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Abstract

Despite considerable progress on pathogenicity scores prioritizing both coding and non-
coding variants for Mendelian disease, little is known about the utility of these pathogenicity
scores for common disease. Here, we sought to assess the informativeness of Mendelian disease
pathogenicity scores for common disease, and to improve upon existing scores. We first applied
stratified LD score regression to assess the informativeness of annotations defined by top variants
from published Mendelian disease pathogenicity scores across 41 independent common diseases
and complex traits (average N = 320K). Several of the resulting annotations were informative
for common disease, even after conditioning on a broad set of coding, conserved, regulatory
and LD-related annotations from the baseline-LD model. We then improved upon the pub-
lished pathogenicity scores by developing AnnotBoost, a gradient boosting-based framework
to impute and denoise pathogenicity scores using functional annotations from the baseline-LD
model. AnnotBoost substantially increased the informativeness for common disease of both
previously uninformative and previously informative pathogenicity scores; our combined joint
model included 3 published and 8 boosted scores. The boosted scores also significantly outper-
formed the corresponding published scores in classifying disease-associated, fine-mapped SNPs.
Our boosted scores have high potential to improve candidate gene discovery and fine-mapping

for common disease.
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Introduction

Despite considerable progress on pathogenicity scores prioritizing both coding and non-coding vari-

10 (veviewed in ref. 11), little is known about the utility of these

ants for Mendelian disease
pathogenicity scores for common disease. The shared genetic architecture between Mendelian dis-
ease and common disease has been implicated in studies reporting the impact of genes underlying

1

monogenic forms of common diseases on the corresponding common diseases'?, significant cormo-

13

bidities among Mendelian and complex diseases >, and gene-level overlap between Mendelian dis-

14-16 17,18

eases and cardiovascular diseases , neurodevelopmental traits , and other complex traits!?.
However, variant-level assessment of shared genetic architecture using Mendelian pathogenicity
scores has not been explored. Thus, our current understanding of the genetic relationship between
Mendelian disease and common disease remains limited.

Here, we sought to assess the informativeness of Mendelian disease pathogenicity scores for
common disease, and to improve upon existing scores. We focused our attention on polygenic
common and low-frequency variant architectures, which explain the bulk of common disease heri-
tability 2024, We assessed the informativeness of annotations defined by top variants from published
Mendelian disease pathogenicity scores by applying stratified LD score regression?® (S-LDSC) with
the baseline-LD model?%27 to 41 independent common diseases and complex traits (average N =
320K). We assessed informativeness conditional on the baseline-LD model, which includes a broad
set of coding, conserved, regulatory and LD-related annotations.

We improved upon the published pathogenicity scores by developing AnnotBoost, a gradient
boosting-based machine learning framework to impute and denoise pathogenicity scores using func-
tional annotations from the baseline-LD model. We assessed the informativeness of annotations
defined by top variants from the boosted scores by applying S-LDSC and assessing informativeness
conditional on annotations from the baseline-LLD model as well as annotations derived from the

corresponding published scores. We also assessed the informativeness of the published and boosted

pathogenicity scores in predicting disease-associated, fine-mapped SNPs.
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Results

Overview of methods

We define a binary annotation as an assignment of a binary value (0 or 1) to each SNP with
minor allele count > 5 in a 1000 Genomes Project European reference panel?®, as in our previous
work?®. We define a pathogenicity score as an assignment of a numeric value quantifying predicted
pathogenicity to some or all of these SNPs; we analyze 11 Mendelian missense scores, 6 genome-wide
Mendelian scores, and 18 additional scores. Our primary focus is on binary annotations defined
either using top variants from published (missense or genome-wide) Mendelian disease pathogenicity
scores, or using top variants from boosted scores that we constructed from those pathogenicity
scores using AnnotBoost, a gradient boosting-based framework that we developed to impute and
denoise pathogenicity scores using coding, conserved, regulatory and LD-related annotations from
the baseline-LD model 2627 (see Methods). AnnotBoost uses decision trees to distinguish pathogenic
variants (defined using the input pathogenicity score) from benign variants; the AnnotBoost model
is trained using the XGBoost gradient boosting software?® (see URLs). AnnotBoost uses odd
(resp. even) chromosomes as training data to make predictions for even (resp. odd) chromosomes;
the output of AnnotBoost is the predicted probability of being pathogenic. Further details are
provided in the Methods section; we have publicly released open-source software implementing
AnnotBoost, as well as all pathogenicity scores and binary annotations analyzed in this work (see
URLSs).

We assessed the informativeness of the resulting binary annotations for common disease heri-
tability by applying S-LDSC?’ to 41 independent common diseases and complex traits3? (average
N = 320K; Table S1; see URLs), conditioned on coding, conserved, regulatory and LD-related
annotations from the baseline-LD model?%?7 and meta-analyzing results across traits. We assessed
informativeness for common disease using standardized effect size (7*), defined as the proportionate
change in per-SNP heritability associated to a one standard deviation increase in the value of the
annotation, conditional on other annotations?® (see Methods). We also computed the heritability
enrichment, defined as the proportion of heritability divided by the proportion of SNPs. Unlike
enrichment, 7% quantifies effects that are unique to the focal annotation (see Methods). We also

assessed the informativeness of the underlying (published and/or boosted) pathogenicity scores in
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predicting disease-associated, fine-mapped SNPs.

Informativeness of Mendelian missense scores for common disease

We assessed the informativeness for common disease of binary annotations derived from 11 Mendelian
disease pathogenicity scores for missense variants!:5 %3135 (see Table 1). These scores reflect the
predicted impact of missense mutations on Mendelian disease and were trained using rare variants,
primarily from ClinVar®® and Human Gene Mutation Database (HGMD)3". For each of the 11
missense scores, we constructed binary annotations based on top missense variants using 5 dif-
ferent thresholds (from top 50% to top 10% of missense variants) and applied S-LDSC?2%26 to 41
independent common diseases and complex traits (Table S1), conditioning on coding, conserved,

regulatory and LD-related annotations from the baseline-LD model 2527

and meta-analyzing results
across traits; proportions of top SNPs were optimized to maximize informativeness (see Methods).
We incorporated the 5 different thresholds into the number of hypotheses tested when assessing
statistical significance (Bonferroni P < 0.05/500 = 0.0001, based on a total of ~ 500 hypotheses
tested in this study; see Methods). We identified (Bonferroni-significant) conditionally informative
binary annotations derived from 2 published missense scores: the top 30% of SNPs from MPC?34
(enrichment = 27x (s.e. 2.5), 7" = 0.60 (s.e. 0.07)) and the top 50% of SNPs from PrimateAI®
(enrichment = 17x (s.e. 2.0), 7" = 0.42 (s.e. 0.09) (Figure 1, Table 2 and Table S2). The MPC

34

(Missense badness, PolyPhen-2, and Constraint) score®* is computed by identifying regions within

genes that are depleted for missense variants in ExAC data® and incorporating variant-level met-

rics to predict the impact of missense variants; the PrimateAl score®

is computed by eliminating
common missense variants identified in other primate species (which are presumed to be benign in
humans), incorporating a deep learning model trained on the amino acid sequence flanking the vari-
ant of interest and the orthologous sequence alignments in other species. The remaining published
Mendelian missense scores all had derived binary annotations that were significantly enriched for
disease heritability (after Bonferroni correction) but not conditionally informative (except for the
published M-CAP score, which spanned too few SNPs to be included in the S-LDSC analysis).
We constructed boosted scores from the 11 Mendelian missense scores using AnnotBoost, a

gradient boosting-based machine learning framework that we developed to impute and denoise

pathogenicity scores using functional annotations from the baseline-LD model?® (see Methods).
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We note that AnnotBoost scores genome-wide (missense and non-missense) variants, implying low
genome-wide correlations between input Mendelian missense scores and corresponding genome-wide
boosted scores (0.02-0.24; Table S3A). AnnotBoost attained high predictive accuracy in out-of-
sample predictions of input missense scores (AUROC= 0.76-0.94, AUPRC= 0.43-0.82; Table S4),
although we caution that high predictive accuracy does not necessarily translate into conditional
informativeness for common disease®’. We further note that out-of-sample AUROCS closely tracked
the genome-wide correlations between input Mendelian missense scores and corresponding genome-
wide boosted scores (r = 0.65), implying that accurately predicting the input pathogenicity scores
results in more correlated boosted scores.

