

1 **Randomly primed, strand-switching MinION-based sequencing for the detection and**
2 **characterization of cultured RNA viruses**

3
4 Kelsey T. Young, Kevin K. Lahmers, Holly S. Sellers, David E. Stallknecht, Rebecca L.
5 Poulson, Jerry T. Saliki, S. Mark Tompkins, Ian Padykula, Chris Siepker, Elizabeth W. Howerth,
6 Michelle Todd, and James B. Stanton¹

7
8 Department of Pathology (Young, Siepker, Howerth, Stanton), Poultry Diagnostic and Research
9 Center, Department of Population Health (Sellers), Southeastern Cooperative Wildlife Disease
10 Study Department of Population Health (Stallknecht, Poulson), Athens Veterinary Diagnostic
11 Laboratory (Saliki), Center for Vaccines and Immunology, Department of Infectious Diseases
12 (Tompkins, Padykula) College of Veterinary Medicine, University of Georgia, Athens, GA,
13 USA; Department of Biomedical Sciences & Pathobiology (Lahmers, Todd), VA-MD College of
14 Veterinary Medicine, Virginia Tech University, Blacksburg, VA, USA.

15
16 ¹Corresponding author: James B. Stanton, Department of Pathology, College of Veterinary
17 Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602. jbs@uga.edu

18
19 Running title: Random strand-switching sequencing of cultured RNA viruses

20 **Abstract.** RNA viruses rapidly mutate, which can result in increased virulence, increased escape
21 from vaccine protection, and false negative detection results. Targeted detection methods have a
22 limited ability to detect unknown viruses and often provide insufficient data to detect
23 coinfections or identify antigenic variants. Random, deep sequencing is a method that can more
24 fully detect and characterize RNA viruses and is often coupled with molecular techniques or
25 culture methods for viral enrichment. Viral culture coupled with third-generation sequencing
26 were tested for the ability to detect and characterize RNA viruses. Cultures of bovine viral
27 diarrhea virus, canine distemper virus, epizootic hemorrhagic disease virus, infectious bronchitis
28 virus, two influenza A viruses, and porcine respiratory and reproductive syndrome virus were
29 sequenced on the MinION platform using a random, reverse primer in a strand-switching
30 reaction, coupled with PCR-based barcoding. Reads were taxonomically classified and used for
31 reference-based sequence building using a stock personal computer. This method accurately
32 detected and identified complete coding sequence genomes with a minimum of 20 \times coverage
33 depth for all seven viruses, including a sample containing two viruses. Each lineage-typing
34 region had at least 26 \times coverage depth for all viruses. Furthermore, analyzing the canine
35 distemper virus sample through a pipeline devoid of canine distemper virus reference sequences
36 modeled the ability of this protocol to detect unknown viruses. These results show the ability of
37 this technique to detect and characterize dsRNA, negative- and positive-sense ssRNA,
38 nonsegmented, and segmented RNA viruses.

39

40 **Key Words:** metagenomic; MinION; RNA viruses; sequencing; strand-switching

41

42

Introduction

43 RNA viruses are common etiological agents of animal diseases. Many of these diseases, such as
44 influenza,¹ Newcastle disease (ND),² epizootic hemorrhagic disease (EHD),³ infectious
45 bronchitis (IB),⁴ and porcine respiratory and reproductive syndrome (PRRS)⁵ are global
46 economic and/or health burdens for domestic and wild animal populations. Moreover, RNA
47 viruses account for most emerging diseases due to the swift production of genetic variants,
48 enabling rapid evolution for adapting to environments and hosts.⁶ The low fidelity of the viral-
49 encoded RNA-dependent RNA polymerases significantly contributes to the genetic diversity,
50 causing mutations up to a million times higher compared to cells.⁷ Additionally, genetically
51 related viral species with segmented genomes (e.g., reoviruses and orthomyxoviruses) can
52 reassort genomic segments, resulting in increased genetic variation. Enhanced virulence,
53 resistance to vaccines, and ability for novel tissue tropism can also occur due to nucleotide
54 mutations, and reassortment events.⁸⁻¹⁰ Therefore, there is a need for rapid detection of variants
55 through whole genome sequencing for proper diagnosis, treatment, control, and prevention.¹¹

56 The molecular detection of RNA viruses is traditionally done using methods such as
57 polymerase chain reaction (PCR), real-time PCR (rtPCR), cloning, and *in situ* hybridization
58 (ISH).^{12,13} However, these methods use targeted approaches that require prior knowledge of the
59 viral genome for detection and are inefficient for the discovery of novel viruses, mixed
60 infections, and identifying whole genomes. The advent of next generation sequencing (NGS) has
61 permitted new techniques that circumvent some issues with targeted RNA sequencing. Platforms
62 like Illumina allow untargeted deep sequencing for novel virus detection; but can be expensive
63 and labor intensive, particularly for whole genome sequencing.¹⁴ Major drawbacks of these
64 platforms is the generation of large volumes of raw data and short reads which require high

65 performance computers and extensive computational analysis.¹⁵ Another limitation of untargeted
66 RNA sequencing is the low relative abundance of viral RNA compared to host cellular RNA,
67 which may require depletion of ribosomal RNA (rRNA) and/or enrichment of viral RNA to
68 obtain an ample number of reads for viral strain detection.^{16,17} For these reasons, using NGS for
69 accurate, whole viral genome sequencing remains challenging.

70 The long read sequencing technology provided by MinION sequencing (Oxford
71 Nanopore Technologies (ONT), Oxford, UK) has enabled rapid, inexpensive, high-throughput,
72 whole-genome sequencing of viruses.¹⁸ MinION-based viral metagenomics studies have
73 accurately sequenced and identified whole genomes of chikungunya virus, Zaire ebolavirus,
74 hepatitis C virus, Venezuelan equine encephalitis virus, and Zika virus using untargeted
75 approaches by targeting poly-A sites and directly sequencing RNA (dRNA-seq) or using primer-
76 extension pre-amplification method (Round A/B); however, both of these methods resulted in
77 low quality reads and poor depth of coverage across the viral genome.^{19,20} Other methods such as
78 sequence independent primer amplification (SISPA) have been used with MinION to obtain
79 whole genome sequences for bovine enterovirus from culture and canine distemper virus from
80 the brain of an affected dog.^{21,22} While virus targeting can be accomplished with the previously
81 mentioned rRNA depletion or sequence targeting, it is also possible to couple this newest
82 sequencing technology with classical virus culture for viral enrichment. The aim of this study
83 was to develop a method to simultaneously detect and characterize various RNA viruses from
84 culture by using a randomly primed, strand-switching approach and sequencing on MinION.
85 Viruses were selected to include a double-stranded RNA virus (epizootic hemorrhagic disease
86 virus 2 [EHDV-2; family *Reoviridae*, genus *Orbivirus*]), positive-stranded viruses (infectious
87 bronchitis virus [IBV; family *Coronaviridae*, genus *Gammacoronavirus*, species *Avian*

88 *coronavirus*], porcine reproductive and respiratory syndrome virus [PRRSV; family
89 *Arteriviridae*, genus *Betaarterivirus*, species *Betaarterivirus suis 2*], and bovine viral diarrhea
90 virus [BVDV; family *Flaviviridae*, genus *Pestivirus*, species *Pestivirus B*]), and negative-
91 stranded viruses (canine distemper virus [CDV; family *Paramyxoviridae*, genus *Morbillivirus*,
92 species *Canine morbillivirus*] and influenza A viruses [IAV; family *Orthomyxoviridae*, genus
93 *Alphainfluenzavirus*, species *Influenza A virus*] isolated from a dog and from a pig). Segmented
94 (EHDV-2 and IAV) and unsegmented genomes (BVDV, CDV, and PRRSV) were also
95 represented in this study. This approach provides rapid, complete genome coding sequences
96 (CDS) for unknown RNA viruses in culture fluids and demonstrates the utility of the random
97 hexamer-based strand-switching primer for MinION library synthesis.

98 **Materials and methods**

99 **Samples**

100 The EHDV-2 isolate was propagated on cattle pulmonary artery endothelial cells (CPAE) from
101 spleen/lung tissue from a white-tailed deer (*Odocoileus virginianus*) collected in Georgia, USA
102 in 2016 at the Southeastern Cooperative Wildlife Disease Study at the University of Georgia
103 (UGA); CPAE cells are also persistently infected with BVDV. The CDV sample was isolated
104 from the brain of an infant, female raccoon (*Procyon lotor*) from Kentucky in 2018 using
105 African green monkey kidney cells expressing canine signaling lymphocytic activation molecule
106 (Vero-Dog SLAM cell line) in the Athens Veterinary Diagnostic Laboratory (AVDL). The
107 canine-origin IAV sample was collected from a nasal swab of a 7-year-old, male, boxer dog in
108 2015 from Georgia and was cultured in embryonated chicken eggs at the Poultry Diagnostic and
109 Research Center (PDRC), UGA. The Center for Vaccines and Immunology, UGA provided the
110 swine-origin influenza sample, which was isolated in 2019 from a 6-month-old, female,

111 Hampshire-cross pig from Georgia after testing positive for IAV by immunohistochemistry and
112 PCR. Swine IAV from lung homogenate was propagated on Madin-Darby canine kidney
113 (MDCK) cells. The IBV sample (Mass vaccine) was cultured in embryonated chicken eggs and
114 supplied by the PDRC. Isolate VR2385 of PRRSV was cultured on MARC-145 cells at the
115 Veterinary Diagnostic Laboratory, Iowa State University. Reverse-transcription real-time PCR
116 (RT-rtPCR) was conducted for BVDV, EHDV-2,³ CDV, canine-origin influenza, and IBV
117 (Table 1). The CDV (AVDL), canine IAV (PDRC), and IBV (PDRC) RT-rtPCR assays were
118 done using in-house diagnostic methods. For BVDV, (RT-rtPCR) was performed using a
119 modified protocol²³ with SuperScript® III First-Strand Synthesis SuperMix for qRT-PCR
120 (Invitrogen, Carlsbad, CA) and amplified in a CFX96™ Touch Real-Time PCR Detection
121 System (Bio-Rad Laboratories, Inc, Hercules, CA) thermal cycler.

