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Abstract 

The p-value is routinely compared with a certain threshold, commonly set to 0.05, to assess statistical null 

hypotheses. This threshold is easily reachable by either a single p-value or its distribution whenever a 

large enough dataset is available. We prove that the p-value can be alternatively modeled as a continuous 

exponential function. The function’s decay can be used to analyze the data, assess the null hypothesis, 

and determine the minimum data-size needed to reject it. An in-depth study of the model in three different 

experimental datasets reflects the large scope of this approach in common data analysis and decision-

making processes.  
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Main text 
 

In the most complex scenarios, decision making is only possible when we are able to reduce intricate 

working conditions to a dichotomous or binary case. Statistical hypothesis testing has always supported 

the ability to discriminate between different events. Yet previous methods do not always provide robust 

results due to dependence on the size of the datasets being tested [[1], [2], [3]], and requires an urgent 

revision [[3], [4], [5]]. 

Typically obtained from any conventional test, the “gold standard” p-value has long been recognized 

as an unreliable but popular measure of statistical significance [[3], [5], [6], [7]]. The p-value is itself a 

random variable that depends on the data used; and, therefore, has a sampling distribution. A 

straightforward example is as follows: the p-value has a uniform distribution (0,1) under the null 

hypothesis.  If the null hypothesis is not trivially assessable, it remains always possible to obtain a 

sufficiently small p-value that rejects the null hypothesis by sufficiently increasing the sample size (also 

called p-hacking) [[7], [8], [9], [10]]. For instance, even when comparing the mean value of two groups 

with identical distribution, statistically significant differences among the groups can always be found as 

long as a sufficiently large number of observations is available using any of the conventional statistical 

tests (i.e., Mann Whitney U-test [11], Rank Sum test [12], Student’s t-test [13]) [14]. Non-parametric 

statistical tests for two samples, such as the Kolmogorov-Smirnov test [15], also conclude with the 

rejection of the null hypothesis when working with sufficiently large datasets.  In other words, big data 

can make insignificance seemingly significant by means of the classical p-value. Similar to the examples 

in [[3], [7]], Fig. 3 in the Online Methods further illustrates the described problem. 

Despite this finding, there remain many situations for which the ‘dichotomy’ associated with the p-

value is necessary for decision-making [4]. Designing a robust tool devoted to this task could be an 

inflection point in the use of statistical tests. In this work, we aim to answer the question  of  when  can 

we  solidly  assert  that  bona fide differences  exist between  two sets of data, independent of sample size. 

To introduce our method, we first show that the p-value can be accurately approximated through its 

expression as an exponential function of the sample size 𝑛, 𝑝(𝑛): 

p(n) = a · e−cn where a, c ∈ R+
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In Fig. 1a, different randomly generated normal distributions are compared using the Mann-Whitney U 

statistical test [11] to illustrate the decrease of the function 𝑝(𝑛) with the sample size. The use of the Student’s 

t-test was avoided as it is well known that the p-value associated to the t-statistic has an exponential decay 

[13]. Technical details about the convergence of the function 𝑝(𝑛) and evidence about Eq. 1 holding for any 

statistical test are given in the Online Methods. 

Note that the p-value curve, the function 𝑝(𝑛), is used to compare pairs of experimental conditions; 

therefore, 𝑝(𝑛) is computed as the exponential fit to the probability value of multiple sample comparisons. 

Hence, the parameters 𝑎 and 𝑐 in Eq. 1 correspond to those defining the exponential fit 𝑝(𝑛). We use the 

Monte Carlo cross-validation (MCCV) [16] as the sampling strategy: two subsets of size n (one from each of 

the groups to be compared) are randomly sampled and compared with a statistical test. The resulting p-value 

is stored and the procedure is repeated many times. At the end of the procedure, a large set of 𝑛-dependent 

p-values is obtained and the exponential function in Eq. 1 can be fit. 

Similarly to any exponential function, 𝑝(𝑛) converges to zero. The faster the function converges, the more 

robust the significance. When normal distributions of standard deviation one and mean value in the range [0, 

3] are compared, we see that the higher the difference among experimental conditions, the faster the decay 

of the exponential function that approximates 𝑝(𝑛) (Fig. 1b). We observe that the parameters 𝑎 and 𝑐 (Eq. 1) 

increase proportionally with the mean value of the distribution compared with 𝑁(0, 1) (Fig. 1b). With this 

new idea in mind, a robust decision index, 𝜃𝛼,𝛾, can be mathematically defined (Eq. 10 in the Online 

Methods). Note that subscripts 𝛼 (statistical significant threshold) and 𝛾 (regularization parameter) are 

omitted from now on.  

Instead of comparing a single p-value with the ideal statistical significance threshold 𝛼 (i.e., 𝛼 =  0.05 

for a 95% of statistical significance), a distance 𝛿 (Eq. 9 in the Online Methods) is defined to compare the 

function 𝑝(𝑛) with 𝛼 for all 𝑛 values. 𝛿 measures the difference between the areas under the constant function 

at level 𝛼 and the area under the curve 𝑝(𝑛) (Fig. 1c). The distance 𝛿 is then used to obtain the binary index 

𝜃 that indicates whether 𝑝(𝑛) and the 𝛼 constant are far from each other or not. If for most values of 𝑛 the 

function 𝑝(𝑛) is smaller than 𝛼, then 𝜃 = 1, which means that there is an acceptable statistical significance.  

However, if 𝜃 is null, the tested null hypothesis cannot be rejected.  

As the exponential function is defined for all values 𝑛 ∈ (−∞, +∞), it is necessary to determine a range 

of 𝑛 for which the function 𝑝(𝑛) is meaningful. The decay of 𝑝(𝑛) is concentrated in a range between 𝑛 = 0  

and a certain value of 𝑛 for which 𝑝(𝑛) ≈ 0 (convergence of 𝑝(𝑛)); so, 𝛿 should be only calculated in that 

range. A parameter 𝛾 is used as a regularizer to measure the point of convergence 𝑛 = 𝑛𝛾, such that 

𝑝(𝑛 = 𝑛𝛾) ≈ 0 (Fig. 1c  and Eq. 8 in the Online Methods). Small 𝛾 values imply less restrictive decisions.  

Nonetheless, the experimental evaluation of the method over synthetic and real data evidences 𝛾 =  5𝑒−06 

to be a reasonable choice (detailed information is given in the Online Methods and the Supplementary 
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Material).  Note that when 𝑝(𝑛) is determined simply by the definition of the parameters 𝑎 and 𝑐 in Eq. 1, 

the minimum data size needed to observe statistically significant differences at 𝛼-level can also be provided.  

As 𝑝(𝑛) continuously decreases, the value of 𝑛 for which 𝑝(𝑛) is always smaller than 𝛼 can be calculated 

easily.  This value is called 𝑛𝛼 (Fig. 1c and Eq. 12  in the Online Methods). 

Both the decision index 𝜃 and the minimum data size 𝑛𝛼 provide for intuition about the veracity of the 

null hypothesis of the statistical test. To illustrate this, different normal distributions were compared with the 

Mann-Whitney U statistical test [11] with an 𝛼-level of 0.05 (Table 1 in the Online Methods). When 𝑁(0, 1) 

is compared with 𝑁(0, 1), 𝑁(0.01, 1) and 𝑁(0.1, 1), 𝜃 is null; so those distributions are assumed to be equal. 

In the remaining comparisons though, 𝜃 = 1, thus there exist differences between 𝑁(0, 1) and 𝑁(𝜇, 1) for 

𝜇 ∈  [0.25, 3] (Fig. 1d). Likewise, the value of 𝑛𝛼 increases until infinity as the mean value 𝜇 decreases 

when 𝑁(0, 1) is compared with 𝑁(𝜇, 1) for 𝜇 ∈  [0.1, 3]. Indeed, 𝑛𝛼 cannot be determined when 𝑁(0, 1) is 

compared with 𝑁(0, 1) and 𝑁(0.01, 1), as the null hypothesis in this case is true and therefore, 𝑝(𝑛) is a 

constant function, which represents the uniform distribution of p-values (Figs. 1e and 1f, and Fig. 3 in the 

Online Methods). 

To prove the generality of the proposed method, we tested its different functionalities on published and 

non-published data from biological experiments. The first application of the method consists in 

discriminating between conditions; that is, to declare whether two conditions are different or not. In this case, 

we wanted to determine whether cancer cells cultured in 3D collagen matrices and imaged under a light 

microscope changed shape after administration of a chemotherapeutic drug (Taxol) (details about data 

collection and processing are given in the Supplementary Material). Three different groups were compared: 

control cells (non-treated), and cells treated with 1 nM and 50 nM Taxol respectively. Cells exposed to low 

concentrations of Taxol (1 nM) remained elongated (low roundness index), i.e. 𝜃 = 0 for the comparison 

between control cells and those treated with Taxol at 1 nM. However, when the dose was increased to 50 nM 

Taxol, cells became circular; therefore 𝜃 = 1 when comparing cells treated with 50 nM Taxol versus control 

cells, or cells treated with 1 nM Taxol (Fig. 2a and Table S3 in the Supplementary Material). 

Secondly, we analyzed the flow cytometry data used by Khoury et al. [17] to determine the transcriptional 

changes induced by the in vivo exposure of human eosinophils to glucocorticoids. As it was done in the 

previous example, the proposed method allowed us to discriminate between treated and untreated eosinophils 

using the entire dataset. For that, we analyzed the eosinophil surface expression of the gene CXCR4 2 h after 

the exposure to 20 and 200 mcg/dL of Methylprednisolone. The eosinophils belong to 6 different healthy 

human subjects. With the estimation of the function 𝑝(𝑛) (Eq. 1), it is possible to conclude that the exposure 

of eosinophils to glucocorticoids causes a differential expression of CXCR4 (Fig. 2b), i.e. 𝜃 = 1 for the 

comparison between vehicle and eosinophils treated with 20 and 200 mcg/dL (Table S6 in the Supplementary 

Material). Indeed the conclusion is the same as the one made in [17], where only the median fluorescence 
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intensity of the data from each subject was calculated and the resulting 6 data points were compared (Fig. 

