

# Surprising variation in the outcome of two malaria genetic crosses using humanized mice: implications for genetic mapping and malaria biology

3

4 Katrina A. Button-Simons<sup>1</sup>, Sudhir Kumar<sup>2</sup>, Nelly Carmago<sup>2</sup>, Meseret T. Haile<sup>2</sup>, Catherine Jett<sup>3</sup>,  
5 Lisa A. Checkley<sup>1</sup>, Spencer Y. Kennedy<sup>2</sup>, Richard S. Pinapati<sup>4</sup>, Douglas A. Shou<sup>1</sup>, Marina  
6 McDew-White<sup>5</sup>, Xue Li<sup>5</sup>, François H. Nosten<sup>6,7</sup>, Stefan H. Kappe<sup>2</sup>, Timothy J. C. Anderson<sup>5</sup>,  
7 Jeanne Romero-Severson<sup>8</sup>, Michael T. Ferdig<sup>1</sup>, Scott J. Emrich<sup>9</sup>, Ashley M. Vaughan<sup>2</sup>, Ian H.  
8 Cheeseman<sup>3\*</sup>

9

10 <sup>1</sup>*Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame,*  
11 *Notre Dame, IN, USA*

<sup>12</sup>*Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle,*  
<sup>13</sup>*WA, USA*

14 <sup>3</sup>*Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX,*  
15 *USA*

16 *<sup>4</sup>Nimble Therapeutics, Madison, WI*

17 <sup>5</sup>*Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San  
18 Antonio, TX, USA*

19 *<sup>6</sup>Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol*  
20 *University, Mae Sot, Thailand*

*7Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research building, University of Oxford Old Road campus, Oxford, UK*

23 <sup>8</sup>*Department of Biological Sciences, University of Notre Dame, IN*

24 <sup>9</sup>Univeristy of Tennessee, Knoxville, TN, USA

25

26 \* Corresponding author

27 E-mail: ianc@txbiomed.org

28

29 **Abstract**

30 Genetic crosses are most powerful for linkage analysis when progeny numbers are high,  
31 when parental alleles segregate evenly and, for hermaphroditic organisms, when numbers of  
32 inbred progeny are minimized. We previously developed a novel genetic crossing platform for  
33 the human malaria parasite *Plasmodium falciparum*, an obligately sexual, hermaphroditic  
34 protozoan, using mice carrying human hepatocytes (the human liver-chimeric FRG NOD huHep  
35 mouse) as the vertebrate host. Here we examine the statistical power of two different genetic  
36 crosses – (1) between a laboratory parasite (NF54) of African origin and a patient-derived Asian  
37 parasite, and (2) between two sympatric patient-derived Asian parasites. We generated >140  
38 unique recombinant clones over a 12-month period from the four parental genotypes, doubling  
39 the number of unique recombinant progeny generated in the previous 30 years. Both crosses  
40 show bi-parental inheritance of plastid markers amongst recombinant progeny, in contrast to  
41 previous crosses (conducted using chimpanzee hosts) which carried single dominant plastid  
42 genotypes. Both crosses show distinctive segregation patterns. The allopatric African/Asian cross  
43 has minimal levels of inbreeding (2% of clonal progeny are inbred) and extreme skews in marker  
44 segregation, while in the sympatric Asian cross, inbred progeny predominate (66% of clonal  
45 progeny are inbred) and parental alleles segregate evenly. Using simulations, we demonstrate  
46 that these progeny arrays (particularly the sympatric Asian cross) have excellent power to map

47 large-effect mutations to a 31 kb interval and can capture complex, epistatic interactions that  
48 were far beyond the capacity of previous malaria crosses to detect. The extreme segregation  
49 distortion in the allopatric African/Asian cross erodes power to detect linkage in several genome  
50 regions, but the repeatable distortions observed offer promising alternative approaches to  
51 identifying genes underlying traits of interest. These crosses show surprising variation in marker  
52 segregation, nevertheless, the increased progeny numbers improve our ability to rapidly map  
53 biomedically important parasite traits.

54

## 55 **Author Summary**

56 Understanding how genome mutations contribute to newly emerging drug resistance in  
57 parasites like *Plasmodium falciparum* is important to monitor the spread of drug resistance. This  
58 scenario has been playing out in Southeast Asia with the emergence and spread of artemisinin  
59 resistance. Here we show that new *P. falciparum* genetic crosses, using mice carrying human  
60 liver cells and infused with human red blood cells (the human liver-chimeric FRG NOD  
61 huHep/huRBC mouse), provide an important new tool for understanding complex interactions  
62 underlying drug resistance phenotypes. We report two new genetic maps with 84 and 60 unique  
63 recombinant progeny, which doubles the number of progeny available from 4 previous *P.*  
64 *falciparum* genetic crosses. Through extensive simulations we show that with 84 progeny we can  
65 find association for a gene that controls only 20% of the variation in a phenotype. We also show  
66 that a cross generated from Southeast Asian parasites collected from the same geographic region  
67 have unique characteristics not previously observed in *P. falciparum* genetic crosses. This  
68 Southeast Asian cross exhibits even segregation across the genome, unbiased inheritance of  
69 mitochondria and apicoplast and higher levels of inbreeding than previously observed.

70

71 **Introduction**

72 Eukaryotic parasites inflict a high burden of morbidity and mortality particularly in the  
73 developing world. Control of these pathogens is threatened by drug resistance [1, 2].  
74 Understanding the genetic architecture of drug resistance in eukaryotic pathogens is essential to  
75 understand treatment failure. Previous studies in Plasmodium, Trypanosome and Leishmania  
76 parasites revealed the genetic architecture of drug resistance is unexpectedly complex [3-6]. For  
77 example, emergent artemisinin resistance in the human malaria parasite, *Plasmodium*  
78 *falciparum*, has been causally associated with multiple independent mutations in one gene,  
79 *pfK13*, which explain nearly all the variation in this phenotype [7-9]. However, mutations in the  
80 *pffd*, *pfarps10*, *pfmdr2*, and *pfCRT* genes are significantly associated with resistance, and have  
81 been proposed to constitute a genetic background highly predisposed to the development of  
82 resistance [7]. Several techniques have been used to identify the genetic determinants of complex  
83 phenotypes in eukaryotic pathogens including GWAS [7, 10], *in vitro* selections [8], QTL  
84 analysis in controlled genetic crosses [11-14] and bulk segregant analysis [5, 15]. Controlled  
85 genetic crosses offer a uniquely powerful way to dissect the genetic architecture of a complex  
86 trait. For example, the F<sub>1</sub> progeny of a controlled cross revealed that *P. falciparum* sensitivity to  
87 quinine was associated with loci on chromosomes 5, 7 and 13, with the chromosome 5 and 7 loci  
88 containing known drug resistance transporters *pfCRT* and *pfmdr1* [3].

89 *P. falciparum* has the potential to be a particularly powerful genetic mapping system because  
90 of its unusually high recombination rate of 11-13.3 kb/cM [13, 16, 17], a haploid state for most  
91 of the life cycle, and the ability to clone every F<sub>1</sub> progeny *in vitro*, creating effectively immortal  
92 mapping populations in a single generation. Also, *P. falciparum* has a small genome (23 Mb) and

93 a high-quality reference assembly [18] with frequent annotation updates [19, 20]; consequently,  
94 re-sequencing and comprehensive analysis of the genome of F<sub>1</sub> progeny is simple and cost  
95 effective [21]. Generating controlled genetic crosses in *P. falciparum*, however, has historically  
96 been a difficult and time-consuming process requiring splenectomized chimpanzees in place of a  
97 human host. This has resulted in only four genetic crosses being performed over a thirty-year  
98 period. F<sub>1</sub> mapping populations from all four previous *P. falciparum* genetic crosses have been  
99 small, containing 33, 35, 15 [21] and most recently 27 individual recombinant progeny [13].  
100 When compared to the thousands of F<sub>1</sub> progeny possible in many plants and fruit flies [22], these  
101 numbers are small indeed. To use genetic mapping to elucidate the genetic architecture of  
102 emerging drug resistance in *P. falciparum* we need to be able to rapidly create genetic crosses  
103 with large numbers of progeny from recent field isolated parasites which exemplify highly  
104 relevant clinical traits such as drug resistance.

105 Here we report the production of large numbers of unique recombinant progeny from human  
106 liver-chimeric FRG huHep mice infused with human red blood cells. Although these mice were  
107 previously reported as an option for producing new *P. falciparum* genetic crosses once  
108 chimpanzee research was discontinued [23], until now they have failed to produce more progeny  
109 than historic crosses. In this paper, we successfully produced two new genetic crosses in under  
110 twelve months using recent clinically derived *P. falciparum* isolates with emerging resistance  
111 phenotypes. This effort was aided by a new progeny characterization bioinformatics framework  
112 that filters SNP variants and identifies clonal unique recombinant progeny. We generate genetic  
113 maps for each cross (84 and 60 unique recombinant progeny, respectively) and provide the most  
114 detailed investigation of inbreeding, plastid inheritance, and cross-over rates in malaria parasite  
115 genetics to date. One cross exhibited abundant segregation distortion. We confirm this is

116 repeatable by independently replicating the genetic cross, and exclude a fluorescent marker  
117 integrated into genome of one parent as the cause. Through simulation and mapping with real  
118 data we investigate the power to detect genetic associations as a function of the number of  
119 progeny. We also examine the effect of segregation distortion on power in mapping a phenotype  
120 in a cross with varying levels of segregation distortion.

121

## 122 **Results**

### 123 **Rapid Generation of Genetic Crosses**

124 Over a 12-month period we carried out two independent genetic crosses. The first  
125 between a laboratory-adapted African line (NF54) and a newly cloned clinical isolate  
126 (NHP4026) from the Thai-Myanmar border, the second between two newly cloned clinical  
127 isolates (MKK2835 and NHP1337) from the Thai-Myanmar border. These crosses yielded 84  
128 and 60 clonal unique recombinant progeny lines respectively. The pipeline to the point of  
129 analyzing recombinant progeny is technically challenging and takes approximately six months  
130 (Fig 1). Initially, we confirmed that the clinical isolate parental lines produced infectious  
131 gametocytes that gave rise to infectious sporozoites that could successfully infect the liver of  
132 human hepatocyte-chimeric FRG NOD huHep mice and subsequently transition to *in vivo* and  
133 then *in vitro* blood stage culture. After this confirmation, the steps to successfully complete a  
134 genetic cross includes asexual culture and expansion, gametocyte maturation, mixing of parental  
135 gametocytes and transmission to mosquitoes, confirmation of successful mosquito stage  
136 development, salivary gland sporozoite isolation and infection of human hepatocytes in the FRG  
137 NOD huHep mouse, liver stage development, infusion of human red blood cells, the *in vivo*  
138 transition from liver stage-to-blood stage, the subsequent transition to *in vitro* blood stage culture

139 coupled with cloning by limiting dilution and finally clonal expansion, confirmation of clonality  
140 and genome sequencing of recombinant progeny (Fig 1).

141 In total we initiated three independent crosses using five parental genotypes (NF54-  
142 GFPLuc x NHP4026, NF54WT x NHP4026 and MKK2835 x NHP1337). The second of these  
143 crosses was performed to test if a GFP cassette integrated into the genome had driven a peak in  
144 segregation distortion (described below). The progeny from the first crosses were combined  
145 (subsequently referred to as NF54 x NHP4026) to form one genetic map (described below). We  
146 set up each genetic cross by infecting multiple cages of mosquitos with mixed gametocyte  
147 cultures of our parental lines (S1 Table). Details NF54-GFPLuc x NHP4026 were previously  
148 published [23]. For NF54WT x NHP4026 three cages were used to infect three mice by IV  
149 injection or mosquito bite (MB) (one cage per mouse). Two mice were infected by MB using  
150 cages with 250 mosquitos with prevalence of 73% and 58% and median 3 oocyst/mosquito. One  
151 mouse was infected by IV injection of 1 million sporozoites dissected from 250 mosquitos with  
152 infection prevalence of 73% and median 6 oocysts/mosquito. Assuming no attrition in parasite  
153 genotypes, and a perfect outcrossing rate this would mean that 2190 and 1740 unique  
154 recombinant progeny respectively were possibly inoculated into two mice by mosquito bite and a  
155 pool of 1460 unique recombinant progeny was used to infect one mouse via IV infection.  
156 Similarly, for MKK2835 x NHP1337 four cages of mosquitos were infected with pools of  
157 MKK2835 and NHP1337 gametocytes and the cage with the best infections (80% prevalence and  
158 median 3 oocysts/mosquito) was used to infect a single mouse via IV injection with 2.7 million  
159 sporozoites. We would expect a maximum of 1958 unique recombinant progeny based upon 80%  
160 successful infections and a median of 3 oocysts per mosquito and 204 mosquitos.

161

162 **Numbers of Unique Recombinant Progeny**

163 In these malaria parasite crosses, the F<sub>1</sub> progeny are present in the blood of the infected  
164 FRG NOD huHep/huRBC mouse and must be isolated by limiting dilution cloning. The progeny  
165 isolated in this way are not guaranteed to be clonal because a small subset of post-dilution  
166 cultures will have been initiated with more than one clone. Additionally, as the malaria parasite  
167 undergoes clonal expansion in the mosquito, liver and mouse blood stream [24] we may sample  
168 the same recombinant genotype more than once. Since the parents in both crosses readily  
169 produce fertile male and female gametocytes it is also possible for selfed progeny to be  
170 produced. We thus developed a bioinformatics pipeline to identify clonal unique recombinant F<sub>1</sub>  
171 progeny filtering out non-clonal progeny, selfed progeny and repeat sampling of the same  
172 genotype (see Methods).

173 Genetic characterization of previous crosses was initially carried out with RFLP or MS  
174 markers [16, 25] and unique recombinant progeny from these crosses were recently sequenced to  
175 create a community resource [21]. For NF54 x NHP4026, we filtered out some non-unique  
176 recombinant progeny using MS genotyping and then performed direct genome sequencing of  
177 cloned parasites. For MKK2835 x NHP1337, we performed genome sequencing of all cloned  
178 parasites. For each prospective progeny, sequencing reads were mapped to version 3 of the *P.*  
179 *falciparum* genome [26] and SNP variants were called jointly across parents and prospective  
180 progeny and filtered to contain SNPs in the 20.8 Mb core genome as defined in Miles et al. 2016  
181 [21].

182 In NF54 x NHP4026, 10,472 high-quality bi-allelic SNPs (1 SNP per 2.0 kb) differentiate  
183 the two parents. For this cross, 166 prospective progeny were identified during limiting dilution  
184 cloning. After filtering to remove non-clonal and selfed progeny 128 recombinant progeny

185 remained (Fig 2), 84 of which were unique. In MKK2835 x NHP1337, the parent lines are  
186 sympatric patient-derived Asian parasites. Despite their higher degree of relatedness we  
187 identified 7,198 high-quality bi-allelic SNPs (1 SNP per 2.9 kb) that distinguish the two parents.  
188 For this cross 266 prospective progeny were identified during limiting dilution cloning. Filtering  
189 was performed to remove non-clonal and selfed progeny leaving 61 recombinant progeny (Fig  
190 2), 60 of which were unique. We initiated multiple cloning rounds to maximize the capture of  
191 unique recombinant progeny from each cross. Interestingly, across all crosses each cloning round  
192 produced nearly distinct sets of recombinant progeny, with only one repeat genotype across  
193 cloning rounds (Fig 2 and S1 Fig).

194

## 195 **Inbreeding, Outbreeding and Plastid inheritance**

196 Through our filtering process we identified stark differences in patterns of outcrossing  
197 between these two crosses. The clones recovered from NF54 x NHP4026 contained few selfed  
198 progeny with three selfed NF54 progeny and 0 selfed NHP4026 progeny (1.8%, 3/166 progeny  
199 selfed). In contrast, in MKK2835 x NHP1337 we observed a large amount of selfing with 144  
200 selfed NHP1337 progeny and five MKK2835 selfed progeny (56%, 149/266 progeny selfed; Fig  
201 2). In both crosses, when cloning was initiated immediately after mouse exsanguination or within  
202 five days of establishing *in vitro* culture, almost all recombinants were unique (S2 Table and S1  
203 Fig). Interestingly, when cloning was initiated within five days, whether from continuous *in vitro*  
204 culture or cryopreservation of bulk culture, the percentage of recombinants that were unique was  
205 high (90-100% for continuous culture vs. 93% from a thawed cryopreserved bulk culture).  
206 However, when cloning was initiated after 14 or 19 days of *in vitro* culture from cryopreserved

207 bulk culture, a lower percentage of unique recombinant progeny were recovered with 46% and  
208 50% of recombinants identified as unique (S2 Table and S1 Fig).

209 *P. falciparum* parasites contain two plastid genomes, the mitochondria and apicoplast,  
210 both of which are maternally inherited [27]. Despite *P. falciparum* being hermaphroditic, in  
211 previous genetic crosses nearly all plastid genomes in the progeny originated from a single  
212 parent [28, 29]. We show here that this is not the case. In each cross we observed both plastid  
213 genotypes among the unique recombinant progeny. After excluding selfed genotypes we  
214 observed 17.9% NF54 plastid genotypes in NF54 x NHP4026 and 41.7% MKK2835 plastid  
215 genotypes in MKK2835 x NHP1337.

