel-by-pixel memory mapped file. Each process extracts denoised fluorescence signals
and spikes from the corresponding context region. In conclusion, VolPy enables automatic analysis
of large scale voltage imaging datasets. In Figure 2, we report the result of preprocessing an
example mouse L1 neocortex voltage imaging dataset with the Vo/Py pipeline.

Results
In what follows we report a systematic evaluation of VolPy against ground truth in terms of perfor-
mance in identifying neurons, spike extraction and scalability.

VolPy localizes neurons using a moderate amount of training data

We trained a modified version of the Mask R-CNN network architecture (see Material and Methods
for details) on three heterogeneous types of datasets (Table 1) and evaluated its performance using
3-fold cross validation (see Table 2 and Materials and Methods for details). In Figure 3a, we com-
pared the contours predicted by Vo/Py with manual annotations on three example datasets: VolPy is
able to identify candidate neurons even in conditions of low signal-to-noise and spatial overlap. In

6 of 21


https://doi.org/10.1101/2020.01.02.892323
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprlnt doi: https //d0| org/lO 1101/2020 Ol 02.892323; this verS|on posted January 3, 2020 The copyright holder for thls preprlnt

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

a TEG b
GT - | ]
mm MRCNN 1.0 - == TEG
’ = HPC
wv
g 0.8 -
= 0
© (] m
£ s 0.6
3
— 04 A
0'2 | | | “
0.0 - I
datasets
C mm train
mm val
(%) 08 7
(]
K
}-JJ 0 6 -
© wv B
[J]
& s
IS 2 0.4 |
o
0.2 -
00 L
L1 TEG HPC

Figure 3. Evaluation of Vo/Py segmentation. (a) Evaluation of segmentation against three manually annotated
datasets including mouse sensory cortex (left, Voltron, dataset L1.00.00), mouse hippocampus (center,
paQuasAr3, dataset HPC.48.08), and larval zebrafish (right, Voltron, dataset TEG.01.02). In the upper panels,
neurons that are found by both Vo/Py (yellow contours) and manual annotators (red contours) are displayed
over the mean image. The bottom panels display neurons that are found by VolPy but are not present in the
ground truth (yellow, False Positives) and neurons that are in the ground truth but are not found by VolPy (red,
False Negatives). (b) F; score performance of VolPy for all the evaluated datasets. The F, score is computed
through stratified cross-validation (see Material and Methods). (c) Average performance on training and
validation sets grouped by dataset type (see also Table 3). Error bar represents one standard deviation.

order to quantify VolPy performance in detecting neurons, we employed a precision/recall frame-
work (see Material and Methods for details), which accounts for the amount of overlap between
predicted and ground truth neurons when assigning matches and mismatches (Giovannucci et al.,
2019). In Figure 3b and Table 3 we summarize the F, score for all the probed datasets. The results
indicate that our segmentation approach performs well provided sufficient neurons are fed to train
the algorithm. Indeed, Vo/Py obtained F, scores of 0.89+0.01 on the L1 dataset (532 neurons in total),
0.71 + 0.02 on the TEG datasets (107 neurons), and 0.46 + 0.07 on the HPC dataset (39 neurons). In
case of TEG, the performance of VolPy is fair considering that the network was trained with only two
datasets of this type. In the HPC datasets however the performance on both training and test sets is
relatively inferior. We hypothesize that this is due to the fact that not enough data are available (see
#neurons column in Table 1), possibly combined with the low signal to noise typical of this dataset
type. Note that we used a single neural network trained on the three dataset types simultaneously.
Despite clear differences in neuronal shapes, size, SNRs and data acquisition system the network
performed well across them, suggesting that it will generalize to similar datasets. However, new
datasets deviating substantially from these typologies will need to be added to the training set to
improve generalization performance.
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Table 3. Results of VolPy for segmentation. For each type of datasets, number of datasets, number of neurons,
recall, precision, F; score for training and validation computed by stratified cross-validation are provided.