For each missense pathogenicity score, after running AnnotBoost, we constructed binary anno-
tations based on top genome-wide variants, using 6 different thresholds (ranging from top 10% to
top 0.1% of genome-wide variants, as well as variants with boosted scores > 0.5; see Methods). We
assessed the informativeness for common disease of binary annotations derived from each of the
11 boosted scores using S-LLDSC, conditioning on annotations from the baseline-LLD model and 5
binary annotations derived from the corresponding published Mendelian missense score (using all
5 thresholds) (baseline-LD+5). We identified conditionally informative binary annotations derived
from boosted versions of 10 Mendelian missense scores, including 8 previously uninformative scores
and the 2 previously informative scores (Figure 1, Table 2 and Table S2). Letting 1 denote boosted
scores, examples include the top 0.1% of SNPs from M-CAP17, a previously uninformative score
(enrichment = 23x (s.e. 2.6), 7" = 0.43 (s.e. 0.08); the published M-CAP pathogenicity score
spanned too few SNPs to be included in the S-LDSC analysis of Figure 1) and the top 0.1% of
SNPs from PrimateAI17, a previously informative score (enrichment = 35x (s.e. 2.7), 7% = 0.83
(s.e. 0.08)). The M-CAP (Mendelian Clinically Applicable Pathogenicity) score” is computed
by training a gradient boosting tree classifier to distinguish pathogenic variants from HGMD?3"
vs. benign variants from ExAC?3® using 9 pathogenicity likelihood scores as features (including
PolyPhen-21, MetaLR3?, CADD?; see Table 1); the PrimateAl score is described above. Interest-
ingly, binary annotations derived from 7 boosted scores had significantly negative 7% (—0.72 (s.e.
0.07)) to —0.13 (s.e. 0.01)). All but one of these binary annotations were significantly enriched for
disease heritability, but less enriched than expected based on annotations from the baseline-LD+5

model (Table S5; see ref. 40 and Methods), and thus uniquely informative for disease heritability
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(analogous to transposable element annotations in ref. 40 that were significantly depleted, but
less depleted than expected and thus uniquely informative). The boosted version of the remaining
Mendelian missense score (MVP1; not included in Figure 1) had a derived binary annotation that
was significantly enriched for disease heritability (after Bonferroni correction) but not conditionally
informative (Table S2).

We performed two secondary analyses. First, we restricted the 10 significant binary anno-
tations derived from our boosted Mendelian missense scores to non-coding regions, which were
previously unscored by the Mendelian missense scores, and assessed the informativeness of the
resulting non-coding binary annotations using S-LDSC. We determined that the non-coding anno-
tations retained the bulk of the overall signals (85%-110% of absolute 7*; Table S6), implying that
AnnotBoost leverages information about pathogenic missense variants to usefully impute scores for
non-missense variants. Second, we investigated which features of the baseline-LD model contributed
the most to the informativeness of the boosted annotations by applying Shapley Additive Explana-
tion (SHAP)*!, a widely used tool for interpreting machine-learning models. We determined that
conservation-related features drove the predictions of the boosted annotations, particularly (binary

and continuous) GERP scores*? (Figure S1).

Informativeness of genome-wide Mendelian pathogenicity scores for common dis-

ease

We assessed the informativeness for common disease of binary annotations derived from 6 genome-
wide Mendelian disease pathogenicity scores? %19 (see Table 1). These scores reflect the predicted
impact of (coding and) non-coding variants on Mendelian disease and were also primarily trained
using rare variants from ClinVar3®¢ and HGMD?7. For each of the 6 genome-wide scores, we con-
structed binary annotations based on top genome-wide variants using 5 different thresholds (from
top 0.1% to top 10% of genome-wide variants) and applied S-LDSC to the 41 traits, condition-
ing on the baseline-LD model?® and meta-analyzing results across traits; proportions of top SNPs
were optimized to maximize informativeness (see Methods). We identified (Bonferroni-significant)
conditionally informative binary annotations derived from 3 genome-wide scores: the top 0.5% of
SNPs from ReMM* (enrichment = 19x (s.e. 1.2), 7% = 0.82 (s.e. 0.09)), the top 0.5% of SNPs from
CADD?%3 (enrichment = 18x (s.e. 1.3), 7 = 0.71 (s.e. 0.10)), and the top 0.1% of SNPs from
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Eigen? (enrichment = 24x (s.e. 2.1), 7* = 0.40 (s.e. 0.06)) (Figure 2, Table 2 and Table S7). The
CADD (Combined Annotation Dependent Depletion) score?43 is computed by training a support
vector machine to distinguish deleterious vs. neutral variants using functional annotations as fea-

tures; the Eigen score?

is computed from 29 input functional annotations by using an unsupervised
machine learning method (leveraging blockwise conditional independence between annotations) to
differentiate functional vs. non-functional variants; the ReMM (Regulatory Mendelian Mutation)
score? is computed by training a random forest classifier to distinguish 406 hand-curated Mendelian
mutations from neutral variants using conservation scores and functional annotations as features.
The remaining 3 genome-wide scores all had derived binary annotations that were significantly en-
riched for disease heritability (after Bonferroni correction) but not conditionally informative (Table
S7).

We applied AnnotBoost to the 6 genome-wide Mendelian scores. We observed moderate correla-
tions between input genome-wide Mendelian scores and corresponding boosted scores (r = 0.35-0.66;
Table S3B). AnnotBoost again attained high predictive accuracy in out-of-sample predictions of
input genome-wide scores (AUROC = 0.83-1.00, AUPRC = 0.70-1.00; Table S4); however, out-
of-sample AUROCSs did not closely track the correlations between input genome-wide scores and
corresponding boosted scores (r = 0.05).