216

## 217 **Genetic maps and recombination rates**

218 For each genetic cross, we generated a genetic map (S3 and S4 Tables) using JoinMap  
219 v4.1 from phased genotype data for all unique recombinant progeny (see Methods). The map size  
220 for both crosses is consistent with map lengths reported for previous crosses (1521 cM for NF54  
221 x NHP4026 and 1626 cM for MKK2835 x NHP1337, Table 1). The recombination rate was 13.7  
222 kb/cM for NF54 x NHP4026 and 12.8 kb/cM for MKK2835 x NHP1337, which were  
223 comparable to the range observed in previous crosses (Table 1). In NF54 x NHP4026 genetic  
224 map, markers initially sorted into 13 linkage groups, with each representing markers known to  
225 reside on single chromosomes, with the exception of one linkage group which contained all  
226 markers on chromosome 7 and 14. Adjusting joinMap parameters resulted in separating the 13<sup>th</sup>  
227 linkage group into 2, recovering distinct sets for chromosomes 7 and 14. In MKK2835 x  
228 NHP1337 all markers coalesced into 14 linkage groups which exactly corresponded to  
229 chromosomes.

230

231 Table 1

| Cross             | F <sub>1</sub> Progeny Number | Genetic Map Length   | Recombination Rate         |
|-------------------|-------------------------------|----------------------|----------------------------|
| HB3 x Dd2         | 35 <sup>[16]</sup>            | 1556 <sup>[16]</sup> | 12.1 kb/cM <sup>[16]</sup> |
| 3D7 x HB3         | 15 <sup>[21]</sup>            |                      | 11 kb/cM <sup>[30]</sup>   |
| 7G8 x GB4         | 32 <sup>[17]</sup>            | 1655 <sup>[17]</sup> | 12.8 kb/cM <sup>[17]</sup> |
| GB4 x 803         | 27 <sup>[13]</sup>            |                      | 13.3 kb/cM                 |
| NF54 x NHP4026    | 84                            | 1521                 | 13.7 kb/cM                 |
| MKK2835 x NHP1337 | 60                            | 1626                 | 12.8 kb/cM                 |

232

233 To generate a graphic display of the physical map, 5 kb windows of the core genome  
234 were phased to indicate inheritance blocks for each unique recombinant progeny (Fig 3A and  
235 3B). NF54 x NHP4026 shows sections of the genome where inheritance is dominated by one  
236 parental genotype or the other (Fig 3A). In contrast the physical recombination map for  
237 MKK2835 x NHP1337 shows a more even inheritance pattern across the genome (Fig 3B).

238

### 239 **Repeatability of segregation distortion**

240 We observe regions with significant segregation distortion (chi squared test for deviation  
241 from expected Mendelian ratio of 1:1, p<0.001) in NF54 x NHP4026 that are consistent in both  
242 replicates (Fig 3A and 4A). In contrast, we observe no significant segregation distortion in  
243 MKK2835 x NHP1337 (Fig 3B). Specifically, in both replicates of NF54 x NHP4026 we  
244 observe replicated significant deviations from the Mendelian expectation of 1:1 inheritance on  
245 chromosomes 7, 12, 13 and 14 (Fig 3A) with a concordance correlation coefficient of 0.66  
246 between allele frequencies in the two replicates across the genome. We initially observed the  
247 segregation distortion in progeny from the NF54-GFPLuc x NHP4026 cross replicate. The major  
248 peak on chromosome 13 coincided with the insertion of the GFP cassette in to the *pf47* locus in

249 the NF54-GFPLuc parasite which we hypothesized could be the reason for the distortion.

250 Therefore, we repeated the NF54WT x NHP4026 cross using the unedited parental NF54 with

251 NHP4026 to test if the genetic modification was the driver of the distortion. This was not the

252 case and the repeatability of the skews strongly supports the alternative hypothesis that the GFP

253 cassette is not the driver of this distortion, allowing us to combine the progeny from NF54 x

254 NHP4026 in estimating genetic maps.

255

## 256 **Distorted Loci**

257 We examined each distorted locus for plausible driver genes.

258 Chr7: a region of 520 kb on chromosome 7 containing 121 genes showed significant segregation

259 distortion in both biological replicates of NF54 x NHP4026 (chi squared test,  $p < 0.001$ , Fig 4B,

260 S5 Table). This region is disproportionately inherited from NF54 with the most highly distorted

261 region having only 0.05% NHP4026 alleles in NF54GFPLuc x NHP4026 replicate and 0%

262 NHP4026 in the NF54 x NHP4026 replicate. This highly distorted region contains 17 genes (Fig

263 4B) including *pfcrt* (*PF3D7\_0709000*). NHP4026, along with three recombinant progeny, are

264 each highly resistant to chloroquine *in vitro*. Mutations in *pfcrt* are the main driver of

265 chloroquine resistance and have been shown to confer a fitness costs in some genetic

266 backgrounds [31].

267 Chr12: a 295 kb region (with 71 genes) shows replicated significant segregation distortion with

268 an overabundance of NHP4026 alleles. The most skewed region contains five genes (Fig 4C)

269 including *pfnmrp2* (*PF3D7\_1229100*) at the center of the peak. *Pfnmrp2* has high genetic

270 variability among Thai clinical isolates with single genetic variants having significant

271 associations with *in vitro* response to chloroquine, mefloquine and piperaquine and *in vivo*  
272 parasite clearance [32].

273 Chr13: a 230 kb region predominantly inherited from NHP4026 with 56 genes that shows  
274 replicated significant segregation distortion. The most highly distorted subregion on  
275 chromosome 13 contains *pf47* (*PF3D7\_1346800*). In the NF54GFP Luc x NHP4026 replicate of  
276 this cross the NF54 line contained a GFP Luc cassette inserted in *pf47* [23] however this insert is  
277 not present in the NF54 parent used in the NF54WT x NHP4026 replicate of this cross, which  
278 shows the same distortion pattern.

279 Chr14: a 205 kb region containing 62 genes on chromosome 14 showed replicated significant  
280 segregation distortion with alleles predominantly inherited from NF54. The most highly skewed  
281 sub-region contains 15 genes including *pfarps10* (*PF3D7\_1460900*) and has been associated  
282 with slow clearance in GWAS studies [7] and is hypothesized to contribute to a permissive  
283 background for evolution of *pfk13* mutations.

284 Previous *P. falciparum* genetic crosses exhibited significant segregation distortion at  
285 several loci [13, 16, 17, 25]. We explored overlap between distorted regions in all the published  
286 *P. falciparum* crosses and our two new crosses and included a previously published bulk analysis  
287 of selection in uncloned progeny of the MKK2835xNHP1337 cross [33] (S2 Fig). We observe  
288 overlaps on chromosomes 12, 13 and 14.

289

## 290 **Increased mapping power in an expanded genetic cross**

291 Previous genetic crosses have been used to map the genetic basis of a wide range of  
292 traits. However, small sample size (Table 1) and rampant segregation distortion (S2 Fig) have  
293 likely limited detection to mutations with very large effect size (ES). A quantitative dissection of

294 this has not been performed for malaria parasite crosses. To quantify the extent to which our  
295 expanded progeny set will improve genetic mapping for the malaria community we performed  
296 extensive simulations. We quantified the impact of phenotypic replication, progeny number and  
297 the number of loci determining a trait to the power to map a trait and mapping resolution using  
298 the 84 progeny from NF54 x NHP4026 (Fig 5 and S3 Fig). Briefly, we used the full progeny  
299 panel from NF54 x NHP4026 ( $n = 84$ ) or subsamples of this panel ( $n = 60, 50, 40, 30$ ) and  
300 simulated phenotypes at different effect sizes using loci with balanced inheritance (0.5 allele  
301 frequency) to simulate the phenotype (see Methods for details). We then determined whether the  
302 phenotype mapped to the correct loci with a significant LOD score (true positive), did not have a  
303 significant association (false negative) or mapped to a different locus (false positive). Using  
304 progeny panels comparable to previous genetic crosses ( $n = 30-40$ ) only very large effect sizes  
305 ( $ES > 0.5$ ) can be mapped with high power ( $>80\%$ ). In contrast, 84 progeny enable mapping of  
306 much smaller effect sizes ( $ES = 0.2$ ) at 80% power. Increasing the number of progeny also  
307 increases the locus resolution (S3 Fig). At an  $ES$  of 0.5, with  $n = 30$  we can on average map to a  
308 region containing 58 genes; moreover, with  $n = 84$ , we can map to a region containing only 17  
309 genes (S3 Fig). At small effect sizes we observe similar large increases in mapping resolution as  
310 we increase the size of the progeny set and more modest increases for larger effect sizes (S3 Fig).

311       Most genetic traits are not monogenic but are complex in nature. To better capture the  
312 complex genetic architecture, multiple loci must be identified and these loci sometimes interact  
313 (i.e. do not contribute individually and additively). For a trait controlled by two additive loci that  
314 contribute equally to the phenotype, 60 progeny, with replicated phenotypes can detect an  
315 association at  $ES = 0.3$ , whereas 84 progeny are needed to detect an association at  $ES = 0.2$ .  
316 When a trait is controlled by two epistatically interacting loci, 84 progeny with replicated

317 phenotypes provide 75% power to detect an association and interaction with  $ES = 0.4$ . Replicated  
318 phenotypes allow the same power to be achieved with fewer progeny for  $ES \geq 0.3$  and allow for  
319 a trait with  $ES = 0.2$  to be detected for  $N = 84$  progeny for additive loci. This analysis indicates  
320 that the four previous *P. falciparum* crosses (conducted in chimpanzee hosts) generating from 15  
321 - 35 progeny, were underpowered. In progeny sets of this size could reliably detect associations  
322 only for phenotypes with large effects sizes,  $ES \geq 0.5$  and were not able to detect even a very  
323 strong epistatic interaction. Our two new crosses with  $n = 60$  and 84 progeny have much higher  
324 power and are capable of reliably detecting phenotypes with effect sizes as low as 0.2.

325 Polygenic traits don't always have equal contributions from multiple loci. In malaria  
326 parasites, there are several well-known phenotypes with one known major effect locus [34],  
327 including chloroquine resistance and mutations in *pfcrt*, sulfadoxine and point mutations in  
328 *pfdhps*, pyrimethamine and point mutations in *pfdhfr*, atovaquone and point mutation in *pfcytb*,  
329 mefloquine and *pfmdr1* and artemisinin resistance and mutations in *pfk13*. It is an open question  
330 whether we could detect more subtle secondary loci with genetic crosses with additional  
331 progeny. Our analysis (Fig 6) shows that with 84 progeny we can detect secondary loci with  $ES$   
332 as low as 0.2 and 0.15. However, with smaller numbers of progeny we are not able to detect both  
333 contributing loci. With 60 progeny we can detect only one of the secondary loci at  $ES=0.2$  and  
334 with 35 progeny we can detect neither secondary loci.

335

### 336 **Segregation distortion decreases the resolution and power of mapping**

337 Segregation distortion is abundant across nearly all *P. falciparum* genetic crosses  
338 generated to date, with our newly generated MKK2835 x NHP1337 cross being the sole  
339 exception. We performed a power analysis to determine the impact of segregation distortion on

340 the power to identify causal variants. Segregation distortion decreases power to detect effects  
341 near the distorted locus, especially for phenotypes with small effect sizes (Fig 7). For phenotypes  
342 with large effect sizes and for large numbers of progeny, the extent of segregation distortion in  
343 the F<sub>1</sub> mapping population at the controlling locus has little effect on power; however, as the  
344 number of progeny decrease, a significant loss of power occurs as the degree of segregation  
345 distortion increases. The loss of power due to segregation distortion is even more pronounced  
346 with fewer progeny (Fig 7). For an ES of 0.8, we can detect associations for loci with any allele  
347 frequency using as little as 30 progeny. For an effect size of 0.4, 50 progeny are necessary to  
348 detect an association for allele frequencies ranging from 0.3 to 0.7, and only 84 progeny will  
349 allow us to detect an association at a more distorted loci with 0.2 or 0.8 allele frequency. At 0.2  
350 effect size we can only reliably detect an association for a locus with even segregation using 84  
351 progeny.

352 In NF54 x NHP4026 we observe significant segregation distortion ( $p < 0.001$ ) with allele  
353 frequencies at distorted loci ranging from 0.05 to 0.31 and 0.69 to 0.85 (Fig 3), including in  
354 regions that include important drug resistance genes including *pfcrt* (Chromosome 7) and *pfk13*.  
355 Despite this extreme segregation distortion on chromosome 7 in NF54 x NHP4026 (NHP4026  
356 allele frequency of 0.05), it is still possible to map the chloroquine drug response to the locus  
357 containing *pfcrt* ( $p < 0.00001$ , Fig 7B). In contrast, in MKK2835 x NHP1337, allele frequencies  
358 of the NHP1337 alleles range from 0.3 to 0.7 (Fig 3). At these allele frequencies we see  
359 consistent power indicating that power and mapping resolution are expected to be consistent  
360 across the genome.

361

362 **Discussion**

363 **Power of *P. falciparum* genetic crosses generated using FRG NOD huHep/huRBC mice**

364        Historical challenges to generating novel *P. falciparum* genetic crosses made GWAS, *in vitro*  
365        selection experiments and bulk sequencing approaches the more effective means to study new  
366        drug resistance-associated phenotypes as they emerge in the clinic. However, each of these  
367        techniques has its limitations. *In vitro* selections are time consuming, sometimes requiring  
368        several years to produce resistant lines, and may not identify loci evolving under drug pressure in  
369        the field situation [35]. GWAS is often confounded by population structure and has low power to  
370        dissect complex genetic traits, i.e. multiple loci, multiple alleles per locus and epistasis [36]. On  
371        the other hand, a well-conceived and controlled genetic cross can greatly complement these  
372        techniques, as each cross can be designed to answer specific questions and then have high power  
373        to dissect complex associations between genotype and phenotype. Historically, *P. falciparum*  
374        controlled genetic crosses have been made with splenectomized chimpanzees strictly limiting  
375        their production due to cost and ethical concerns. Use of the human tissue-chimeric FRG NOD  
376        huHep/huRBC mouse restores and expands our ability to make controlled genetic crosses in  
377        malaria parasites [23]. We demonstrate here that targeted crosses between clinical isolates can be  
378        generated in real time (six months) and outperform all previous crosses in their size, mapping  
379        power and precision.

380        We created the first *P. falciparum* cross between two sympatric recent clinical isolates from  
381        the Thai-Myanmar border, MKK2835 and NHP1337. Analysis of the recombination rate,  
382        segregation distortion, and selfing rate of this cross revealed interesting differences to all other *P.*  
383        *falciparum* crosses including our NF54 x NHP4026 cross, between a lab line and a recent field  
384        isolate. In MKK2835 x NHP1337 we observed minimal segregation distortion and a high  
385        percentage of clones that resulted from selfing. We have also shown that most of the

386 recombinant progeny recovered are unique when cloning is initiated immediately, or within five  
387 days of establishing *in vitro* culture. Using simulations, we have shown that the power to detect  
388 associations between phenotypes and genotypes increases drastically when we are able to map  
389 with populations with 60 – 84 individuals. We have also shown through simulation and using  
390 real phenotype data that segregation distortion can lower power to detect QTL at distorted loci  
391 even for phenotypes with moderate effect sizes. Nevertheless, major effect loci can be mapped  
392 within these regions, supporting the utility of our crosses in these cases. Furthermore, because  
393 we can cryopreserve uncloned F<sub>1</sub> parasite populations, it is possible to further isolate additional  
394 independent recombinant progeny for future analyses, as sequential cloning attempts will isolate  
395 new unique progeny.

396

### 397 **Power of malaria crosses generated using humanized mice**

398 We have shown that the FRG NOD huHep/huRBC mouse can be used to rapidly make  
399 controlled genetic crosses on demand from field isolates to create F1 progeny populations with  
400 large numbers of clonal recombinant progeny per cross. This dramatically increases our power to  
401 detect associations with greater resolution. Using new crosses with more recombinant progeny  
402 and higher power we can dissect genetic architecture and determine the individual contributions  
403 of different loci to polygenic traits. We can also map phenotypes with small to modest effect  
404 sizes more precisely, to smaller regions of the genome. For instance, at an ES of 0.5 using 30  
405 recombinant progeny, we can map to a region containing 58 candidate genes. However, at an ES  
406 of 0.5 using 84 progeny, we can map to a region of 17 candidate genes (S3 Fig). With increased  
407 transfection efficiencies using CRISPR/Cas9-based technology, it is not unreasonable to then  
408 target the genome by transgenesis to pinpoint loci involved in observed phenotypes. For

409 phenotypes with large ES, similar to that conferred by chloroquine resistance (0.8), with 30  
410 progeny we can map to a region containing on average 20 candidate genes whereas with 84  
411 progeny we can map to a region containing only eight genes. These significant reductions in  
412 number of candidate genes has a large impact on our ability to determine causal mutations,  
413 drastically reducing the effort required for validation studies. Furthermore, our ability to generate  
414 further genetic crosses between the same two parents of interest is unparalleled, allowing us to  
415 potentially isolate 100's of unique recombinant progeny for analysis.