122 **Total RNA extraction**

123 All RNA extraction to sequencing steps for all viruses, except for PRRSV and a CDV replicate,
124 were conducted at UGA. Library preparation and sequencing of PRRSV and a CDV replicate
125 were conducted at Virginia Tech University. Total RNA for CDV, EHDV-2, BVDV, swine IAV,
126 and canine IAV was extracted using 1 ml of culture supernatant using Trizol® LS Reagent
127 (ThermoFisher Scientific, Waltham, MA) following manufacturer's protocol. Total RNA was
128 eluted in 88.5 µl of nuclease-free water (Qiagen, Hilden, Germany). DNase treatment was
129 performed using RNase-Free DNase Set (Qiagen) and then purified using RNeasy® MinElute®
130 Cleanup Kit (Qiagen) per manufacturer's instructions. Total RNA for IBV was extracted using
131 the QIAamp® Viral RNA Mini Kit (Qiagen) following manufacturer's protocol. At Virginia
132 Tech, RNA was extracted from PRRSV and one replicate of CDV using the QIAamp Viral RNA

133 Mini Kit (Qiagen) according to the manufacturer's instructions. Concentrations were measured
134 using the Qubit® RNA HS Assay Kit (ThermoFisher Scientific) on a Qubit® 3.0 Fluorometer.

135 **Strand-switching cDNA synthesis**

136 Strand-Switching cDNA synthesis for MinION sequencing was completed by modifying the 1D
137 PCR barcoding cDNA (SQK-LSK108) protocol from ONT. Reverse transcription was performed
138 by combining 8 μ l of total RNA, 2 μ l of 1 μ M PCR-RH-RT primer (5' -
139 /5Phos/ACTTGCCTGTCGCTCTATCTTCNNNNNN- 3'; synthesized by Integrated DNA
140 Technologies [IDT], Coralville, IA, with standard desalting, ONT adapter sequence is
141 underlined), and 1 μ l of 10 mM dNTPs. The reaction mixture was incubated at 65°C for 5
142 minutes, then snap cooled in an ice-water slurry for 1 minute. Then 4 μ l of 5 \times RT buffer, 1 μ l of
143 100mM DTT, 1 μ l of 40 U/ μ l RNaseOUT™ (Invitrogen), and 2 μ l of 10 μ M strand-switching
144 oligo (PCR_Sw_mod_3G) (5' -
145 TTTCTGTTGGTGCTGATATTGCTGCCATTACGGCCmGmGmG- 3'; ONT provided
146 sequence, synthesized by IDT with HPLC purification) were added and incubated at 42°C for 2
147 minutes. SuperScript™ IV Reverse Transcriptase (Invitrogen) was added at a volume of 1 μ l and
148 the reaction was incubated at the following conditions: 30 minutes at 50°C, 10 minutes at 42°C,
149 and 10 minutes at 80°C. The cDNA was purified by KAPA Pure Beads (Kapa Biosystems,
150 Wilmington, MA) or with AMPure XP beads (Beckman Coulter, Indianapolis, IN) at 0.7 \times beads:
151 solution ratio.

152 **Barcode PCR**

153 The reverse-transcribed cDNA was amplified following ONT's 1D PCR barcoding cDNA
154 (SQK-LSK108) protocol using the PCR Barcoding Expansion 1-12 (EXP-PBC001) kit (ONT)
155 and LongAmp Taq 2 \times Master Mix (New England Biolabs, MA) with the following

156 thermocycling conditions: 95°C for 3 minutes; 18 cycles of 95°C for 15 seconds, 62°C for 15
157 seconds, 65°C for 22 minutes; 65°C for 23 minutes. The barcoded, amplified DNA was bead
158 purified at a 0.8× ratio.

159 **MinION library preparation and sequencing**

160 After the barcoding PCR, two to three samples were pooled by equal volume to make a total
161 volume of 47 µl. MinION libraries were prepared from the pooled barcoded amplicons using the
162 Ligation Sequencing Kit (SQK-LSK109) (ONT) following the 1D amplicon/cDNA by Ligation
163 per ONT's instructions. Briefly, the pooled samples were end prepped with NEBNext FFPE
164 Repair Mix (New England Biolabs) and NEBNext End repair/dA-tailing Module (New England
165 Biolabs) and bead purified at 1.0× bead volume. Then, sequencing adapters (ONT) were ligated
166 onto the end-prepped library using NEBNext Quick T4 DNA Ligase (New England Biolabs) and
167 bead purified (0.4× beads ratio) with the Long Fragment Buffer (LFB) (ONT). The final libraries
168 were combined with Sequencing Buffer (SQB) and Loading Beads (LB) per ONT's instructions
169 and were sequenced on used or new FLO-MIN106 R9.4 flow cells (ONT), with the exception of
170 the PRRSV and replicated CDV library, which were sequenced on a FLO-MIN107 R9.5, with
171 the MinION Mk1b sequencer. Per the pre-run quality control check for previously used flow
172 cells, a minimum of 1,000 active pores were required for sequencing. To maximize data
173 generation from single flow cells, used flow cells were nuclease flushed, before or after
174 sequencing, by adding a mixture of 10 µl DNase I and 190 µl DNase I Reaction Buffer (New
175 England Biolabs) to the priming port and incubated for 30 minutes at room temperature.
176 Sequencing was initiated by MinKNOW v.18.12.4–19.05.0 (ONT) using the 48-hour sequencing
177 protocol with the live basecalling option turned off. During the run, available FAST5 files were

178 processed as below to estimate number and length of viral reads to estimate sequencing time
179 required to obtain sufficient genome coverage.

180 **Pre-processing of raw MinION sequence data**

181 The FAST5 files produced from sequencing for IBV, CDV, swine-origin and canine-origin
182 influenza, and EHDV-2 and BVDV libraries were processed using an in-house script that
183 sequentially basecalled, demultiplexed, and trimmed adapters on a Macbook Pro (3.1 GHz Intel
184 Core i7, 8GB) using OS X El Capitan v.10.11.6. In summary, reads were basecalled using the
185 CPU version of Guppy v.2.1.3 (ONT) by defining the appropriate configurations for the flowcell
186 (FLO-MIN106) and kit (SQK-LSK109) used for sequencing and library preparation. Calibration
187 strand detection and filtering was enabled with the --calib_detect parameter. The basecalled fastq
188 files with a qscore ≥ 7 were sorted into a “pass” folder using the --qscore-filtering parameter and
189 used for further analysis. Then, reads were demultiplexed using Porechop v.0.2.4
190 (<https://github.com/rrwick/Porechop>) based on barcodes (-b output_dir) with --
191 require_two_barcodes setting enabled, 1,000,000 reads were aligned to all known adapter sets (--
192 check_reads 1000000), adapters with 99% identity were trimmed from read ends (--
193 adapter_threshold 99), and chimeric reads with middle adapters were removed.

194 The raw FAST5 files produced for PRRSV and the CDV replicate from Virginia Tech
195 were basecalled using the GPU version of Guppy v.3.1.5 on a Dell Precision 3060 Tower (Intel
196 Core i7, 31.3GB, NVIDIA GeForce GTX 1080) using Ubuntu 16.04 LTS. Guppy was initiated
197 using the same parameters as above with the flowcell configuration defined as “FLO-MIN107”.
198 The basecalled reads were then trimmed and demultiplexed using Porechop with the same
199 parameters described previously.

200 **Virus classification and lineage typing**

201 After basecalling, demultiplexing, and adapter trimming, reads were classified with Centrifuge
202 v.1.0.4²⁴ by the lowest taxonomical rank with default parameters with the addition of allowing
203 50 assignments (or hits) for each read (-k 50) using a custom index built for each library based
204 on the propagation system. Custom indices were constructed using an exhaustive search for
205 complete genome sequences of all possible viruses infecting vertebrates downloaded from
206 NCBI's nucleotide database, as of 15 March 2019, that included 80,550 viral reference genomes
207 (Supplementary Table 1). Low-complexity regions in sequences were masked using dustmasker
208 (NCBI C++ Toolkit, <https://ncbi.github.io/cxx-toolkit>). Dustmasked whole genomes of the
209 species of cell line (see below), and/or the bovine genome (GCF_002263795.1_AR5-UCD1.2),
210 to account for fetal bovine serum used in cell culture, were obtained using `centrifuge-download`
211 and concatenated with the dustmasked vertebrate virus sequences to classify reads from host(s)
212 cellular RNA. Using the concatenated files, indices were built by `centrifuge-build` with
213 default parameters. The indices were then used to cluster reads based on short alignments to
214 respective host and viral sequences to determine the presence and abundance of viral species in
215 each sample using the standard out file. Reads to unexpected viral species were clustered and
216 compared to the Genbank database using web-based nucleotide Basic Local Alignment Tool
217 (BLASTn) (<https://blast.ncbi.nlm.nih.gov>) with default settings. Percentage of viral reads and
218 host reads were determined by removing duplicate reads and then dividing the number of reads
219 clustered by the number of total reads after demultiplexing.

220 Once the viral species was identified, custom lineage-typing Centrifuge indices were also
221 built to further classify beyond viral species and assess for the possibility of mixed infections of
222 the same virus species, as previously described for IBV.²⁵ Briefly, for each main lineage per
223 virus, one complete sequence of the lineage-typing region was selected and then combined with

224 the respective genome of the cell line. Indices were constructed using the following: 20 N-
225 terminal protease fragment (N^{pro}) sequences for BVDV²⁶ with the bovine genome
226 (GCF_002263795.1_AR5-UCD1.2), 13 hemagglutinin (H) gene sequences for CDV²⁷ with the
227 African green monkey genome (GCF_000409795_Chlorocebus_sabeus_1.1), nine $VP2$
228 sequences for EHDV²⁸ with the bovine genome (GCF_002263795.1_AR5-UCD1.2), 32 spike 1
229 (SI) sequences for IBV²⁹ with the chicken genome (GCF_000002315.4_Gallus_gallus-5.0), 18
230 hemagglutinin (HA) sequences and 11 neuraminidase (NA) sequences for IAV³⁰ with the canine
231 genome (GCF_000002285.3_CanFam3.1) or chicken genome (GCF_000002315.6_GRCg6a),
232 and 18 $ORF5$ sequences for PRRSV³¹ with the swine genome (GCF_000003025.6_Sscrofa11.1)
233 (Supplementary Table 2). All sequences were dustmasked, assigned a unique taxonomy
234 identification number, with the exception of the IAV sequences, and indices were built with
235 default settings using `centrifuge-build`. Viral lineage typing was evaluated by aligning the
236 individual trimmed and barcoded FASTQ files produced from Porechop to the respective custom
237 lineage-typing indexes with Centrifuge, and reads were clustered by taxonomy identifications
238 that represent potential lineage types in the sample. Each cluster of reads, representing
239 potentially different lineages, were then used for reference based consensus building using
240 Geneious v.11.1.3 (Biomatters, Aukland, New Zealand) to build a consensus for each lineage
241 using the “Map to Reference” tool with medium sensitivity, re-iterating up to five times, and
242 using the same reference sequences chosen for generating the custom Centrifuge lineage-typing
243 databases. Consensus sequences derived for each potential lineage were analyzed using BLASTn
244 with default settings. Results from BLASTn were sorted by query coverage and subject
245 coverage. Subjects with the highest query, subject coverages, and identical bit-scores were
246 considered the “top hit(s)” to identify the virus and lineage in each cluster. A coinfection was

247 defined as different clusters of reads creating consensus sequences that matched to different
248 lineages and reads could be parsed accordingly for final consensus building. If no coinfection
249 was detected, all viral reads were used for consensus building.