We again constructed binary annotations based on top genome-wide variants, using 6 different
thresholds (ranging from top 0.1% to top 10% of genome-wide variants, as well as variants with
boosted scores > 0.5; see Methods). We assessed the informativeness for common disease of binary
annotations derived from each of the 6 boosted scores using S-LDSC, conditioning on annotations
from the baseline-LD model and 5 binary annotations derived from the corresponding published
genome-wide Mendelian score (using all 5 thresholds). We identified conditionally informative
binary annotations derived from boosted versions of all 6 genome-wide Mendelian scores, including
the 3 previously uninformative scores and the 3 previously informative scores (Figure 2, Table 2
and Table S2). Examples include the top 5% of SNPs from ncER1? (enrichment = 6.2x (s.e. 0.30),
7% = 0.74 (s.e. 0.10)) and the top 0.5% of SNPs from boosted Eigen-PC13 (enrichment = 16x (s.e.
1.1), 7" = 0.62 (s.e. 0.12)), both of which were previously uninformative scores, and the top 1% of
SNPs from ReMM?# (enrichment = 17x (s.e. 0.8), 7" = 1.17 (s.e. 0.12)), a previously informative

9

score. The ncER (non-coding Essential Regulation) score” is computed by training a gradient
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boosting tree classifier to distinguish non-coding pathogenic variants from ClinVar3® and HGMD?3”
vs. benign variants using 38 functional and structural features; the Eigen-PC score® (related to
the Eigen score) is computed from 29 input functional annotations by using the lead eigenvector of
the annotation covariance matrix to weight the annotations; the ReMM score is described above.
We performed two secondary analyses. First, for the 4 genome-wide Mendelian scores with
<100% of SNPs scored (Table 1), we restricted the binary annotations derived from our boosted
genome-wide Mendelian scores to previously unscored variants and assessed the informativeness
of the resulting binary annotations using S-LDSC. We determined that these annotations retained
only a minority of the overall signals (17%-54% of absolute 7*; Table S8), implying that AnnotBoost
usefully denoises previously scored variants. Second, we again investigated which features of the
baseline-LD model contributed the most to the informativeness of the boosted annotations by
applying SHAP#. We determined that both conservation-related features (e.g. GERP scores) and
LD-related features (e.g. LLD-AFR; level of LD in Africans) drove the predictions of the boosted

annotations (Figure S2).

Informativeness of additional genome-wide scores for common disease

For completeness, we assessed the informativeness for common disease of 18 additional genome-

wide scores not directly related to Mendelian disease, including 2 constraint-related scores*445, 9

46-48 38,49-51

scores based on deep learning predictions of epigenetic marks , and 7 gene-based scores

(see Table S9). For each of the 18 additional scores, we constructed binary annotations based on

top variants using 5 different thresholds and applied S-LDSC to the 41 traits, conditioning on the

126

baseline-LD model“® and meta-analyzing results across traits; in this analysis, we also conditioned

on 8 Roadmap annotations® (4 annotations based on the union across cell types and 4 annotations
based on the average across cell types, as in ref. 39), as many of the additional scores pertain to
regulatory elements, making this an appropriate conservative step.

We identified (Bonferroni-significant) conditionally binary annotations derived from 6 informa-
tive scores, including the top 1% of SNPs from CDTS** (enrichment = 9.3x (s.e. 0.75), 7 = 0.35
(s.e. 0.06)) and the top 5% of SNPs from DeepSEA-H3K4me34647 (enrichment = 3.9x (s.e. 0.23),
7% = 0.21 (s.e. 0.04)) (Figure 3, Table 2 and Table S10). CDTS (Context-Dependent Tolerance

44

Score)** is a constraint score based on observed vs. expected variation in whole-genome sequence
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data; DeepSEA-H3K4me3 scores?®47 are computed by training a deep learning model to predict
chromatin marks using proximal reference genome sequence as features and aggregated across dif-
ferent cell types3Y (The DeepSEA annotations in Figure 3 were more significant than those analyzed
in ref. 39, because we optimized binary annotations based on top variants; however, no DeepSEA
annotations were included in our combined joint model (see below)). 9 of the remaining 10 scores
(excluding two that were not analyzed due to small annotation size) had derived binary annota-
tions that were significantly enriched for disease heritability (after Bonferroni correction) but not
conditionally informative (Table S10).

We applied AnnotBoost to the 18 additional scores, and to the 47 main annotations of the
baseline-LD model (Table S9). Correlations between input scores and corresponding boosted scores
varied widely (r = 0.005-0.93; Table S3C). AnnotBoost again attained high predictive accuracy in
out-of-sample predictions of the input scores (AUROC = 0.55-1.00, AUPRC = 0.23-0.98; Table S4);
out-of-sample AUROCs closely tracked the correlations between input scores and corresponding
boosted scores (r = 0.65).

We again constructed binary annotations based on top genome-wide variants, using 6 different
thresholds (ranging from top 0.1% to top 10% of genome-wide variants, as well as variants with
boosted scores > 0.5; see Methods). We assessed the informativeness for common disease of binary
annotations derived from each of the 65 boosted scores using S-LDSC, conditioning on annotations
from the baseline-LD model, the 8 Roadmap annotations, and (for the first 18 additional scores
only) 5 binary annotations derived from the corresponding input scores (using all 5 thresholds).
We identified conditionally informative binary annotations derived from boosted versions of 13/18
additional scores (including 11 previously uninformative scores and 2 previously informative scores)
and 24/47 baseline-LD model annotations (Figure 3, Table 2 and Table S10). Examples include the
top 10% of SNPs from DeepSEA-DNaset*047 (enrichment = 3.7x (s.e. 0.27), 7% = 0.69 (s.e. 0.11)),
a previously uninformative score, the top 1% of SNPs from CCR145 (enrichment = 7.9x (s.e. 0.65),
7% = 0.51 (s.e. 0.09)), a previously uninformative score, and the top 5% of SNPs from H3K9act?3
(enrichment = 5.4x (s.e. 0.31), 7* = 0.76 (s.e. 0.09)), a baseline-LD model annotation. The

CCR (Constrained Coding Regions) score*?

is a constraint score based on observed vs. expected
variation in whole-exome sequence data; DeepSEA scores are described above. We note that the 18

additional scores included 7 gene-based scores, which did not perform well; 3 published gene-based
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scores and 4 boosted gene-based scores yielded conditionally significant binary annotations, but
their 7% were small (—0.02 to 0.09). Boosted versions of 3 of the remaining 5 additional scores and
20 of the remaining 23 baseline-LD model annotations had derived binary annotations that were
significantly enriched for disease heritability (after Bonferroni correction) but not conditionally
informative (Table S10).

We performed 3 secondary analyses. First, for the 31 additional boosted scores which were
marginally significant and for which the underlying published scores had < 100% of SNPs scored,
we restricted the boosted scores to previously unscored variants and assessed the informativeness of
the resulting binary annotations using S-LDSC. We determined that these annotations retained over
half of the overall signals (average of 55% of absolute 7*; Table S11), implying that AnnotBoost
both imputes and denoises existing scores. Second, we again investigated which features of the
baseline-LD model contributed the most to the informativeness of the boosted annotations by
applying SHAP*'. We determined that both conservation-related features (e.g. GERP scores) and
LD-related features (e.g. LLD-AFR; level of LD in Africans) often drove the predictions of the
boosted annotations, although results varied with the type of annotation (Figure S3). Third, we
repeated the analyses of Figure 3 without including the 8 Roadmap annotations. We determined
that the number of significant binary annotations increased (Table S12), confirming the importance
of conditioning on the 8 Roadmap annotations as an appropriate conservative step3’. We further
verified that including the 8 Roadmap annotations did not impact results from previous sections

(Table S13).