Name | #datasets #neurons recall(%) precision(%) F,(%)
train/val train/val train/val train/val train/val
L1 6/3 349 +7/174+7 | 86+4/85+3 | 94+2/95+1 | 90+2/89+1
TEG 2/1 71 +7/36+7 70+3/67+2 83+7/77+3 | 76 +4/71+2
HPC 8/4 26+1/13+1 | 88+11/66+7 | 55+7/40+12 | 65+8/46+7

VolPy detects with fidelity single spikes from voltage imaging data

We validated the Vo/Py SpikePursuit algorithm on three voltage imaging datasets in which electro-
physiology was simultaneously recorded with voltage imaging (see Figure 4). We automatically
analyzed voltage imaging data in-vivo recordings from mouse L1 neocortex and Zebrafish Tegmental
area (Abdelfattah et al., 2019) with the VolPy pipeline. The output of the algorithm are spatial
footprints, voltage traces, and corresponding spike timings. Spikes for electrophysiology recordings
were obtained by thresholding (see Figure 4). Spikes are matched against ground truth by solving
a linear sum assignment problem using the Hungarian algorithm (see Material and Methods for
details). The F, score of each dataset (see Figure 4b) is computed relying on a precision/recall
framework based on matched and unmatched spikes. We observe that Vo/Py performs well on
all datasets (the F, score across three datasets is 0.94 + 0.03) and confirms that single spikes from
voltage imaging data can be automatically extracted with fidelity.

VoIPy enables the analysis of large voltage imaging datasets on small and medium
sized machines

We examined the performance of VolPy in terms of processing time and peak memory for the
datasets presented above. We ran our tests on a linux-based desktop (Ubuntu 18.04) with 16
CPUs (Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz) and 64 GB of RAM. For segmentation, we used a
GeForce RTX 2080 Ti GPU with 11 GB of RAM memory.

Figure 5a reports the VolPy processing time in function of the number of frames. The results
show that the processing time scales linearly in the number of frames. Processing 50 candidate
neurons in a 1.5 minutes long video (512*128 pixel FOV) takes about 9 minutes. SpikePursuit (red
bar) accounts for most of the processing time.

In order to probe the benefits of parallelization, we ran VolPy 5 times on the same hardware
while limiting the runs to 1, 2, 4, 6 and 8 CPUs respectively (Figure 5b). We observed significant
performance gains due to parallelization, especially in the motion correction and SpikePursuit
phase, with a maximum speed-up of 2.5X. Simultaneously, we recorded the peak memory usage of
VolPy while running on a different number of CPUs for each run. Figure 5¢c shows how the peak
memory increases with the number of threads. Therefore, VolPy enables speed gains by trading-off
execution time for memory usage.

Discussion

Enabling automated and scalable analysis of voltage imaging data

Recording voltage changes in populations of neurons is necessary to dissect the details of infor-
mation processing in the brain. Voltage imaging is currently the only technique that promises to
achieve this goal with high spatio-temporal resolution. Indeed, voltage imaging has a long history
of development, having been widely used for in-vivo studies in the past. However, poor signal-to-
noise ratio, photo-toxicity, bleaching, and other difficulties have so far hindered its wider use to
answer questions at a cellular level. Recently, however, voltage imaging seems to have reached a
point of inflexion and some notable examples are leading the way to new exciting developments
(Abdelfattah et al., 2019; Roome and Kuhn, 2018; Adam et al., 2019; Piatkevich et al., 2019, 2018).
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Figure 4. Validation of VolPy performance against electrophysiology. (a) Performance of VolPy in detecting
spikes validated on three datasets from zebrafish (Fish1 and Fish2) and mouse (Mouse). For each dataset, the
denoised spatial filter of the target neuron is presented on the left, while electrophysiology (top, blue) and
fluorescence signal denoised by VolPy (bottom, orange) are reported on the right. Spikes from electrophysiology
(blue dots) are obtained by thresholding (gray horizontal dotted line) while spikes from voltage imaging (orange
dots) are the output of VolPy. Spikes are matched between the two groups by solving a linear assignment
problem (see Material and Methods, gray vertical lines). (b) The F; scores for each dataset are computed based
on the matched and unmatched spikes.
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Figure 5. Time and memory performance of VolPy. (a) Processing time for VolPy as a function of the number of
frames on a 512*128 pixels dataset initialized with 50 neurons. Processing time is the sum of motion correction
(blue), memory mapping (orange), segmentation (green), and SpikePursuit (red) times. The results indicate a
near linear scaling of the processing time with the number of frames. (b) Processing time for Vo/Py utilizing 1, 2,
4,6 and 8 processors in parallel on a 10 GB dataset and 50 detected neurons. Vo/Py achieves a 2.5-fold speed
up when running in parallel on 8 cores. (c) Peak memory usage of VolPy in function of the number of processors.
Processing in parallel can lead to fair speed gains by regulating the trade-off between time and memory
consumption.