250 **Viral genome consensus sequence generation**

251 After viruses were lineage typed for each sample, all reads that aligned to respective viral species
252 from Centrifuge output were imported into Geneious for whole-genome, reference-based
253 consensus building with the “Map to Reference” tool, after removing duplicate reads, using the
254 same methods from above. Consensus sequence building was done with the requirement of at
255 least 20× coverage at each base. References used for mapping were selected from using the “top
256 hit” result in BLASTn from the lineage-typing analysis. Due to the known errors within long
257 homopolymer regions during MinION sequencing,³² consensus sequences were manually
258 inspected and homopolymer areas that resulted in frameshifts were manually edited. The CDS
259 regions were extracted from each edited consensus sequence and analyzed using BLASTn. For
260 viruses with gapped genomes (e.g., CDV, IBV, and PRRSV), complete CDS and non-coding
261 intergenic regions were extracted and analyzed with BLASTn. The “top hit” for each consensus
262 sequence was determined by using the same criteria from above. The CDS regions for lineage-
263 typing regions for each virus were also extracted and analyzed with BLASTn. The best “top hit”,
264 percent pairwise identity, mean, minimum, maximum, and standard deviation of base coverage,
265 and percentage of genome coverage were evaluated for each viral genome and lineage-typing
266 region consensus sequences with the statistics tool in Geneious.

267 **Simulating novel virus identification**

268 In addition to the above method, sequencing data from the CDV sample were analyzed in a
269 manner that simulated novel virus identification by constructing an all vertebrate virus, custom

270 Centrifuge index with the omission of all canine morbillivirus sequences downloaded from
271 NCBI as of 12 April 2019 (Supplementary Table 1). The index was assembled as described
272 previously with African green monkey genome. Trimmed and demultiplexed reads from the
273 CDV sample were classified with Centrifuge using parameters described above. Reads were
274 grouped by taxonomy ID and exported into Geneious to build consensus sequences as described
275 previously. The consensus was analyzed with BLASTn by excluding canine morbillivirus (taxid:
276 11232) in the search set. For comparison, Kraken-style reports were created using `centrifuge-`
277 `kreport` from the Centrifuge output files from the CDV-absent pipeline and the CDV-present
278 pipeline from above. Output files were visualized using Pavian v.1.0.³³ To discern the phylogeny
279 of the “novel” virus among other pathogens in the *Morbillivirus* genus, the final genome CDS
280 and phosphoprotein (*P*) gene CDS consensus sequences were aligned with 18 complete genome
281 CDS and *P* gene CDS acquired from GenBank using the neighbor-joining algorithm in
282 *ClustalW*³⁴ with default settings. Phylogenetic trees for complete genome CDS and *P* gene CDS
283 were inferred using the Maximum Likelihood statistical method based on the Tamura 3-
284 parameter substitution model³⁵ with bootstrap values calculated at 1000 replicates in MEGA X.³⁶

285 **Sanger sequencing for validation**

286 Sanger sequencing was performed for the 5' UTR region of BVDV, *H* gene of CDV, and VP2
287 segment of EHDV-2 to confirm the identity of isolates and to compare MinION consensus
288 sequences for the lineage-typing regions. Briefly, using 8 μ l of total RNA from each sample,
289 cDNA was synthesized using SuperScript® III First-Strand Synthesis System for RT-PCR
290 (Invitrogen) with random hexamers (50 ng/ μ l) following manufacturer's instructions. The cDNA
291 from each sample was amplified using DreamTaq Green PCR Master Mix (2 \times) (ThermoFisher
292 Scientific) following manufacturer's protocol with 10 μ M of each respective primer (Table 2)

293 targeting partial sequences of the lineage-typing regions and 1 μ l of cDNA. Thermocycling
294 conditions for PCR amplification of the 5' UTR region for BVDV are as follows: 95°C for 5
295 minutes; 34 cycles of 95°C for 30 seconds, 58°C for 30 seconds, 72°C for 30 seconds; 72°C for 5
296 minutes. Thermocycling conditions for PCR amplification of the *H* gene for CDV are as follows:
297 95°C for 5 minutes; 40 cycles of 95°C for 30 seconds, 50°C for 30 seconds, 72°C for 1.5
298 minutes; 72°C for 10 minutes. Thermocycling conditions for PCR amplification of the *VP2*
299 segment for EHDV are as follows: 95°C for 3 minutes; 40 cycles of 95°C for 30 seconds, 57°C
300 for 30 seconds, 72°C for 45 seconds; 72°C for 5 minutes. Electrophoresis with a 1.0% agarose
301 gel was performed to confirm PCR products. Amplicons were then purified using the QIAquick
302 PCR Purification Kit (Qiagen) following manufacturer's protocol and eluted in 30 μ l nuclease-
303 free water (Qiagen). Final concentration and purity were measured using NanoDropTM 2000
304 Spectrophotometer (ThermoFisher Scientific). The purified PCR products and 5 μ M of each
305 primer (Table 2) were submitted to GENEWIZ (South Plainfield, NJ) for bidirectional Sanger
306 sequencing.

307 **Sanger sequencing analysis and pairwise identity with MinION consensus sequences**

308 Results from Sanger sequencing were analyzed with Geneious. Using the chromatograms, low
309 quality regions (\geq Q40) from the 5 \square and 3 \square ends were trimmed and ambiguous bases were
310 manually edited. Primers were trimmed before aligning forward and reverse sequences from
311 each sample using Geneious Alignment with default settings. The consensus sequence was
312 compared using BLASTn and selecting the best “top hit” with the same criteria described above
313 for MinION data.

314 Partial lineage-typing sequences from Sanger sequencing for BVDV, CDV, and EHDV
315 were compared with the full-length lineage-typing consensus sequences from MinION using

316 Geneious Alignment with default settings. Pairwise identity of the alignment was calculated with
317 Geneious.

318 **Results**

319 **MinION sequencing, viral classification, and lineage typing**

320 Libraries were prepared for seven cultured samples for seven different viruses by using random
321 hexamer primed, strand-switching for reverse transcription, PCR-based barcoding, and pooled
322 sequencing using MinION. Sequencing occurred for a minimum of about 2 hrs and 45 min and a
323 maximum of about 47 hrs and 37 min to obtain 567,780–6,984,000 raw reads. Total sequencing
324 time varied between runs based on the time of day the run was started, the number of viral reads
325 detected early in the sequencing run, and the ability to re-use a flow cell (i.e., if the flow cell was
326 not to be reused, then it was often sequenced to near exhaustion). After the raw reads were
327 basecalled, demultiplexed, and trimmed, 7,523–1,173,058 reads were assigned to barcodes of
328 interest and used for viral classification (Table 3).

329 Barcoded reads for each of the seven libraries were aligned to custom-built indices with
330 Centrifuge that detected seven different viruses belonging to three main types of RNA viral
331 genomes: BVDV (positive-sense ssRNA), CDV (negative-sense ssRNA), EHDV-2 (dsRNA),
332 IBV (positive-sense ssRNA), canine-origin IAV (negative-sense ssRNA), swine-origin IAV
333 (negative-sense ssRNA), and PRRSV (positive-sense ssRNA). Additionally, three of the viruses,
334 EHDV-2, canine-origin influenza, and swine-origin influenza, are comprised of segmented
335 genomes. The randomly primed strand-switching method was also able to classify a sample
336 containing EHDV-2 and BVDV. All viruses detected were categorized with viral reads
337 representing 0.97–63.3% of all reads sequenced for each sample with percentage of host reads
338 ranging from 2.5 to 80.4% (Table 3). Reads to unexpected viral species were analyzed with

339 BLASTn and were determined to be short alignments to various host, often ribosomal,
340 sequences.

341 Viral sequences were parsed and further classified into lineage types using custom built
342 lineage-typing indices for Centrifuge. Reads were clustered based on the lineage-typed alignment
343 and consensus sequences were built using Geneious. While the Centrifuge alignments suggested
344 the possibility of 2–19 lineages per virus isolate, only one lineage per species was detected in
345 each isolate after consensus building of each potential lineage (Table 4).

346 The complete CDS for each virus's lineage-typing region had at least 33× depth of
347 coverage with a mean range of 105.1–22,968.0 (Table 4). The BLASTn comparison for the
348 genotyping regions resulted in 96.49–100.0% pairwise identity with each “top hit” (Table 4).
349 Using the *N^{pro}* region, the lineage of BVDV was determined as genotype BVDV-2a with 96.23%
350 identity with McCart_C strain. Sequences from both libraries of CDV were genotyped as
351 America II with 96.49% identity of the *H* gene to A75/17. The genotype for EHDV-2 was
352 determined as EHDV-2w with 99.90% identity to the OV215 strain using the *VP2* segment. IBV
353 was determined to be genotype 1-lineage 4, with 100.0% identity of the *S1* gene to the Ma5
354 strain. The *HA* and *NA* segments of the canine-origin IAV showed 100.0% and 99.79% identity,
355 respectively, to an H3N2 subtype circulating in dogs in North America. The porcine-origin
356 influenza was determined to be an H1N2 subtype similar to other North American porcine-origin
357 IAVs, with 99.65% identity to the *HA* segment and 99.79% identity to the *NA* segment. The
358 *ORF5* for PRRSV had 99.67% identity to VR2385 and was determined as a Type 2, lineage 5.