Classification of fine-mapped disease SNPs

We assessed the accuracy of the published and boosted scores listed in Table 2 in classifying 8,294
fine-mapped SNPs for 21 autoimmune diseases from Farh et al.>* (defined by including all SNPs
in 95% credible sets) vs. all other ~10 million common and low-frequency SNPs (see Methods).
We performed two analyses. In the first analysis (single-score analysis), we computed the AUROC
individually attained by each of the 82 published and 82 boosted scores, comparing results for
boosted scores vs. the corresponding published scores. In the second analysis (multi-score analysis),
we computed the AUROC jointly attained by the baseline-LD model, 11 marginally significant

published scores, and/or 53 marginally significant boosted scores (see Table 2), aggregated by
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training a gradient boosting model; we used odd (resp. even) chromosomes as training data to
make predictions for even (resp. odd) chromosomes (see Methods). We note that this gradient
boosting model uses disease data (fine-mapped SNPs), whereas AnnotBoost does not use disease
data to construct boosted pathogenicity scores.

Results of the single-score analysis are reported in Figure 4A and Table S14. We determined that
the boosted scores significantly outperformed the corresponding published scores, with an average
improvement in AUROC of 0.05. AUROC results for published and boosted scores were moderately
correlated with S-LDSC results for binary annotations derived from these scores, validating the S-
LDSC results (Table S15). We also computed values of AUPRC, which were close to 0 for both
SNP sets (Table S15), as expected since false discovery rate is much higher than false positive rate
in highly skewed data sets; this underscores the challenges of accurately classifying fine-mapped
disease SNPs without directly using disease data.

Results of the multi-score analysis are reported in Figure 4B and Table S16. For Farh et al.
SNPs, although the baseline-LD model (AUROC=0.844) was not significantly improved by adding
the 11 (marginally significant) published annotations (AAUROC = 0.001, s.e. = 0.002, p = 0.36),
further adding the 53 (marginally significant) boosted annotations produced a slight but significant
improvement (AAUROC = 0.011, s.e. = 0.002, p < le-6), further validating the added value of
boosted annotations, above and beyond non-linear interactions involving published annotations and
the baseline-LD model only. This improvement likely comes from non-linear interactions involving
the boosted annotations, published annotations, and the baseline-LD model. We note that the
high classification accuracy attained by the baseline-LD model could potentially be due to the LD-
and MAF-related annotations in the baseline-LD model, as Farh et al. fine-mapped SNPs are more
common (29% vs. 15%) with higher LD scores (132 vs. 120); we repeated the multi-score analysis
by matching the LD and MAF of positive and control sets of SNPs and obtained similar results
(Table S17). As in the single-score analysis, values of AUPRC were close to 0 for both SNP sets
(Table S16).

We performed 3 secondary analyses. First, we repeated the single-score analysis using 3 addi-
tional sets of fine-mapped or disease-associated SNPs: 1,851 fine-mapped SNPs for 47 UK Biobank
traits from Weissbrod et al.?® (stringently defined by causal posterior probability > 0.95); 21,296

NHGRI GWAS SNPs%67; and 1,591 de novo SNPs from the sequenced whole genomes of 1,790
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autism spectrum disorder simple families*® which also appeared as common or low-frequency SNPs
in the 1000 Genomes reference panel (see URLs). The boosted scores again significantly out-
performed the corresponding published scores in each case, with highest AUROC values for the
Weissbrod et al. fine-mapped SNPs (up to 0.875) (Figure S4 and Table S16). Second, we repeated
the multi-score analysis using the 3 additional sets of fine-mapped or disease-associated SNPs.
Adding the 53 boosted annotations to the baseline-LD model plus 11 published annotations pro-
duced a significant improvement in AUROC for the de novo SNPs, but not for the Weissbrod et al.
fine-mapped SNPs or NHGRI GWAS SNPs, perhaps because the AUROC was already very high
for the Weissbrod et al. fine-mapped SNPs (0.936) and because most NHGRI GWAS SNPs are
not causal SNPs (Figure S5 and Table S16). We repeated the multi-score analysis of Weissbrod et
al. fine-mapped SNPs using 1,853 SNPs that were fine-mapped without using functional informa-
tion® (to ensure that results were not circular), and obtained similar results (Table S16). Third,
we repeated the multi-score analysis using all 35 published scores (excluding baseline-LD model
annotations) and 82 boosted scores from Table 2 (not just those that were marginally significant),

and obtained similar results for all 4 SNP sets (Table S16).

Combined joint model

We jointly analyzed the 64 binary annotations (derived from 11 published scores and 53 boosted
scores) that were marginally significant in our marginal analyses (Table 2) by performing forward
stepwise elimination to iteratively remove annotations that had conditionally non-significant 7*
values after Bonferroni correction (P > 0.05/500 = 0.0001) or 7% < 0.25, conditioned on the
baseline-LD model, the 8 Roadmap annotations, and each other (see ref. 26 and Methods). The
resulting combined joint model included 11 binary annotations derived from 3 published scores and
8 boosted scores (Figure 5, Table 2 and Table S18). These 11 annotations are each substantially
uniquely informative for common disease and include 5 boosted annotations with 7* > 0.5 (e.g.
boosted ReMM: 7% = 1.33 (s.e. 0.12)); annotations with 7 > 0.5 are unusual, and considered to be
very important. We note that the top 0.5% of SNPs from REVEL1S had significantly negative
7* (—0.95 (s.e. 0.08)), as the annotation was significantly enriched for disease heritability but less
enriched than expected based on annotations from the combined joint model.

We performed 3 secondary analyses. First, we computed genome-wide correlations between
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the 11 jointly significant annotations and baseline-LD model annotations (Table S19). Several of
the jointly significant annotations were strongly correlated (up to 0.73) with conservation-related
annotations from the baseline-LD model, particularly binary GERP scores, consistent with our
SHAP results (Figure S1, Figure S2 and Figure S3). Second, we compared the informativeness
of the baseline-LLD model and the combined joint model. We identified the addition of 11 jointly
significant annotations greatly reduced the informativeness of several existing baseline-LD anno-
tations, including conservation-related annotations (e.g. conserved primate, binary GERP scores)
and other annotations (e.g. coding, CpG content; see Figure S6 and Table S20), recapitulating the
informativeness of 11 jointly significant annotations. Third, we repeated our multi-score AUROC
analysis (Figure 4B and Table S16) using only the 3 published and 8 boosted scores that were

jointly significant, and obtained similar results for all 4 SNP sets (Table S16).
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Discussion

We analyzed the informativeness of a broad set of Mendelian pathogenicity scores across 41 in-
dependent common diseases and complex traits to show that several annotations derived from
published Mendelian pathogenicity scores were conditionally informative for common disease after
conditioning on the baseline-LD model. We further developed AnnotBoost, a gradient boosting-
based machine learning framework to impute and denoise existing pathogenicty scores. We deter-
mined that annotations derived from boosted pathogenicity scores were even more informative for
common disease, resulting in 11 jointly significant annotations in our combined joint model. Our
boosted pathogenicity scores also outperformed the corresponding published scores in classifying
disease-associated, fine-mapped SNPs, even when conditioning on the baseline-LD model. These
variant-level results are substantially different from previous studies of gene-level overlap between
Mendelian diseases and complex traits'? 9.

We note three key differences between AnnotBoost and previous approaches that utilized gra-
dient boosting to identify pathogenic missense” and non-coding variants®'?. First, AnnotBoost
uses a pathogenicity score as the only input and does not use disease data (e.g. ClinVar3® or
HGMD?37). Second, AnnotBoost produces genome-wide scores, even when some SNPs are un-
scored by the input pathogenicity score. Third, AnnotBoost leverages 75 diverse features from the

126:27 significantly more than previous approaches”?19. Indeed, we determined

baseline-LD mode
that AnnotBoost produces strong signals even when conditioned on those approaches.