Despite the recent availability of high quality datasets, there is currently no established and vali-
dated pipeline for the analysis of voltage imaging data. The unprecedented data size (one order of
magnitude larger than already challenging calcium imaging datasets), low SNR, and high degree
of signal mixing have so far limited the development of novel algorithms. Moreover, the lack of a
universal benchmark prevents further quantitative comparisons. In this paper we provided both
a corpus of manually segmented datasets and VolPy, the first turn-key, fully automatic, scalable
and reproducible pipeline for the analysis of large scale voltage imaging datasets. VolPy equips
experimenters with efficient computational routines for data handling, motion correction, memory
mapping, neuron localization and segmentation, trace denoising and spike extraction. VolPy builds
upon several optimized and robust routines of the well-established CalmAn framework, which it
extends to deal with voltage imaging data.

In particular, our contributions develop along the following lines. We provided a corpus of
24 annotated datasets from different brain areas, collection systems and voltage indicators. We
developed an automated segmentation supervised algorithm which relies on a Mask R-CNN neural
network architecture. We trained a single network for all types of considered datasets and evaluated
it using cross-validation. The algorithm performance is excellent when enough training data is
provided, but smoothly degrades when input data is scarce for specific types of datasets. Regard-
ing trace denoising and spike extraction approaches, we built upon the SpikePursuit algorithm
(Abdelfattah et al., 2079) and extended it to make it fully automatic, to improve its reproducibility,
performance, and to enhance its scalability. We benchmarked the performance of VolPy in extract-
ing action potentials against ground truth electrophysiology, with results averaging an outstanding
F, score of 0.94. Scalability is achieved by leveraging the infrastructure previously deployed in
CalmAn, which we adapted to enable the parallel processing of multiple neurons. VolPy enables a
time-memory trade-off which can be tuned based on the available computing power. We demon-
strated that Vo/Py enables voltage imaging data analysis on desktop computers. Towards our
goal of providing a single package for dealing with standard problems arising in the analysis of
imaging data, VolPy is fully integrated into Ca/mAn and is therefore immediately available to many
laboratories worldwide. The proposed framework is therefore poised to promote the distribution
of voltage imaging within the neuroscience community, and in consequence to open the path to a
new generation of experiments bridging the gap between electrophysiology and optical imaging.
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Future directions
As more data become available and more users adopt Vo/Py, we plan to develop a graphical user
interface for experimentalists to manually label datasets and transfer the resulting annotations to a
cloud server, which we will periodically use to retrain and improve the performance of our system.

SpikePursuit is built upon linear methods with a small number of easily-interpreted parameters.
An advantage of this approach is that the parameters for can be tailored to different datasets
by end users (for example: context area, number of spikes used for templates, filter bandwidth
and confidence in segmentation). A continuing challenge for optical physiology is the limited
electrophysiological ground truth available for training complex spike detection models. As more
training data become available, we expect machine learning approaches to supersede the spatial
and/or temporal filtering steps used by SpikePursuit within Vo/lPy. Even without large training
datasets, algorithmic improvements may be possible. For example, SpikePursuit implements
efficient but approximate spike detection using matched filtering with a single template, but could
be extended e.g. to include multiple templates or subtractive interference cancellation (Franke
et al., 2015). VolPy and the datasets provided here provide an ideal common ground for comparing
such methods.