416

#### 417 **Maximizing Numbers of Unique Recombinant Progeny**

418 Based on the prevalence of infected mosquitos and estimates of oocysts/mosquito we can  
419 estimate the number of unique recombinants in the mosquitos used to infect each FRG NOD  
420 huHep/huRBC mouse. During the parasite lifecycle there are multiple bottlenecks which reduce  
421 the number of genotypes in a blood stream infection. Oocysts may arise due to selfing or fail to  
422 progress, sporozoites may fail to reach the liver and further attrition through the liver and blood  
423 stages will occur. As we observed, without extensive cloning efforts we are unable to capture all  
424 these possible unique recombinant progeny. Interestingly, each cloning round produced almost  
425 entirely unique sets of progeny indicating that our cloning efforts (166 clones for NF54 x  
426 NHP4026 and 266 for MKK2835 x NHP1337) under-sampled the total population of  
427 recombinant progeny available. Recovering unique sets of progeny from each cloning round  
428 indicates that there are likely many more additional unique progeny to recover from the bulk F<sub>1</sub>  
429 populations and that strategic additional cloning would likely provide a substantial return in F<sub>1</sub>  
430 progeny numbers. In order to maximize the number of unique recombinant progeny recovered,  
431 we showed that cloning straight after the *in vivo* liver stage to blood stage transition or as early as

432 possible after establishing *in vitro* culture gave a large degree of success. Also, initiating cloning  
433 either directly from the mouse or from a thawed stock of bulk culture did not impact the  
434 proportion of unique recombinant progeny recovered. Notably, we minimized the potential for  
435 additional loss in diversity during cryopreservation by freezing immediately after exsanguination  
436 and cloning within 48 hours of thaw. Additionally, with streamlining of the crossing process and  
437 being able to complete a cross from thawing of parental lines to isolating, genotyping and  
438 identifying unique recombinant progeny within 6 months it is easy to simply repeat the cross and  
439 generate an entirely distinct set of recombinant progeny to generate additional unique  
440 recombinant progeny.

441

#### 442 **Differences in selfing between crosses**

443 *P. falciparum* infections in nature are sometimes monoclonal and sometimes co-infections,  
444 depending on the genetic diversity of the gametocytes taken up during a mosquito blood meal.  
445 Thus, *P. falciparum* must be able to maintain its life-cycle through selfing as well as out-  
446 crossing. Evidence from natural infections suggests that mating can be non-random when  
447 distinct parasite lineages are co-transmitted from a single mosquito bite [37]. In previous crosses  
448 between established lab lines 3D7 and HB3, it was shown that selfed progeny are observed at  
449 expected ratios in oocysts [38, 39] and early in blood stage culture, but at lower than expected  
450 ratios among clones when cloning was begun 32 days after isolation from chimpanzees [40, 41].  
451 In 7G8 x GB4, 29 of more than 200 (14.5%) individual clones were selfed [25].

452 Our MKK2835 x NHP1337 cross between two recent field isolates, both from Southeast  
453 Asia, produced more selfed progeny than previously reported for *P. falciparum* genetic crosses.  
454 Interestingly, NHP1337 dominated the selfed progeny almost entirely, consistent with bulk allele

455 frequencies in samples taken at similar times [33]. While efforts were made to infect the  
456 mosquitos with equal number of MKK2835 x NHP1337 gametocytes, the unequal selfing rates  
457 may reflect an imbalance in the initial gametocyte ratio or in gametocyte viability between  
458 MKK2835 and NHP1337. It is also possible that there are inherent difference in selfing rates  
459 between MKK2835 and NHP1337, although both lines successfully selfed in mosquito cages  
460 infected with only one parent (S1 Table). We do not yet know if the large proportion of selfed  
461 clones observed in our cross between recent field isolates will be repeated in future crosses.  
462 Using bulk segregant analysis of these same populations we suspect that these selfed clones are  
463 outcompeted over time in non-stressed *in vitro* culture conditions [33] this may perhaps also  
464 have been the case in the previous 3D7 x HB3 cross [39, 40].

465 In contrast we observed very few selfed progeny in our NF54 x NHP4026 cross, between a  
466 recent Southeast Asian field isolate NHP4026 and the established African lab line NF54. Both  
467 NF54 and NHP4026 readily self when in used alone to inoculate mosquito cages with NF54  
468 often giving very high infection prevalence and numbers of oocysts/midgut (S1 Table). In  
469 several cloning rounds of NF54 x NHP4026, cloning was initiated immediately after transition to  
470 *in vitro* culture, indicating that in this cross selfed progeny were not selected against in bulk  
471 competition with recombinant progeny. Further experiments will be necessary to understand why  
472 NF54 x NHP4026 generated so few selfed progeny.

473

#### 474 **Differences in segregation distortion between crosses**

475 In other systems segregation distortion is often more extreme when more distantly related  
476 parents are crossed. For instance, interspecific crosses have been shown to result in segregation  
477 distortion more often and with more severe distortion than intraspecific crosses [42, 43]. All

478 previous *P. falciparum* genetic crosses were between allopatric parasite lines, generally isolated  
479 on different continents, and unsurprisingly show significant segregation distortion over large  
480 regions of the genome. Similar to previous *P. falciparum* crosses, our allopatric cross between an  
481 establish lab line (NF54 or NF54GFP Luc, African origin) and a recent field isolate (NHP4026,  
482 Thai-Myanmar border) had regions of significant segregation distortion that were consistent  
483 across replicates. Conversely, the MKK2835 x NHP1337 cross which relied on two sympatric  
484 parasites recently isolated from the Thai-Myanmar border was the first *P. falciparum* controlled  
485 genetic cross to have relatively even inheritance patterns across the genome with no significant  
486 segregation distortion. One possible explanation for the observed segregation distortion is that  
487 natural selection may act against unfit allele combinations causing a deviation from expected  
488 mendelian ratios [44]. It is also possible that there are prezygotic barriers such as barriers to  
489 gamete recognition between more distantly related parents.

490 In NF54 x NHP4026, the subregions with the most highly skewed allele frequencies in each  
491 of the significantly distorted regions contain genes of interest. The most highly distorted  
492 subregion on chromosome 7 (predominantly inherited from the NF54 parent with only 3 progeny  
493 inheriting alleles from NHP4026) includes *pfCRT* which is known to carry a substantial fitness  
494 cost in some genetic backgrounds and that different combinations of mutations are more  
495 deleterious than others [31]. Although NHP4026 is a parasite that grows particularly well in *in*  
496 *vitro* culture [45] (even outcompeting NF54 in co-culture experiments) it is clear that inheriting  
497 an NHP4026 allele at this locus contributes a fitness cost. The most highly skewed subregion on  
498 chromosome 14 is also predominantly inherited from NF54 and contains *pfarps2* which has been  
499 associated with artemisinin resistance (slow clearance of parasite from treated patients) in  
500 GWAS studies and is thought to contribute to a permission background for development of

501 artemisinin resistance [7]. While NHP4026 is *pfk13* WT it does have a slow clearance  
502 phenotype. It will be interesting to explore whether *pfarps10* has a fitness cost in this genetic  
503 background. Interestingly, while we see no segregation distortion in MKK2835 x NHP1337  
504 among the cloned progeny, we do see selection on chromosome 14 over time in a uncloned bulk  
505 culture of MKK2835 x NHP1337 cross F<sub>1</sub> progeny that is also centered on *pfarps10* where  
506 selection is against the derived alleles in *pfarps10* [33].

507 Alternatively, on chromosomes 12 and 13 there are subregions where alleles are more  
508 commonly inherited from NHP4026. The region on chromosome 12 include *pfmrp2* and the  
509 region on chromosome 13 includes *pf47*. The most skewed region on chromosome 12 overlaps  
510 with the selected region in a uncloned bulk culture of MKK2835 x NHP1337 cross F<sub>1</sub> progeny  
511 except that selection is against the derived allele in *pfmrp2* in this case. *Pfmrp2* has been  
512 associated with mefloquine and piperaquine response *in vitro* and parasite clearance [32] in Thai  
513 isolates and we speculate it may have a fitness cost *in vitro*. The role *pfmrp2* plays in drug  
514 resistance is still unclear and these genetic crosses may help elucidate its function. In the  
515 NF54GFPLux x NHP4026 replicate, the NF54 parent contained a gfp/luciferase cassette insert  
516 on chromosome 13 in *pf47*, the NF54WT x NHP4026 replicate of this cross was made with the  
517 isogenic NF54 line without the gfp/luciferase insert. We saw consistent inheritance patterns in  
518 both biological replicates of this cross indicating the skew here is gfp/luciferase insert  
519 independent. A large region of segregation distortion was observed on chromosome 13 in 7G8 x  
520 GB4, part of which overlaps our region of segregation distortion in NF54 x NHP4026 [17, 25].  
521 *Pf47* and *pfs45/48*, two 6-cys proteins are located in the center of this subregion. These two  
522 genes are known to be highly polymorphic in natural populations and are thought to be under  
523 selection because of roles in gamete recognition and compatibility [46, 47]. It is possible that

524 *pf47* and/or *pfs45/48* play a key role in segregation distortion in more distantly related lines but  
525 not in a cross between allopatric recent clinical isolates. Indeed, we observed no significant  
526 segregation distortion in the MKK2835 cross and also observed no selection over time on  
527 chromosome 13 in the bulk segregant experiment using the MKK2835 x NHP1337 bulk F<sub>1</sub>  
528 progeny [33].

529 We think that natural selection acting against unfit allele combinations is a plausible  
530 explanation for some regions of segregation distortion in NF54 x NHP4026 including the regions  
531 on chromosome 7, 12 and 14 and the observed selection over time in the uncloned bulk F<sub>1</sub>  
532 culture from the MKK2835 x NHP1337 cross [33]. Issues with gamete recognition and  
533 compatibility might drive segregation distortion observed on chromosome 13 in NF54 x  
534 NHP4026 and 7G8 x GB4 (both allopatric) but not in the sympatric MKK2835 x NHP1337 cross  
535 (see also [33]). Performing competition experiments between individual progeny with different  
536 alleles at these distorted and selected loci will be informative in determining how different  
537 combinations of alleles might contribute to parasite fitness [45]. These experiments can be  
538 followed with CRISPR/Cas9 editing of polymorphisms in individual genes as further validation.

539

540 **Loss of power at segregation distortion loci**

541 Segregation distortion loci traditionally have been excluded in genetic mapping studies to  
542 avoid loss of power to detect real effects (type II error, false negative) and the potential to detect  
543 false positives (type I error) [48]. Excluding distorted loci from analysis would be particularly  
544 problematic in *P. falciparum* because all previous crosses had large regions of significant  
545 segregation distortion that contain known resistance loci. Using segregation distortion loci in  
546 mapping studies is possible, however it is necessary to carefully interpret results keeping in mind

547 the loss of power to detect effects in distorted regions. If drug resistance loci are at or near  
548 genome regions showing segregation distortion loci, we may fail to detect these drug resistance  
549 loci in crosses with small numbers of progeny or when effect size is small. We have shown this  
550 effect through mapping simulated phenotypes to loci with varying degrees of segregation  
551 distortion. Despite the extreme segregation distortion observed in NF54 x NHP4026 (NHP4026  
552 allele frequency of less than 0.05 at *pfcrt*) and only three progeny plus NHP4026 showing a  
553 chloroquine resistant phenotype we are able to correctly map the chloroquine drug response to  
554 the locus containing *pfcrt*. Through simulation, we demonstrate reliable detection of QTL for  
555 phenotypes with very large effect sizes (ES = 0.8), even for very distorted loci and small  
556 numbers of progeny. However, as the effect size decreases, we observe stronger loss of power at  
557 distorted loci. For phenotypes with moderate effect sizes we can only reliably detect QTL at  
558 distorted loci using large numbers of progeny. Therefore, care is required in interpreting negative  
559 QTL results for phenotypes with small to moderate effect sizes, especially when mapping in  
560 small progeny sets. When QTL and segregation distortion loci coincide, false negatives will lead  
561 us to miss real associations between phenotypes and genetic variants. This problem with power  
562 will be amplified when attempting to map omics phenotypes where multiple testing correction  
563 must be employed. However, while segregation distortion presents a challenge for linkage  
564 analysis, the location of genome regions showing strong skews can help to pinpoint loci with  
565 large phenotypic effects.

566

## 567 **Conclusions**

568 We believe that the use of the human hepatocyte-chimeric FRG NOD huHep/huRBC  
569 mouse to generate genetic crosses in *P. falciparum* has the potential to revolutionize quantitative

570 genetics in *P. falciparum*. It is feasible to generate crosses on demand to study the genetic  
571 architecture of emerging phenotypes. We can also use complex cross designs to improve power  
572 to detect associations for phenotypes where a genetic variant only controls a small amount of  
573 variation. Shared parent crosses are ideal for understanding the role of individual mutations  
574 within phenotypes with complex genetic architecture. Pairwise crosses of a small group of  
575 isolates can be used to create a diversity panel that captures a large amount of phenotypic and  
576 genetic variation in *P. falciparum*. Similarly, many other complex cross designs that have been  
577 used extensively in the plant and animal breeding literature that are now open to malaria  
578 researchers.

579

## 580 **Methods**

581 Genetic crosses were conducted largely as described previously [23]. We made several  
582 adjustments to maximize recovery of progeny from the genetic crosses, including completing  
583 independent replicates of the crosses and cloning via limiting dilution directly from the  
584 transitioned blood removed from the FRG NOD huHep mouse. In addition, the transition to *in*  
585 *vitro* culture was carried out using media containing Albumax rather than human serum. We  
586 observed successful expansion of the transitioned cultures in both serum-containing and  
587 Albumax-containing media, but downstream limiting dilution cloning failed to yield the expected  
588 number of clones if carried out using serum. We therefore cloned and expanded the transitioned  
589 blood stage culture in media containing Albumax. Screening for clones was carried out using the  
590 Phusion Blood Direct PCR Kit (Thermo Scientific). Specific methodological information for  
591 each replicate of each cross is provided in S2 Table.

592

593 **Identifying Positive Clones**

594 Beginning at week 2 post cloning and continuing until week 6 the Phusion Blood Direct  
595 PCR Kit (Thermo Scientific) was utilized to identify positive clones. This kit is very sensitive,  
596 detecting positive parasitemia using only 1  $\mu$ L of infected culture streamlining our detection of  
597 positive clones. A protocol for this screening method is available in the S1 File.

598

599 **MS Genotyping**

600 All progeny of NF54 x NHP4026 were initially genotyped via microsatellite markers to  
601 identify unique recombinants. The progeny isolated in cloning rounds 1 and 2 or replicate 1 of  
602 the NF54 x NHP4026 were genotyped at 17 MS markers. The progeny isolated in cloning round  
603 3 of NF54 x NHP4026 were genotyped at 8 MS markers. Primers for each MS marker used are  
604 listed in S6 Table. For cloning rounds 1 and 2, full genome sequencing was performed for all  
605 unique recombinants. For cloning round 3 and all other crosses all potential recombinant progeny  
606 were fully sequenced.

607

608 **Preparation and sequencing of progeny**

609 DNA was extracted from 35-50uL of packed red blood cells using Quick DNA Kit (Zymo).  
610 Libraries were prepared with 1/4 reaction volumes of the KAPA HyperPlus DNA Library Kit and  
611 20-50ng of extracted DNA according to manufacturer directions with slight modifications.  
612 Fragmentation time was 26 minutes; adapter ligation was increased to 1 hour; PCR was  
613 performed for 7 cycles; and size selection was performed post PCR using full volume methods.  
614 We used KAPA Dual-Indexed Adapter Kit, adding 7.5uM adapter to the appropriate well.  
615 Samples were measured for DNA quantity using the QBit BR DNA Kit. Samples were then

616 pooled for sequencing based on their QBit measurements to normalize input. The pooled sample  
617 was quantified using the KAPA Library Quantification Kit, and adjusted to 2-4nM with 10mM  
618 Tris-HCl, pH 7.5-8.0 (Qiagen) for sequencing on Illumina platforms. The pool was also run on  
619 the Agilent Tape Station using the D1000 BR Kit to assess sample size and lack of primer  
620 dimers. Pools were run on the Illumina HiSeq 2500 or Illumina NextSeq for 2x100bp run

621

622 We aligned raw sequencing reads to v3 of the 3D7 genome reference (<http://www.plasmodb.org>)  
623 using BWA MEM v0.7.5a [49]. After removing PCR duplicates and reads mapping to the ends  
624 of chromosomes (Picard v1.56) we recalibrated base quality scores, realigned around indels and  
625 called genotypes using GATK v3.5 [50] in the GenotypeGVCFs mode using QualByDepth,  
626 FisherStrand, StrandOddsRatio VariantType, GC Content and max\_alterate\_alleles set to 6. We  
627 recalibrated quality scores and calculated VQSLOD scores using SNP calls conforming to  
628 Mendelian inheritance in previous genetic crosses, and excluding sites in highly error-prone  
629 genomic regions (calls outside of the “core genome” [21].

630

631

### 632 **Filtering high quality SNP variants**

633 The .vcf file containing parents, potential progeny and all high quality SNPs were  
634 processed in R using the vcfR library. Initially SNP filters were based on the parental  
635 distributions; only homozygous, bi-allelic parental SNPs with high coverage ( $\geq 10$ ) and high  
636 quality scores (GQ  $\geq 99$ ) were retained. Next, low quality SNPs across parents and progeny were  
637 filtered with a VQSLOD  $< 2.5$ . This final SNP set was defined as our high quality SNP set for  
638 further analysis.

639

640 **Filtering Progeny**

641 In *P. falciparum* crosses to produce the F<sub>1</sub> mapping population, it is necessary to filter out  
642 potential progeny that are non-clonal and repeated sampling of the same genotype. Initially,  
643 potential progeny with more than 80% missing data were removed from further analysis.