359 **Viral genome consensus sequence evaluation**

360 For all seven viruses, complete genome CDS were acquired with a minimum of 26× depth of
361 each base, with the exception of the replicated CDV with 90.2% genome coverage at 20× depth

362 (Table 5). Additionally, complete CDS for all segments of three segmented viruses, EHDV-2
363 (dsRNA), swine influenza, and canine influenza (negative-sense ssRNA), were obtained with a
364 minimum of 43× depth of coverage and an average of 99.89% identity across all segments. The
365 mean depth for each virus was 72.1–28,014.8. The complete genome CDS consensus sequences
366 had a high pairwise identity of 97.37–100.0% to their respective “top hit” when using BLASTn
367 to compare sequences with GenBank databases (Table 5). The complete CDS consensus
368 sequences for BVDV, EHDV, and canine IAV were deposited in GenBank under the following
369 accession numbers: BVDV = MN824468; EHDV= MN824457–MN824466; canine IAV =
370 MN812282–MN812289. The complete CDS with intergenic regions for CDV was also deposited
371 in Genbank as accession number MN824467.

372 **Simulating novel virus identification**

373 Under simulated conditions in which CDV would be an unknown virus, the Centrifuge standard
374 out file for CDV analyzed showed that approximately 500 reads aligned to a morbillivirus, with
375 239 reads aligned to phocine distemper virus (PDV; family *Paramyxoviridae*, genus
376 *Morbillivirus*, species *Phocine morbillivirus*) and fewer reads (<70) aligning to other more
377 distantly related morbilliviruses: feline morbilliviruses (species *Feline morbillivirus*), rinderpest
378 virus (species *Rinderpest morbillivirus*), peste-des-petits-ruminants virus (species *Small*
379 *ruminant morbillivirus*), cetacean morbillivirus (species *Cetacean morbillivirus*), and measles
380 virus (species *Measles morbillivirus*) (Figure 1a). In contrast, when CDV was included in the
381 Centrifuge database, approximately 4,000 reads aligned to CDV, which was the only
382 morbillivirus detected (Figure 1b). In the CDV-absent analysis, reads scattered across different
383 morbilliviruses suggesting that the actual species was absent from the database but is most
384 similar to PDV. A total of 251 (12 reads aligned to 3 or more sequences, resulting in these reads

385 not being counted in the Centrifuge standard out file) reads were classified as PDV and were
386 exported to Geneious for reference-based consensus building by aligning to
387 PDV/Wadden_Sea.NLD/1988 (accession: NC_028249). The consensus sequence was analyzed
388 with BLASTn by excluding canine morbillivirus in the search set which resulted in a 78.71%
389 identity with PDV/Wadden_Sea.NLD/1988 (accession: KC802221.1) with 78.0% query
390 coverage. Furthermore, phylogenetic analysis of the whole genome CDS and *P* gene CDS
391 consensus of the dubbed “novel” sequence clustered with PDV but shows sequence divergence
392 suggestive of a species similar to, but different from, PDV (Figure 2).

393 **Sanger Sequencing and pairwise identity with MinION**

394 Sanger sequencing targeting partial sequences of the lineage-typing regions for BVDV, CDV,
395 and EHDV was used to confirm lineage types in the samples (Table 6). For BVDV, primers
396 targeting a partial sequence of the 5' UTR were used and resulted in a “top hit” to BVDV-2
397 isolate 95-1501. Sequencing of the *H* gene for CDV resulted in a “top hit” to CDV isolate
398 THA/VG. The *VP2* segment was targeted for EHDV and resulted in a “top hit” to EHDV-2
399 isolate OV617. The consensus sequences from Sanger and MinION sequencing had 100.0%
400 pairwise identities for all three viruses (Table 6). MinION consensus sequences compared to
401 Sanger for BVDV and EHDV had identical “top hits”. For CDV, MinION sequencing had a “top
402 hit” to CDV A75/15 with 96.49% identity but the shorter 923 bp fragment from Sanger had a top
403 alignment with CDV THA/VG with 96.53% identity (Table 6). The Sanger sequence is based on
404 smaller fragments of the lineage-typing region and, therefore, the BLASTn-based pairwise
405 identities cannot be directly compared between MinION and Sanger sequences.

406 **Discussion**

407 A large proportion of emerging diseases are caused by RNA viruses⁴⁰ and, due to their
408 mutability, rapid detection is needed; however, this can be hindered due to the series of PCR
409 panels used for identification of unknown viruses and inefficient for the discovery of
410 coinfections.⁴¹ Deep sequencing-based approaches using viral nucleic acid enrichment methods
411 have been described to address this issue, including targeted and untargeted library preparations,
412 like SISPA.^{21,22} The methodology in this study demonstrates the application of culture-based
413 viral enrichment followed by random, strand-switching MinION sequencing for accurately
414 detecting and characterizing RNA viruses. RNA viruses with varying genome compositions
415 (single stranded [positive- and negative- sense], double stranded, and segmented) were used to
416 demonstrate the ability of untargeted strand-switching to obtain complete CDS of genotyping
417 regions and whole genomes with viral culture enrichment methods. Moreover, two viruses
418 (EHDV-2 and BVDV) were detected from a single sample, illustrating the utility of the random
419 sequencing approach. Lastly, data analysis for one sample (CDV) was treated as a novel virus,
420 highlighting the feasibility of this method to identify a new or poorly characterized virus.

421 This random sequencing approach proved to be robust across various RNA viruses in
422 obtaining full length CDS of the complete genome after using an unbiased, fast aligner to
423 identify the likely virus, followed by reference-based consensus building to identify the lineage
424 type. With at least 26× depth of coverage across the genome for all viruses, whole genome CDS
425 had 96.99–100.0% identity to the top BLASTn hits. Complete CDS for all segments of three
426 segmented viruses, EHDV-2 (dsRNA), swine influenza, and canine influenza (negative-sense
427 ssRNA), were obtained with a minimum of 43× depth of coverage and an average of 99.89%
428 identity across all segments. The best “top hit” for each segment does not match across all

429 segments to the same isolate, which may be due to reassortment events for segmented genomes^{8,9}
430 and the unavailable sequence data for all segments for some isolates in NCBI.

431 The alignments of the whole genome CDS and the lineage-typing regions were similar
432 and consistent with the origin of the samples in this study. The identification of the EHDV as an
433 EHDV-2w with highest similarity to EHDVs circulating in white-tailed deer in the southeastern
434 United States in 2017 is consistent with the collection of this sample from a white-tailed deer in
435 Georgia in 2016. The influenza sample of canine origin was determined as a canine H3N2 strain,
436 matching the typing completed as part of the original diagnostic case workup. The full
437 sequencing provided by this method was able to confirm that the isolate in this study was most
438 similar to canine H3N2 viruses circulating in the southeastern United States in 2015, consistent
439 with the time and geographic location in which this sample was collected. Lineage typing of the
440 swine-origin influenza virus categorized it as an H1N2 most similar to an H1N2 IAV isolated
441 from a swine in 2018 from Ohio. It is possible that the slightly lower percent identity for the
442 swine-origin influenza is due to a relative paucity of sequence data available for 2019 swine-
443 origin IAV at this time. The CDV America II lineage, the classification of CDV in this study, is a
444 common lineage found in North American wildlife⁴² and is consistent with the collection of this
445 sample from a raccoon in Kentucky. The sequences for IBV and PRRSV were highly similar to
446 the known sequences of those isolates.

447 This protocol was also tested on two scenarios. The first was the detection of two viruses
448 in a single culture system, demonstrating its ability to simultaneously obtain accurate, complete
449 CDS for rapid detection and characterization of viruses in coinfecting samples, comparable to
450 other studies using advanced sequencing for analysis of cultured viruses.⁴³ The second was the
451 data analysis under the simulating conditions of CDV being a novel virus. This resulted in read

452 alignments that spanned across the *Morbillivirus* genus. Excluding the background hits, the
453 largest proportion of reads hit to PDV and consensus building with these reads had a low
454 pairwise identity (78.71%), suggesting it was not a PDV. The phylogenetic divergence gives
455 evidence that the virus in the sample belongs to the *Morbillivirus* genus and is phylogenetically
456 related to PDV. If CDV was truly an unknown virus, the Centrifuge output would have
457 suggested the identification of a novel or divergent virus that is most similar to PDV sequences,
458 consistent with the known close genetic relationship between CDV and PDV.⁴⁴ Furthermore, in
459 the event of an unknown viral etiology and due to the multiplexing capabilities of MinION
460 sequencing, DNA library approaches can be applied and sequenced concurrently with the
461 random strand-switching library to identify RNA or DNA virus in the sample.^{45,46}

462 Sanger sequencing was performed on partial lineage-typing sequences for BVDV, CDV,
463 and EHDV and compared with the full-length lineage-typing regions obtained from MinION
464 sequencing, resulting in 100.0% pairwise identity. The 100% pairwise identity between the
465 Sanger and MinION sequences is consistent with previous results using MinION sequencing,^{2,25}
466 that demonstrated the ability to obtain accurate MinION sequences by increasing depth of
467 coverage.^{47,48} Sanger sequencing and BLASTn results for the 5' UTR for BVDV and VP2 for
468 EHDV matched the MinION lineage-typing region BLASTn results. For the *H* gene for CDV,
469 Sanger sequencing had a top BLASTn alignment with isolate THA/VG with 96.53%; however,
470 the results did show 96.0% identity with isolate A75/15, comparable to MinION sequencing
471 result of 96.49% identity to isolate A75/15. It is noteworthy that aligning the Sanger and
472 MinION results for the *H* gene in CDV showed 100.0% pairwise identity. The differences in
473 BLASTn top alignments are attributed to the shorter sequence from Sanger sequencing, causing
474 a slightly lower sequence specificity. Longer fragments, particularly whole genome sequencing,

475 have shown improved resolution for genotyping analyses.^{49,50} Additionally, the limitations of
476 partial sequences used in Sanger sequencing are illustrated by the inability of Sanger sequencing
477 to identify a single best hit for EHDV-2 and CDV, which resulted in multiple hits with identical
478 BLASTn scores; whereas, the MinION-based method obtained complete CDS of the *VP2*
479 segment and *H* gene allowing for a single best hit for these viruses. In addition to more accurate
480 classification, whole genome sequencing of viruses is advantageous in providing more data for
481 detection, epidemiology, genotyping and phylogenetic analysis compared to partial and/or
482 targeted sequences obtained from other classical sequencing methods. The relatively limited data
483 provided by targeted sequencing may require further sequencing and expenses to obtain
484 additional biological information. In particular, different genetic sequences are used for
485 phylogenetic analysis and genotyping. Some viruses also have multiple genotyping regions, such
486 as BVDV, EHDV, and influenza.^{26,28,30} Furthermore, recombination events are often difficult to
487 identify with partial sequences and are important in investigating host range, virulence, and
488 vaccine evasion.⁵¹⁻⁵³ Thus, routine, whole genome sequencing of viruses gives quick turnaround
489 data for various analyses and could provide more comprehensive databases needed to understand
490 viral evolution.