Finally, and similar to our work in calcium imaging (Giovannucci et al., 2017), we plan to general-
ize our algorithm to real-time scenarios, where activity of neurons needs to be inferred on the fly
and frame-by-frame.

Materials and Methods

Motion correction & Memory mapping

VolPy performs motion correction and memory mapping similarly to CalmAn (Giovannucci et al.,
2019). For motion correction, VolPy uses the NoRMCorre algorithm (Pnevmatikakis and Giovan-
nucci, 2017) which corrects non-rigid motion artifacts in two steps. First, motion vectors are
estimated with sub-pixel resolution for a set of overlapping patches which tile the FOV. Second,
the sub-pixels estimates are upsampled to create a smooth motion field for each frame, which is
then applied to correct the original frames. Unlike previously, our new implementation enables to
perform motion correction on a large number of small files containing a single image (the typical
output of fast imaging cameras). This is achieved by multiple parallel processes reading files incre-
mentally and concurrently from the hard drive. This avoids the time- and memory-intensive job of
transforming single image files into multi-page or hdf5 files. This modification leads to significant
savings in memory, hard drive space and speed.

VolPy adopts an optimized framework for efficient parallel data read and write. This framework
is based on the ipyparallel and memory mapping Python packages (see Giovannucci et al. (2019) for
more details). In brief, the former enables the creation of distributed clusters across workstations or
HPC infrastructures, and the latter enables reading and writing slices of large data tensors without
loading the entire file into memory. This is especially important for voltage imaging, considering
the larger file sizes compared to calcium imaging. This framework, which in VolPy implements an
embarrassingly parallel infrastructure, is used across different steps of the pipeline:

* The output of the motion correction operation is saved into a set of F ordered Python memory
map files without creating any other intermediate files. This is done in parallel over all the
processed movie chunks.

+ The motion corrected F order files are then consolidated into a single C ordered memory map
file. This is also performed in parallel over many processes.

* During trace denoising and spike extraction, each process loads and processes in parallel a
small portion of the field of view.
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Figure 6. Segmentation algorithm of VolPy. (a) Mask R-CNN framework for segmenting neurons with summary
images as input to the network. (b) The output of VolPy segmentation algorithm run on three example datasets
from sensory cortex (left, Voltron, dataset L1.00.00), mouse hippocampus (center, paQuasAr3, dataset
HPC.48.08), and larval zebrafish (right, Voltron, dataset TEG.01.02). The mean images are overlaid with contours
(solid line), bounding boxes (dotted line) and detection confidence for each candidate neuron. Only neurons
with detection confidence greater than 0.7 are displayed.

Creating a corpus of annotated datasets

We generate a corpus of annotated datasets in which neurons are manually segmented. For
neurons to be selected at least one of the following criteria needed to be met: (i) Both annotators
had to agree on the selection; (ii) Neurons were very clear on at least one of the three cues; (iii)
Neurons were moderately clear in one of the summary images and appeared clearly in a few frames
of the local correlations movie.

Figure 8 shows the process of selecting neurons. Ground truth is inferred by human labelers
from mean and local correlation images as well as a local correlation movie which highlights active
neurons. Relying on these three visual cues, two annotators marked the contours of neurons
(yellow color) using the ImageJ Cell Magic Wand tool plugin (Walker, 2014) and saved the result into
the ROI manager in Image)J.