2b). However, the latter approach can lead to false conclusions when the data distribution differs or when the 

data deviation is large.  

The last use of the method consists of analyzing whether a single specific feature of the data (variable) 

can fully characterize the problem at hand. For instance, many different biomolecular and biophysical 

features of human cells were analyzed [18] to predict cellular age in healthy humans. This is only possible if 

these features contain enough information about the aging of the patients. To show that, we re-analyzed a 

large and a small dataset with information of nuclei morphology and cell motility respectively, collected by 

Philip et al. [18]. The information of 2 year-old human cells (the youngest one) was compared with the rest 

of the ages. The decay of 𝑝(𝑛) in cell nuclei area and short axis length are directly related to the age of human 

cells. The parameter 𝑐 (Eq. 1) of the orientation of the cell nuclei is null in all cases, which indicates that this 

measure does not contain information about aging (Fig. 2c and Table S5 in the Supplementary Material). 

Moreover, the estimated function 𝑝(𝑛) for the total diffusivity of the cells of 2 year-old and 3 year-old human 

donors shows that even if a larger dataset was given, the result will remain the same (Fig. 2d and Table S4 

in the Supplementary Material). Namely, 𝑝(𝑛) does not decrease, therefore, there is strong evidence that the 

null hypothesis is true (i.e. 𝜃 = 0, groups behave similarly). The most extreme cases given by the differences 

between 2 and 96 year-old human donors, can also be detected without the need of large datasets, 𝑛𝛼 = 11 

(Fig. 2d). That is, the estimation of 𝑝(𝑛) allows one to decide whether it is valuable to collect new data to 

determine differences among the studied groups, or not.  

The data recorded from high-content, high-throughput studies, and the capacity of the computers to 

analyze thousands of numbers, has enabled us to enlighten the current uncertainty around the exploited p-

value. We report clear evidence about the well-known dependence of the p-value on the size of the data [[1], 

[2], [3]]. The approximation of the function 𝑝(𝑛), through the use of a basic exponential function, lets us 

analyze the data more robustly utilizing 𝑝(𝑛) decay. Using a simple mathematical formulation, a robust 

decision index 𝜃 is defined to enable good praxis in the same context as statistical hypothesis testing. Indeed, 

the presented method is transferable to any field of study, same as the common null-hypothesis testing. 

Moreover, the presented approach used as a preliminary analysis, provides evidence about the existence (or 

not) of statistical significance. Therefore, it supports the management of new data collection and can help 

researchers to reduce the cost of collecting experimental data.  

The use of statistical hypothesis testing is largely extended and well established in the scientific 

research. Moreover, the number of statistically significant p-values reported in scientific publications has 

increased over the years [19] and there exists a tendency among researchers to look for that combination of 

data that provides a p-value smaller than 0.05 [14]. However, the assessment of the p-value has some 

drawbacks which can lead to spurious scientific conclusions [[3], [5], [6], [7], [14]]. 

While some approaches analyze the distribution of empirically estimated p-values, also known as p-
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curve [20], to the best of our knowledge, there are not approaches that focus on the size-dependence shown 

here to assess decision making. Due to the lack of new techniques to face the latter, we believe that our 

method will have a huge impact in the way scientists perform hypothesis testing. By estimating the p-value 

as a function of the data size, we provide a new perspective about hypothesis testing. This approach prevents 

from treating the p-value as dichotomous index and enables the study of data’s variability.    

The result of the pipeline (𝜃) relies on a new threshold called 𝛾, which can only change in the most 

uncertain cases as shown in the Online Methods. Compared to the classical p-value and 𝛼 threshold, the 

parameter 𝛾 is mathematically constrained and 𝜃 is stable to its variations (further details about 𝜃 robustness 

are given in the Online Methods). 

The computational cost of the proposed data diagnosis increases proportionally with the number of groups 

to compare. Therefore, the optimization of the code and its connection to either a GPU or cloud computing 

is recommended. Overall, we advocate for the implementation of our pipeline in user-friendly interfaces 

connected to either cloud-computing or GPU. The code provided within this manuscript is built into the free 

software Python, so that anyone with limited programming skills can include any change to obtain a 

customized tool.  
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Fig. 1| Estimation of the p-value as a function of the size (𝑝(𝑛)) enables the correct discrimination between conditions. a) 

The p-value is a variable that depends on the sample size and can be modelled as an exponential function (𝑝(𝑛)  =  𝑎𝑒−𝑐𝑛, Eq. 1). 

For each pair of normal distributions being compared, two subsets of size 𝑛 are obtained by sampling from the corresponding 

normal distribution. Then, these datasets are compared using the Mann-Whitney statistical test and the p-value obtained is stored. 

The procedure is repeated many times for each size 𝑛. The blue bars with the standard error of the mean (SEM), show the 

distribution of all the p-values obtained at each size n when two normal distributions of mean 0 and 0.1, and standard deviation 1 

are compared. The blue curve shows the corresponding exponential fit. The magenta and yellow curves represent the resulting 

𝑝(𝑛) function when a normal distribution of mean 0 and standard deviation 1 is compared with a normal distribution of the same 

standard deviation and mean 0.25 and 0.5, respectively; b) The decay of 𝑝(𝑛) (parameters 𝑎 and 𝑐 of the exponential fit) increases 

with the mean value of the normal distribution being compared with 𝑁(0, 1). The larger the distances between the means of the 

distributions, the higher the decay of the exponential function (Table 1). c) Comparison of 𝑝(𝑛) (red curve) and significance area 

at 95% (blue area). If the area under the red curve is smaller than the blue area, then there is a strong statistical significance. The 

parameter 𝑛𝛼 measures the minimum data size needed to find statistical significance.  The parameter 𝑛𝛾 measures the convergence 

of 𝑝(𝑛):  𝑝(𝑛 = 𝑛𝛾  ) ≈  0.  The binary decision index 𝜃 indicates whether the area under 𝑝(𝑛) from 0 to 𝑛𝛾 is larger than the area 

under the 𝛼-level (blue box) in the same range; d) The faster the decay of 𝑝(𝑛), the stronger the statistical significance of the tested 

null hypothesis. For 𝛾 =  5𝑒−06, 𝜃𝛼,𝛾 = 1 whenever the mean value of the normal distribution compared with 𝑁(0,1) is larger 

than 0.5 (Table 1).  e) The empirical estimation of 𝑝(𝑛) with small datasets enables the detection of the most extreme cases: those 

in which the null hypothesis can be accepted, and those in which it clearly cannot; f) The minimum data size needed to obtain 

statistical significance (𝑛𝛼) is inverse to the mean value of the normal distributions being compared. 
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Fig. 2| The function 𝒑(𝒏) acts as a data descriptor and supports the experimental study of multiple conditions. a) Breast 

cancer cells (MDA-MB-231) were cultured in collagen and imaged under a microscope to determine if cells change shape when a 

chemotherapy drug (Taxol) is administered. Three different groups were compared: control (non-treated) cells, cells at 1 nM and 

at 50 nM Taxol. (Leftmost) The cell roundness distribution of control cells and cells treated at 1 nM Taxol have lower values than 

that of cells treated at 50 nM. (Right) The three groups were compared, the p-values were estimated and 𝑝(𝑛) was fitted for each 

pair of compared groups. When Taxol at 50 nM is evaluated (blue and yellow dashed curves), 𝑛𝛼 is lower and the decay of 𝑝(𝑛) 

is higher (𝑎 and 𝑐 parameters in Eq. 1), i.e. it decreases much faster than the one corresponding comparison of control and Taxol 

at 1 nM (orange curve). b) Flow cytometry data was recorded to determine the transcriptional changes induced by the in vivo 

exposure of human eosinophils to glucocorticoids. (Left) The entire dataset has a wider range of values and a smaller 95% 

confidence interval around the mean than the distribution obtained when the median fluorescence intensity (MFI) is calculated by 

each of the 6 subjects. (Right) There is an increase of the surface expression of CXCR4 when human eosinophils are exposed to 

20 or 200 mcg/dL of Methylprednisolone. Namely, the minimum size 𝑛𝛼 is low and the decision index θ = 1 when any of those 

conditions are compared with the vehicle condition. Note that the decay parameters 𝑎 and 𝑐 are almost the same in those two cases, 

so the markers co-localize (Supplementary Material). The minimum size 𝑛𝛼 when eosinophils are treated (blue circle) is not shown 

as it has infinite value. c) The morphology of 2 year-old human cells is compared with the morphology of 3, 9, 16, 29, 35, 45, 55, 

65, 85 and 96 year-old human cells. For both, nuclei area and nuclei short axis measures, the minimum size 𝑛𝛼 and the decay 𝑎 
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change proportionally with the age of the donor. The nuclei orientation does not characterize the age of the human donors for all 

the comparisons; the parameter 𝑐 is null, and therefore, 𝑝(𝑛) is constant. d) The analysis of a small dataset is enough to determine 

that the total diffusivity can characterize the cellular aging in humans. The total diffusivity of 2, 3 and 9 year-old human cells are 

equivalent, while it differs when compared to cells from older human donors.  
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Online methods 

Here, we first provide the mathematical details behind our hypothesis that the p-value is a variable that 

critically depends on the size of the sample and that the p-value function can be approximated with an 

exponential function of the sample size 𝑛. Then, we define the method of how to work with the p-value as a 

function and to determine when a statement of statistical significance can be made (𝜃𝛼,𝛾, Eq. 10). Once the 

problem is described technically, it is possible to calculate the minimum size 𝑛𝛼 at which the null hypothesis 

of the test is statistically significant (Eq. 12). This parameter 𝑛𝛼 can be used to characterize the data.  Finally, 

the reliability of our method is rigorously tested. 