491 Random, deep sequencing for many high-throughput sequencing platforms has some
492 caveats such as false hits. As one example, illustrated in Figure 1, some reads were classified as
493 lassa mammarenavirus, various herpesviruses, and others. Endogenous retroviruses and some
494 DNA viruses were also frequently found to be present after annotating sequences. After
495 clustering and aligning these reads to GenBank using BLASTn, it was determined that the reads
496 were short sequences that matched to various host sequences. Reference sequences of the host
497 and propagation systems of the cultured viruses were included in the Centrifuge indices to reduce

498 these misalignments; however, these genomes are not as well described as other commonly
499 studied organisms and may not represent the full sequence diversity of the host genome. Users
500 can adjust alignment settings to help reduce the number of false hits, but as with any test,
501 increasing the specificity of the test will negatively impact sensitivity. Similar to other fields
502 (e.g., background lesions in pathology, growth of nonpathogenic bacteria in bacterial cultures),
503 confirmatory tests may be required and analysis of deep sequencing results requires evaluation
504 by a trained user, one experienced with bioinformatic methodology and with knowledge of
505 veterinary infectious diseases.

506 While rapid, cost-effective whole-genome sequencing may be useful in a diagnostic
507 setting, ease of use and robustness across laboratories is key for deployment. For this reason,
508 libraries for CDV and PRRSV were prepared at different laboratories. Both libraries for CDV
509 had similar results; however, the differences can possibly be attributed to the use of a sequencing
510 kit intended for 1D sequencing with a FLO-MIN107 (R9.5) flowcell that is typically used for
511 1D² sequencing. The repercussions of the 1D kit with a 1D² flowcell combination are not well
512 known but it is of interest to note that trimming the basecalled files resulted in 1,691,792 reads
513 removed due to middle adapters, significantly decreasing the total number of reads assigned to
514 each barcode.

515 The present study provides promising results for quick identification of unknown
516 cultured RNA viruses by using MinION sequencing with a previously untested random
517 approach. Future studies to compare the varying random methods of deep sequencing are
518 required to determine the most efficient methods. As with other deep sequencing methods,⁵⁰
519 MinION-based sequencing will also likely be used to metagenomically detect viruses directly
520 from clinical samples (e.g., serum, swabs, tissues), and work is ongoing to investigate this usage.

521 MinION sequencing is a cost-effective way to multiplex samples and achieve long reads for
522 more accurate genome consensus building compared to other short read sequencing technologies.
523 Overall, the addition of full-genome sequencing to more routine diagnostic use will increase the
524 available knowledge regarding sequence diversity and allow for improved tracking of viruses
525 and a better understanding of the genetic determinants of viral pathogenesis.

526 **Acknowledgments**

527 The authors acknowledge Vanessa Gauthiersloan, Samantha Day and Erich Linnemann from the
528 Poultry Diagnostic & Research Center, University of Georgia, Clara Kienzle-Dean from the
529 Southeastern Cooperative Wildlife Disease Study, University of Georgia, and Pablo Pinyero
530 from the Veterinary Diagnostic Lab, Iowa State University for their technical help.

531 **Declaration of conflicting interests**

532 The authors declared no potential conflicts of interest with respect to the research, authorship,
533 and/or publication of this article.

534 **Funding**

535 The project described was supported by Agriculture and Food Research Initiative Competitive
536 Grant no. 2018-67015-28306 from the USDA National Institute of Food and Agriculture. This
537 project has been funded in part with funds from the National Institute of Allergy and Infectious
538 Diseases, National Institutes of Health, Department of Health and Human Services, under Center
539 of Excellence of Influenza Research and Surveillance (CEIRS) under contract number
540 HHSN272201400004C (SMT).

541 **Supplementary material**

542 Supplementary material for this article is available online.

543 **References**

544 1. Sartore S, et al. The effects of control measures on the economic burden associated with
545 epidemics of avian influenza in Italy. *Poult Sci* 2010;89:1115–1121.

546

547 2. Butt SL, et al. Rapid virulence prediction and identification of Newcastle disease virus
548 genotypes using third-generation sequencing. *Virol J* 2018;15:179.

549

550 3. Clavijo A, et al. An improved Real-Time Polymerase Chain Reaction for the Simultaneous
551 Detection of All Serotypes of Epizootic Hemorrhagic Disease Virus. *J Vet Diagn Invest*
552 2010;22:588–593.

553

554 4. Cavanagh, D and Naqi SA. Infectious bronchitis. In: Diseases of Poultry. 11th ed. Ames,
555 Iowa: Iowa State Univer Pr, 2003:101–119.

556

557 5. Zhang J, et al. High-throughput whole genome sequencing of Porcine reproductive and
558 respiratory syndrome virus from cell culture materials and clinical specimens using next-
559 generation sequencing technology. *J Vet Diagn Invest* 2016;29:41–50.

560

561 6. Woolhouse MEJ, et al. Assessing the Epidemic Potential of RNA and DNA Viruses. *Emerg*
562 *Inf Dis* 2016;22:2037–2044.

563

564 7. Rubio L, et al. Genetic variability and evolutionary dynamics of viruses of the family
565 Closteroviridae. *Front. Microbiol.* 2013;4:151–151.

566

567 8. Read SJ, et al. Molecular techniques for clinical diagnostic virology. *J Clin Pathol*
568 2000;53:502–506.

569

570 9. Chan RWY, et al. Tissue tropism of swine influenza viruses and reassortants in ex vivo
571 cultures of the human respiratory tract and conjunctiva. *J Virol* 2011;85:11581–11587.

572

573 10. Flint, J. Synthesis of RNA from RNA templates. In: *Principles of Virology*. 4th ed.
574 Washington, DC: ASM Press, 2015: 157–184.

575

576 11. Gilchrist CA, et al. Whole-genome sequencing in outbreak analysis. *Clin Microbiol Rev*
577 2015;28:541–563.

578

579 12. Cobo F. Application of molecular diagnostic techniques for viral testing. *Open Virol J*
580 2012;6:104–114.

581

582 13. Gullett JC, et al. Quantitative Nucleic Acid Amplification Methods for Viral Infections. *Clin*
583 *Chem* 2015;61:72–78.

584

585 14. Ranjan R, et al. Analysis of the microbiome: Advantages of whole genome shotgun versus
586 16S amplicon sequencing. *Biochem Biophys Res Commun* 2016;469:967–977.

587

588 15. Kasibhatla, SM, et al. Analysis of next-generation sequencing data in virology- Opportunities
589 and challenges. *IntechOpen* 2016; DOI: 10.5772/61610.

590
591 16. Head SR, et al. Library construction for next-generation sequencing: overviews and
592 challenges. *BioTechniques* 2014;56:61–64
593
594 17. Marston DA, et al. Next generation sequencing of viral RNA genomes. *BMC Genomics*
595 2013;14:444.
596
597 18. Quick J, et al. Real-time, portable genome sequencing for Ebola surveillance. *Nature*
598 2016;530:228–232.
599
600 19. Greninger AL, et al. Rapid metagenomic identification of viral pathogens in clinical samples
601 by real-time nanopore sequencing analysis. *Genome Med* 2015;7:99.
602
603 20. Kilianski A, et al. Use of Unamplified RNA/cDNA-Hybrid Nanopore Sequencing for Rapid
604 Detection and Characterization of RNA Viruses. *Emerg Infect Dis* 2016;22:1448–1451.
605
606 21. Beato MS, et al. Identification and genetic characterization of bovine enterovirus by
607 combination of two next generation sequencing platforms. *J Virol Methods* 2018;260:21–25.
608
609 22. Peserico A, et al. Diagnosis and characterization of canine distemper virus through
610 sequencing by MinION nanopore technology. *Sci Rep* 2019;9:1714–1714.
611
612 23. Mahlum CE, et al. Detection of bovine viral diarrhea virus by TaqMan® reverse transcription
613 polymerase chain reaction. *J Vet Diagn Invest* 2002;14:120–125.
614
615 24. Kim D, et al. Centrifuge: rapid and sensitive classification of metagenomic sequences.
616 *Genome Res* 2016;26:1721–1729.
617
618 25. Butt SL, et al. Real-time, MinION-based, amplicon sequencing for lineage typing of
619 infectious bronchitis virus from upper respiratory samples. *J Vet Diagn Invest* 2019.
620 Accepted.
621
622 26. Yeşilbağ K, et al. Variability and Global Distribution of Subgenotypes of Bovine Viral
623 Diarrhea Virus. *Viruses* 2017;9:128.
624
625 27. Piewbang C, et al. Genetic and evolutionary analysis of a new Asia-4 lineage and naturally
626 recombinant canine distemper virus strains from Thailand. *Sci Rep* 2019;9:3198.
627
628 28. Brown-Joseph T, et al. Identification and characterization of epizootic hemorrhagic disease
629 virus serotype 6 in cattle co-infected with bluetongue virus in Trinidad, West Indies. *Vet*
630 *Microbiol* 2019;229:1–6.
631
632 29. Valastro V, et al. S1 gene-based phylogeny of infectious bronchitis virus: An attempt to
633 harmonize virus classification. *Infect Genet and Evol* 2016;39:349–364.
634

635 30. Shi W, et al. A complete analysis of HA and NA genes of influenza A viruses. PloS One
636 2010;5:e14454–e14454.

637

638 31. Kang H, et al. Geographic distribution and molecular analysis of porcine reproductive and
639 respiratory syndrome viruses circulating in swine farms in the Republic of Korea between
640 2013 and 2016. BMC Vet Res 2018;14:160.

641

642 32. O'Donnell CR, et al. Error analysis of idealized nanopore sequencing. Electrophoresis
643 2013;34:2137–2144.