Segmentation via convolutional networks
VolIPy uses a variation of the Mask R-CNN framework (see Figure 6) to initialize spatial footprints of
neurons. In the following section we will introduce the Mask R-CNN framework in the Vo/Py context.
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Mask R-CNN

Mask R-CNN (Figure 6a) is a network architecture which provides simultaneous object localization
and instance segmentation via a combination of two network portions: backbone and head. The
backbone features a pre-trained convolutional network (such as VGG, ResNet, Inception or others)
for extracting features of the input image. Mask R-CNN also exploits another effective backbone:
Feature Pyramid Networks (FPN) (Lin et al., 2017), a top-down architecture with lateral connections,
which enables the network to extract features on multiple scales from the feature maps. In the
head, based on the extracted features, a Region Proposal Network proposes initial bounding boxes
for each candidate object, which are fed to two downstream branches. One of them is trained to
predict a class label and a bounding box offset which refines the initial bounding box, while the
other branch outputs a binary mask for each candidate object.

VolPy Mask R-CNN

We adapt Mask R-CNN to our purpose by introducing the following modifications. We choose a
combination of ResNet-50 pre-trained on the COCO dataset and FPN as the backbone. The input
of the network is a three channel image: two for the mean images and one for the correlation
image. The three channel image is necessary in order to re-use the first few layers which were
pre-trained on the COCO dataset. The network is trained to predict only one class, neuron or not
neuron (background) instead of a multi-label output.

Training: We randomly crop the input image into 128x128 crops and apply the following data
augmentation techniques using the imgaug (Jung et al., 20719) package: flip, rotation, multiply (adjust
brightness), Gaussian noise, shear, scale and translation. Each mini-batch contains six cropped
images. We train on one GPU the heads (the whole network except the ResNet) of the network for
2k iterations with learning rate 0.01 and then train layers after the first three stages of the ResNet
(28 layers) for another 2k iterations with learning rate 0.001. We use stochastic gradient descent as
our optimizer with a constant learning momentum 0.9. The weight decay is 0.0001.

Validation: Images are padded with zeroes to make width and height multiples of 64 so that
feature maps can be smoothly scaled for the Feature Pyramid Network . We only choose neurons
with confidence level greater or equal to 0.7.

Trace denoising and spike extraction

Trace denoising and spike inference are performed by an improved version of the SpikePursuit
algorithm (Abdelfattah et al., 2019), in which we optimized for speed, memory usage, and accuracy.
The pseudo-code for the associated computational steps is reported in Algorithm (1) and Figure 7.
The algorithm starts by approximating a neuronal signal and the background contamination from
the ROI provided by the segmentation step. The algorithm then proceeds iteratively to detect
the most prominent spikes, extract a waveform template from detected spikes, use the template
to recover similarly-shaped spikes, reconstruct the trace from the recovered spikes, and use the
reconstructed trace to improve the spatial filter. These steps are explained in more details below.

ROl loading and preprocessing

As a result of segmentation, each candidate neuron has an associated binary mask which represents
its spatial extent (ROl region R). The ROl is dilated to get a larger region (50x50 pixels by default)
centered on the neuron (context region C). Background pixels are defined as all the pixels in the
context region at least ny, pixels (12 pixels by default) away from the ROI region (background region).
As a first step, all pixels in the context region are efficiently retrieved from the memory mapped file
and high-pass filtered as Y, to compensate for photo-bleaching (Figure 7a-b, Algorithm 1 lines 1-8).
The initial temporal trace t, associated to a neuron can be approximated either from the mean
signal of the ROI region pixels, or as a weighted average across all pixels in the context region when
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Figure 7. Algorithm for fluorescence trace denoising and spike inference. (a) A small section of the movie
(context region) encompassing a candidate neuron and a neighboring area is loaded from the C ordered
memory mapped file. (b) After high-pass filtering the movie, the initial temporal trace of the candidate neuron is
approximated either from the mean signal of the ROI region pixels, or by applying the spatial filter to the
context region if an initial spatial filter is provided. Afterwards, two big steps are executed in loop until
convergence (or a maximum of 5 steps). The former ((c),(d),(e) and (f)) estimates spike times, and the latter ((g))
refines the spatial filter. (c) We extract the first 8 principal components of the background pixels using singular
value decomposition and then remove the background contamination via Ridge regression. (d) After high-pass
filtering the trace, we select spikes with peak larger than an adaptively selected threshold (gray dotted line). The
total number of peaks detected in the first round is constrained between 30 and 100. Later rounds of spike
detection include all spikes. (e) Waveforms of these spikes (gray) are averaged to obtain a spike template (black
line). (f) A whitened matched filter is used to enhance spikes which have a similar shape to the template. (g)
Refine spatial filter through Ridge regression. Calculate the weighted average of movie (using the refined spatial
filter) as the new temporal trace for the next iteration.
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a spatial filter w calculated from previous chunk of data was available (Algorithm 1 lines 9-13):