 

p-value as an exponential function of data size 

Fig. 3 illustrates the idea that the p-value is a function that depends on the sample size 𝑛. There exists a 

continuous inverse relation between p-values and 𝑛, i.e. p-values decrease when 𝑛 increases, [21][22][23]. 

This allows us to assume that p-values can be considered indeed, as a function of 𝑛, i.e. 𝑝(𝑛). 

Either with Mann Whitney U test [11] or with Student’s t-test [13], it can be proved that the obtained p-

value converges to zero when the sample size is large and the distributions being assessed are not exactly the 

same, i.e.,  the p-value  tends to  zero when the sample size tends to infinity. A mathematical demonstration 

of this statement is available in the Supplementary Material.   

Going a step further, we claim that the p-values can be indeed written directly as a function of 𝑛, 𝑝(𝑛), 

and that this function adjusts well to an exponential function. To show this, we first estimate the value that 

the p-value function has at each possible value of 𝑛. This can be done easily with the Monte Carlo cross 

validation method (MCCV) [24]: at each iteration 𝑖 of the procedure, 𝑛 =  𝑛𝑖 is fixed, and two populations 

of size 𝑛𝑖 are compared. This procedure is repeated many times in each given iteration 𝑖 to cover the 

variability of the problem at 𝑛 = 𝑛𝑖. At the end, we have as many sets of p-values as iterations 𝑖 that are of 

the form: 

𝒫𝑖 =  {(𝑛𝑖 , 𝑝𝑖
𝑗
), 𝑗 ∈ ℕ}, 𝑖 ∈ ℕ .     2 

Note that this procedure is similar to the upstrap [25] using an increasing fraction of the sample. The details 

about the procedure followed for the estimation of the p-values is explained in the Supplementary   Material. 

In Fig. 3, the procedure is applied using random populations from different normal distributions. We 

distinguish two different situations: either the obtained distributions are uniform, so the mean value of all the 

𝑝𝑖 values is constant for any 𝑖 (Figs. 3a and 3b); or the distributions tend to decrease when the sample 

size 𝑛 increases (Figs. 3c-f). In other words, 𝑝(𝑛) can be written as a continuous function.  Hence, for each 

iteration 𝑖, each set of 𝑝𝑖 values is averaged to obtain the empirical estimation of the function 𝑝(𝑛) at 𝑛 = 𝑛𝑖 
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(red markers in Fig. 3). Then, a smooth curve is fitted to these values using locally weighted scatter plot 

smoothing (LOWESS) [26], which shows 𝑝(𝑛) has an exponential shape (Figs. 4a and 4b). 

To prove that the estimated function 𝑝(𝑛) can be written as an exponential function, it is sufficient to verify 

that the quotient between its first derivative 
𝜕𝑝(𝑛)

𝜕𝑛
 and the function 𝑝(𝑛) is itself a constant, i.e. 

𝜕𝑝(𝑛)

𝜕𝑛

𝑝(𝑛)
= 𝑐 ↔ 𝑝(𝑛) = 𝑎 ∙ 𝑒𝑐𝑛 𝑤ℎ𝑒𝑟𝑒 𝑎, 𝑐 ∈ ℝ .   3 

Collecting the values 𝑝(𝑛) of the LOWESS fit, the quotient 

𝜕𝑝(𝑛)

𝜕𝑛

𝑝(𝑛)
 is calculated (Figs. 4c and 4d). Most of the 

quotients verify the condition in Eq. 3. In Fig 4c, we show cases in which it is more challenging to decide 

whether there exists a statistical difference, as for instance, when 𝑁(0, 1) and 𝑁(0.1, 1) are compared.  When 

𝑝(𝑛) becomes very small, the quotient 

𝜕𝑝(𝑛)

𝜕𝑛

𝑝(𝑛)
 has more outliers, especially when the sample size 𝑛 is small. 

This can be observed when comparing 𝑁(0, 1) with 𝑁(0.75, 1), 𝑁(1, 1), 𝑁(2, 1) and 𝑁(3, 1). (Fig. 4d). These 

are extreme cases in which there exist clear differences between populations and therefore, p-values are close 

to zero most of the time.  

As we have proved above that the estimated function 𝑝(𝑛) can be written as an exponential function, 

an exponential curve is fitted to all the values 𝑝𝑖 calculated with MCCV (Figs. 4a and 4b). Both LOWESS and 

exponential curves are very close to each other, even if the former was fitted using the mean values of each 

group 𝑝𝑖 and the latter with all of them. An exponential fit is more suitable in this case as it is calculated with 

all the values obtained through MCCV, and only outputs positive values by definition. A LOWESS 

approximation can occasionally lead to biased negative values, such as when 𝑁(0, 1) and 𝑁(0.75, 1) are 

compared while the p-values are positively defined. Note that as 𝑝(𝑛)  →  0 when 𝑛 →  ∞, 𝑐 <  0 necessarily 

in Eq. 3. Therefore, we assume from now on that 𝑝(𝑛) can be given as an exponential function of the form 

𝑝(𝑛) ≈  𝑎 ∙ 𝑒−𝑐𝑛 𝑤ℎ𝑒𝑟𝑒 𝑎, 𝑐 ∈ ℝ+.     4 

Here the parameters 𝑎 and 𝑐 control the amplitude and the decay of the function 𝑝(𝑛), respectively.  If 𝑐 =

 0, then the value of 𝑝(𝑛) would be uniform in 𝑎: 𝑝(𝑛)  =  𝑎.  As p-values are computed probabilities and 

the global maximum of 𝑝(𝑛) is 𝑎, 𝑎 belongs to the [0, 1] interval. 
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Figure 3. Distribution of the p-values obtained when two normal distributions are compared. For each fixed value of the sample 

size (3, 5, 10, 15, 30, 45, 60, 90, 200, 670, 1750 and 2499 points), two normal distributions of that size are simulated and compared 

via the Mann-Whitney statistical test. This procedure is repeated multiple times. A normal distribution with a mean of 0 and a 

standard deviation of 1 is compared with a normal distribution of mean: (a) 0, (b) 0.01, (c) 0.1, (d) 1, (e) 2, and (f) 3 and a standard 

deviation of 1. When both normal distributions are almost the same, (a) and (b), the p-value follows a uniform distribution. Though, 

as long as both normal distributions get farther to each other, the distribution of p-values become closer to a normal distribution 

with a faster decay. 
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Figure 4. A normal distribution with a mean of 0 and a deviation of 1 is compared with a normal distribution of mean (0, 0.01, 

0.1, 0.25, 0.5, 0.75, 1, 2 and 3). Multiple p-values are calculated for a sample size between two and 2500 (Fig. 3). (a) and (b) 

Locally weighted scatter plot smoothing (LOWESS) [26] fit to the mean p-values  (red markers in Fig. 3) computed for each value 

of the sample size 𝑛. Likewise, an exponential function is fitted to all the simulated p-values. (c) and (d) Quotient between each 

LOWESS curve and its differential. (c) Comparison of 𝑁(0, 1), with 𝑁(0, 1), 𝑁(0.01, 1), 𝑁(0.1, 1), 𝑁(0.25, 1) and 𝑁(0.5, 1).  

(d) 𝑁(0, 1) is compared with 𝑁(0.75, 1), 𝑁(1, 1), 𝑁(2, 1) and 𝑁(3, 1). Constant quotients and accurate exponential fits show 

empirically that 𝑝(𝑛) has an exponential nature. 
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Figure 5. Comparison of a 95% of statistical significance (𝛼 =  0.05) and an n-dependent p-value curve. The parameter 𝑛𝛼 

represents the minimum sample size to detect statistically significant differences among compared groups. The parameter 𝑛𝛾 

represents the convergence point of the p-value curve. When the p-value curve expresses statistically significant differences, the 

area under the red curve (𝐴𝑝(𝑛)) is smaller than the area under the constant function 𝛼 =  0.05 (𝐴𝛼=0.05) when it is evaluated 

between 0 and 𝑛𝛾. 

 

Distance to the 𝜶-level of statistical significance 

The ideal case of a true (1 −  𝛼) statistical significance would lead to the rejection of the null hypothesis 

independently of data size, i.e., p-values would always be lower than 𝛼.  Hence, we claim that whenever there 

exist real statistically significant differences between two samples, 𝑝(𝑛) reaches 𝛼 rapidly. So, the values of 

𝑝(𝑛) are mostly distributed in a range smaller than α. Therefore, we compare all the values of the curve 𝑝(𝑛) 

with 𝛼.  In the discrete case, we would evaluate 𝛼 −  𝑝(𝑛 =  𝑛𝑖) for each index 𝑖 and sum all the results: if 

the sum is positive, then 𝑝(𝑛) is smaller than α most of the time. In the continuous case, this sum is obtained 

by integrating the difference 

𝛿𝛼(𝑛) = ∫(𝛼 − 𝑝(𝑛))𝑑𝑛 =  𝐴𝛼(𝑛) − 𝐴𝑝(𝑛),    5 

where 𝐴𝛼 is the area under the constant function 𝛼 and 𝐴𝑝(𝑛) is the area under the estimated p-values’ curve,  

𝑝(𝑛) (Fig. 5). A positive 𝛿(𝑛) implies that 𝐴𝛼 is larger than 𝐴𝑝(𝑛), i.e. most of the values in 𝑝(𝑛) are below 

the significance threshold 𝛼; a negative 𝛿(𝑛) implies the opposite. 