644

645 33. Breitwieser, FP, et al. Pavian: interactive analysis of metagenomics data or microbiome
646 studies and pathogen identification. Bioinformatics 2019.

647

648 34. Thompson JD, et al. CLUSTAL W: improving the sensitivity of progressive multiple
649 sequence alignment through sequence weighting, position-specific gap penalties and weight
650 matrix choice. Nucleic Acids Res 1994;22:4673–4680.

651

652 35. Tamura K. Estimation of the number of nucleotide substitutions when there are strong
653 transition-transversion and G+C-content biases. Mol Biol Evol 1992;9:678–687.

654

655 36. Kumar S, et al. MEGA X: Molecular Evolutionary Genetics Analysis across Computing
656 Platforms. Mol Biol Evol 2018;35:1547–1549.

657

658 37. Vilček Š, et al. Pestiviruses isolated from pigs, cattle and sheep can be allocated into at least
659 three genogroups using polymerase chain reaction and restriction endonuclease analysis.
660 Arch of Virol 1994;136:309–323.

661

662 38. Martella V, et al. Genotyping canine distemper virus (CDV) by a hemi-nested multiplex PCR
663 provides a rapid approach for investigation of CDV outbreaks. Vet Microbiol 2007;122:32–
664 42.

665

666 39. Sun F, et al. Molecular Typing of Epizootic Hemorrhagic Disease Virus Serotypes by One-
667 Step Multiplex RT-PCR. J Wildl Dis 2014;50:639–644.

668

669 40. J Woolhouse ME, et al. RNA Viruses: A case study of the biology of emerging infectious
670 diseases. Microbiol Spectr 2013;1:10.1128/microbiolspec.OH-0001–2012.

671

672 41. Ginocchio CC, et al. Current best practices for respiratory virus testing. J Clin Microbiol
673 2011;49:S44–S48.

674

675 42. Wostenberg DJ, et al. Evidence of two cocirculating canine distemper virus strains in
676 mesocarnivores from northern Colorado, USA. J. of Wildlife Diseases 2018;54:534–543.

677

678 43. Ahsan MS, et al. Complete genome sequence of Mobuck Virus isolated from a Florida
679 white-tailed deer (*Odocoileus virginianus*). Microbiol Resour Announc 2019;8:e01324–
680 01318.

681
682 44. Pfeffermann K, et al. Chapter Four - Morbillivirus Pathogenesis and Virus–Host Interactions.
683 In: *Advances in Virus Research*. eds. Kielian M, Mettenleiter TC and Roossinck MJ, Vol.
684 100: Academic Press, 2018:75–98.
685
686 45. Jain M, et al. Improved data analysis for the MinION nanopore sequencer. *Nat Methods*
687 2015;12:351–356.
688
689 46. McNaughton AL, et al. Illumina and Nanopore methods for whole genome sequencing of
690 hepatitis B virus (HBV). *Sci Rep* 2019;9:7081.
691
692 47. Jain M, et al. MinION Analysis and Reference Consortium: Phase 2 data release and analysis
693 of R9.0 chemistry. *F1000Res* 2017;6:760–760.
694
695 48. Magi A, et al. Characterization of MinION nanopore data for resequencing analyses. *Brief
696 Bioinform* 2016;18:940–953.
697
698 49. Goldstein EJ, et al. Integrating patient and whole-genome sequencing data to provide insights
699 into the epidemiology of seasonal influenza A (H3N2) viruses. *Microb Genom*
700 2018;4:e000137.
701
702 50. Pallen MJ, et al. High-throughput sequencing and clinical microbiology: progress,
703 opportunities and challenges. *Curr Opin in Microbiol* 2010;13:625–631.
704
705 51. Runckel C, et al. Identification and manipulation of the molecular determinants influencing
706 poliovirus recombination. *PLOS Pathog* 2013;9:e1003164.
707
708 52. Su S, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. *Trends
709 in Microbiol* 2016;24:490–502.
710
711 53. Park E-S, et al. Identification of a natural recombination in the F and H genes of feline
712 morbillivirus. *Virology* 2014;468–470:524–531.

713

Tables

714

Table 1. Sample background information and reverse-transcription real-time PCR (RT-rtPCR) results.

Virus	Original Host	Propagation System	RT-rtPCR (Ct)	Collection	
				State (USA)	Year
BVDV	BVDV positive CPAE cells	CPAE	24.90	N/A	N/A
CDV	North American raccoon	Vero-Dog SLAM	20.35	Kentucky	2018
EHDV	White-tailed deer	CPAE	15.15	Georgia	2016
IBV	N/A	ECE	12.48	N/A	N/A
Canine-origin IAV	Dog	ECE	16.94	Georgia	2015
Swine-origin IAV	Hampshire-cross pig	MDCK	ND	Georgia	2019
PRRSV	N/A	MARC-145	ND	N/A	N/A

715 BVDV= bovine viral diarrhea virus; CDV = canine distemper virus; Ct = cycle threshold; CPAE = cattle pulmonary artery
 716 endothelial; ECE = embryonated chicken eggs; EHDV = epizootic hemorrhagic disease virus; IAV = influenza A virus; IBV =
 717 infectious bronchitis virus; MDCK = Madin-Darby Canine Kidney; N/A = not applicable; ND = not determined; PRRSV = porcine
 718 reproductive and respiratory syndrome virus.

719

720

721 Table 2. Reverse-transcription PCR (RT-PCR) primer information for Sanger sequencing.

Virus	Target Region	Primer Name	Primer Sequence (5' → 3')	Amplicon Size (bp)	Reference
BVDV	5' UTR	324	ATGCCCT/ATAGTAGGACTAGCA	288	[37]
		326	TCAACTCCATGTGCCATGTAC		
CDV	<i>H</i>	204 (+)	GAATTCGACTTCCGCGATCTCC	1,160	[38]
		232 (-)	TAGGCAACACCACTAATTTRGACTC		
EHDV	VP2	EHDV-2F	TGGTGAACATACGGTATATAACC	246	[39]
		EHDV-2R	GTTCAAATTCATCTGGGCTCATACT		

722 BVDV= bovine viral diarrhea virus; CDV = canine distemper virus; EHDV = epizootic hemorrhagic disease virus; *H* =
 723 hemagglutinin; UTR = untranslated region.

724

725

Table 3. Sequencing data from Porechop and Centrifuge.

Virus	Estimated Total Run Time (HH:MM)	Porechop		Viral Reads (%)	Host Reads (%)
		Total Reads	Total Bases		
BVDV & EHDV	8:20	756,373	299,505,703	12.7	75.2
CDV	3:20	183,206	63,116,488	2.10	80.4
CDV*	47:37	75,492	33,681,975	0.97	45.8
IBV	7:40	7,523	11,361,873	63.3	2.50
Canine IAV	2:45	745,382	341,878,915	36.6	53.2
Swine IAV	5:20	1,173,058	450,544,038	31.1	63.4
PRRSV*	47:37	28,418	18,889,591	57.1	14.3

726 BVDV=bovine viral diarrhea virus; CDV = canine distemper virus; EHDV = epizootic
 727 hemorrhagic disease virus; IAV = influenza A virus; IBV = infectious bronchitis virus; PRRSV
 728 = porcine reproductive and respiratory syndrome virus.

729 * Libraries were prepared and sequenced at Virginia Tech University.

730

731

732 **Table 4.** Consensus results for coding sequences (CDS) of lineage-typing regions for each virus.

Virus	Lineage-typing Region	Consensus Length (bp)	BLASTn Top Hit	Accession	Lineage	Pairwise Identity (%)	Mean Depth of Coverage	Minimum Depth of Coverage	Maximum Depth of Coverage
BVDV	5 [□] UTR	381	BVDV-2 95-1501	MH231130	ND	97.91	12,395.6	10,115	13,980
	<i>N^{pro}</i>	504	BVDV-2 McCart_c	MH806438	2a	96.23	14,783.5	13,286	15,908
CDV	<i>H</i>	1,824	CDV A75/17 [†]	AF164967	America II	96.49	817.3	151	1,739
CDV*	<i>H</i>	1,824	CDV A75/17 [†]	AF164967	America II	96.49	105.1	33	176
EHDV	VP2	2,949	EHDV-2 OV617	MK958997	2w	99.90	523.7	43	896
IBV	<i>S1</i>	3,489	Avian coronavirus strain Ma5	KY626045	GI-L4	100.0	287.5	219	350
Canine IAV	HA	1,701	Influenza A virus (A/canine/Georgia/101875/2015(H3N2)) [†]	MF173286	H3g1	100.0	13,981.0	960	21,463
	NA	1,410	Influenza A virus (A/canine/Georgia/95391/2015 (H3N2)) [†]	KX570998	N2g2	99.79	22,968.0	674	37,816
Swine IAV	HA	1,698	Influenza A virus (A/swine/Ohio/18TOS U1194/2018(H1N2)) [†]	MN198216	H1g4	99.65	2,360.7	424	3,148
	NA	1,410	Influenza A virus (A/swine/Ohio/18TOS U1194/2018(H1N2)) [†]	MN198218	N2g2	99.79	4,752.8	517	6,928
PRRSV*	ORF5	603	PRRSV VR2385	JX044140	Type 2, Lineage 5	99.67	546.2	470	588

733 BVDV= bovine viral diarrhea virus; CDV = canine distemper virus; EHDV = epizootic hemorrhagic disease virus; Gx-Lx= genotype-lineage; *H* = hemagglutinin; *HA* = hemagglutinin; IAV = influenza A virus; IBV = infectious bronchitis virus; NA = neuraminidase ND = not determined; *N^{pro}* = N-terminal protease; *ORF* = open reading frame; PRRSV = porcine reproductive and respiratory syndrome virus; *S1* = Spike 1.

737 * Libraries were prepared and sequenced at Virginia Tech University.

738 † BLASTn results showed 2-29 sequence alignments with identical Bit-Scores, query coverage, and pairwise identities to other isolates.

739 The provided “top hit” was included in those alignments.

741 **Table 5.** Consensus results of whole genome coding sequences (CDS) for each virus.