n(R) Z Y,[:,x] if wis not given
ty = 1
0 > Yh[.,x]w[x] if wis given M
xeC
where n(R) represents number of pixels in the ROI region.
Afterwards, two steps are executed in loop until convergence (or a maximum of 5 steps). The

former tries to estimate spike time, and the latter tries to approximate the spatial filter.

Spike time estimation
In order to estimate spike times from the fluorescence traces (Figure 2c-f) we proceed as follows.
First, we compute the singular value decomposition of the background pixels Y,:

Y, =UsV )

where U contains the temporal components. This is then used to remove background con-
tamination via Ridge regression, in which U,, the first 8 components of U is the regressor and the
temporal trace is the predictor (Algorithm 1 line 15-16).

B=WUU,+ AU 1D Ut 3)

t=t,—U,p (4)

We experienced that a very high signal-to-noise ratio neuron with large spatial footprint included in
the background pixels led to poor performance due to unregularized linear regression used at this
stage in the original SpikePursuit implementation. Use of non-regularized regression to remove
the background can allow real signal to be subtracted from neuron traces if the neuron’s trace
is captured by the background PCs. To ameliorate this issue, we modified the original algorithm
by adding an L, regularizer to penalize large regression coefficients. This provided more reliable
results with respect to the original implementation on multiple datasets.

After background removal, the trace is high-pass filtered with a cut-off frequency of 60 Hz and
two rounds of spike detection are performed. The first round selects spikes with peak larger than
an adaptively selected threshold, while keeping the total number of peaks between 30 and 100
(Algorithm 3). A spike template z is computed by averaging all the peak waveforms:

== Zt[s[z] — 1 ¢ s[i] + 7] (5)

g i=1

where s is the list of spike time, n, is total number of spikes, 7 is the half size of window length.
Subsequently, a whitened matched filter (Franke et al., 2015) is used to enhance spikes with shape
similar to a template. More in details, we use the Welch method to approximate the spectral density
of the noise in the fluorescence signal. Second, we scale the signal in the frequency domain to
whiten the noise. Finally, we convolve with a time-flipped template. The template we used is the
peak-triggered average.

The latter round of spike detection incorporates all the spikes detected by applying a newly
computed threshold. Then, a reconstructed and denoised trace is computed by convolving the
inferred spike train (q) with the waveform template:

1 ifthereis aspike attimet

6
0 otherwise ©)

r=zxq Whereq[t]z{
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Spatial filter refinement

The second step, illustrated in Figure 2g, is to refine the spatial filter. The updated spatial filter is
computed by Ridge regression, where the reconstructed and denoised trace is used to approximate
the high-passed video (Algorithm 1 line 18):

w=Y, + 4,0V, 15D Y 7)

Subsequently, the weighted average of movie with the refined spatial filter is used as the updated
temporal trace for the following iteration:

- (®)

The ridge regression problem was originally solved in SpikePursuit by directly calculating the
analytical solution (normal equation). However, the multiplication and inverse of large matrices was
computationally inefficient. We decided to apply an iterative and much more efficient algorithm to
solve the regression problem (Paige and Saunders, 1982) implemented in the Scikit-Learn package
(Isqr).