644

645 **Identifying and filtering non-clonal progeny**

646 Since *P. falciparum* parasites are haploid throughout the entirety of the human portion of  
647 their life-cycle including the intraerythrocytic stage during which they are cloned we expect that  
648 clonal infections should have predominantly homozygous SNP calls except for rare instances of  
649 sequencing error. In contrast, non-clonal infections where the mixture contains full siblings or  
650 full siblings and parent genotypes would have contiguous regions with high numbers of  
651 heterozygous SNP calls at above the rate expected from sequencing error along.

652 The sequencing error rate was estimated for each cross as the mean from a distribution of  
653 percent heterozygous SNP calls across all potential progeny (S4 Fig). Assuming true sequencing  
654 errors follow a Poisson process with  $\lambda = \%$  sequencing error, then the expected distance between  
655 sequencing events as  $1/\lambda$ . To identify non-clonal samples we counted heterozygous SNP calls  
656 across the genome in a sliding window of size  $1/\lambda$  and using a Poisson Distribution with  $\lambda = \%$   
657 sequencing error calculated the probability of getting at least the observed number of  
658 heterozygous SNP calls in each window. These probabilities were adjusted for multiple testing  
659 based on the number of windows in the genome and the adjusted probabilities were plotted as a  
660 heatmap (S4 Fig). Samples with windows with adjusted probabilities  $< 0.05$  were designated as  
661 non-clonal and filtered from the final progeny set.

662

663 **Phasing of clonal progeny**

664 A matrix of phased genotypes was constructed for parents and clonal progeny for all high  
665 quality SNPs. In each cross the drug sensitive parents (NF54 and MKK2835) were coded as 0  
666 while the drug resistant parent (NHP4026 and NHP1337) were coded as 1. Progeny SNPs that  
667 matched the drug sensitive parent's SNPs were coded as 0 while SNPs that matched the drug  
668 resistant parent's SNPs were coded as 1. Heterozygous SNPs were coded as missing.

669

670 **Identifying Unique Recombinants**

671 Our high quality phased dataset for clonal progeny was formatted for the qtl package in R  
672 and loaded as a genetic map. Genotype similarity scores were computed using the comparegeno  
673 function. A similarity score cut-off of 0.9 was used to define clusters of genetically distinct  
674 recombinant progeny (see S1 File for details of cut-off was chosen). Individual progeny were  
675 selected from each cluster of genetically similar progeny using igraph in R. Only unique  
676 recombinant progeny and parents were retained to create a final dataset of all SNPs.

677

678 **Physical Recombination Map Construction**

679 5kb windows were defined across the core genome to construct a heatmap depicting a  
680 physical recombination map for each cross. For each progeny, in each 5kb window the most  
681 common parental genotype was determined, if a window contained only missing data then it was  
682 filled if the next window with data had a matching genotype to the previous window with data,  
683 otherwise it was left missing.

684

685 **Defining informative markers**

686 All phased genotype data for clonal, unique recombinant progeny and parents were  
687 loaded into R qtl as a genetic map. The findDupMarkers function was used to identify clusters of  
688 markers with identical genotype data and the central marker from each cluster was retained in a  
689 set of informative markers. This set of informative genotype markers for all clonal, unique  
690 recombinant progeny was used for all subsequent analysis and figures. The entire filtering  
691 pipeline is available on github ([https://github.com/kbuttons/P01\\_ProgenyCharacterization](https://github.com/kbuttons/P01_ProgenyCharacterization)) with  
692 documentation.

693

694 **Genetic Map Construction**

695 For each cross the set of informative genotype markers for clonal unique recombinant  
696 progeny was coded as A for the sensitive parent and B for the resistant parent and – for missing  
697 data and loaded into JoinMapv4.1. Population type was set to HAP1 and the Kosambi mapping  
698 function was employed in generating each genetic map. All other parameters were initially set to  
699 defaults, however, to account for the systemic segregation distortion observed in the  
700 NF54xNHP4026 cross it was necessary to expand the population threshold ranges such that the  
701 independence LOD ranged from 1.0 to 15.0, the independence P-value from 1.0e-3 to 1.0e-5, the  
702 recombination frequency from 0.250 to 0.001 and the linkage LOD from 3.0 to 15.0. This change  
703 in parameters allowed us to differentiate between SNP markers with similar distortion patterns  
704 that were known to be physically located on different chromosomes.

705

706 **Power Analysis**

707 Progeny from NF54 x NHP4026 were used to estimate power under three different  
708 scenarios, one genetic locus contributing to phenotypic variation, 2 loci with additive  
709 contributions to phenotypic variation and 2 loci with epistatic interaction controlling phenotypic  
710 variation. All models were simulated for the full  $F_1$  progeny set with  $N=84$  and for subsamples  
711 with  $N=30, 40, 50, 60$  and  $70$ . Under the one locus model, a phenotype was simulated as either a  
712 single replicate value or the average of 5 replicates at effect sizes ranging from 0.1 to 0.8. Under  
713 the two additive loci model, a phenotype was simulated as either a single replicate value or the  
714 average of 5 replicates for effect sizes for each locus ranging from 0.1 to 0.4. Under the two  
715 epistatic loci model, the first locus controlled whether a trait was present in an on/off fashion and  
716 the second locus controlled the level of the phenotype (ie. locus 1 is necessary to be drug  
717 resistant and locus 2 controls the level of resistance) and the main effects of both loci ranged  
718 between 0.1 to 0.4. A set of markers with 1:1 mendelian inheritance patterns were used as the 1  
719 or 2 loci in the models. All qtl mapping was performed with r qtl. For each simulation,  
720 significance thresholds were defined based on 1000 permutations. True positives were defined as  
721 a LOD peak that meant the  $\alpha=0.05$  significance threshold and whose 1.5 LOD interval contained  
722 the actual marker used in the model.

723

## 724 **SD Power Analysis**

725 This analysis was similar to the 1 locus model in the previous section. In these  
726 simulations effect sizes were calculated based on balanced inheritance and levels included 0.2,  
727 0.3, 0.4, 0.6 and 0.8. All markers were categorized by their allele frequency and sorted into bins  
728 for each level of allele frequency skew (ie. 0.89 to 0.91 and 0.09 to 0.11 were in the 0.1 bin

729 which represented the most skewed alleles in this analysis). QTL mapping, significance levels  
730 and definition of true positives were that same as in the power analysis above.

731

## 732 **Acknowledgements**

733 We would like to thank Jasmine Clark for help with progeny cloning. We would like to  
734 acknowledge members of the Ferdig lab, Anderson lab, Cheeseman lab, Vaughan lab, Kappe  
735 labs and Emrich lab for helpful discussions.

736

## 737 **References**

738

- 739 1. Fairlamb AH, Gow NAR, Matthews KR, Waters AP. Drug resistance in eukaryotic  
740 microorganisms. *Nature Microbiology*. 2016;1(7). doi: 10.1038/nmicrobiol.2016.92.
- 741 2. Wang W, Wang L, Liang Y-S. Susceptibility or resistance of praziquantel in human  
742 schistosomiasis: a review. *Parasitology Research*. 2012;111(5):1871-7. doi:  
743 10.1007/s00436-012-3151-z.
- 744 3. Ferdig MT, Cooper RA, Mu J, Deng B, Joy DA, Su XZ, et al. Dissecting the loci of low-level  
745 quinine resistance in malaria parasites. *Mol Microbiol*. 2004;52(4):985-97. doi:  
746 10.1111/j.1365-2958.2004.04035.x".
- 747 4. Müller IB, Hyde JE. Antimalarial drugs: modes of action and mechanisms of parasite  
748 resistance. *Future Microbiology*. 2010;5(12):1857-73. doi: 10.2217/fmb.10.136.

749 5. Chevalier FD, Valentim CLL, LoVerde PT, Anderson TJC. Efficient linkage mapping using  
750 exome capture and extreme QTL in schistosome parasites. *BMC Genomics*. 2014;15(1).  
751 doi: 10.1186/1471-2164-15-617.

752 6. Alsford SAM, Kelly JM, Baker N, Horn D. Genetic dissection of drug resistance in  
753 trypanosomes. *Parasitology*. 2013;140(12):1478-91. doi: 10.1017/s003118201300022x.

754 7. Miotto O, Amato R, Ashley EA, MacInnis B, Almagro-Garcia J, Amaratunga C, et al. Genetic  
755 architecture of artemisinin-resistant *Plasmodium falciparum*. *Nature genetics*.  
756 2015;47(3):226-34.

757 8. Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois A-C, Khim N, et al. A molecular  
758 marker of artemisinin-resistant *Plasmodium falciparum* malaria. *Nature*.  
759 2014;505(7481):50-5.

760 9. Straimer J, Gnadig NF, Witkowski B, Amaratunga C, Duru V, Ramadani AP, et al. Drug  
761 resistance. K13-propeller mutations confer artemisinin resistance in *Plasmodium*  
762 *falciparum* clinical isolates. *Science (New York, NY)*. 2015;347(6220):428-31. doi:  
763 10.1126/science.1260867 [doi].

764 10. Cheeseman IH, Miller BA, Nair S, Nkhoma S, Tan A, Tan JC, et al. A major genome region  
765 underlying artemisinin resistance in malaria. *Science (New York, NY)*. 2012;336(6077):79-  
766 82. doi: 10.1126/science.1215966 [doi].

767 11. Fidock DA, Nomura T, Talley AK, Cooper RA, Dzekunov SM, Ferdig MT, et al. Mutations in  
768 the *P. falciparum* digestive vacuole transmembrane protein PfCRT and evidence for their  
769 role in chloroquine resistance. *Mol Cell*. 2000;6(4):861-71. Epub 2000/11/25. PubMed  
770 PMID: 11090624; PubMed Central PMCID: PMCPMC2944663.

771 12. Valentim CLL, Cioli D, Chevalier FD, Cao X, Taylor AB, Holloway SP, et al. Genetic and  
772 Molecular Basis of Drug Resistance and Species-Specific Drug Action in Schistosome  
773 Parasites. *Science*. 2013;342(6164):1385-9. doi: 10.1126/science.1243106.

774 13. Sá JM, Kaslow SR, Krause MA, Melendez-Muniz VA, Salzman RE, Kite WA, et al.  
775 Artemisinin resistance phenotypes and K13 inheritance in a *Plasmodium falciparum* cross  
776 and Aotus model. *Proceedings of the National Academy of Sciences*. 2018. doi:  
777 10.1073/pnas.1813386115.

778 14. MacLeod A. The genetic map and comparative analysis with the physical map of  
779 *Trypanosoma brucei*. *Nucleic Acids Research*. 2005;33(21):6688-93. doi:  
780 10.1093/nar/gki980.

781 15. Cheeseman IH, McDew-White M, Phyoe AP, Sriprawat K, Nosten F, Anderson TJ. Pooled  
782 sequencing and rare variant association tests for identifying the determinants of emerging  
783 drug resistance in malaria parasites. *Mol Biol Evol*. 2015;32(4):1080-90. Epub 2014/12/24.  
784 doi: 10.1093/molbev/msu397. PubMed PMID: 25534029; PubMed Central PMCID:  
785 PMCPMC4379400.

786 16. Su X, Ferdig MT, Huang Y, Huynh CQ, Liu A, You J, et al. A genetic map and recombination  
787 parameters of the human malaria parasite *Plasmodium falciparum*. *Science*.  
788 1999;286(5443):1351-3. Epub 1999/11/13. PubMed PMID: 10558988.

789 17. Jiang H, Li N, Gopalan V, Zilversmit MM, Varma S, Nagarajan V, et al. High recombination  
790 rates and hotspots in a *Plasmodium falciparum* genetic cross. *Genome Biol*.  
791 2011;12(4):R33. Epub 2011/04/06. doi: 10.1186/gb-2011-12-4-r33. PubMed PMID:  
792 21463505; PubMed Central PMCID: PMCPMC3218859.

793 18. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, et al. Genome sequence of  
794 the human malaria parasite *Plasmodium falciparum*. *Nature*. 2002;419(6906):498-511.  
795 doi: 10.1038/nature01097. PubMed PMID: 12368864; PubMed Central PMCID:  
796 PMCPMC3836256.

797 19. Aurrecoechea C, Brestelli J, Brunk BP, Dommer J, Fischer S, Gajria B, et al. PlasmoDB: a  
798 functional genomic database for malaria parasites. *Nucleic acids research*.  
799 2009;37(Database issue):D539-43. doi: 10.1093/nar/gkn814 [doi].

800 20. Aurrecoechea C, Barreto A, Basenko EY, Brestelli J, Brunk BP, Cade S, et al. EuPathDB: the  
801 eukaryotic pathogen genomics database resource. *Nucleic Acids Research*.  
802 2017;45(D1):D581-D91. doi: 10.1093/nar/gkw1105.

803 21. Miles A, Iqbal Z, Vauterin P, Pearson R, Campino S, Theron M, et al. Indels, structural  
804 variation, and recombination drive genomic diversity in *Plasmodium falciparum*. *Genome*  
805 *Res*. 2016;26(9):1288-99. doi: 10.1101/gr.203711.115. PubMed PMID: 27531718; PubMed  
806 Central PMCID: PMCPMC5052046.

807 22. Flint J, Mackay TFC. Genetic architecture of quantitative traits in mice, flies, and humans.  
808 *Genome Research*. 2009;19(5):723-33. doi: 10.1101/gr.086660.108.

809 23. Vaughan AM, Pinapati RS, Cheeseman IH, Camargo N, Fishbaugher M, Checkley LA, et al.  
810 *Plasmodium falciparum* genetic crosses in a humanized mouse model. *Nature Methods*.  
811 2015;12(7):631-3. doi: 10.1038/nmeth.3432.

812 24. Mott BT, Eastman RT, Guha R, Sherlach KS, Siriwardana A, Shinn P, et al. High-throughput  
813 matrix screening identifies synergistic and antagonistic antimalarial drug combinations.  
814 *Scientific reports*. 2015;5:13891. doi: 10.1038/srep13891 [doi].

815 25. Hayton K, Gaur D, Liu A, Takahashi J, Henschen B, Singh S, et al. Erythrocyte Binding  
816 Protein PfRH5 Polymorphisms Determine Species-Specific Pathways of Plasmodium  
817 falciparum Invasion. *Cell Host & Microbe*. 2008;4(1):40-51. doi:  
818 10.1016/j.chom.2008.06.001.

819 26. Logan-Klumpler FJ, De Silva N, Boehme U, Rogers MB, Velarde G, McQuillan JA, et al.  
820 GeneDB--an annotation database for pathogens. *Nucleic Acids Res*. 2012;40(Database  
821 issue):D98-108. Epub 2011/11/26. doi: 10.1093/nar/gkr1032. PubMed PMID: 22116062;  
822 PubMed Central PMCID: PMCPMC3245030.

823 27. Okamoto N, Spurck TP, Goodman CD, McFadden GI. Apicoplast and Mitochondrion in  
824 Gametocytogenesis of *Plasmodium falciparum*. *Eukaryotic Cell*. 2009;8(1):128-32. doi:  
825 10.1128/ec.00267-08.

826 28. Vaidya AB, Morrisey J, Plowe CV, Kaslow DC, Wellemes TE. Unidirectional dominance of  
827 cytoplasmic inheritance in two genetic crosses of *Plasmodium falciparum*. *Molecular and  
828 Cellular Biology*. 1993;13(12):7349-57. doi: 10.1128/mcb.13.12.7349.

829 29. Creasey AM, Ranford-Cartwright LC, Moore DJ, Williamson DH, Wilson RJ, Walliker D, et  
830 al. Uniparental inheritance of the mitochondrial gene cytochrome b in *Plasmodium*  
831 *falciparum*. *Curr Genet*. 1993;23(4):360-4. Epub 1993/01/01. doi: 10.1007/bf00310900.  
832 PubMed PMID: 8467535.

833 30. Ranford-Cartwright LC, Mwangi JM. Analysis of malaria parasite phenotypes using  
834 experimental genetic crosses of *Plasmodium falciparum*. *International Journal for  
835 Parasitology*. 2012;42(6):529-34. doi: 10.1016/j.ijpara.2012.03.004. PubMed PMID:  
836 WOS:000305720200003.

837 31. Gabryszewski SJ, Modchang C, Musset L, Chookajorn T, Fidock DA. Combinatorial Genetic  
838 Modeling of *pfCRT*-Mediated Drug Resistance Evolution in *Plasmodium falciparum*.  
839 *Molecular Biology and Evolution*. 2016;33(6):1554-70. doi: 10.1093/molbev/msw037.

840 32. Veiga MI, Osorio NS, Ferreira PE, Franzen O, Dahlstrom S, Lum JK, et al. Complex  
841 polymorphisms in the *Plasmodium falciparum* multidrug resistance protein 2 gene and its  
842 contribution to antimalarial response. *Antimicrob Agents Chemother*. 2014;58(12):7390-7.  
843 Epub 2014/10/01. doi: 10.1128/AAC.03337-14. PubMed PMID: 25267670; PubMed  
844 Central PMCID: PMCPMC4249497.

845 33. Li X, Kumar S, McDew-White M, Haile M, Cheeseman IH, Emrich S, et al. Genetic mapping  
846 of fitness determinants across the malaria parasite *Plasmodium falciparum* life cycle. *PLoS*  
847 *Genet*. 2019;15(10):e1008453. Epub 2019/10/15. doi: 10.1371/journal.pgen.1008453.  
848 PubMed PMID: 31609965; PubMed Central PMCID: PMCPMC477818.