As shown in the next paragraphs, Eq. 5 aims to quantify and evaluate the distribution of p-values (i.e., 

the distribution of {(𝑛, 𝑝(𝑛)), 𝑛 ∈  𝑁}) taking into account two aspects, whether (1) most of the p-values are 

smaller than 𝛼 and (2) the decay of 𝑝(𝑛) is large enough. 
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Mathematical formulation of the decision index 

By means of the exponential expression of 𝑝(𝑛) given in Eq. 4, the measure 𝛿𝛼(𝑛) (Eq. 5) can be rewritten 

as follows 

𝛿𝛼(𝑛) =  𝛼𝑛 −  
𝑎

𝑐
(1 − 𝑒−𝑐𝑛) .     6 

Due to the limits of 𝑎 and 𝑐, 𝛿𝛼(𝑛) is still well-defined.  However, in the limit of 𝑛, 𝛿𝛼(𝑛) will always be 

positive and it tends to infinity:  

lim
𝑛→∞

𝛿𝛼(𝑛) ≈ lim
𝑛→∞

(𝛼𝑛 −  
𝑎

𝑐
)  → ∞.     7 

Also, from a practical perspective, the area of interest to evaluate the decay of 𝑝(𝑛) is that enclosed 

between zero and its convergence point 𝑛: |
𝜕𝑝(𝑛)

𝜕𝑛
| ≈ 0. Namely, a relevant sub-sample size 𝑛 can be computed 

as 

𝑛𝛾 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑛 { |
𝜕𝑝(𝑛)

𝜕𝑛
| <  𝛾},     8 

where 𝛾 is the threshold chosen to determine the convergence point (Fig. 5). Finally, 𝛿𝛼,𝛾 is now formally 

defined as 

𝛿𝛼,𝛾 = 𝐴𝛼,𝛾 −  𝐴𝑝(𝑛=𝑛𝛾 ) = 𝛼𝑛𝛾 − 
𝑎

𝑐
(1 −  𝑒−𝑐𝑛𝛾).   9 

As claimed at the end of the last section, the computation of 𝛿𝛼,𝛾 enables the identification of a rapid 

convergence to zero at small values of 𝑛 induced by the high slope of 𝑝(𝑛), which is indicative of the 

existence of true statistical significant differences. 

The decision index we propose, 𝜃𝛼,𝛾, is defined as 

 

𝜃𝛼,𝛾 = {
1, 𝛿𝛼,𝑦  ≥ 0 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 ,      10 

where 𝛿𝛼,𝛾 follows Eq. 9. 
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Figure 6. Decision index 𝜃𝛼=0.05,𝛾 for different values of parameters 𝑎 and 𝑐 in the function 𝑎𝑒−𝑐𝑛 and threshold 𝛾: (a) Each of 

the subplots is drawn for a specific value of 𝛾, being the dark area the cases for which there exists a 95% of statistical significance 

(𝜃𝛼=0.05,𝛾 = 1), and white area the rest of the cases 𝜃𝛼=0.05,𝛾 = 0; (b) Colors in the image correspond to the values of 𝛾 for which 

𝛿𝛼=0.05,𝛾 = 0. The black frontier shows 𝛿𝛼=0.05,𝛾=5𝑒−06 = 0 (red box in (a)). All the values of 𝑎 and 𝑐 for which 𝜃𝛼=0.05,𝛾=5𝑒−06 =

1 (95% of statistical significance) lie on the left side of this limit and, the rest, on the right. The plots shown in (a) show the 

influence of the parameter 𝛾 in a wide range of values, while the plots shown in (b) are limited to the range of values we find in 

this posterior experiment. The vertical dashed line indicates the cases 𝑎 =  0.05 which are always statistically significant. 

 

Restricting an optimal threshold 

The proposed approach depends on two thresholds: (1) significance threshold 𝛼 and (2) the convergence 

threshold 𝛾. The former measures the level of statistical significance, while the latter controls decisions.  

Therefore, the only critical threshold to discuss in this work is 𝛾. 

The rules to follow for the selection of the threshold 𝛾 are: 

 The parameter 𝑎 is the maximum value that 𝑝(𝑛) can take.  Therefore, if 𝑎 is smaller than 𝛼, then 

𝜃𝛼,𝛾 = 1 for any 𝛾 given. 

 As 𝛿𝛼,𝛾(𝑛) tends to infinity with 𝑛, the smaller the value of 𝛾 is set, the larger 𝑛𝛾 will be and the 

chances of 𝜃𝛼,𝛾 = 1 will also increase. 

 The values of 𝛾 should be small:  𝛼 is considered a significant number and 𝑝(𝑛) values are 

constantly compared with it. It seems reasonable to compare the slope of 𝑝(𝑛) at the convergence 

point with a value smaller than 𝛼, which is usually smaller than 0.1. 
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Eq. 8 implies 

|
𝜕𝑝(𝑛)

𝜕𝑛
| =  |−𝑐𝑝(𝑛)| < 𝛾 ↔ 𝑝(𝑛) <  

𝛾

|𝑐|
 .    11 

So, if 𝛾 is chosen such that 
𝛾

|𝑐|
  is greater than 𝛼, it would vanish the assumption that 𝑝(𝑛) has arrived to 

a convergence point equivalent to zero. Therefore, our claim is that 
𝛾

|𝑐|
< 𝛼 with at least, 𝛾 <  0.1. 

 

Background of the method 

The threshold 𝛾 controls severe decisions. Namely, the lower this value is set, the less strict the decision will 

be. In Fig. 6a, we show the dynamics of 𝜃𝛼=0.05,𝛾 when 𝛾 changes: the dark area (𝜃𝛼=0.05,𝛾 = 1) increases 

inversely to 𝛾, showing that the chances for which the null hypothesis is rejected increase as well. Moreover, 

the limit between dark and light (𝜃𝛼=0.05,𝛾 = 0) areas is precisely the curve 𝛿𝛼,𝛾 = 0. The value of 𝛾 

determines this curve and therefore, the conditions for which 𝜃𝛼=0.05,𝛾 = 1 (dark area) and 𝜃𝛼=0.05,𝛾 = 0  

(light area). In Fig. 6b, we illustrate the condition 𝛿𝛼,𝛾 = 0 when 𝛼 =  0.05, as a function of 𝑎, 𝑐 and 𝛾. The 

case 𝛾 = 5𝑒−06 is underlined in black. 

There exist some points (𝑎, 𝑐) for which the rejection of the null hypothesis is independent of 𝛾. A clear 

example is the case in which 𝑎 ≥  𝛼 and 𝑐 ≈ 0. These cases represent the situation in which the null hypothesis 

cannot be rejected with a statistical significance of level 𝛼. For instance, when 𝑁(0,1) is compared with 

𝑁(0,1) or 𝑁(0.01,1) (Fig. 1b). Likewise, if 𝑎 ≤ 𝛼 or 𝑐 is large enough, the null hypothesis is always rejected 

with a statistical significance of level 𝛼. For instance when 𝑁(0,1) is compared with 𝑁(2,1) or 𝑁(3,1) (Fig. 

1b). 

The proposed methodology let us also classify each case by its level of uncertainty. The coefficients to fit 

an exponential curve are precisely coordinate points in any of the plots in Fig. 6. Therefore, once an 

exponential curve is fitted and parameters 𝑎 and 𝑐 are known, it is possible to know in which position of the 

graph is the case of study: clear cases will always be close to the left or to the right side of the graphs in Fig. 

6, while most unstable or unclear cases will be placed in the middle. Therefore, with this method, it is possible 

to determine when there are statistically significant differences, and when these differences are not 

sufficiently clear and it might be necessary to perform a deeper study. 

 

Data characterization 

An intuitive interpretation of statistical significant differences between two groups (the classical threshold p-

value <  𝛼) is that their mean confidence intervals do not overlap. These intervals decrease when the size of 

the data increases [9].  Therefore, this section is devoted to study how large two populations must be in order 

to obtain non-overlapping intervals.  Interestingly, the estimation of the function 𝑝(𝑛) allows us to determine 
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the specific minimum value of 𝑛, 𝑛𝛼, for which 𝑝(𝑛) is lower than the significance level 𝛼 (Fig.  5). This 

value is the solution to the equation 

𝛼 = 𝑎𝑒−𝑐𝑛𝛼 .       12 

As computed, 𝑛𝛼 represents the minimum sample size needed to obtain a statistically significant p-value, in 

case it exists. In other words, reproducing an experiment with 𝑛𝛼 samples assures the rejection of the null 

hypothesis. The estimated 𝑛𝛼 allows to assess the strength of the evidence against the null hypothesis.  If 𝑛𝛼 

is small, the strength of the statistical difference is very clear and two populations are distinguishable. 

The parameters 𝑎 and 𝑐 in Eq. 12 are obtained empirically through MCCV so they can introduce some bias 

in the calculation of 𝑛𝛼. Hence, a better estimator of 𝑛𝛼, 𝑛̂𝛼, can be computed using the p-values obtained 

directly from the data and their variance  

𝑛̂𝛼 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑛𝑖
{ (𝑝𝑖̅ −  𝜎𝑝𝑖̅̅̅) < 𝛼},     13 

where 𝑝𝑖̅̅ ̅ represents the mean of the set of values 𝑝𝑖 (MCCV)  and  𝜎𝑝𝑖̅̅̅,  the  mean  standard  error  (SEM),  

which  is  included  to  correct  for  the variability of the estimated p-values. The estimator 𝑛̂𝛼 is limited to 

those cases in which the data is large enough: if the size of the data is smaller than 𝑛𝛼, then 𝑛̂𝛼cannot be 

computed (Fig. 2d).  

 

Test of reliability 

Unlike many computational methods, the analysis of statistical significance of the differences between two 

groups cannot be evaluated by means of Ground Truth data, simulations or human-made annotations. 

Nonetheless, it is possible to determine the robustness on the reproducibility of the results. Namely, whether 

the statistical significance is maintained when the experiment is repeated. To do so, we test our method using 

simulated normal distributions. 