Precision/Recall Framework to measure segmentation performance

In order to measure the performance of VolPy segmentation, we compared the spatial footprints
extracted by VolPy with our manual annotations (see (Giovannucci et al., 2019) component regis-
tration for a detailed explanation). In summary, we computed the Jaccard distance (the inverse of
intersection over union) to quantify similarity among ROIs, and then solved a linear assignment
problem with the Hungarian algorithm to determine matches and mismatches. Once these were
identified, we adopted a precision/recall framework and we defined True Positive (TP), False Positive
(FP), False Negative (FN), and True Negative (TN) as follows:

TP = number of matched spatial footprints

FP = number of spatial footprints in VolPy but not in GT
FN = number of spatial footprints in GT but not in VolPy
TN=0

9

Next we computed precision, recall and F, score of the performance in matching as the following:

Precision = TP/(TP + FP)
Recall = TP/(TP + TN) (10)
F, =2 x Precision x Recall/(Precision + Recall)

Note that the F, score is a number between zero and one. The better the performance of
matching, the higher the F1 score.

Cross-Validation to evaluate segmentation model on limited datasets
In order to decrease the selection bias originated from the separation in training and validation
datasets and better evaluate Mask R-CNN model on our limited datasets (24 in total), we performed
a stratified three-fold cross-validation. The reason we used a stratified three-fold cross-validation
rather than a normal three-fold cross-validation is that we want our model train and validate on
each type of datasets. We partitioned datasets into three groups so that arbitrary type of data (L1,
TEG, HPQ) is partitioned equally into three groups without repetition (Figure 2 train/val column
shows one group of the partition). During cross-validation two groups were used as training sets
while the remaining one as validation set. The cross-validation process was repeated three times
with each group used exactly once as validation set.

For each run of the cross-validation process, we trained a single network and tested it on both
training and validation sets. We then computed the mean and standard deviation of the F1 score
for different types of datasets with training and validation sets treated separately.
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Spike matching

In order to validate fidelity of spike extraction algorithm, we needed to match spikes extracted
from voltage imaging and electrophysiology datasets. Let v, v,, ...,v, be the spike time extracted
from voltage imaging traces, and s, s,, ..., s,, be the spike times from electrophysiology ground truth,
where n and m are the total number of spikes respectively. We formulate the problem as a linear
sum assignment problem. Let D be a distance matrix where D[i, j] is the cost of matching spikes v,
and s;. When the difference of spike-times is larger than a threshold ¢, we assign a large distance
value M:

. llo, = sl ifflo,—s;ll <t
D, j1= b P . 11
Li./] { M, otherwise ()

Let X be the Boolean matrix where X[i, j] = 1 if v, and s; are matched and 0 otherwise. Each
spike can be matched at most once, i.e. at most one element for each row (or column) of X can be
one. The optimal assignment has the cost:

minz ZD,.J.X,.J (12)
i

We solve this optimization problem using the Hungarian algorithm implemented in the Scipy
package and delete matched spikes whose costs are equal to M. After identifying matches and
mismatches, we proceeded similarly to what explained above to extract the F, score. We define TP,
FP, FN, TN similar to Equation 9:

TP = number of matched spikes

FP = number of spikes in Vo/lPy but not in GT
FN = number of spikes in GT but not in VolPy
TN=0

(13)

Then we calculated F, score same as Equation 10.
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Description of Supplemental Movies

Video 1. Example of voltage imaging data on mouse neocortex data. Left: Raw data. Right: Local correlation
video.

Description of Supplemental Images

Algorithmic Details

In the following section we present the pseudocode for several of the routines introduced and used
by VolPy. Note that the pseudocode descriptions do not aim to present a complete picture and may
refer to other work for some of the steps.