849 34. Parija S, Antony H. Antimalarial drug resistance: An overview. *Tropical Parasitology*.  
850 2016;6(1). doi: 10.4103/2229-5070.175081.

851 35. Nzila A, Mwai L. In vitro selection of *Plasmodium falciparum* drug-resistant parasite lines. *J*  
852 *Antimicrob Chemother*. 2010;65(3):390-8. Epub 2009/12/22. doi: 10.1093/jac/dkp449.  
853 PubMed PMID: 20022938; PubMed Central PMCID: PMCPMC2818104.

854 36. Morgante F, Huang W, Maltecca C, Mackay TFC. Effect of genetic architecture on the  
855 prediction accuracy of quantitative traits in samples of unrelated individuals. *Heredity*.  
856 2018;120(6):500-14. doi: 10.1038/s41437-017-0043-0.

857 37. Michel K, Morlais I, Nsango SE, Toussile W, Abate L, Annan Z, et al. *Plasmodium falciparum*  
858 Mating Patterns and Mosquito Infectivity of Natural Isolates of Gametocytes. *Plos One*.  
859 2015;10(4). doi: 10.1371/journal.pone.0123777.

860 38. Ranford-Cartwright LC. Fit for fertilization: Mating in malaria parasites. *Parasitology*  
861 Today. 1995;11(4):154-7. doi: 10.1016/0169-4758(95)80138-3.

862 39. Ranford-Cartwright LC, Balfe P, Carter R, Walliker D. Frequency of cross-fertilization in the  
863 human malaria parasite *Plasmodium falciparum*. *Parasitology*. 2009;107(01). doi:  
864 10.1017/s003118200007935x.

865 40. Walliker D, Quakyi IA, Wellemes TE, McCutchan TF, Szarfman A, London WT, et al. Genetic  
866 analysis of the human malaria parasite *Plasmodium falciparum*. *Science*.  
867 1987;236(4809):1661-6. Epub 1987/06/26. PubMed PMID: 3299700.

868 41. Walker-Jonah A, Dolan SA, Gwadz RW, Panton LJ, Wellemes TE. An RFLP map of the  
869 *Plasmodium falciparum* genome, recombination rates and favored linkage groups in a  
870 genetic cross. *Molecular and Biochemical Parasitology*. 1992;51(2):313-20. doi:  
871 10.1016/0166-6851(92)90081-t.

872 42. Myburg AA, Vogl C, Griffin AR, Sederoff RR, Whetten RW. Genetics of postzygotic isolation  
873 in Eucalyptus: whole-genome analysis of barriers to introgression in a wide interspecific  
874 cross of *Eucalyptus grandis* and *E. globulus*. *Genetics*. 2004;166(3):1405-18. Epub  
875 2004/04/15. PubMed PMID: 15082559; PubMed Central PMCID: PMCPMC1470765.

876 43. Yin TM, DiFazio SP, Gunter LE, Riemenschneider D, Tuskan GA. Large-scale heterospecific  
877 segregation distortion in *Populus* revealed by a dense genetic map. *Theor Appl Genet*.

878 2004;109(3):451-63. Epub 2004/05/29. doi: 10.1007/s00122-004-1653-5. PubMed PMID:  
879 15168022.

880 44. Bodenes C, Chancerel E, Ehrenmann F, Kremer A, Plomion C. High-density linkage  
881 mapping and distribution of segregation distortion regions in the oak genome. *DNA Res.*  
882 2016;23(2):115-24. Epub 2016/03/26. doi: 10.1093/dnares/dsw001. PubMed PMID:  
883 27013549; PubMed Central PMCID: PMCPMC4833419.

884 45. Tirrell AR, Vendrely KM, Checkley LA, Davis SZ, McDew-White M, Cheeseman IH, et al.  
885 Pairwise growth competitions identify relative fitness relationships among artemisinin  
886 resistant *Plasmodium falciparum* field isolates. *Malar J.* 2019;18(1):295. Epub 2019/08/30.  
887 doi: 10.1186/s12936-019-2934-4. PubMed PMID: 31462253; PubMed Central PMCID:  
888 PMCPMC6714446.

889 46. Anthony TG, Polley SD, Vogler AP, Conway DJ. Evidence of non-neutral polymorphism in  
890 *Plasmodium falciparum* gamete surface protein genes Pfs47 and Pfs48/45. *Mol Biochem  
891 Parasitol.* 2007;156(2):117-23. Epub 2007/09/11. doi: 10.1016/j.molbiopara.2007.07.008.  
892 PubMed PMID: 17826852.

893 47. Manske M, Miotto O, Campino S, Auburn S, Almagro Garcia J. Analysis of *Plasmodium*  
894 *falciparum* diversity in natural infections by deep sequencing. *Nature.*  
895 2012;487(7407):375-9. doi: 10.1038/nature11174.

896 48. Xu S, Hu Z. Mapping Quantitative Trait Loci Using Distorted Markers. *International Journal  
897 of Plant Genomics.* 2009;2009:1-11. doi: 10.1155/2009/410825.

898 49. Li HW. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.  
899 arXiv:13033997v2. 2013.

900 50. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for  
901 variation discovery and genotyping using next-generation DNA sequencing data. *Nature*  
902 *Genetics*. 2011;43(5):491-8. doi: 10.1038/ng.806.

903

904 **Figure Captions**

905 **Fig 1. Timeline for performing *P. falciparum* crosses in FRG huHep/huRBC mice.** Uncloned  
906 F1 progeny from *P. falciparum* genetic crosses of recent field isolates can be recovered in 6  
907 weeks from asexual stage culture of parent lines. Cloning of potential F1 recombinant progeny  
908 takes an additional 6 weeks. Next generation sequencing of potential recombinant progeny and  
909 identification of unique recombinants via our new pipeline takes an additional 6 weeks.

910 **Fig 2. Cloning results and estimated recombinant progeny for each cross. (A and B)**

911 Genotyping results for each cross, clusters denote individual clones of the same genotype. (A)  
912 NF54 x NHP4026 contained few selfed progeny and almost all repeat sampling of the same  
913 genotype (clusters) occurred with a cloning round, \* denotes the only observed repeat sampling  
914 event between cloning rounds. (B) MKK2835 x NHP1337 produced many selfed progeny and  
915 few instances of repeat sampling of recombinant genotypes all from cloning round 2. (C)  
916 Progeny for NF54 x NHP4026 and MKK2835 x NHP1337 cross were filtered to identify unique  
917 recombinant progeny (blue). Selfed progeny (orange), non-clonal progeny (grey) and repeat  
918 sampling of the same genotype within a cloning round (yellow) and between cloning rounds  
919 (black) were filtered out of total genotyped progeny.

920 **Fig 3. Physical maps for crosses.** Physical maps (A & B) depict inheritance patterns in 5KB  
921 blocks for each progeny (y axis) across core regions of the 14 nuclear chromosomes (x axis) with  
922 black representing the drug susceptible parent and red the drug resistant parent, non-core regions

923 of the genome with no variant calls are shown in grey with yellow showing chromosome  
924 boundaries. (A) The physical map for NF54 x NHP4026 shows several regions where haplotype  
925 blocks are primarily inherited from either parent and deviate significantly from the expected 1:1  
926 ratio. (B) The physical map for MKK2835 x NHP1337 shows more even inheritance ratios  
927 across the genome with no significant deviations from expected mendelian ratios.

928 **Fig 4. Segregation Distortion Decreases Power and Mapping Resolution.** (A) Frequency of  
929 the NHP4026 SNP alleles in unique recombinant progeny in NF54 x NHP4026 is highly  
930 repeatable across biological replicates (black – all progeny, red – progeny from biological  
931 replicate 1, blue – progeny from biological replicate 2). Horizontal lines represent significance  
932 thresholds (chi sq p=0.001) for segregation distortion for each corresponding set of progeny.  
933 Colored regions show significant segregations distortion in both biological replicates. Genes are  
934 shown for the most highly skewed sub-regions.

935 **Fig 5. Power analysis for different size progeny sets.** Power curves are shown from simulated  
936 phenotypes for NF54 x NHP4026 progeny for different size progeny sets. The top row shows  
937 power curves where the phenotype only has a single replicate per progeny strain and the bottom  
938 row shows results for 5 replicate phenotype values per progeny strain. The first column shows  
939 results for a single locus effect, the second column shows results for an additive 2 loci effect and  
940 the third column shows results for an epistatic interaction between 2 loci. The horizontal black  
941 line denotes 80% power.

942 **Fig 6. Detecting complex associations.** QTL scans of simulated phenotypes with one major  
943 (ES=0.6) and two minor (ES=0.2 and 0.15) contributing loci for N=84 (grey), 60 (blue) and 35  
944 progeny (black). The major locus is detected for all sizes of N, but only one minor locus is  
945 detected for N=60 progeny and neither minor locus is detected at N=35 progeny.

946 **Fig 7. Power loss due to segregation distortion.** (A) Effect of SD on mapping power in NF54 x  
947 NHP4026 with simulated phenotype data at different effect sizes. Each sub-panel shows the  
948 relationship between allele frequency and power for different numbers of progeny at a fixed  
949 effect size. For high effect size, allele frequency has little effect on power. At lower effect sizes  
950 we observe a large loss of power for alleles with less than 0.3 allele frequency. (B) QTL  
951 mapping of CQ IC<sub>50</sub> (ES=0.84) in 35 progeny in the NF54xNHP4026 cross results in a LOD  
952 score of 18 and a genome wide p-value = 0.000696 showing that in real data with extreme SD a  
953 trait with high effect size is detectable.

954

## 955 **Supporting Information**

956 **S1 Fig. Cloning results for each cross by biological replicate and cloning round.** Cloning  
957 success varied as a function of length of time parasites were in bulk culture before cloning. (A)  
958 Progeny for the NF54 x NHP4026 cross were filtered to identify unique recombinant progeny  
959 (blue). Selfed progeny (orange), non-clonal progeny (grey) and repeat sampling of the same  
960 genotype within a cloning round (yellow) and between cloning rounds (black) were filtered out  
961 of total genotyped progeny for each biological replicate and cloning round. (B) Progeny for the  
962 MKK2835 x NHP1337 cross were filtered to identify unique recombinant progeny (blue). Selfed  
963 progeny (orange), non-clonal progeny (grey) and repeat sampling of the same genotype within a  
964 cloning round (yellow) and between cloning rounds (black) were filtered out of total genotyped  
965 progeny for each cloning round.

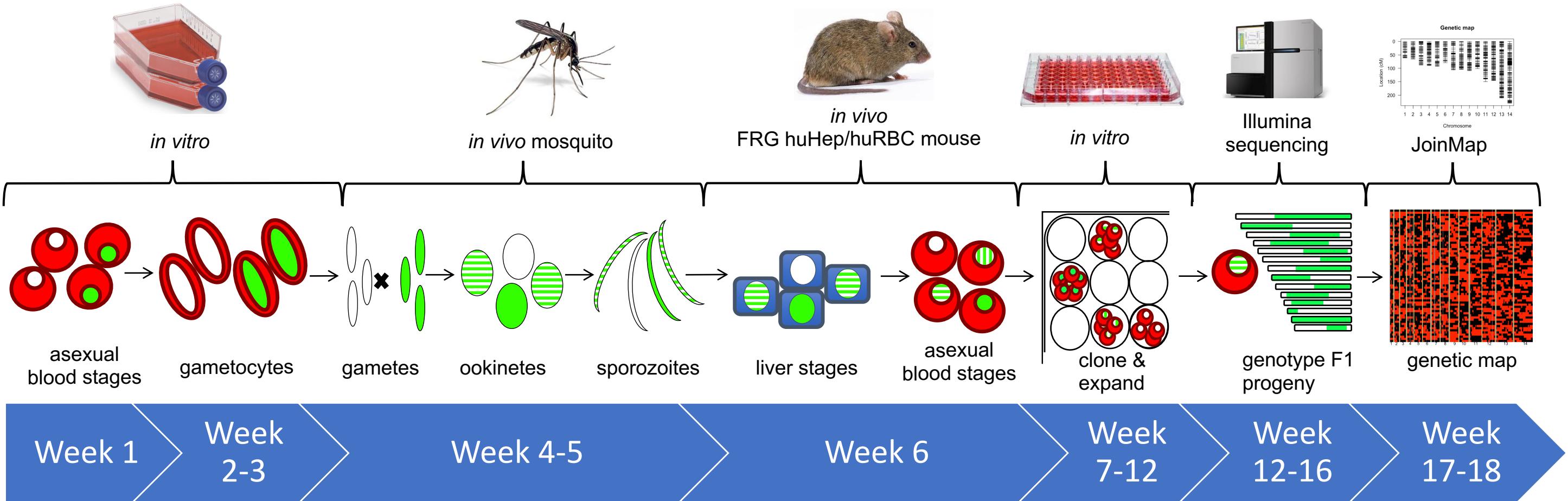
966 **S2 Fig. Segregation distortion in all published *P. falciparum* crosses.** Allele frequencies  
967 plotted across the genome for all 6 published *P. falciparum* crosses show no significant

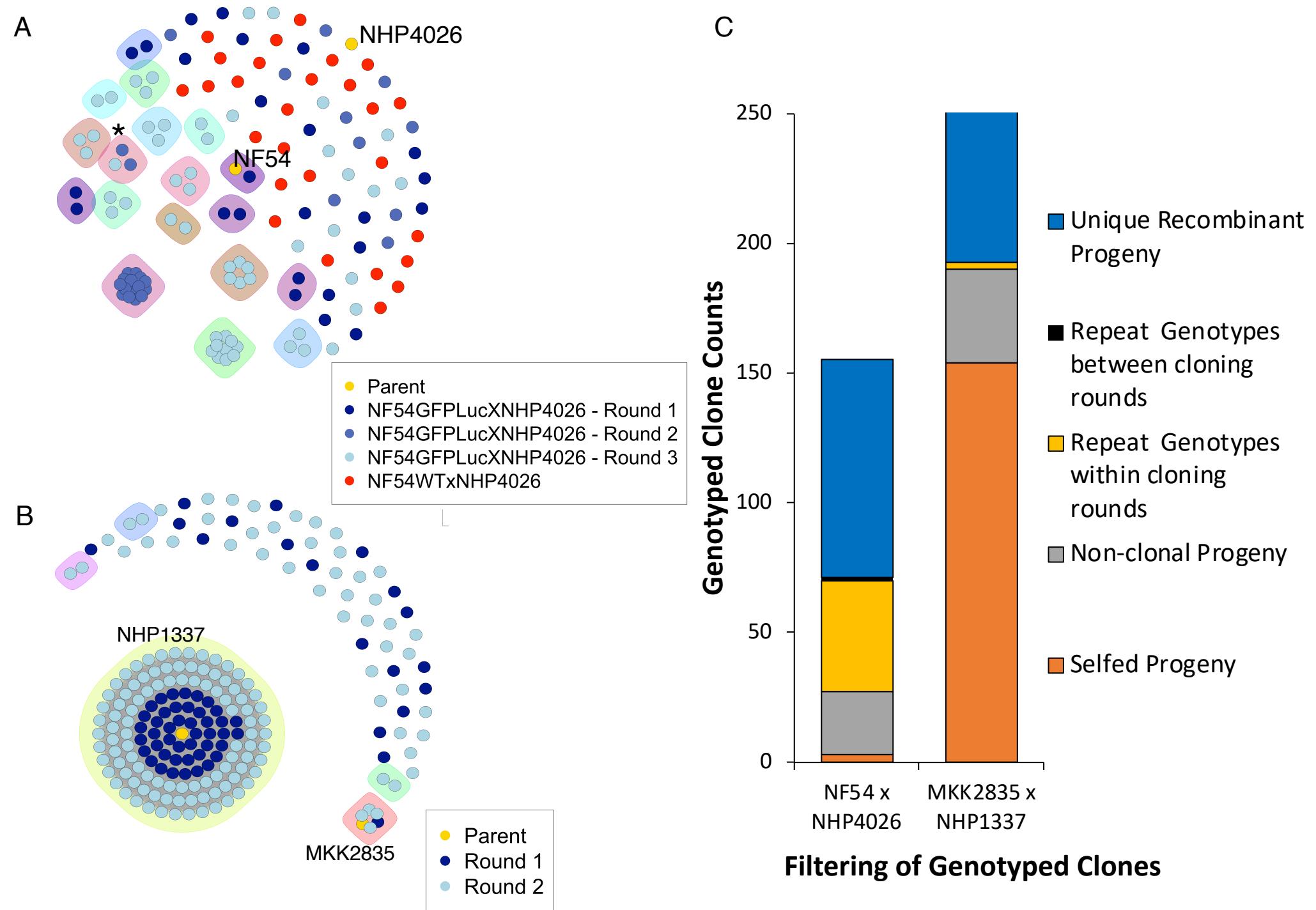
968 segregation distortion in the MKK2835xNHP1337 cross (A) in contrast to all other published  
969 crosses which show regions of significant segregation distortion (B-F).

970 **S3 Fig. Mapping Resolution for different size progeny sets.** Average mapping resolution  
971 reported as number of genes per 1.5 LOD interval for simulated phenotypes that accurately map  
972 to the 1.5 LOD interval surrounding the causal loci. Progeny set size varied from the full NF54 x  
973 NHP4026 progeny set of 84 and was subsampled at 30, 40, 50, 60 and 70 progeny. Each curve  
974 represents phenotypes simulated with a given effect size (ES) with ES ranging between 0.1 to  
975 0.8.