Our findings have several ramifications for improving our understanding of common disease.
First, it is of interest to assess the informativeness for common disease of Mendelian disease
pathogenicity scores that may be developed in the future, particularly after imputing and de-
noising these scores using AnnotBoost. Second, annotations derived from published and boosted

Mendelian pathogenicity scores can be used to improve functionally informed fine-mapping?®®°8:59,

6061 and association mapping®. Third, elucidating specific

as well as polygenic risk prediction
mechanistic links between Mendelian disease and common disease may yield important biological
insights.

We note several imitations of our work. First, while we showed that annotations derived from

Mendelian disease pathogenicity scores are informative for common disease, we focused on common
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and low-frequency variants and did not analyze Mendelian diseases. Second, S-LDSC is not well-
suited to analysis of annotations spanning a very small proportion of the genome, preventing the
analysis of a subset of published pathogenicity scores; nonetheless, our main results attained high
statistical significance. Third, the gene-based scores that we analyzed did not perform well, perhaps

because they were defined using 100kb windows, a crude strategy employed in previous work 30:50.63.

better strategies for linking regulatory variants to genes%4:6°

could potentially improve upon those
results. Despite these limitations, the imputed and denoised pathogenicity scores produced by
our AnnotBoost framework have high potential to improve gene discovery and fine-mapping for

common disease.
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Methods

Genomic annotations and the baseline-LD model

We define a genomic annotation as an assignment of a numeric value to each SNP above a specified
minor allele frequency (e.g. minor allele count > 5) in a predefined reference panel (e.g. 1000
Genomes?®; see URLs). Continuous-valued annotations can have any real value. Probabilistic
annotations can have any real value between 0 and 1. Binary annotations can have value 0 or 1
only. A binary annotation can be viewed as a subset of SNPs (the set of SNPs with annotation
value 1); we note all annotations analyzed in this work are binary annotations. Annotations that
correspond to known or predicted function are referred to as functional annotations.

The baseline-LD model?® (v2.1) contains 86 functional annotations (see URLs). We use these
annotations as features of AnnotBoost (see below). These annotations include genomic elements
(e.g. coding, enhancer, promoter), conservation (e.g. GERP, PhastCon), regulatory elements
(e.g. histone marks, DNasel-hypersensitive sites (DHS), transcription factor (TF) binding sites),
and linkage disequilibrium (LD)-related annotations (e.g. predicted allele age, recombination rate,

SNPs with low levels of LD).

Enrichment and 7 metrics

We used stratified LD score regression (S-LDSC?2%25) to assess the contribution of an annotation
to disease heritability by estimating the enrichment and the standardized effect size (7*) of an
annotation.

Let a.;j represent the (binary or probabilistic) annotation value of the SNP j for the annotation c.
S-LDSC assumes the variance of per normalized genotype effect sizes is a linear additive contribution

to the annotation c:

Var(5;) = ZaCch (1)

where 7, is the per-SNP contribution of the annotation c¢. S-LDSC estimates 7. using the following
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equation:

ENG = NS 0, me + 1 (2)

where N is the sample size of the GWAS and ¢(7, ¢) is the LD score of the SNP j to the annotation
c. The LD score is computed as follow £(j,¢) = >, ackr?k where rj;, is the correlation between the
SNPs j and k.

We used two metrics to assess the informativeness of an annotation. First, the standardized
effect size (7*), the proportionate change in per-SNP heritability associated with a one standard
deviation increase in the value of the annotation (conditional on all the other annotations in the

model), is defined as follows:

_ 7e8d(C)
Tk = W (3)

where sd(C') is the standard deviation of the annotation e, hg is the estimated SNP-heritability,
and M is the number of variants used to compute hf] (in our experiment, M is equal to 5,961,159,

the number of common SNPs in the reference panel). The significance for the effect size for each

T*

, is computed as (W ~ N(0,1)), assuming

annotation, as mentioned in previous studies?6:30:50

that #;) follows a normal distribution with zero mean and unit variance.

Second, enrichment of the binary and probabilistic annotation is the fraction of heritability
explained by SNPs in the annotation divided by the proportion of SNPs in the annotation, as

shown below:

hg(C)
Errichment — %ohy(C)  “hz A
nrichment = TSNP(C) Z}-Wajc (4)

where hg(C) is the heritability captured by the cth annotation. When the annotation is enriched for
trait heritability, the enrichment is > 1; the overlap is greater than one would expect given the trait
heritablity and the size of the annotation. The significance for enrichment is computed using the

25,30,50,63')

block jackknife as mentioned in previous studies . The key difference between enrichment

and 7* is that 7* quantifies effects that are unique to the focal annotation after conditioning on
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all the other annotations in the model, while enrichment quantifies effects that are unique and/or
non-unique to the focal annotation.

In all our analyses, we used the European samples in 1000G?® (see URLSs) as reference SNPs.
Regression SNPs were obtained from HapMap 3% (see URLs). SNPs with marginal association
statistics > 80 and SNPs in the major histocompatibility complex (MHC) region were excluded.
Unless stated otherwise, we included the baseline-LD model?% in all primary analyses using S-LDSC,
both to minimize the risk of bias in enrichment estimates due to model mis-specification?®26 and

to estimate effect sizes (7) conditional on known functional annotations.

Published Mendelian pathogenicity scores

We considered a total 35 published scores: 11 Mendelian missense pathogenicity scores, 6 genome-
wide Mendelian pathogenicity scores, and 18 additional scores (see Table 1 and Table S9). Here,
we provide a short description for Mendelian missense and genome-wide Mendelian pathogenicity
scores. Details for 18 additional scores and the baseline-LD annotations are provided in Table S9.
Our curated pathogenicity scores are available online (see URLs).

For all scores, we constructed annotations using GRCh37 assembly limited to all 9,997,231
low-frequency and common SNPs (with minor allele frequency (MAF) >= 0.05%) found in 1000
Genomes?® European Phase 3 reference genome individuals (see URLs). Mendelian missense scores
were readily available from dbNSFP database5™%® using a rankscore (a converted score based on
the rank among scored SNPs); genome-wide Mendealian scores were individually downloaded and
used with no modification to original scores (see URLs). For each pathogenicity score, we con-
structed a binary annotation based on optimized threshold (See below). Short descriptions for each
pathogenicity score (excluding 18 additional scores and the baseline-LD annotations; provided in

Table S9) are provided below:

Mendelian missense pathogenicity scores:

PolyPhen-231 (HDIV and HVAR): Higher scores indicate higher probability of the missense mu-
tation being damaging on the protein function and structure. The default predictor is based on
a naive Bayes classifier using HumDiv (HDIV), and the other is trained using HumVar (HVAR),

using 8 sequence-based and 3 structure-based features.
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MetaLR/MetaSVM??: An ensemble prediction score based on logistic regression (LR) or support
vector machine (SVM) to classify pathogenic mutations from background SNPs in whole exome
sequencing, combining 9 prediction scores and one additional feature (maximum minor allele fre-
quency).

PROVEAN?%%9: An alignment-based score to predict the damaging single amino acid substitu-
tions.

SIFT 4G?: Predicted deleterious effects of an amino acid substition to protein function based on
sequence homology and physical properties of amino acids.

REVEL®: An ensemble prediction score based on a random forest classifier trained on 6,182 mis-
sense disease mutations from HGMD?7, using 18 pathogenicity scores as features.