Any data diagnosis carried out with the proposed method depends on the value 𝛾 chosen and the 

limitations posed by its computational intensive nature. As done at the beginning of this work, we compare 

the normal distribution 𝑁(0, 1) with 𝑁(0.01, 1), 𝑁(0.1, 1), 𝑁(0.25, 1), 𝑁(0.5, 1), 𝑁(0.75, 1), 𝑁(1, 1), 

𝑁(2, 1) and 𝑁(3, 1).  We should obtain 𝜃𝛼,𝛾 = 1 when comparing the most similar distributions such as 

𝑁(0, 1) and 𝑁(0.01, 1). In contrast, we should get 𝜃𝛼,𝛾 = 0 when comparing the most different distributions, 

such as 𝑁(0, 1) and 𝑁(2, 1). 

To evaluate the effect of 𝛾, 𝑝(𝑛) is simulated for all pairs of normal distributions and it is compared with 

a significance level of 𝛼 =  0.05 using different values of 𝛾 (Table S7 in the Supplementary Material). The 

lower the convergence criteria 𝛾 is, the less restrictive the diagnosis is (Fig. 6). Using the simulated data, the 
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range of 𝜃𝛼=0.05,𝛾 values obtained let us recommend a value for this parameter. When 𝑁(0, 1) and 𝑁(0.1, 1) 

are compared with 𝛾 =  2.5𝑒−06, the decision index 𝜃𝛼=0.05,𝛾 = 2.5𝑒−06 = 1 indicates that there exist 

statistically significant differences among both distributions, which is the opposite of what we expected. If 

the value of parameter 𝛾 increases, the statistical significance is rejected in those cases in which there is a 

larger uncertainty. For instance, when 𝑁(0, 1) and 𝑁(0.25, 1) are compared with 𝛾 =

5𝑒−05, 𝜃𝛼=0.05,𝛾=5𝑒−05 = 0. However, the latter is not straightforward for two reasons: 𝛿𝛼=0.05,𝛾 = 5𝑒−05 =

−5.84 (small  difference) and 𝑛̂𝛼   =  186 (few  samples  to observe statistically significant differences). 

Therefore, we strongly recommend the use of 𝛾 = 5𝑒−06.  

 

 

 

 

 

 

 

 

 

 

Table 1. Parameters of the function 𝑝(𝑛) after the exponential fit with 𝛼 = 0.05 and 𝛾 = 5𝑒−06, for the comparison of a normal 

distribution with mean value 0 and standard deviation 1, and normal distributions of mean value 0, 0.01, 0.1, 0.25, 0.5, 0.75, 1, 

1.5, 2, 2.5 and 3. 

 

To test the generality of this results, the same procedure was repeated several times by changing the 

samples of the normal distributions being compared. Hence, it is possible to provide a probability of how 

often the resulting 𝜃𝛼,𝛾 would be the same as the one stated in Table 1. Additionally, the presented method 

has its limitations in the computational time needed to perform MCCV iterations: the more iterations we 

compute the longer the process will take. Moreover, the accuracy of any estimated 𝑝(𝑛) depends on the 

sample size  𝑛 =  𝑛𝑖   and  p-values,  𝑝𝑖 ,  that  the  program  can  evaluate.  Therefore, we also tested the 

results of the method when the number of iterations 𝑖 and 𝑗 in MCCV is reduced. Overall, the probability of 

obtaining exactly the same result under any change of the previous conditions was calculated (Table S8 in 

the Supplementary Material). The closer this probability gets to 100, the more robust and general the result 

will be. We can confirm that the results are most of the time the same as the ones given in Table 1 when 𝛾 =

 5𝑒−06. The only critical case is the comparison 𝑁(0, 1) - 𝑁(0.5, 1) when few 𝑛𝑖 points are used to 

estimate 𝑝(𝑛).  

 

Comparison 𝑎 𝑐 𝒏̂𝜶 𝒏𝜸 𝜃𝜶=𝟎.𝟎𝟓,𝜸=𝟓𝒆−𝟎𝟔 

𝑁(0,1)~𝑁(0,1) 0.256 0.000 ∞ 39599 0 

𝑁(0,1)~𝑁(0.01,1) 0.255 0.000 ∞ 44237 0 

𝑁(0,1)~𝑁(0.1,1) 0.257 0.002 1192 988 0 

𝑁(0,1)~𝑁(0.25,1) 0.263 0.010 185 165 0 

𝑁(0,1)~𝑁(0.5,1) 0.286 0.042 47 41 1 

𝑁(0,1)~𝑁(0.75,1) 0.304 0.091 20 19 1 

𝑁(0,1)~𝑁(1,1) 0.313 0.152 13 12 1 

𝑁(0,1)~𝑁(1.5,1) 0.411 0.344 7 6 1 

𝑁(0,1)~𝑁(2,1) 0.579 0.599 5 4 1 

𝑁(0,1)~𝑁(2.5,1) 0.738 0.794 4 3 1 

𝑁(0,1)~𝑁(3,1) 0.867 0.924 4 3 1 
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The last procedure was repeated using the real data from the first experiment (study of the effect of Taxol 

in the cell body and protrusions morphology) (Tables S9 and S10 in the Supplementary Material). Even with 

more complex and noisier data, the results obtained show that the method is stable and robust. All technical 

details about these computations are given in the Supplementary Material. 
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1. Technical details

The main motivation of the study is that the p-value is no longer useful when working with large datasets as its value tends to
zero. In the next section, we demonstrate for the particular cases of the Mann-Whitney U test, (1), and Student’s t-test, (2),
that indeed, the p-value will always tend to zero even when the null hypothesis is almost true and should not be rejected.

A. p-values tend to zero for large sample sizes. The statistic U of the Mann-Whitney U test, (1), is defined as min{U1, U2},
where Ui follows the Eq. (1), being ni the size of the dataset i and Ri its rank sum.

Ui = n1n2 + ni(ni + 1)
2 −Ri, i ∈ {1, 2}. [1]

When ni are large enough, U follows a normal distribution, (1), with mean and standard deviation values, µU and σU
respectively, described by Eq. (2).

µU = n1n2

2 , σ2
U = n1n2(n1 + n2 + 1)

12 . [2]

Therefore, the main procedure to estimate the p-value consists in analyzing the typified value of U , z, defined by

z = U − µU
σU

. [3]

Replacing the values of Ui, µU and σ2
U in Eq. (3), we obtain

z =
√

12



n1n2 + n1(n1 + 1)

2 −R1 − n1n2

2√
n1n2(n1 + n2 + 1)


 . [4]
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Note that U1 and U2 can be indifferently chosen to be the minimum value for the Mann-Whitney statistic U . Hence, for
simplicity U = U1 is assumed.

In the worst case scenario, when both datasets are identical and therefore the null hypothesis should be true, R1 = R2 = R.
Also, as ni are assumed to be large enough, we can study the case n1 = n2 = n. Moreover, due to the hypothesized large
sample size, Ri could be upper limited as

R ≤
n∑

i=1

i = n(n+ 1)
2 =⇒ z ≥

√
12




n2

2√
n2(2n+ 1)


 = n

√
3√

(2n+ 1)
. [5]

Finally, the value of z in the limit, when n tends to infinity, is also infinity

lim
n→∞

z ≥ lim
n→∞

n
√

3√
(2n+ 1)

−→∞ =⇒ lim
n→∞

z −→∞. [6]

Therefore, p-value tends to zero. That is to say, even when we assume that both datasets are equal, the result would be to
regret the null hypothesis. Likewise, Student’s t-test (2) fails by means of large samples. The statistic t is defined as follows

t = µ1 − µ2√
S2

n1
+ S2

n1

, [7]

where µi and ni correspond to the mean and sample size of the dataset i ∈ {1, 2}. Once again, assuming that both ni are
large enough, ni = n is accepted; t is directly compared with the Student’s t distribution and in the limit of n, t tends to
infinity (as long as both mean values are not exactly the same). Thus, p-value tends to zero and the null hypothesis is rejected.

B. p-values as a function of the sample size. Proofs in Section A let us concluding that the p-values depend on the size of
the data being evaluated. While this is not a breakthrough, it is one of the pillars in this study. The fact that the p-value
varies with n, allows us to assume that they can be considered indeed, as a function of n. In the case of Student’s t-test, it is
straightforward that the t parameter is n-dependent (Eq. 7). Note that mean and standard deviation values are similar for any
n.

In the case of the parameter z, Eq. 3, it can be slightly more complicated to prove the same statement. However, it is easy
to see that U , µU , and σU depend on n, and that z will always increase with respect to n (i.e., p-value decreases). Therefore,
we can assume that the estimated p-values can be written as a function of n.

Fig. S1. Illustration of the work flow used for the estimation of p-values as a function (p(n)) of the sample size (n). For each possible value of n (ni), Monte Carlo cross
validation (MCCV) is performed fi times. For each fold in the cross validation, two random sub-samples of size ni are chosen from samples A and B (yellow spheres). Then, a
statistical test is applied to obtain a p-value (pj

i
). The procedure is repeated fi times; fi depends on ni as both samples A and B have to be covered. Thereby, fi decreases

(fi > fi+1 > fi+2) as long as ni gets larger. This procedure is repeated for n0, ..., ni+1,ni+2, ... until the desired data size (ni→∞) is reached.