Virus	Segment	Reads Per Consensus	Consensus Length (bp)	BLASTn Top Hit	Accession	Pairwise Identity (%)	Mean Depth of Coverage	Minimum Depth of Coverage	Maximum Depth Coverage
BVDV		54,561	11,689	BVDV-2 95-1501	MH231130	97.37	4,277.3	518	15,908
CDV		3,428	15,477	CDV A75/17	AF164967	97.01	299.6	26	1,739
CDV*		717	13,957	CDV A75/17	AF164967	96.99	72.1	20	176
EHDV	VP1	2,091	3,909	EHDV-2 OV617	MK958997	99.97	576.4	231	1,333
	VP2	1,423	2,949	EHDV-2 OV617	MK958997	99.90	523.7	43	896
	VP3	1,807	2,700	EHDV-2 OV215	MF688818	99.93	606.3	100	1,346
	VP4	1,602	1,935	EHDV-2 OV215	MF688819	99.95	625.3	218	1,205
	NS1	3,598	1,656	EHDV-2 OV215	MF688823	99.88	2,295.5	185	2,711
	VP5	3,249	1,584	EHDV-2 OV617	MK959001	100.0	1,473.6	168	2,693
	VP7	3,415	1,050	EHDV-2 OV215	MF688822	100.0	1,751.5	117	2,804
	NS2	6,485	903	EHDV-2 OV617†	MK959005	99.91	2,884.1	392	3,930
	VP6	15,516	1,080	EHDV-2 OV617	MK959002	99.91	6,335.3	196	13,629
	NS3	3,512	687	EHDV-2 OV617	MK959006	100.0	2,879.7	181	3,409
IBV		4,695	26,574	Avian coronavirus strain Ma5	KY626045	100.0	416.3	158	1,011
Canine IAV	PB2	50,753	2,280	Influenza A virus (A/canine/Florida/269770/2015(H3N2))	MF173191	100.0	19,415.2	1,136	30,101
	PB1	38,930	2,274	Influenza A virus (A/canine/Florida/269770/2015(H3N2))†	MF173194	100.0	13,406.6	2,339	21,726
	PA	28,755	2,151	Influenza A virus (A/canine/Florida/269770/2015(H3N2))	MF173220	100.0	1,1662.4	923	17,815
	HA†	33,293	1,701	Influenza A virus (A/canine/Georgia/101875/2015(H3N2))†	MF173286	100.0	13,981.0	960	21,463

Swine IAV	<i>NP</i>	32,490	1,497	Influenza A virus (A/canine/Georgia/95391/2015 (H3N2))†	KX571004	100.0	1,3119.1	2,544	19,511	
	<i>NA‡</i>	41,130	1,410	Influenza A virus (A/canine/Georgia/95391/2015 (H3N2))†	KX570998	99.79	22,968.0	674	37,816	
	<i>M1 & M2</i>	39,862	982	Influenza A virus (A/canine/Texas/2100186/2015(H3N2))†	MF173280	100.0	23,887.5	962	34,210	
	<i>NEP & NS1</i>	3,937	838	Influenza A virus (A/canine/Georgia/101875 / 2015(H3N2))†	MF173122	100.0	2,291.5	524	2,971	
	<i>PB2</i>	41,421	2,280	Influenza A virus (A/swine/Ohio/18TOSU11 94/ 2018(H1N2))†	MN198223	99.74	9,835.2	223	33,925	
	<i>PB1</i>	14,908	2,274	Influenza A virus (A/swine/Ohio/18TOSU11 94/ 2018(H1N2))†	MN198222	99.74	2,303.0	352	3,438	
	<i>PA</i>	26,431	2,151	Influenza A virus (A/swine/Ohio/18TOSU11 94/ 2018(H1N2))†	MN198221	99.72	7,941.8	417	20,275	
	<i>HA‡</i>	6,673	1,698	Influenza A virus (A/swine/Ohio/18TOSU11 94/ 2018(H1N2))†	MN198216	99.65	2,360.7	424	3,148	
	<i>NP§</i>	64,370	1,497	Influenza A virus (A/swine/Ohio/18TOSU11 94/ 2018(H1N2))†	MN198219	99.40	28,014.8	305	61,449	
	<i>NA‡</i>	8,519	1,410	Influenza A virus (A/swine/Ohio/18TOSU11 94/ 2018(H1N2))†	MN198218	99.79	4,752.8	517	6,928	
	<i>M1 & M2</i>	9,655	982	Influenza A virus (A/swine/Ohio/18TOSU11 94/ 2018(H1N2))†	MN198217	100.0	4,855.6	178	7,536	

	NEP & NS1	3,276	838	Influenza A virus (A/swine/Ohio/18TOSU11 94/ 2018(H1N2))†	MN198220	99.88	1,637.4	283	2,076
PRRSV		16,216	14,636	PRRSV VR2385	JX044140	99.84	2,045.4	27	13,535

742 BVDV= bovine viral diarrhea virus; CDV = canine distemper virus; EHDV = epizootic hemorrhagic disease virus; *HA* =
743 hemagglutinin; IAV = influenza A virus; IBV = infectious bronchitis virus; *M* = matrix protein; *NA* = neuraminidase; *NEP* = nuclear
744 export protein; *NP* = nucleocapsid; *NS* = nonstructural protein; *PA* = polymerase; *PB* = polymerase; PRRSV = porcine reproductive and
745 respiratory syndrome virus.

746 * Libraries prepared and sequenced at Virginia Tech University.

747 † BLASTn results showed 2-77 sequence alignments with identical Bit-Scores, query coverage, and pairwise identities to other isolates.

748 The provided “top hit” was included in those alignments.

749 ‡ Repeated from Table 4 for completeness of genome assessment.

750 § Due to a large number of reads, only half the reads classified as the NP gene were used for reference-based consensus building.

751

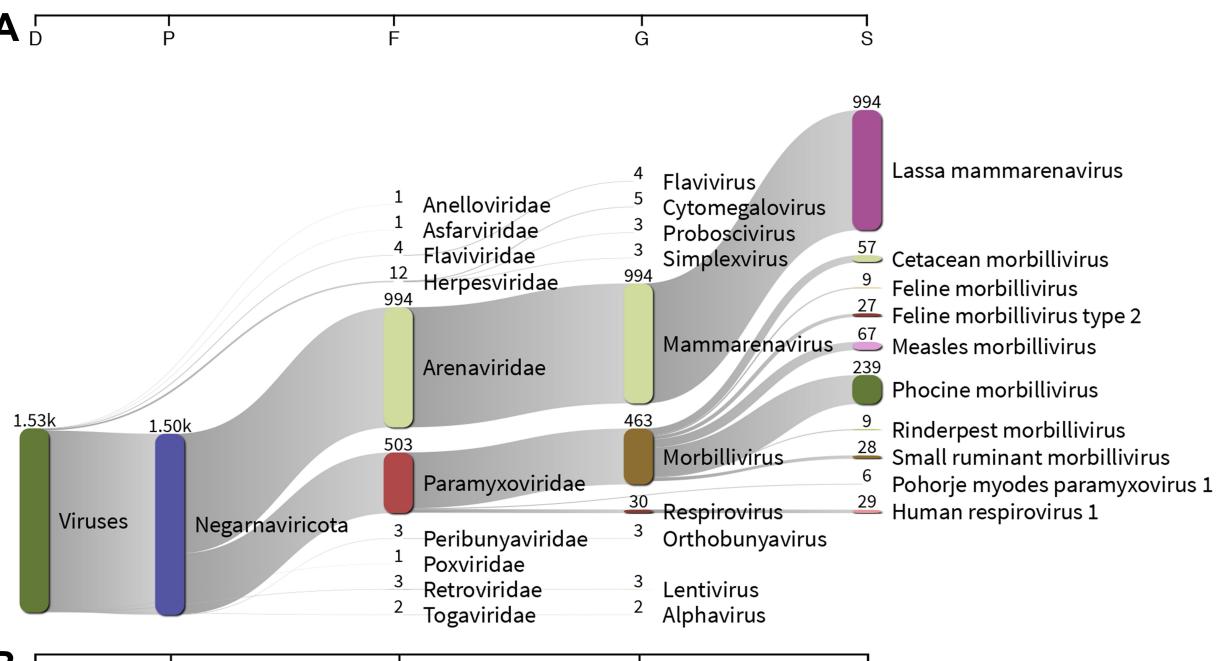
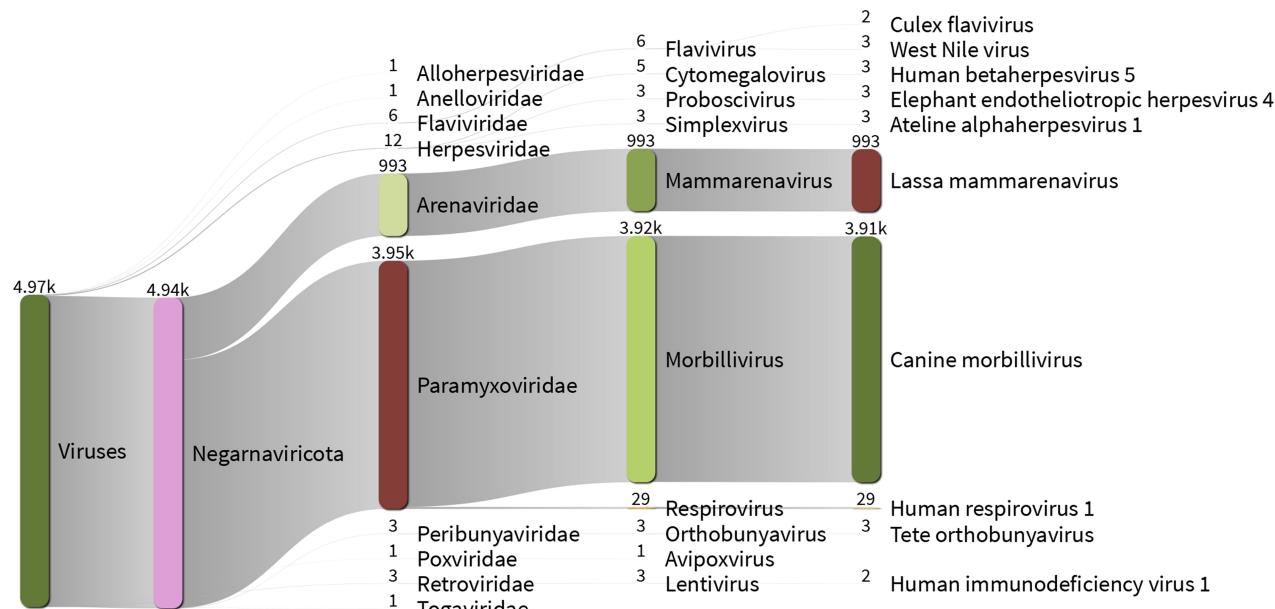
752 **Table 6.** Sanger and MinION sequencing consensus pairwise identity results.