M-CAP7”: An ensemble prediction score based on a gradient boosting classifier trained on pathogneic

variants from HGMD?37 and benign variants from ExAC data set 38

, using 9 existing pathogenicity
scores, 7 base-pair, amino acid, genomic region, and gene-based features, and 4 features from mul-
tiple sequence alignments across 99 species.

PrimateAI®: A deep-learning-based score trained on the amino acid sequence flanking the variant
of interest and the orthologous sequence alignments in other species and eliminating common mis-
sense variants identified in 6 non-human primate species.

MPC% (missense badness, PolyPhen-2, and constraint): Logistic regression-based score to identify
regions within genes that are depleted for missense variants in ExAC data®® and incorporating
variant-level metrics to predict the impact of missense variants. Higher MPC score indicates in-
creased deleteriousness of amino acid substitutions once occured in missense-constrained regions.
MVP?%%: A deep-learning-based score trained on 32,074 pathogenic variants from ClinVar36, HGMD?7,

and UniProt "0, using 38 local context, constraint, conservation, protein structure, gene-based, and

existing pathogenicity scores as features.

Genome-wide Mendelian pathogenicity scores:

CADD?#%3: An ensemble prediction score based on a support vector machine classifier trained to
differentiate 14.7 million high-frequency human-derived alleles from 14.7 million simulated variants,
using 63 conservation, regulatory, protein-level, and existing pathogenicity scores as features. We

used PHRED-scaled CADD score for all possible SNVs of GRCh37.
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Eigen/Eigen-PC?: Unsupervised machine learning score based on 29 functional annotations and
leveraging blockwise conditional independence between annotations to differentiate functional vs.
non-functional variants. Eigen-PC uses the lead eigenvector of the annotation covariance matrix
to weight the annotations. For both Eigen and Eigen-PC, we used PHRED-scaled scores and
combined coding and non-coding regions to make it as a single genome-wide score. Higher score
indicates more important (predicted) functional roles.

ReMM?* (regulatory Mendelian mutation): An ensemble prediction score based on a random for-
est classifier to to distinguish 406 hand-curated Mendelian mutations from neutral variants using
conservation scores and functional annotations. Higher ReMM score indicate greater potential to
cause a Mendelian disease if mutated.

NCBoost!?: An ensemble prediction score based on a gradient boosting classifier trained on 283
pathogenic non-coding SNPs associated with Mendelian disease genes and 2830 common SNPs,
using 53 conservation, natural selection, gene-based, sequence context, and epigenetic features.
ncER? (non-coding essential regulation): An ensemble prediction score based on a gradient boost-
ing classifier trained on 782 non-coding pathogenic variants from ClinVar®6 and HGMD?7, using 38

gene essentiality, 3D chromatin structure, regulatory, and existing pathogenicity scores as features.

AnnotBoost framework

AnnotBoost is based on gradient boosting, a machine learning method for classification; the Annot-
Boost model is trained using the XGBoost gradient boosting software?? (see URLs). AnnotBoost
requires only one input, a pathogenicity score to boost, and generates a genome-wide (probabilistic)
pathogenicity score. During the training, AnnotBoost uses decision trees, where each node in a tree
splits SNPs into two classes (pathogenic and benign) using 75 coding, conserved, regulatory, and
LD-related features from the baseline-LD model?® (excluding 10 MAF bins features; we obtained
similar results with or without MAF bins features; see Figure S7). The method generates training
data from the input pathogenicity scores without using external variant data; top 10% SNPs from
the input pathogenicity score are labeled as a positive training set, and bottom 40% SNPs are
labeled as a control training set; we obtained similar results with other training data ratios (see

Figure S8). As described in ref. 29, the prediction is based on T" additive estimators (we use T =
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200 to 300; see below), minimizing the following loss objective function L! at the ¢-th iteration:

n

L' = Zl(?/ia?jit_l + fe(@i)) +(ft) (5)

=1

where [ is a differentiable convex loss function (which measures the difference between the prediction
(9i) and the target y; at the i-th instance), f; is an independent tree structure, and last term ~(f;)
penalizes the complexity of the model, helping to avoid over-fitting. The prediction (y;) is made by
Ethl ft(x;) by ensembling outputs of multiple weak-learner trees. Odd (resp. even) chromosome
SNPs are used for training to score even (resp. odd) chromosome SNPs. The output of the classifier
is the probability of being similar to the positive training SNPs and dissimilar to the control training
SNPs.

We used the following model parameters: the number of estimators (200, 250, 300), depth of the
tree (25, 30, 35), learning rate (0.05), gamma (minimum loss reduction required before additional
partitioning on a leaf node; 10), minimum child weight (6, 8 ,10), and subsample (0.6, 0.8, 1);
we optimized parameters with hyperparamters tuning (a randomized search) with five-fold cross-
validation. Two important parameters to avoid over-fitting are gamma and learning rate; we chose
these values consistent with previous studies®!?. The model with the highest AUROCs on the
held-out data was selected and used to make a prediction.

To identify which feature(s) drives the prediction output with less bias, AnnotBoost uses Shap-
ley Addictive Explanation (SHAP4!), a widely used tool to interpret complex non-linear models,
instead of built-in feature importance tool. SHAP uses the training matrix (features x SNP labels)
and the trained model to generate a signed impact of each baseline-LD features on the AnnotBoost
prediction.

To evaluate the performance of classifiers, we plotted receiver operating characteristic (ROC)
and precision-recall (PR) curves. As we train AnnotBoost by splitting SNPs into odd and even
chromosomes, we report the average out-of-sample area under the curve (AUC) of the odd and
even chromosomes classifier. We used the threshold of 0.5 to define a class; that is, class 1 includes
SNPs with the output probability > 0.5. We caution that high classification accuracy does not

necessarily translate into conditional informativeness for common disease®’.
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Constructing binary annotations using top variants from published and boosted

scores

For published Mendelian missense pathogenicity scores, we considered five different thresholds to
construct binary annotations: top 50%, 40%, 30%, 20% or 10% of scored variants. For published
scores that produce Bonferroni-significant binary annotations, we report results for the binary
annotation with largest |7*| among those that are Bonferroni-significant. For published scores that
do not produce Bonferroni-significant binary annotations, we report results for the threshold with
most significant 7* (even though not Bonferroni-significant).

For all other published pathogenicity scores, we considered the top 10%, 5%, 1%, 0.5% or 0.1%
of scored variants to construct binary annotations; we used more inclusive thresholds for published
Mendelian missense pathogenicity scores due to the small proportion of variants scored (~ 0.3%; see
Table 1). For published scores that produce Bonferroni-significant binary annotations, we report
results for the binary annotation with largest |7*| among those that are Bonferroni-significant. For
published scores that do not produce Bonferroni-significant binary annotations, we report results
for the top 5% of variants (the average optimized proportion among Bonferroni-significant binary
annotations); we made this choice because (in contrast to published Mendelian missense scores) for
many other published scores the most significant 7* was not even weakly significant.

For boosted pathogenicity scores, we considered the top 10%, 5%, 1%, 0.5% or 0.1% of scored
variants, as well as variants with boosted scores > 0.5; we note that top 10% of SNPs does not
necessarily translate to 10% of SNPs, as some SNPs share the same score, and some genomic
regions (e.g. MHC) are excluded when running S-LDSC (see below). For boosted scores that
produce Bonferroni-significant binary annotations, we report results for the binary annotation with
largest |7*| among those that are Bonferroni-significant. For boosted scores that do not produce
Bonferroni-significant binary annotations, we report results for the top 5% of variants.