976 **S4 Fig. Nonclonal Progeny Heatmap.** Heatmap showing regions of the genome for each  
977 progeny with above expected numbers of heterozygous allele calls. Regions with above expected  
978 heterozygous SNP calls were identified through a sliding window analysis. Progeny along with  
979 an uncloned sample (denoted with an \*) are shown as rows and each column represents a 90kb  
980 region (window size was defined as the expected distance between heterozygous SNP calls based  
981 on the heterozygous SNP call rate for each cross). (A) In progeny of the NF54 x NHP4026 cross,  
982 25 progeny had regions with above expected heterozygosity. (B) In progeny of the MKK2835 x  
983 NHP1337 cross, 35 progeny had regions with above expected heterozygosity. The un-cloned  
984 samples (\*) show above background heterozygosity or high heterozygosity across the genome.

985 **S1 Table. Mosquito stage crossing results.**

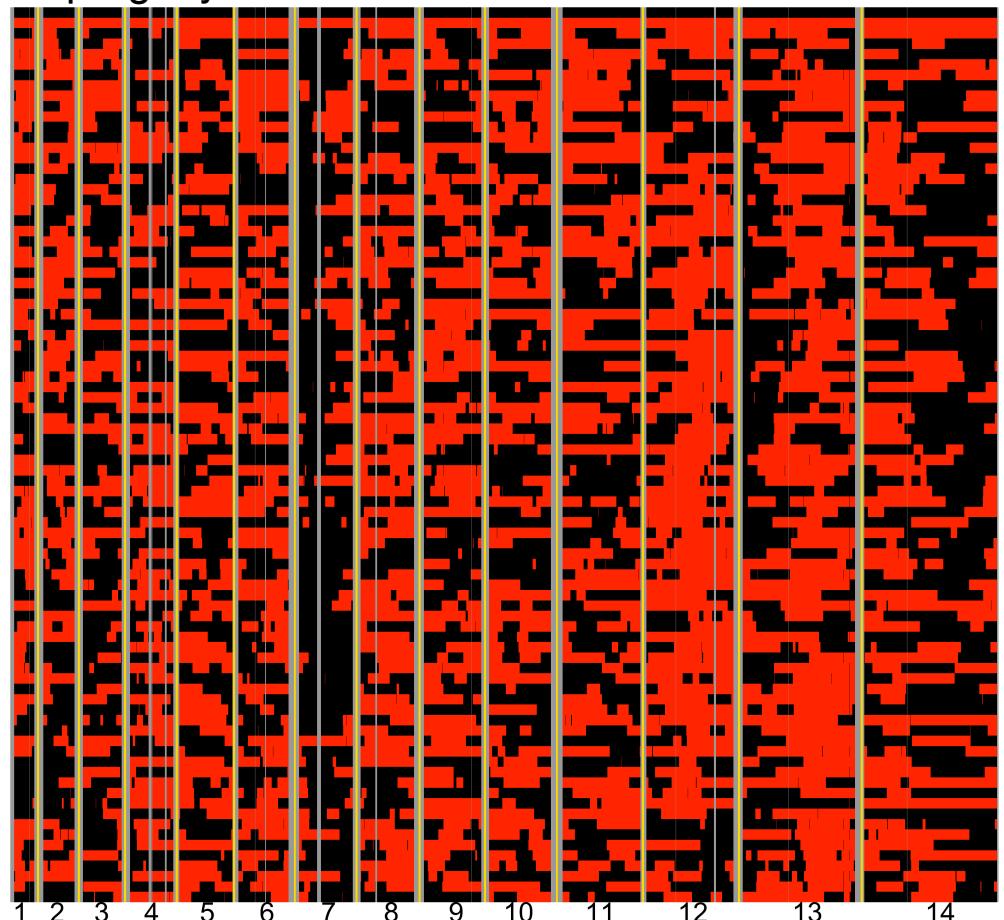

986 **S2 Table. Cloning methodology and results.**


987 **S3 Table. NF54/NF54-GFPLuc x NHP4026 Genetic Map**

988 **S4 Table. MKK2835 x NHP1337 Genetic Map**

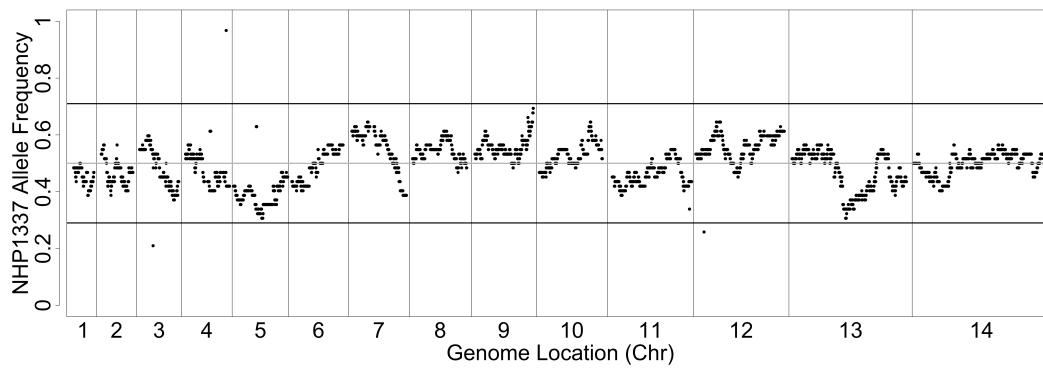
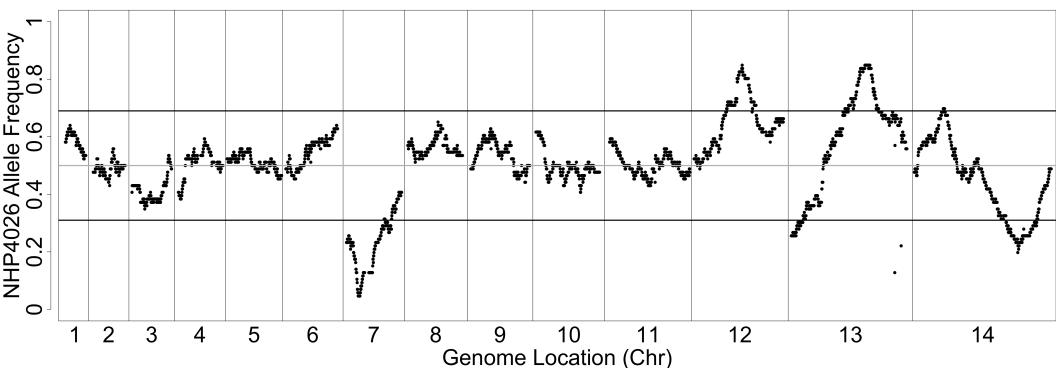
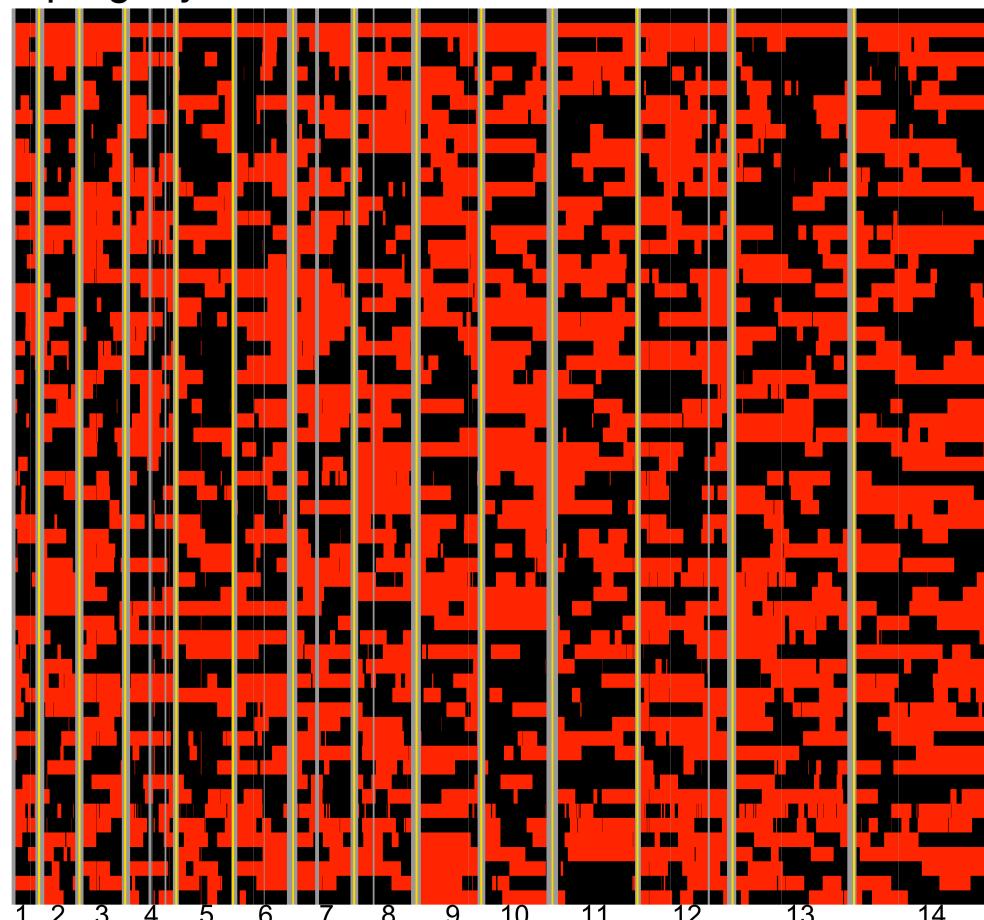
989 **S5 Table. Allele frequencies and significance of segregation distortion in NF54 x NHP4026  
990 progeny.**

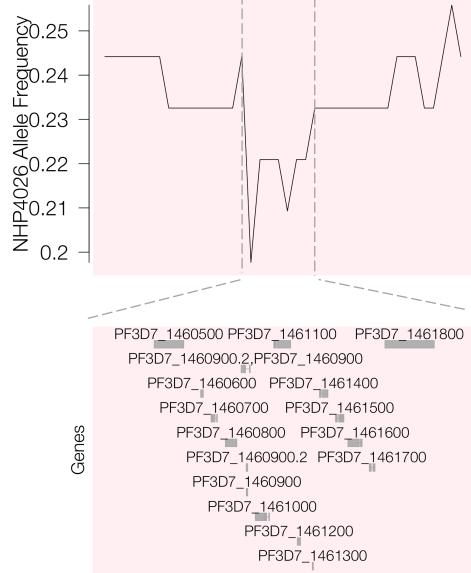
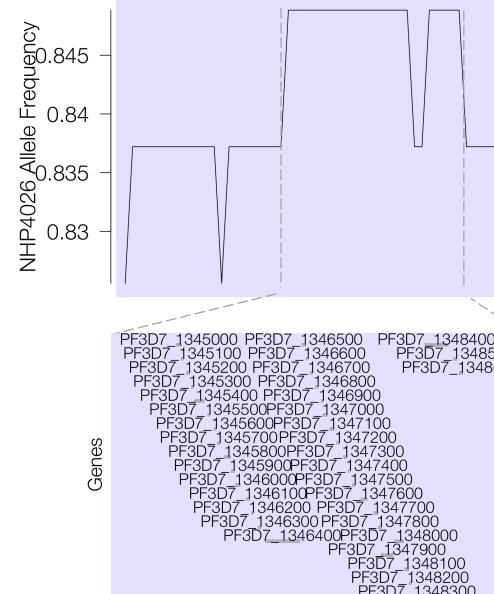
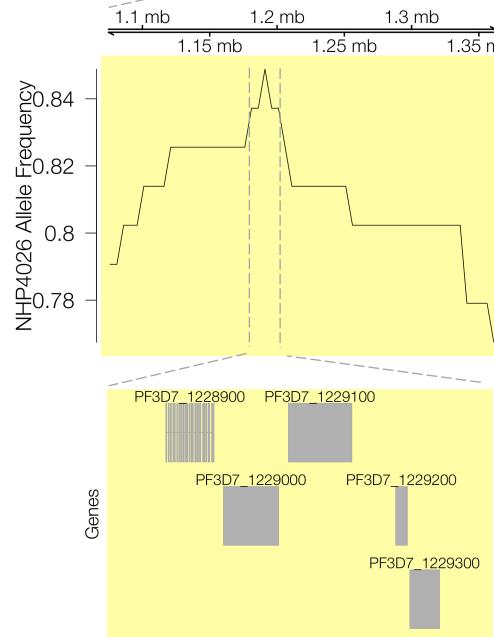
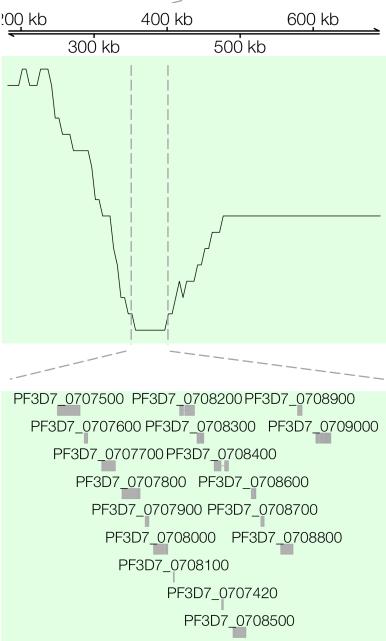
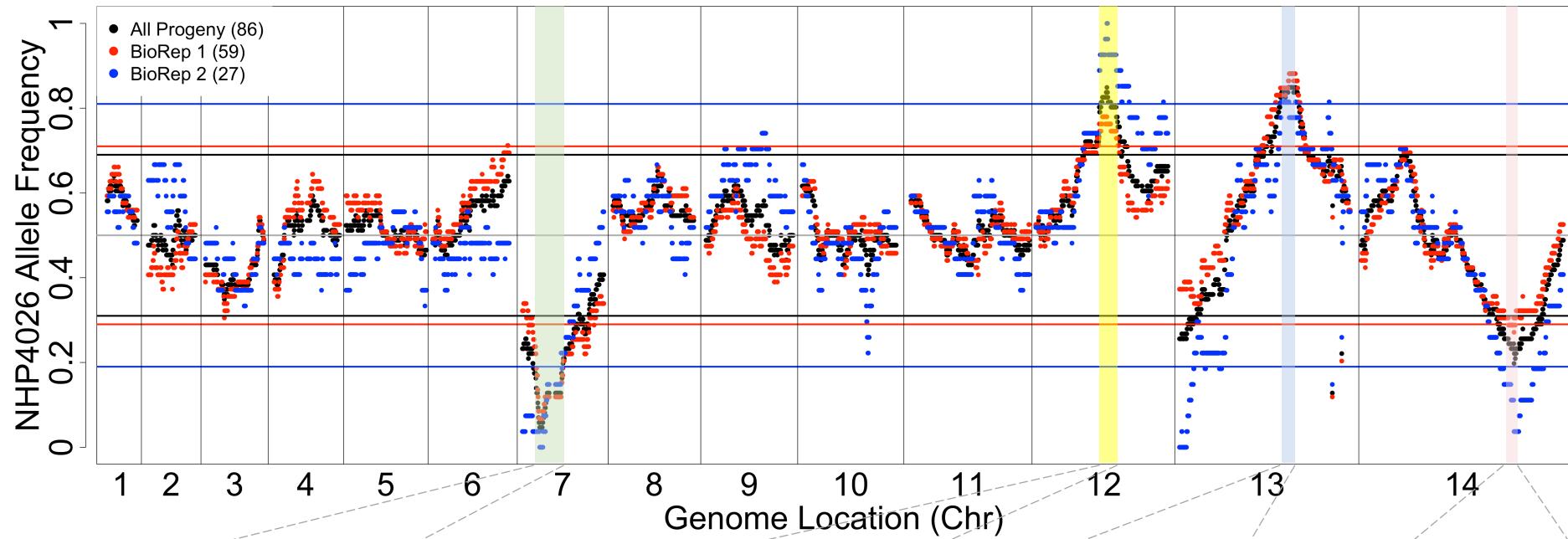
991 **S6 Table. Microsatelite information.**