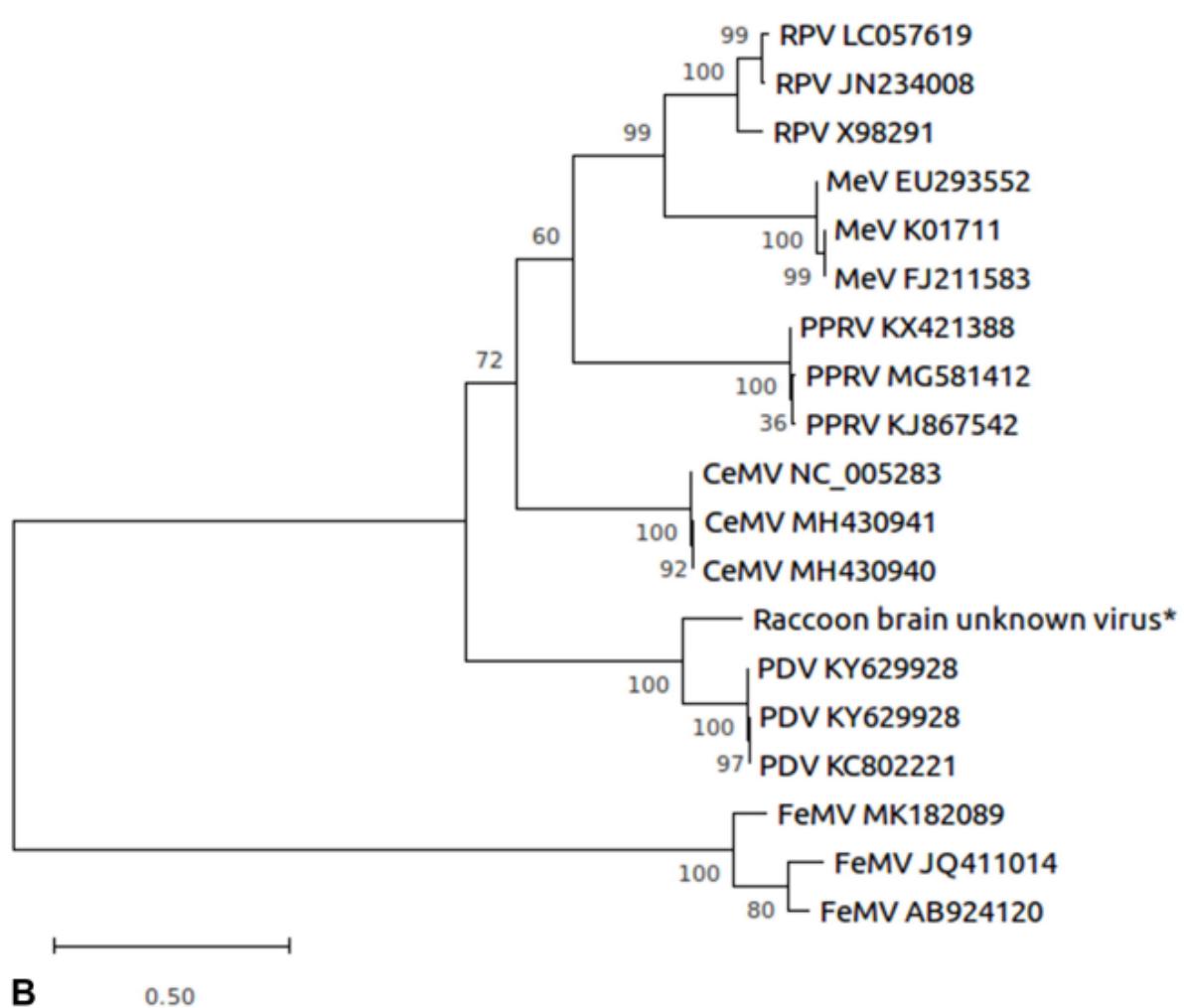
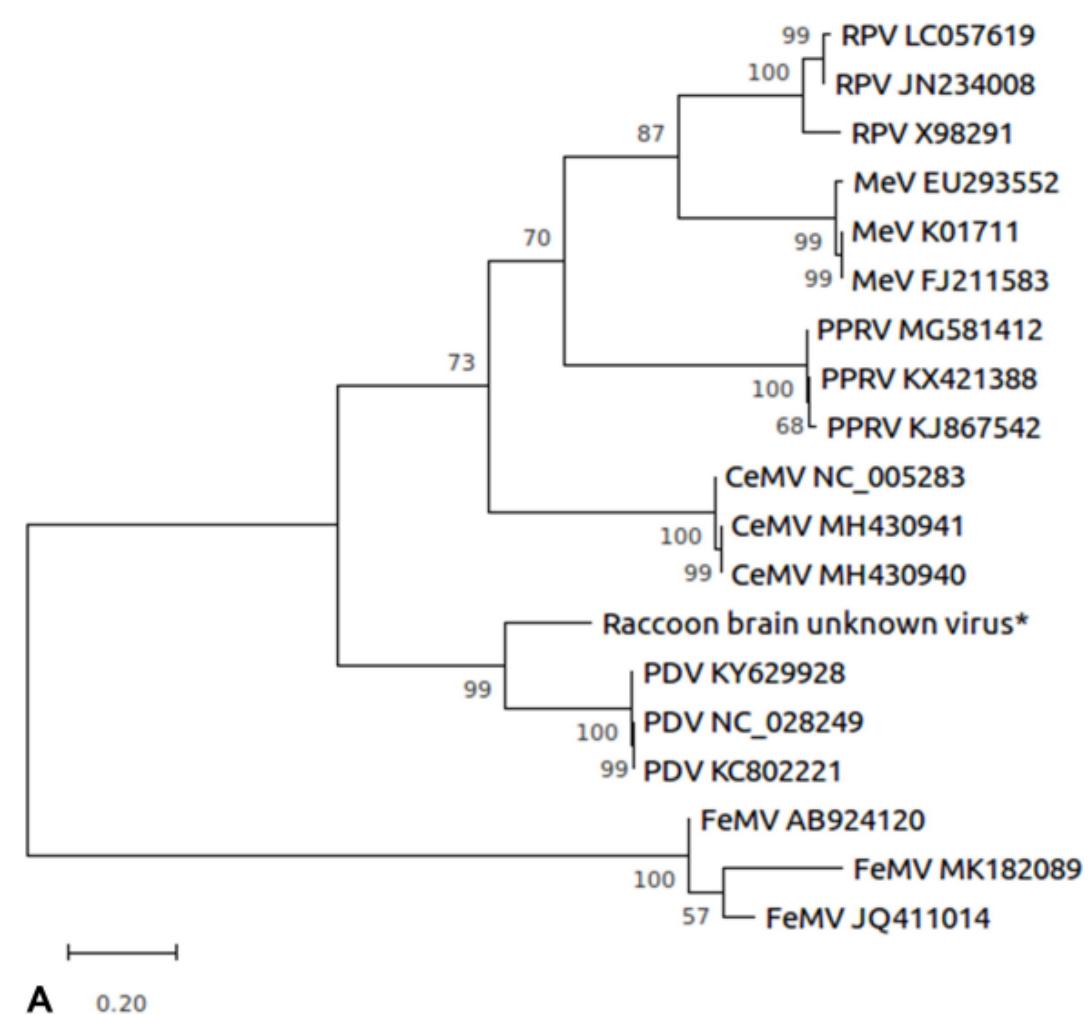
Virus	Target Region	MinION			Sanger			Sanger vs. MinION Pairwise Identity (%)
		Consensus Length (bp)	BLASTn Top Hit	Pairwise Identity (%)	Consensus Length (bp)	BLASTn Top Hit	Pairwise Identity (%)	
BVDV	5' UTR	381	BVDV-2 95-1501 (MH231130)	97.91	268	BVDV-2 95-1501 (MH231130)	99.22	100.0
CDV	<i>H</i>	1,824	CDV A75/17 (AF164967)	96.49	923	CDV THA/VG (JX886780)*	96.53	100.0
EHDV	VP2	2,949	EHDV-2 OV617 (MK958998)	99.90	158	EHDV-2 OV617 (MK958998)*	100.0	100.0

753 BVDV= bovine viral diarrhea virus; CDV = canine distemper virus; EHDV = epizootic hemorrhagic disease virus; *H* =
754 hemagglutinin; UTR = untranslated region.

755 * BLASTn results showed 5-12 sequence alignments with identical Bit-Scores, query coverage, and pairwise identities to other
756 isolates. The provided “top hit” was included in those alignments.

757



758 **Figure Legends**



759 **Figure 1.** Sankey diagram displaying the top ten nodes per taxonomic classification level. Centrifuge v.1.0.4²⁴ Kraken-style reports
760 from analyzing sequences from canine distemper virus (CDV) with (a) pipeline containing CDV sequences and (b) novel virus
761 simulation using a pipeline devoid of CDV sequences in custom Centrifuge indices were visualized with Pavian v.1.0.³³ Number of
762 reads assigned to taxonomic classification correspond with the width of the flow and are listed above each node. Reads hitting to the
763 bovine and African green monkey genomes were excluded. Abbreviations are: D = domain; F = family; G = genus; P=phylum; S =
764 species.

765

766 **Figure 2.** Phylogenetic analysis of morbilliviruses of (a), whole genome CDS and (b), *P* gene CDS after a data analysis of CDV
767 sequences using a pipeline devoid of CDV reads to simulate novel virus detection and identification. Each sequence is designated by
768 species abbreviation and GenBank accession number. The sequence denoted with an asterisk was generated from the data analysis
769 pipeline with MinION sequencing. The evolutionary history was inferred by using the Maximum Likelihood method and Tamura 3-
770 parameter model.³⁵ These analyses involved 19 nucleotide sequences and a total of 14,578 positions (a) or 1,460 positions (b) in the
771 final dataset. All positions containing gaps and missing data were eliminated. Evolutionary analyses were conducted in MEGA X.³⁶
772 Abbreviations are: CeMV = cetacean morbillivirus; FeMV = feline morbillivirus; MeV = measles virus; PDV = phocine distemper
773 virus; PPRV = peste-des-pestits-ruminants virus; RPV = rinderpest virus.

774