In all analyses, we excluded binary annotations with proportion of SNPs < 0.02% (the same
threshold used in ref. 50), because S-LDSC does not perform well for small annotations?.

In all primary analyses, we analyzed only binary annotations. However, we verified in a sec-
ondary analysis of the CDTS score?* that probabilistic annotations produced results similar to

binary annotations (see Figure S9).
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Classification of fine-mapped disease SNPs: single-score analysis

As a primary analysis, we analyzed 8,294 common and low-frequency SNPs (of 8,741 total SNPs)
fine-mapped for 21 autoimmune diseases from Farh et al.?*. As a secondary analysis, we considered
3 other sets of SNPs: 1,851 common and low-frequency SNPs (of 2,225 SNPs, spanning 3,025
SNP-trait pairs) fine-mapped for 47 UK Biobank traits from Weissbrod et al.?; 21,296 common
and low-frequency SNPs (of 23,205 total SNPs) from the NHGRI GWAS catalog%>7 (2019-07-12
version; p-value < 5e-8); and 1,591 de novo SNPs (out of 127,140 non-repeat-region single nucleotide
variants) from the sequenced whole genomes of 1,790 autism spectrum disorder simple families*®
which also appeared as common or low-frequency SNPs in the 1000 Genomes reference panel (see
URLs). We computed AUROC: for classifying each set of SNPs vs. all other ~10 million common

and low-frequency SNPs in the reference panel (European samples from 100 Genomes Phase 328).

Classification of fine-mapped disease SNPs: multi-score analysis

We considered same 4 sets of SNPs as described above. We computed the AUROCs and AUPRCs
jointly attained by:

e Annotations from the baseline-LLD model

e 11 marginally significant published scores

e 53 marginally significant boosted scores

e 11 marginally significant published score + 53 marginally significant boosted scores

e 3 jointly significant published scores

e 8 jointly significant boosted scores

e 3 jointly significant published scores + 8 jointly significant boosted scores

e baseline-LD model + 11 marginally significant published scores

e baseline-LLD model + 53 marginally significant boosted scores

e baseline-LD model + 11 marginally significant published scores 4+ 53 marginally significant
boosted scores

e baseline-LD model + 3 jointly significant published scores

e baseline-LLD model + 8 jointly significant boosted scores

e baseline-LLD model + 3 jointly significant published scores + 8 jointly significant boosted scores
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We aggregated these scores by training a gradient boosting model (features: aggregated scores,
labels: each of four sets of SNPs); we used odd (resp. even) chromosomes as training data to
make predictions for even (resp. odd) chromosomes. We used the same training parameters as
AnnotBoost (carefully selected to avoid over-fitting, consistent with the previous study®!) with
hyperparameters tuned using a randomized search method with five-fold cross-validation. We report
the average AUROC and AUPRC of odd and even chromosome classifiers. We note that no disease
data (four sets of SNPs used as labels) was re-used in these analyses, as AnnotBoost uses only the
input pathogenicity scores to generate positive and negative sets of training data. We assessed the
significance of the difference between two AUROCS as in ref. 71 (see URLs). For the LD-matched
and MAF-matched analysis, we subsampled control SNPs to match the LD and MAF distribution

of the positive SNP set.
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URLs

AnnotBoost source code, published and boosted pathogenicity scores and binary annotations, and
SHAP results: https://data.broadinstitute.org/alkesgroup/LDSCORE/Kim_annotboost
S-LDSC software: https://github.com/bulik/ldsc

XGBoost: https://github.com/dmlc/xgboost

SHAP (SHapley Additive exPlanations) feature importance: https://github.com/slundberg/
shap

dbNSFP database: https://sites.google.com/site/jpopgen/dbNSFP

CADD scores: https://cadd.gs.washington.edu/download

Eigen/FEigen-PC scores: https://xionitiOl.u.hpc.mssm.edu/v1.1/

ReMM scores: https://charite.github.io/software-remm-score.html

NCBoost scores: http://www.hli-opendata.com/noncoding/

ncER scores: http://www.hli-opendata.com/noncoding/

CDTS scores: http://www.hli-opendata.com/noncoding/

CCR scores: https://s3.us-east-2.amazonaws.com/ccrs/ccr.html/

DeepSEA (2018 version) scores: https://github.com/FunctionLab/ExPecto

DIS scores: Table S1. in ref. 48

pLI scores: https://gnomad.broadinstitute.org/downloads

LIMBR scores: Table S1 in ref. 49.

Saha, Greene, InWeb, Sonawane network annotations
https://data.broadinstitute.org/alkesgroup/LDSCORE/Kim_pathwaynetwork/

EDS scores: Table S1 in ref. 51.

baseline-LD (v.2.1) annotations: https://data.broadinstitute.org/alkesgroup/LDSCORE/
Significance of the difference in AUROCS calculator "*: http://vassarstats.net/roc_comp.html
Ensembl biomart: https://www.ensembl.org/biomart

HapMap: ftp://ftp.ncbi.nlm.nih.gov/hapmap/

GWAS Catalog (Release v1.0): https://www.ebi.ac.uk/gwas.

1000 Genomes Project Phase 3 data: ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/release/

20130502


 https://data.broadinstitute.org/alkesgroup/LDSCORE/Kim_annotboost
https://github.com/bulik/ldsc
https://github.com/dmlc/xgboost
https://github.com/slundberg/shap
https://github.com/slundberg/shap
https://sites.google.com/site/jpopgen/dbNSFP
https://cadd.gs.washington.edu/download
https://xioniti01.u.hpc.mssm.edu/v1.1/
https://charite.github.io/software-remm-score.html
http://www.hli-opendata.com/noncoding/
http://www.hli-opendata.com/noncoding/
http://www.hli-opendata.com/noncoding/
https://s3.us-east-2.amazonaws.com/ccrs/ccr.html/
https://github.com/FunctionLab/ExPecto
https://gnomad.broadinstitute.org/downloads
https://data.broadinstitute.org/alkesgroup/LDSCORE/Kim_pathwaynetwork/
https://data.broadinstitute.org/alkesgroup/LDSCORE/
http://vassarstats.net/roc_comp.html
https://www.ensembl.org/biomart
ftp://ftp.ncbi.nlm.nih.gov/hapmap/
https://www.ebi.ac.uk/gwas
 ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502
 ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502
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PLINK software: https://www.cog-genomics.org/plink2

BOLT-LMM software: https://data.broadinstitute.org/alkesgroup/BOLT-LMM

BOLT-LMM summary statistics for UK Biobank traits: https://data.broadinstitute.org/
alkesgroup/UKBB

UK Biobank: http://www.ukbiobank.ac.uk/

UK Biobank Genotyping and QC Documentation: http://www.ukbiobank.ac.uk/wp-content/

uploads/2014/04/UKBiobank_genotyping_QC_documentation-web.pdf
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Tables