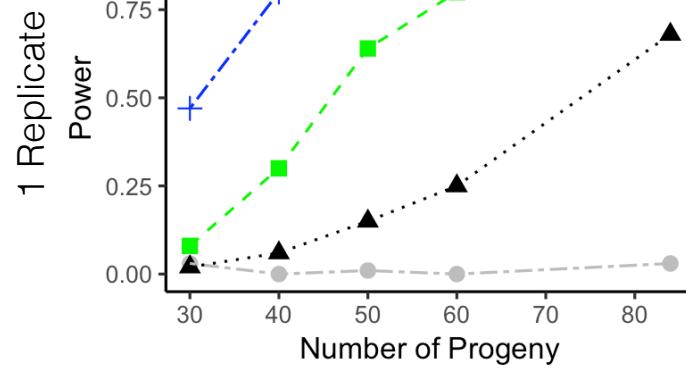

**A NF54 x NHP4026**




84 progeny






- NF54 Genotype
- NHP4026 Genotype

**B MKK2835 x NHP1337**

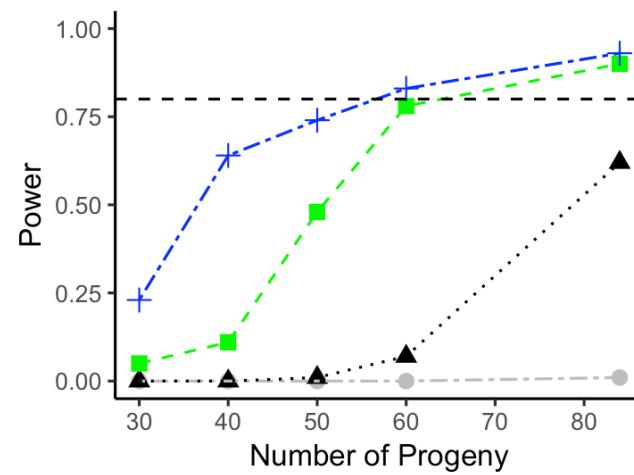
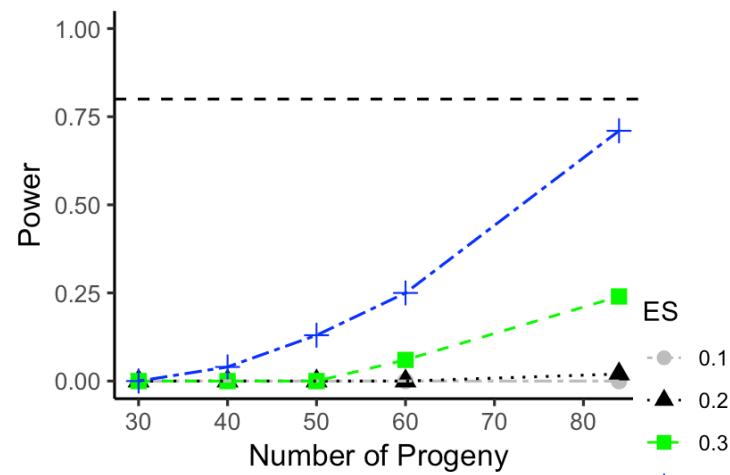
60 progeny


- MKK2835 Genotype
- NHP1337 Genotype





1 Replicate



1 Locus

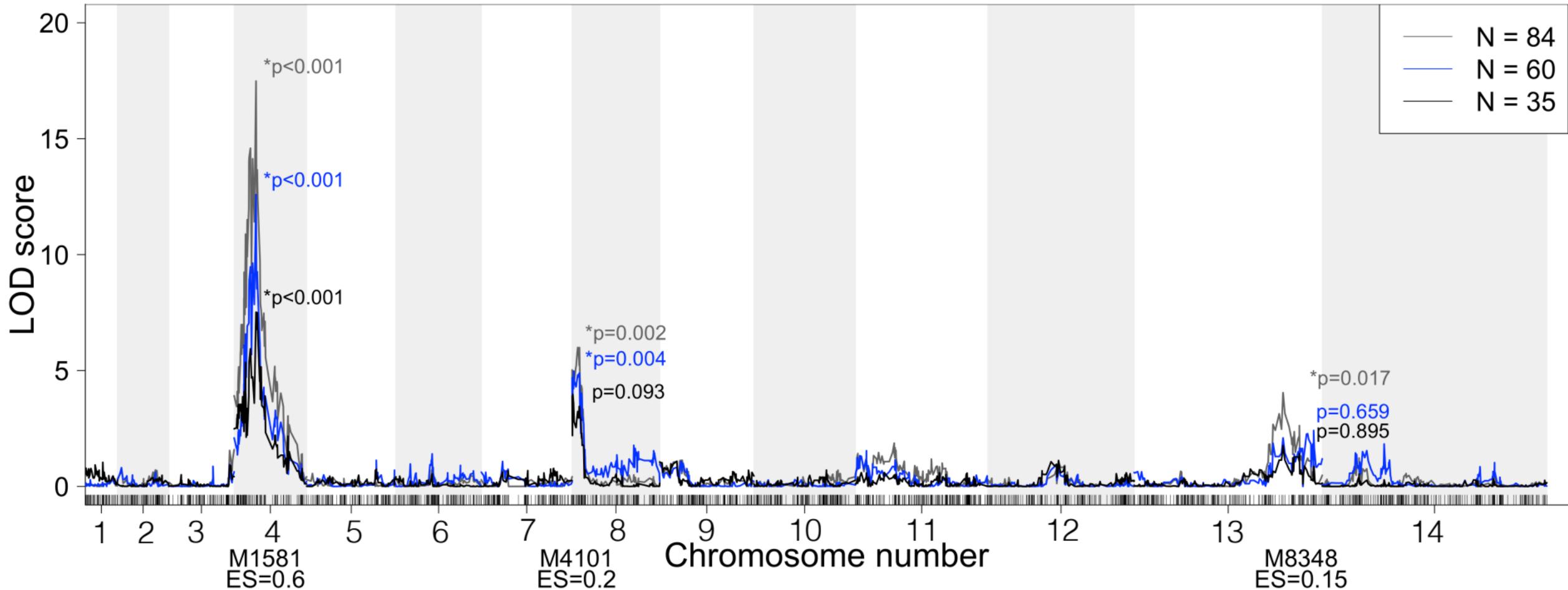


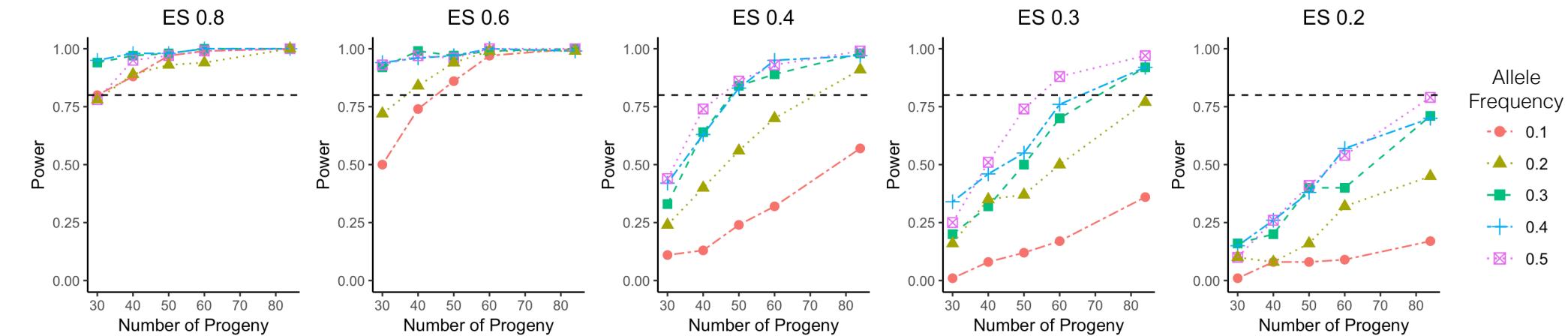
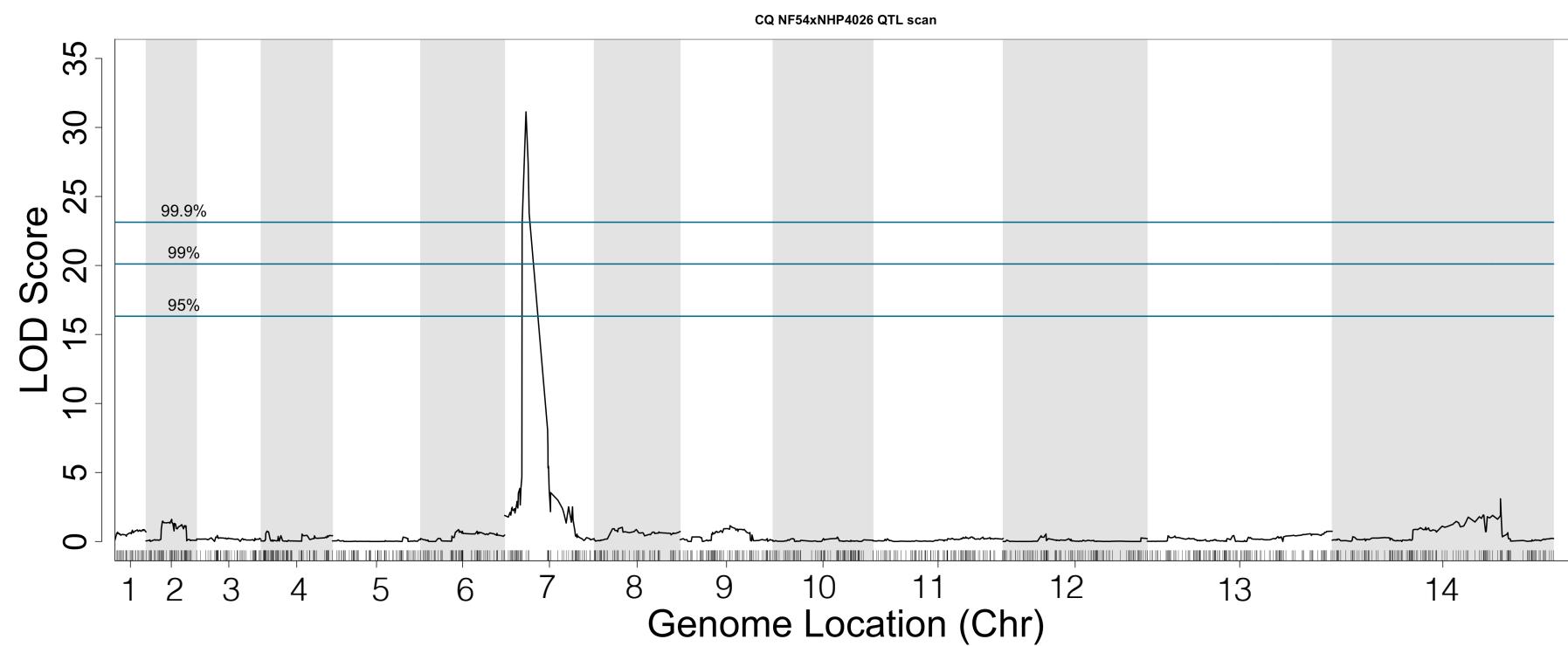
5 Replicates

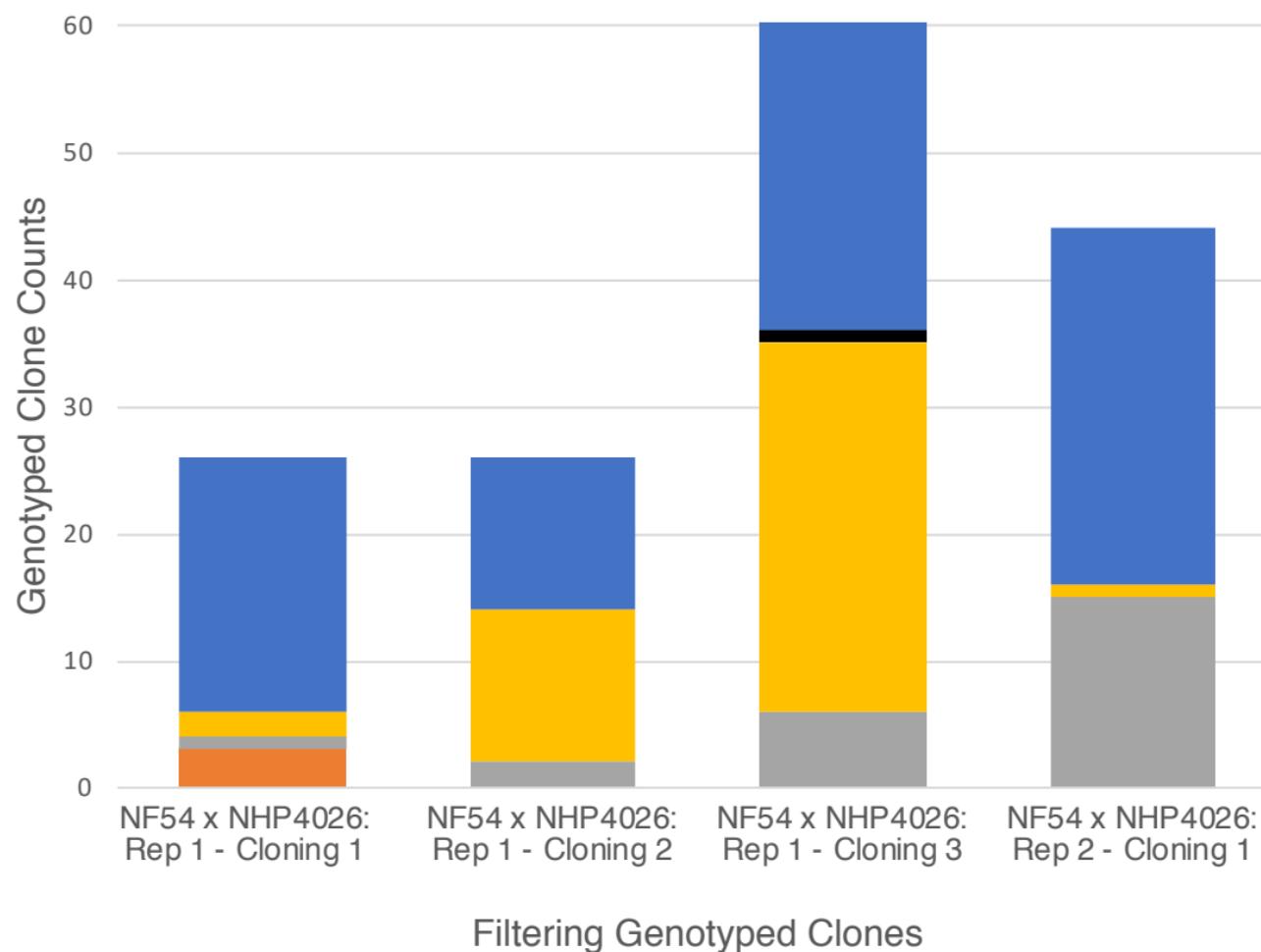
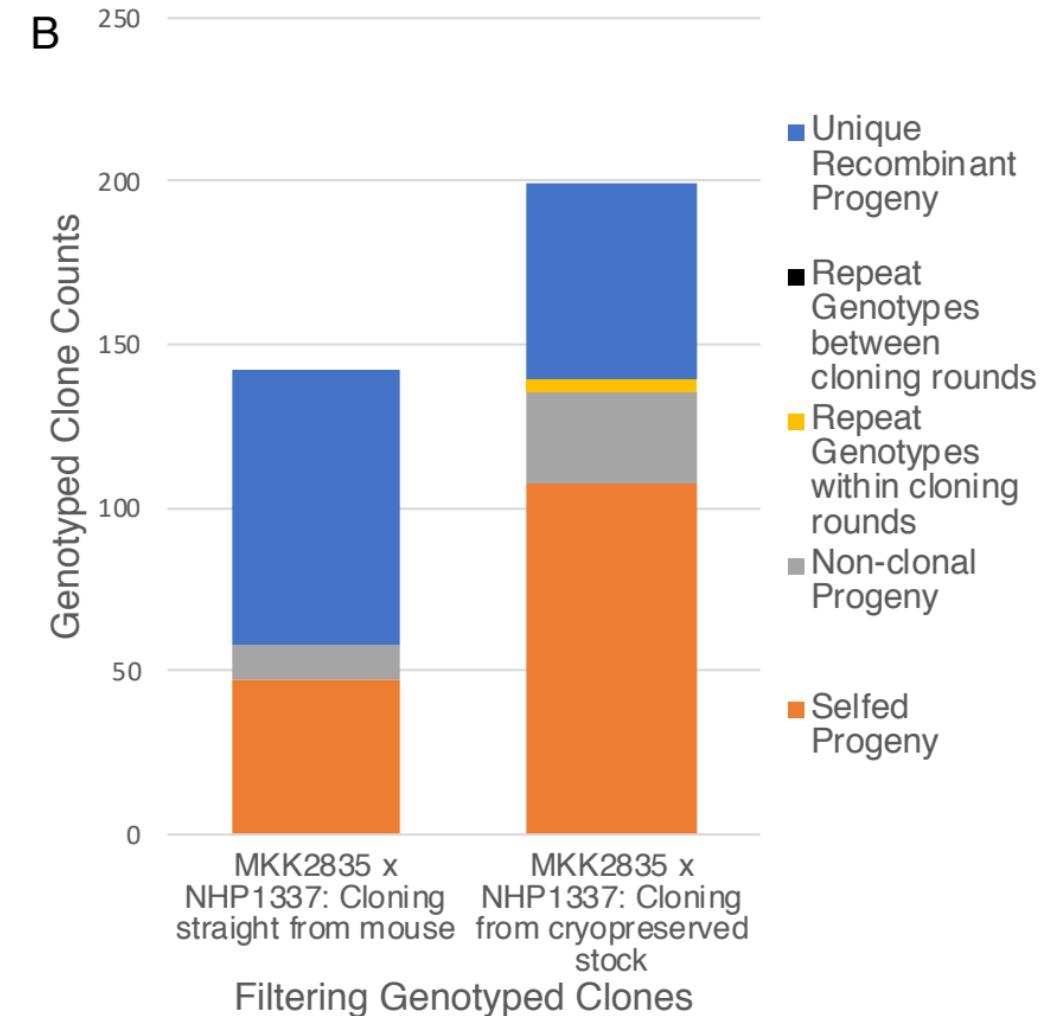
Number of Progeny