C. Estimation of p-values with Monte Carlo cross validation method. We propose to model the p-value empirically as a data’s
size dependent function (p(n)) by Monte Carlo cross validation (MCCV) with replacement (3). This way, the effect of the
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Algorithm 1 p-value estimation
1: Nmax ← min{|SA|, |(SB |}
2:
3: N ← exp(grid[log(n0), log(n∞), gridsize])
4: N ← int(N )
5:
6: a← Nmax/k1n0
7: b← k2Nmax/n∞
8: F ← exp(grid[log(a), log(b), gridsize])
9: F ← int(F)

10:
11: for i in 0 : length(N ) do
12: ni ← N [i]
13: # Start Monte Carlo cross validation:
14: for f = 0 : F [i] do
15: sA ← sample(SA, ni)
16: sB ← sample(SB , ni)
17: Pi ← save the p-value of test(sA, sB)
18: P ← save mean(Pi)
19: P̄ ← save mean(Pi)
20: pL ← LOWESS(P̄)
21: pe ← exponential.fit(P)

sample bias on the p-value can be ignored. The procedure followed for the estimation of the p-values is illustrated in Figure S1
and the corresponding pseudocode in Algorithm 1. Notice that in Algorithm 1 we estimate p(n) in two different ways, using
either a locally weighted scatter plot smoothing (LOWESS) approximation (4) (pL) or and exponential fit (pe). The main
reason to do this is that we use a standard curve fitting (LOWESS) to show that p(n) is exponential.

Aiming to compare two sets of values, SA and SB , and to determine if there exists statistically significant differences between
them, the estimation of the p-values is done in pairs (i.e., two sub-samples are compared each time). A range of values needs to
be defined for both the sample size and the number of folds in MCCV. These are given by the grids N and F , respectively.

The range for all possible sub-sample sizes (n) goes from 2 (n0) to the smallest size between samples SA and SB (Nmax).
A grid covering all these values for large Nmax, is computationally expensive and redundant. As the p-value tends to zero
when n→∞, the most important information is condensed in the smallest values of n. So the grid N follows an exponential
distribution from n0 = 2. Similarly, a large enough upper-limit (n∞) is chosen such that it ensures a fast computation
(n∞ � Nmax) and the convergence to zero of p(n). Hence, N is determined as

N = {ni : ni ∈ exp (U (log(n0), log(n∞)))} , [8]

where U is the uniform distribution that goes from log(n0) to log(n∞). In MCCV, the number of folds can be extremely
large when working with large datasets and a small partition. On the contrary, for a large partition size, the number of folds
might decrease dramatically. To compensate for both situations, F is defined as given below

F = {fi : fi ∈ exp (U (a, b))} , where a = log
(
Nmax
k1n0

)
, b = log

(
k2Nmax
n∞

)
, [9]

U is the uniform distribution, k1 controls the upper-limit on the number of folds for small sub-sample sizes, and k2 controls the
lower-limit for large sub-sample sizes. Note that the number of elements in N and F are the same.

Finally, for each ni in N , MCCV is applied to obtain the set of p-values defined as

Pi =
{
pji , j ∈ [1, ..., fi]

}
, [10]

being fi the number of folds in F that corresponds with the sub-sample size ni in N .

D. Assessment of minimum data size needed for statistical significance (nα). The estimation of the p-value function p(n)
supports the computation of the minimum data size needed to obtain statistically significant differences (nα). This value is the
solution to the equation

α = ae−cnα . [11]

As explained in the online methods, the parameters a and c are the result of fitting an exponential function to the empirical
values Pi in Equation 10. Therefore, there exists an intrinsic bias in the estimated values a and c. Additionally, the estimation
of p(n), and specially, its decay (parameter c) can be less precise when the data size is small. (See Figure 2d in the main
manuscript), so nα in Equation 11 can be biased.
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For this reason, the calculation of a more conservative estimator, n̂α, is strongly recommended

n̂α = argmin
ni

{(
pi + σpi

)
< α
}
, [12]

where pi represents the mean of Pi and σpi , the mean standard error (SEM), which is included to correct for the variability of
the estimated p-values. Hence, the estimator of the theoretical value will always be slightly larger

n̂α ≥ nα.
However, n̂α can only be provided when the sample is large enough to cover those n values smaller or equal to n̂α. For this
reason, whenever the data is not large enough, the theoretical value nα in Equation 11 is also given. In these cases, even if nα
and Θα,γ might be slightly deviated, they still serve as an indicator of the existence of statistical significance.

2. Experimental data

(a) (b) (c)

Fig. S2. Segmentation of phase contrast microscopy images of cancer cells (MDA-MB-231) embedded in a 3D collagen Type I matrix. Cell bodies are labeled in blue and cell
protrusions in green. Images of (a) control cells and cells treated at (b) 1 nM and (c) 50 nM Taxol were acquired with a 10 x magnification objective.

A. Experiment 1: Drug analysis on phase contrast microscopy data. Phase contrast microscopy images of a human invasive
ductal carcinoma (MDA-MB-231) cell line were acquired. The set-up used was composed by a Cascade 1K CCD camera (Roper
Scientific), mounted on a Nikon TE2000 microscope with a 10X objective lens. Cells were embedded in 3D collagen type I
matrix at 100.000 cells/mL. The time lapse videos were recorded every two minutes with a focus plane of at least 500 µm away
from the bottom of the culture plates to diminish edge effects (5).

Three different groups of cells were analyzed: control and treated with fresh media at 1 nM Taxol and 50 nM Taxol. Ten
videos of 16.5 hours (500 frames of 809µm× 810µm with a resolution of 0.806 µm/pixel) each were analyzed per group.

A.1. Image processing. All videos were automatically processed using a convolutional neural network (U-net (6)) to get binary
masks for the cell bodies and their protrusions. The resulting semantic segmentation corresponds uniquely to focused cells
in the image. For each of these cells, their body and protrusions are segmented. Overall, the resulting dataset consisted of
258.000 segmented cells and 132.000 protrusions. See some examples of the resulting segmentation in Figure S2.

A.2. Description of variables. Image processing analysis provided the necessary information to distinguish the cellular body and
protrusions of each cell in the videos. Hence, we got eight different measurements: cell body size (CS), cell body perimeter (CP ),
cell body roundness (CR), cell with at least one protrusion (Pb), protrusion size (PS), protrusion perimeter (PP ), protrusion
length (PL) and protrusion diameter (PD). Each of the morphological measurements is given in microns. Table S1 contains the
complete list of variables.

Table S1. List of computed variables. C: continuous variable. B: binary variable.

Cell body Cell protrusions
Feature Name Type Feature Name Type
Area (µm2) CS Categorical Area (µm2) PS Categorical
Perimeter (µm) CP Categorical Perimeter (µm) PP Categorical
Roundness CR Categorical Length (µm) PL Categorical
Protrusions Pb Binary Diameter (µm) PD Categorical

In Figure S3, the distribution of the the variables used in the analysis of cellular shape is shown. The cellular body changes
with the amount of Taxol used to treat cells. When they are treated at 50 nM Taxol, the cellular body is biger and more
rounded (Figure S3a). Besides, this same treatment prevents cells from producing long and thick protrusions (Figure S3b).
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Fig. S3. Quantitative variables used to measure (a) cell bodies and (b) cellular protrusions morphology, and (c) the ratio of cells with and without protrusions for the three
different treatment groups (control, 1 nM Taxol, 50 nM Taxol). Error bars in (a) and (b) correspond to the confidence interval at 99 %

None of the continuous variables presented in Table S1 follows a normal distribution, so the comparison was carried out by
the Mann-Whitney U-test (1). Pb was a binary variable (Figure S3c) to distinguish protruding cells (value one). Therefore, it
was analyzed by means of Pearson χ2-test for categorical data (7).

A.3. Effect of Taxol in cellular and protrusions morphology. As per the number of observations reported in Table S2 and following
methodology guidelines, we set Pi with n0 = 2 and n∞ = 2500. N and F were set to have 190 points. The number of folds F
described in the Supplementary Material, was computed using k1 = 1, k2 = 20 and Nmax = 11037. These values were chosen to
have a reasonable number of permutations for both small and large sample sizes (6.000 permutations when n0 = 2, and 90 when
n190 = 2500, respectively). Table S3 contains the estimated coefficients a and c of the exponential curve (ae−cn) for each of the
variables we analyzed and each pair of comparisons (Control - 1 nM Taxol, Control - 50 nM Taxol, and 1 nM - 50 nM Taxol).

Treatment group Cell body Cell protrusions
Control 77,700 45,871
1 nM Taxol 74,713 42,798
50 nM Taxol 46,162 11,037

Table S2. Number of observations (cell body and their protrusions -if present-) per treatment group.

Figures S4, S5 and S6 show the shape of each of the exponential curves that result with the coefficients in Table S3. To
determine whether Taxol has a significant effect in cell’s morphology, Θα,γ was chosen such that α = 0.05 (95% of statistical
significance) and γ = 5 · 10−6.

When comparing the control group and 1 nM Taxol, there are not statistically significant differences in cell body morphology:
the curve p(n) of any cell body feature decreases slowly, i.e. n̂α and nγ are large and Θα,γ = 0 (Table S3 and Figure S4a). On
the other hand, cells at 50 nM Taxol have a significantly higher roundness index and bigger cellular body: when comparing
control vs. 50 nM Taxol or 1 nM vs. 50 nM Taxol the curves corresponding to CR and CS decrease rapidly, i.e. n̂α and nγ are
small, and Θα,γ = 1 (Table S3 and Figures S4b and S4c, respectively). For CP , it is also possible to appreciate some differences
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Variables Cell body size (CS ) Cell body perimeter (CP ) Cell body roundness (CR) Cell with protrusions (Pb)
Comparison a c n̂α Θα,γ a c n̂α Θα,γ a c n̂α Θα,γ a c n̂α Θα,γ
C - 1T 0.258 0.0026 670 0 0.258 0.0017 1160 0 0.259 0.0029 617 0 0.435 -0.0005 ∞ 0
C - 50T 0.263 0.0075 250 1 0.256 0.0014 1331 0 0.282 0.0400 47 1 0.198 0.0345 42 1
1T - 50T 0.272 0.0216 83 1 0.264 0.0072 257 1 0.292 0.0648 29 1 0.195 0.0351 41 1
Variables Protrusions size (PS ) Protrusions perimeter (PP ) Protrusions length (PL) Protrusions diameter (PD)
Comparison a c n̂α Θα,γ a c n̂α Θα,γ a c n̂α Θα,γ a c n̂α Θα,γ
C - 1T 0.250 0.0031 563 1 0.248 0.0019 754 0 0.251 0.0011 1695 0 0.251 0.0023 707 0
C - 50T 0.246 0.0221 75 1 0.241 0.0276 58 1 0.250 0.0289 58 1 0.250 0.0248 68 1
1T - 50T 0.250 0.0100 170 1 0.256 0.0175 98 1 0.255 0.0211 80 1 0.247 0.0134 127 1

Table S3. Parameters of the exponential function ae−cn and estimated minimum size n̂α for each of the analyzed variables. C: control, 1T: 1
nM Taxol and 50T: 50 nM Taxol. a ∈ [0.195, 0.435], c ∈

[
−5 · 10−4, 0.0648

]
, α = 0.05 and γ = 5 · 10−6.

when comparing 1 nM with 50 nM Taxol group, i.e. Θα,γ = 1 (Table S3). Namely, the blue curve shown in Figure S4c decreases
faster than those in Figures S4a and S4b.