.. Coverage

Score Description (% SNPs scored) Ref.
PolyPhen-2 Impact of missense variants using protein sequence and structure using HumDiv 0.28% 1,31
PolyPhen-2-HVAR Impact of missense variants using protein sequence and structure using HumVar 0.28% 1,31
MetaLR Deleterious missense mutations using ensemble scoring (logistic regression) 0.32% 32
MetaSVM Deleterious missense mutations using ensemble scoring (support vector machine) 0.32% 32
PROVEAN Impact of an amino acid change on protein function 0.31% 33,69
SIFT 4G Impact of an amino acid change on protein function 031% 5
REVEL Pathogenic missense variants using ensemble scoring 0.32% 6
M-CAP Pathogenic rare missense variants 0.03% 7
PrimateAl Impact of missense variants using deep neural networks 0.26% 8
MPC Regional missense constraint 0.10% 34
MVP Impact of missense variants using deep neural networks 0.29% 35
CADD Predicted deleterious variants using ensemble scoring 100% 2,43
Eigen Putatively causal variants using unsupervised learning 83.79% 3
Eigen-PC Putatively causal variants using unsupervised learning using the lead eigenvector 83.79% 3
ReMM Pathogenic regulatory variants using ensemble scoring 100% 4
NCBoost Pathogenic non-coding variants using ensemble scoring 28.55% 10
ncER Essential regulatory variants using ensemble scoring 61.94% 9

Table 1. 11 Mendelian missense and 6 genome-wide Mendelian pathogenicity scores. For each
of 17 Mendelian disease pathogenicity scores analyzed, we provide a description and report the coverage (%
of SNPs scored) and corresponding reference. The first 11 annotations are scores for missense variants, and
the last 6 annotations are genome-wide scores. Annotations are ordered first by type and then by the year
of publication.

# marginally significant | # significant annotations
Score # scores annotations in a combined joint model

published boosted published boosted
Mendelian missense 11 2% 10 1* 2
Genome-wide Mendelian 6 3 6 2 3
Additional scores 18 6** 13 0** 0
Baseline-LD model annotations 47 n/a 24 n/a 3

Table 2. Summary of informativeness for common disease of annotations derived from 82
published scores and corresponding boosted scores For each category of scores, we report the number
of scores; the number of marginally conditionally informative annotations (S-LDSC 7* p < 0.0001, conditional
on the baseline-LLD model; and the number of jointly conditionally informative annotations in a combined
joint model (S-LDSC 7* p < 0.0001 and |7*| > 0.25, conditional on the baseline-LD model and each other).
*Based on 9/11 published Mendelian missense scores analyzed, as binarized annotations were too small to
analyze for the remaining 2 published Mendelian missense scores. **Based on 16/18 published additional
scores analyzed, as binarized annotations were too small to analyzed for the remaining 2 published additional
scores.
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Figure 1. Informativeness for common disease of binary annotations derived from 11 Mendelian
missense scores and corresponding boosted scores. We report (A) heritability enrichment of binary
annotations derived from published and boosted Mendelian missense scores, meta-analyzed across 41 in-
dependent traits; (B) marginal 7* values, conditional on the baseline-LD model (for annotations derived
from published scores) or the baseline-LD model and corresponding published annotations (for annotations
derived from boosted scores). We report results for 10 Mendelian missense scores (of 11 analyzed) for which
annotations derived from published and/or boosted scores were marginally significant; the published M-CAP
score spanned too few SNPs to be included in the S-LDSC analysis. The percentage under each bar de-
notes the proportion of SNPs in the annotation; the proportion of top SNPs included in each annotation
was optimized to maximize informativeness (largest |7*| among Bonferroni-significant annotations, or most
significant p-value if no annotation was Bonferroni-significant). Error bars denote 95% confidence intervals.
In panel (B), * denotes marginally conditionally significant annotations. Numerical results are reported
in Table S2. Results for standardized enrichment, defined as enrichment times the standard deviation of
annotation value (to adjust for annotation size), are reported in Table S4.
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Figure 2. Informativeness for common disease of binary annotations derived from 6 genome-
wide Mendelian scores and corresponding boosted scores. We report (A) heritability enrichment
of binary annotations derived from published and boosted genome-wide Mendelian scores, meta-analyzed
across 41 independent traits; (B) marginal 7* values, conditional on the baseline-LD model (for annotations
derived from published scores) or the baseline-LD model and corresponding published annotations (for
annotations derived from boosted scores). We report results for 6 genome-wide Mendelian scores (of 6
analyzed) for which annotations derived from published and/or boosted scores were marginally significant.
The percentage under each bar denotes the proportion of SNPs in the annotation; the proportion of top SNPs
included in each annotation was optimized to maximize informativeness (largest |7*| among Bonferroni-
significant annotations, or top 5% if no annotation was Bonferroni-significant; top 5% was the average
optimized proportion among significant annotations). Error bars denote 95% confidence intervals. In panel
(B), * denotes marginally conditionally significant annotations. Numerical results are reported in Table S7.
Results for standardized enrichment, defined as enrichment times the standard deviation of annotation value
(to adjust for annotation size), are reported in Table S4.
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Figure 3. Informativeness for common disease of binary annotations derived from 18 additional
genome-wide scores + 47 baseline-LD model annotations and corresponding boosted scores.
We report (A) heritability enrichments of binary annotations derived from published and boosted additional
genome-wide scores, meta-analyzed across 41 independent traits; (B) marginal 7* values, conditional on
the baseline-LD model and 8 Roadmap annotations (for annotations derived from published scores) or
the baseline-LD model, 8 Roadmap annotations, and corresponding published annotations (for annotations
derived from boosted scores); (C) heritability enrichments of binary annotations derived from published and
boosted baseline-LD model annotations; and (D) marginal 7% values of binary annotations derived from
published and boosted baseline-LD model annotations. In (A) and (B), we report results for the 10 most
informative additional genome-wide scores (of 18 analyzed). In (C) and (D), we report results for the 10
most informative baseline-LD model annotations (of 47 analyzed). The percentage under each bar denotes
the proportion of SNPs in the annotation; the proportion of top SNPs included in each annotation was
optimized to maximize informativeness (largest |7*| among Bonferroni-significant annotations, or top 5% if
no annotation was Bonferroni-significant; top 5% was the average optimized proportion among significant
annotations). Error bars denote 95% confidence intervals. In panels (B) and (D), * denotes marginally
conditionally significant annotations. Numerical results are reported in Table S10. Results for standardized
enrichment, defined as enrichment times the standard deviation of annotation value (to adjust for annotation
size), are reported in Table S4.
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Figure 4. Classification of fine-mapped disease SNPs using published and boosted scores.
(A) (single-score analysis) We report the classification accuracy (AUROC) of each of the 82 boosted scores
compared to the corresponding published score. We highlighted three scores: the score with the highest
AUROC(published) (CpG content), the score with the highest AUROC(boosted) (Super-enhancer), and the
score with the largest difference between AUROC(boosted) and AUROC(published) (Promoter). Scores
with AUROC < 0.5 are displayed as AUROC = 0.5. (B) (multi-score analysis) We report the true positive
rate vs. false positive rate and the classification accuracy (AUROC) of four aggregated scores. Numerical
results are reported in Table S14 and Table S16.
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Figure 5. Informativeness for common disease of 11 jointly significant binary annotations from
combined joint model. We report (A) heritability enrichment of 11 jointly significant binary annotations,
meta-analyzed across 41 independent traits; (B) joint 7* values, conditioned on the baseline-LD model,
8 Roadmap annotations, and each other. We report results for the 11 jointly conditionally informative
annotations in the combined joint model (S-LDSC 7* p < 0.0001 and |7*| > 0.25). The percentage under
each bar denotes the proportion of SNPs in the annotation. Error bars denote 95% confidence intervals.
Numerical results are reported in Table S18. Results for standardized enrichment, defined as enrichment
times the standard deviation of annotation value (to adjust for annotation size), are reported in Table S4.
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