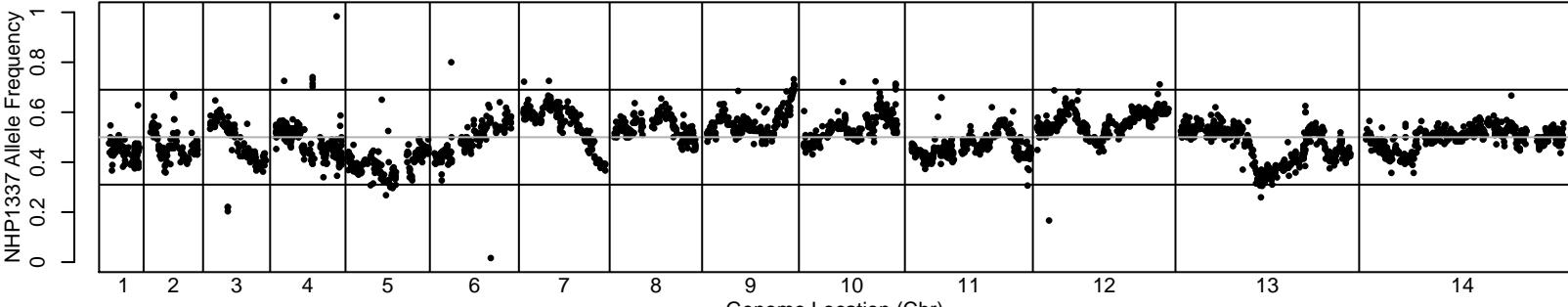
Number of Progeny

2 Loci  
Additive2 Loci  
Epistatic

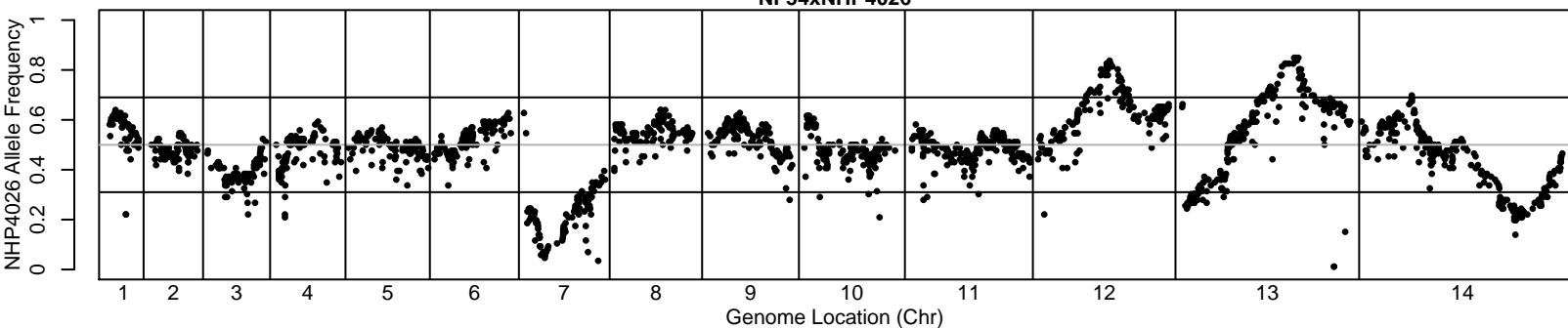

ES



- 0.1
- 0.2
- 0.3
- 0.4
- 0.5
- 0.6
- 0.7
- 0.8

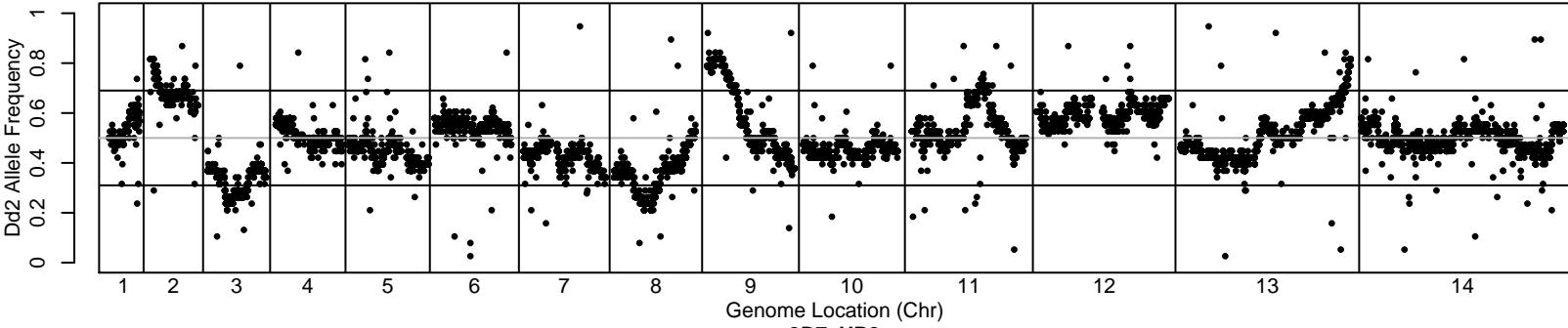


Number of Progeny


Number of Progeny

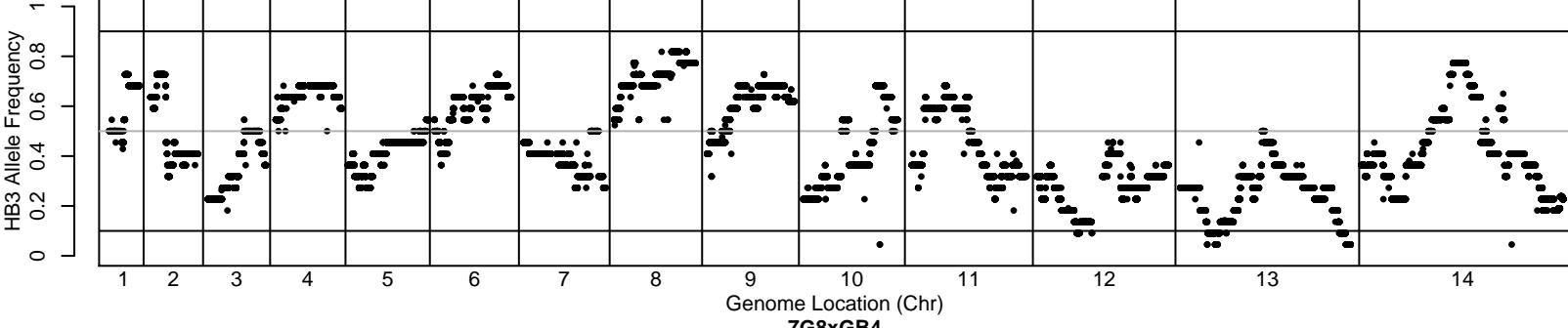
Number of Progeny



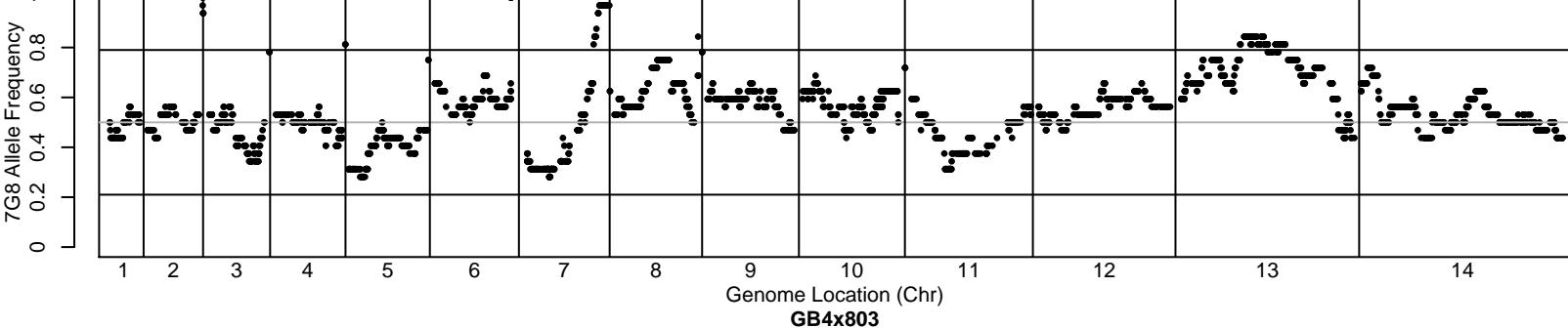

**A****B**


**A****B**

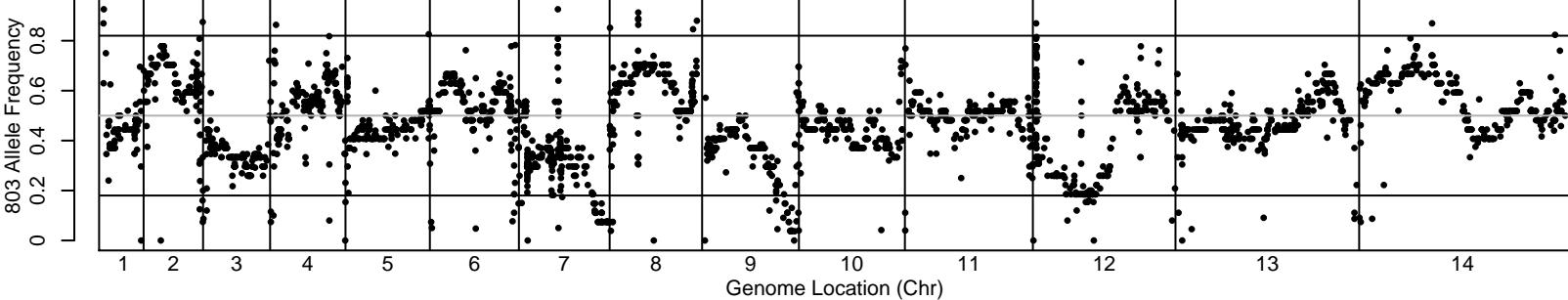



MKK2835xNHP1337

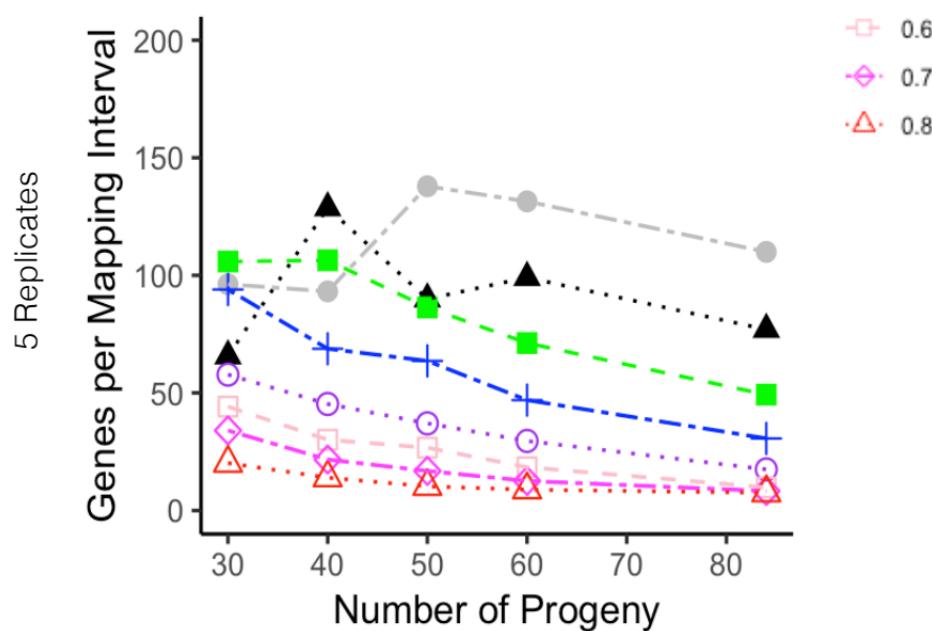
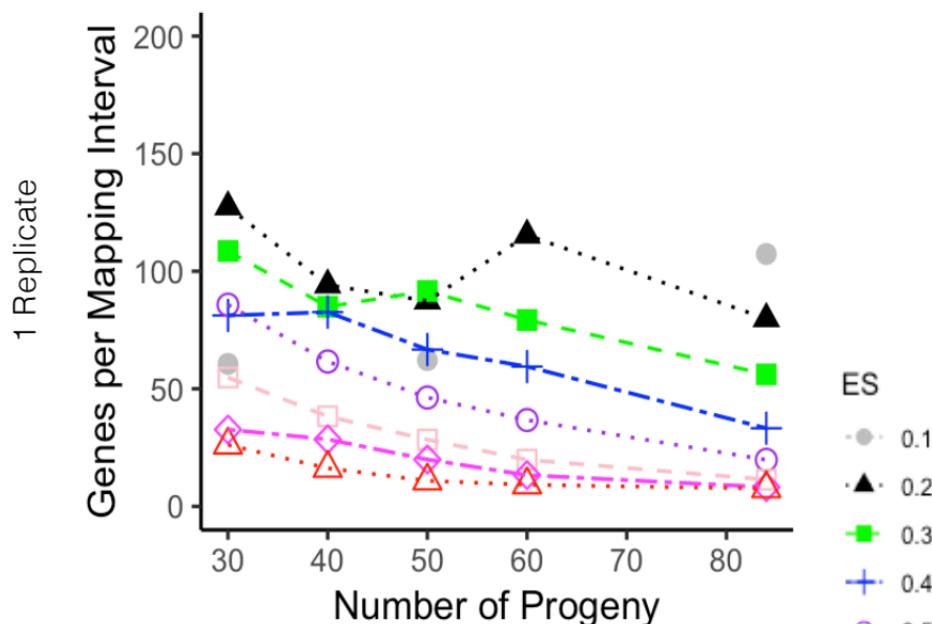



NF54xNHP4026



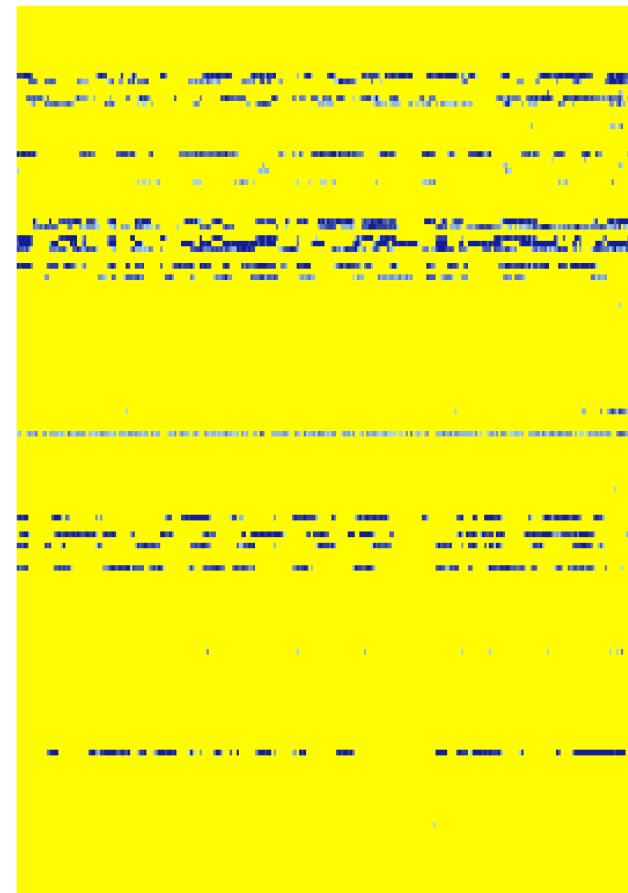

HB3xDd2





3D7xHB3

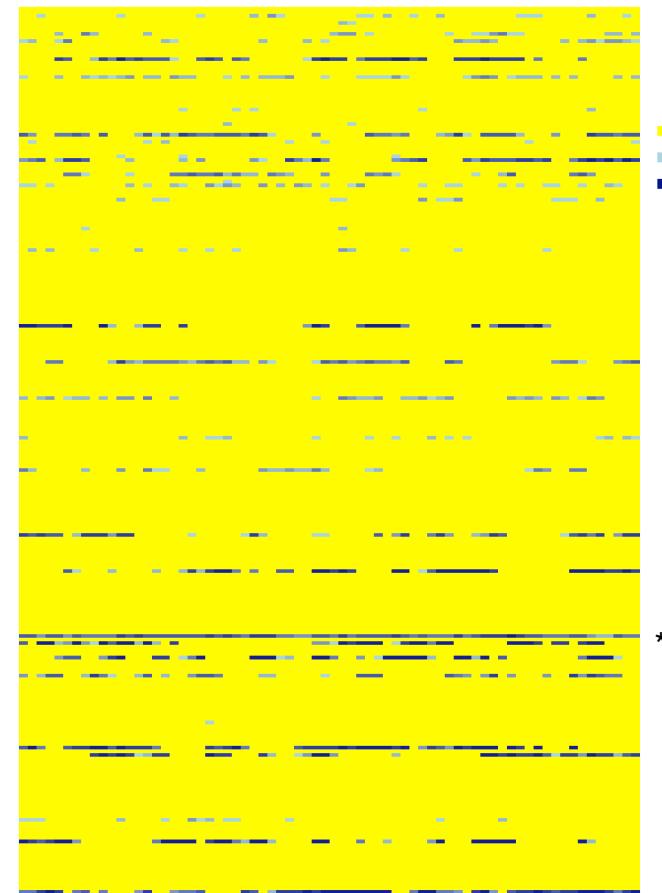


7G8xGB4




GB4x803




A

NF54 x NHP4026



B

MKK2835 x NHP1337



- background error
- above background heterozygosity
- high heterozygosity