Similar results are obtained when the morphology of cellular protrusions is evaluated (Table S3 and Figure S5). While
Taxol at 1 nM does not change their morphology (Θα,γ = 0 in Table S3 and Figure S5a), the effect of Taxol at 50 nM is much
larger (Θα,γ = 1 in Table S3, Figures S4b and S4c) .

Usually, when a categorical variable such as Pb is analyzed, the input of a statistical test is a percentage rather than the raw
data. Hence, when there is no statistical significance, the p(n) function shoots up, as for instance in Figure ??. However, when
there exist statistical differences, p(n) decreases and it is possible to analyze its decay, as in Figures ?? and ??. With all, we
can say that the formation of protrusions is inhibited when 50 nM Taxol are administered: there is a significant reduction in
the number of cells that form protrusions and their protrusions are smaller (shorter and thinner) (S3, Figures S3b and S3c).
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Fig. S4. Results obtained for cell body morphology when control, 1 nM Taxol and 50 nM Taxol groups are compared as (a) control vs. 1 nM Taxol, (b) control vs. 50 nM Taxol
and (c) 1 nM vs. 50 nM Taxol. Vertical lines correspond to the convergence point nγ with γ = 5 · 10−6.

B. Experiment 2: Cellular age characterization by means of biomolecular and biophysical properties. Phillip et al. in (8)
studied human cellular ageing using primary dermal fibroblasts extracted from individuals between 2 and 96 years old. Among
all the data collected in that work, we chose 10 samples with an average number of cells between 70 and 430 to study cellular
motility and morphology. Each of the samples belongs to one particular age-group. Phase contrast microscopy time-lapse
videos with a low magnification objective (10X) and fluorescence microscopy images where obtained to assess motility and
morphology respectively. Microscopy videos had a total length of 20 hours with a frame rate of 3 minutes. Cell tracking was
performed using MetaMorph/Metavue. Fluorescence images provided information about F-actin filaments and nuclei (DNA),
which were stained with Alexa-Fluor-488-conjugated Hoechst 33342 (Sigma) respectively.

The features extracted from the microscopy time-lapse movies to characterize cellular motility are: mean squared displacement
in 6 minutes (MSD-6min), mean squared displacement in 60 minutes (MSD-60min), persistance primary axis, persistence
secondary axis, diffusivity primary axis, diffusivity secondary axis, total diffusivity, anisotropy.

The features for cellular morphology are size (in pixels2), perimeter (in pixels), long axis length (in pixels), short axis length
(in pixels), orientation, solidity, equivalent diameter, aspect ratio, circularity and roundness.
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Fig. S5. Graphical illustration of the results obtained for cell protrusions morphology when (a) control and 1 nM Taxol, (b) control and 50 nM Taxol and (c) 1 nM Taxol and 50
nM Taxol groups are compared. Vertical lines correspond to the convergence point nγ with γ = 5 · 10−6.

For each of the stated variables, the data belonging to the group of 2 years-old was compared with the data from
{3, 9, 16, 29, 35, 55, 65, 85, 92} and {3, 9, 16, 29, 35, 55, 65, 85, 96} years-old human donors to test cell motility and morphology,
respectively. For each pair of groups, the distribution of the n-dependent p-values was obtained using the Mann-Whitney U
statistical test. Then, the parameters of the exponential function (ae−cn) were fitted. The parameter configuration was n0 = 2,
N and F had 200 points, k1 = 1, k2 = 20, α = 0.05, and γ = 5 · 10−6. As the number of data points was lower than 1000,
n∞ and Nmax where chosen to be the minimum number of points of each pair of groups being compared. The results for cell
motility and cell morphology are summarized in Tables S4 and S5, respectively.

C. Experiment 3: Drug analysis on flow cytometry data. Flow cytometry is a technique that generates a large amount of data
for each experiment. Consequently, any statistical test for groups comparison results in a vanishing p-value. To avoid that
situation, practitioners tend to reduce the data to a single, representative measure for subject. For instance, Khoury et al. (9)
acquired fluorescence intensity data from 6 different subjects and compute the median fluorescence intensity (MFI) for each of
them. So, the statistical test is just applied on the 6 MFI values. However, our proposal of estimating the p-value as a function
of the sample size enables to incorporate in the test the information given by the whole dataset and take into consideration the
deviation and bias present in the data.

To illustrate the proposed procedure, we analyzed the flow cytometry data provided in (10) to determine the transcriptional
changes induced by the in vivo exposure of human eosinophils to glucocorticoids. Khoury et al. (9) studied eosinophil surface
proteins after being exposed to glucocorticoids and demonstrated that this exposure causes the apoptosis of human eosinophils
(eosinopenia) once they migrate out of the blood circulation.

While they performed an extensive analysis, we have focused our study on the data related to the chemokine receptor gene
CXCR4. In particular, the expression of CXCR4 on the surface of human eosinophils after being exposed for 2 hours to vehicle,
20 mcg/dL and 200 mcg/dL of Methylprednisolone (MP). After filtering the raw data to discard noise and debris, we got
clean distributions to analyze (Figure 2b, right). The p-value curves computed for pair group comparisons were the result
of applying Mann-Whitney U statistical tests following the proposed procedure. Then, the exponential curves (ae−cn) were
fitted (Figure 2b, left). The parameters configuration was n0 = 2, N and F had 200 points, k1 = 1, k2 = 20, α = 0.05, and
γ = 5 · 10−6. As the number of data points was lower than 1, 000, n∞ and Nmax where chosen to be the minimum number of
points for each group pair being compared. The results are summarized in Table S6. Our results are similar to those in (9), in
the sense that we also find a differential expression of CXCR4 when eosinophils are exposed to glucocorticoids.

3. Test of robustness

The variability in the statistical significance of the results caused by the selection of the parameter γ and the grid sizes N and
F are characterized in this section. The method is first tested using theoretical distributions and then, using the real data from
Experiment 1.

A. Test of robustness on theoretical data. We simulated normal distributions to test the method in a theoretical scenario:
N (0, 1) was compared with N (0.01, 1), N (0.1, 1), N (0.25, 1), N (0.5, 1), N (0.75, 1), N (1, 1), N (2, 1) and N (3, 1). For the most
similar cases such as N (0, 1) vs. N (0.01, 1), or N (0, 1) vs. N (0.1, 1), it is expected to obtain Θα,γ = 0. While for the most
different distributions such as N (0, 1) vs. N (2, 1), or N (0, 1) vs. N (3, 1), Θα,γ = 1.

Theoretically, an optimal grid N would be the one that covers the values from n0 = 2 to n∞ = Nmax. This set up entails
an extremely large amount of computations, while it suffices a value n∞ ≈ 1000 to understand what is the tendency of the
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Fig. S6. Estimation of p(n) with χ2 test for contingency tables when comparing cells (not) having at least one protrusion (binary variable cell with protrusions: Pb) for (a)
control and 1 nM Taxol groups, (b) control and 50 nM Taxol groups, and (c) 1 nM and 50 nM Taxol groups. In the leftmost plot, both locally weighted scatter plot smoothing
(LOWESS) and exponential fit of estimated p-values are shown. Vertical lines correspond to the convergence point nγ with γ = 5 · 10−6.

data. If p(n) converges to zero when n > 1, 000, then it can be assumed that p(n) does not represent a statistical significant
case. Hence, n∞ = 2, 500 is large enough for the implementation of the method. As the p-values for very small samples are
especially unstable and small samples are not representative of any real scenario, the minimum value n0 can be increased. The
number of permutations for each ni can be decreased as well: while the amount of data to analyze may be infinite, it is enough
to study a certain limited number of different data subsamples to approach a realistic scenario. Hence, to test the robustness of
the proposed method, we set grids N and F using n0 = 20, n∞ = 2, 500, Nmax = 10, 000, k1 = 1 and k2 = 20 in Equations 8
and 9, respectively. Both N and F were configured to have a size of 200 points. Thus, MCCV is repeated 200 times. See
Figure S1 for the workflow.

With this grid parameters, for γ in the set {2.5 · 10−6, 5 · 10−6, 5 · 10−5, 5 · 10−4}, we run the pipeline to evaluate the effect
of γ value on the rejection of the null hypothesis of the Mann-Whitney U statistical test (Table S7). The results obtained
help to assess the most suitable γ value. Specifically, the decision about γ relies on the result obtained for the comparison
between N (0, 1) and N (0.25, 1): while the distance δα,γ for γ = 5 · 10−6 and γ = 5 · 10−5 expresses the same (δα,γ = ±5.84),
the minimum data size needed to observe statistically significance differences is low enough as to reject the null hypothesis, i.e.
n̂α = 186 and Θα,γ = 1. Hence, the value chosen for the following simulations and for the real data is γ = 5 · 10−6. (Table S7).