Algorithm 1 SPIKEPURSUIT

Require: Input data matrix M, binary matrix for region of interest R, number of background
principal components n,, rest of parameters
: R, = DILATION(R, params)

-

20 X pins Xmaxs Ymins Ymax = FINDBORDER(R,) > Find border of context region
3 Y =M[ X0 Xacs YVmin - Ymax) > Extract pixels in context region
4 R = R[X,;, > Xpaxs Ymin - Ymax)

5. p=FIND(R==1) > Pixels for ROI
6: R, = DILATION(R, params)

7: py = FIND(R, == 0) > Pixels for background region
8: Y, « HIGHPASSFILTER(Y, params)

9: if w is None then
10: ty = MEAN(Y,[:, p]) > Mean of movie across all pixels in ROI
11: else
12: ty = WEIGHTEDAVERAGE(Y),, W) > Weighted average of movie
13: end if
14: Y, =Y, [, py] > Background signal
15: U, = SVD(Y,, ny) > Find top n, background components
16: f = RIDGEREGRESSION(U,, t, 4,)
17: t « ty—U,B > Remove background components
18: t,s,r,z « DENOISESPIKES(t, params) > Compute optimized trace, spike times, reconstructed

signal, temporal template t,s,r,z
19: fork=1,...,K do
20: w = RIDGEREGRESSION(Y,, r, 4,,) > Calculate spatial filter
21: t < WEIGHTEDAVERAGE(Y,,, W)
22: B < RIDGEREGRESSION(U,, t, 4,)
23: t<t-U,p
24: t,s,r,z <« DENOISESPIKES(t, params)
25: end for
26: returnt,s
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Figure 8. Create manual annotations of voltage imaging datasets with Image). We selected neurons based on
mean image (left), correlation image (mid-left) and local correlation movie (mid-right). Two annotators marked
the contours of neurons using Image] Cell Magic Wand tool plugin and saved selections in ROl manager (right).
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Algorithm 2 DENOISESPIKES

Require: Temporal trace t, window length z, max number of spikes picked n,,,,
1: t « HIGHPASSFILTER(t)

2: p,s,q = LOCALMAXIMUM(t) > Compute peak heights p, spike time s and spike train q
3: h = GETTHRESH(p, 1,,,,) > Only detect large spiking events
4: 8§ « s[p > h]
n(s)
5: n( ;. Z tls[i] — 7 : s[i] + 7] > Compute temporal template
6: t « WHITENEDMATCHEDFILTER(t,s, T)
7: p,s,q < LOCALMAXIMUM(t)
8: h < GETTHRESH(p, ) > Detect all spikes that can be found
9: s < s[p > h]
10: r = CONVOLVE(q, z) > Compute reconstructed signal r

11: returnt,s,r,z

Algorithm 3 GETTHRESH

Require: peak heights p, max number of spikes picked n,,,, norm number p,,.... min number of
spikes detected n,,,, rest of parameters
1. x = LINSPACE(MIN(p), MAX(p), params) > Evenly spaced samples between min and max of peak
heights
: f = KDE(p, x) > Estimate distribution of peak heights
: u = MEDIAN(p)
. j = FIND(X[i] < p, x[i + 1] > u)
D foisel 1 2 1 =111 1 j]
foweli+1 :end] =f[j : 1] > Approximate noise distribution
: F = CuMSum(f) > Cumulative distribution
Floie = CUMSUM(
. F =F[end] —
* Fuoise = .m.se[end]

g =Fren — T

: k = ARGMAX(g) > Adaptive thresholding
= X[K]

: |f Sum(p > h) < n,,, then > Too few spikes are found, adjust to n,,,
h= PERCENTILE(p, 100 * (1 — n,,;,/LEN(p)))

: else if Sum(p > h) > n,,,, then > Too many spikes are found, adjust to n,,,,
h = PERCENTILE(p, 100 * (1 — n,,,./LEN(P)))

: end if

: return h

n()lse)
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Algorithm 4 WHITENEDMATCHEDFILTER

Require: Temporal trace t, spike train q, window length =
1: q' = CONVOLVE(q, ONES(27 + 1))

2 toe = tlq' < 0.5]

3: s, = SQRT(WELCH(t, ;) > s, is scaling factor in frequency domain

4 t' = IFFT(FFT(t)/s,)

5 z= ni 2 t'[s[i] — 7 : s[i]+ ] > Compute temporal template
S =1

6: t' «— CONVOLVE(t’, FLIP(z)) > Template matching

7: return t’
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