To test the computational limitations of the method, we evaluated the value Θ0.05,5·10−6 reducing N and F : N was chosen
to be a grid of size 10, 20, 50, 100, 150 or 200 points and the values in F were reduced by a factor of 1/2, 1/3, 1/5 and 1/10
(i.e., each of the values in the original F was multiplied by this fraction). The experiment was repeated 100 times on each of
the setups, so the probability of obtaining exactly the same Θ0.05,5·10−6 (Table S7) and the stability of the method could be
evaluated. The information given in Table S8 lets the assessment of (1) the size of N and (2) the number of folds in F . In most
cases, the probability obtained was 100%, which shows that the final results are very stable. When N(0, 1) and N(0.5, 1) were
compared with small grid parameters, this probability decreased slightly to 89− 96% (Table S8). In conclusion, the number of
computations could be considerably reduced, for the example, to N = 50 and F = 0.2F).

B. Test of robustness on real data.

B.1. The p-value can be estimated by an exponential function.. Repeating the procedure followed with simulation of normal distribu-
tions, we verify that the condition for p(n) being exponential is satisfied again: in Figures S7a-c all LOWESS fittings have
exponential shapes, and in Figures S7d-f the quotient p′(n)/p(n) of LOWESS fits are constant.

B.2. Robustness of the convergence threshold and required computational load. The distribution of real data is more complex than
the typical Gaussian distributions due to the presence of noise, large deviation of the data or leverage points. Following
the same procedure as in Section A, we tested the reliability of the proposed method using the data we extracted from the
microscopy images (Experiment 1, main manuscript). We evaluated both, the effect of varying the convergence threshold
γ and the required computational load. Looking at Tables S3 and S9, it can be appreciated once again that γ = 5 · 10−6

is a good value for the convergence threshold. Smaller values of γ result in the rejection of the null hypothesis for cases in
which n̂α > 1000 as cellular protrusions length. Similarly, when γ = 5 · 10−5, there are cases as cell body roundness for which
n̂α < 100 and Θα,γ = 0. Therefore, once again, γ = 5 · 10−6 seems to be an appropriate value to measure statistical significance
at α = 0.05 significance level (Table S9).
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Measures MSD-6min MSD-60 min Persistence primary axis
Comparison a c n̂α nα Θα,γ a c n̂α Θα,γ a c n̂α nα Θα,γ
A02 - A03 0.296 0.038 46 46 1 0.276 0.009 - 187 1 0.287 0.012 - 145 1
A02 - A09 0.270 0.001 - 1333 0 0.295 0.000 - 4.72 · 1017 0 0.276 0.002 - 896 0
A02 - A16 0.289 0.014 - 125 1 0.262 0.001 - 1955 0 0.310 0.084 23 21 1
A02 - A29 0.394 0.217 12 9 1 0.357 0.161 13 12 1 0.287 0.013 - 137 1
A02 - A35 0.315 0.155 12 11 1 0.335 0.123 18 15 1 0.274 0.002 - 752 0
A02 - A55 0.286 0.018 - 99 1 0.283 0.032 52 54 1 0.286 0.000 - 4.99 · 1015 0
A02 - A65 0.306 0.032 48 56 1 0.345 0.113 15 17 1 0.330 0.097 19 19 1
A02 - A85 0.282 0.008 - 229 1 0.303 0.040 46 45 1 0.315 0.050 34 36 1
A02 - A92 0.345 0.189 12 10 1 0.386 0.228 10 8 1 0.331 0.079 27 24 1
Measures Persistence secondary axis Diffusivity primary axis Diffusivity secondary axis
Comparison a c n̂α nα Θα,γ a c n̂α nα Θα,γ a c n̂α nα Θα,γ
A02 - A03 0.276 0.001 - 1399 0 0.301 0.000 - 1.47E+17 0 0.290 0.034 52 51 1
A02 - A09 0.266 0.001 - 3023 0 0.275 0.006 - 289 1 0.279 0.051 32 33 1
A02 - A16 0.295 0.069 27 25 1 0.293 0.030 56 58 1 0.268 0.004 - 443 0
A02 - A29 0.301 0.019 - 94 1 0.335 0.078 27 24 1 0.354 0.160 15 12 1
A02 - A35 0.281 0.014 - 126 1 0.312 0.061 30 29 1 0.312 0.117 19 15 1
A02 - A55 0.284 0.015 - 116 1 0.285 0.016 - 109 1 0.284 0.008 - 213 1
A02 - A65 0.294 0.030 - 58 1 0.327 0.086 24 21 1 0.312 0.100 15 18 1
A02 - A85 0.287 0.027 54 65 1 0.304 0.051 33 35 1 0.269 0.004 - 397 1
A02 - A92 0.293 0.016 - 112 1 0.380 0.217 11 9 1 0.295 0.025 - 71 1
Measures Total diffusivity Anisotropy
Comparison a c n̂α nα Θα,γ a c n̂α nα Θα,γ
A02 - A03 0.284 0.000 - 8.70 · 1018 0 0.291 0.024 69 72 1
A02 - A09 0.280 0.000 - 1.68 · 1019 0 0.307 0.075 26 24 1
A02 - A16 0.297 0.036 40 48 1 0.293 0.000 - 1.16 · 1015 0
A02 - A29 0.360 0.122 17 16 1 0.290 0.016 - 106 1
A02 - A35 0.330 0.093 22 20 1 0.281 0.014 - 120 1
A02 - A55 0.276 0.006 - 269 1 0.309 0.043 40 42 1
A02 - A65 0.330 0.105 19 18 1 0.266 0.000 - 35475 0
A02 - A85 0.306 0.052 33 34 1 0.293 0.015 - 120 1
A02 - A92 0.379 0.201 11 10 1 0.359 0.104 20 19 1

Table S4. Parameters of the exponential function ae−cn for cell motility, theoretical minimum size (nα) and estimated one (n̂α) for a 95%
(α = 0.05) of statistical significance, and decision index Θα,γ , for γ = 5 · 10−6.

When the grid N is large enough and F has large numbers, the result is completely stable (Table S10). However, when these
values are dramatically reduced (for example, N = 10, F = 0.02F0, F = 0.01F0), the reproducibility of the results may degrade.
This fact is specially evident when the variables are noisy as in the case of those that measure cellular protrusions morphology
(PS , PP , PL and PD), being the noisier the protrusions size and perimeter. In summary, while large grid parameters ensure
stable results, with the information given in Tables S8 and S10, seems reasonable to reduce the number of computations to
N ≥ 50 and F ≥ 0.2F .
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Fig. S7. Curve fitting. Three different simulations of p(n) are computed with the data obtained from the experimental test. Cell body size, perimeter and roundness of three
different cell groups where compared by means of the Mann-Whitney U statistical test and Monte Carlo cross validation: (a) and (d) control cells versus cells treated with Taxol
at 1 nM; (b) and (e) control cells versus cells treated with Taxol at 50 nM and (c) and (f) cells treated with Taxol at 1 nM and 50 nM. To each of the mean p-value sets (i.e., the
output of Monte Carlo cross validation), a locally weighted scatter plot smoothing (LOWESS) (4) curve was fit to get the initial shape of p(n). Likewise, an exponential function
was fit to all the p-values obtained in each fold of the Monte Carlo cross validation (before averaging). Both the LOWESS and exponential curves are shown in (a), (b) and (c).
The quotient between each LOWESS curve and its differential is shown in (d), (e) and (f). The constant quotients and the accurate exponential fits show empirically that the
p(n) functions have an exponential nature.
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Measures Size (pixels) Perimeter (pixels) Long axis length (pixels)
Comparison a c n̂α nα Θα,γ a c n̂α nα Θα,γ a c n̂α nα Θα,γ
A02 - A03 0.267 0.002 509 688 0 0.271 0.009 203 183 1 0.276 0.022 76 76 1
A02 - A09 0.264 0.002 - 923 0 0.260 0.000 - 22578 0 0.274 0.008 - 201 1
A02 - A16 0.320 0.149 13 12 1 0.340 0.210 10 9 1 0.477 0.459 6 4 1
A02 - A29 0.312 0.129 16 14 1 0.313 0.121 16 15 1 0.325 0.144 14 12 1
A02 - A35 0.311 0.106 19 17 1 0.295 0.084 21 21 1 0.316 0.133 16 13 1
A02 - A55 0.313 0.112 18 16 1 0.323 0.136 13 13 1 0.364 0.243 10 8 1
A02 - A65 0.326 0.137 16 13 1 0.373 0.270 8 7 1 0.401 0.335 7 6 1
A02 - A85 0.330 0.167 13 11 1 0.431 0.401 6 5 1 0.442 0.403 6 5 1
A02 - A96 0.351 0.252 9 7 1 0.370 0.320 7 6 1 0.422 0.421 5 5 1
Measures Short axis length (pixels) Orientation Solidity
Comparison a c n̂α nα Θα,γ a c n̂α nα Θα,γ a c n̂α nα Θα,γ
A02 - A03 0.267 0.005 284 330 1 0.265 0.000 - 2.38 · 1018 0 0.273 0.013 124 126 1
A02 - A09 0.263 0.000 - 3801 0 0.267 0.000 - 1.09 · 1016 0 0.280 0.026 69 65 1
A02 - A16 0.264 0.005 321 345 1 0.262 0.001 - 1.41 · 1003 0 0.266 0.003 386 485 0
A02 - A29 0.284 0.040 48 43 1 0.262 0.000 - 1.53 · 1014 0 0.276 0.025 74 68 1
A02 - A35 0.272 0.011 159 160 1 0.265 0.000 - 4.60 · 1017 0 0.318 0.125 16 14 1
A02 - A55 0.260 0.000 - 6616 0 0.265 0.000 - 1.65 · 1020 0 0.267 0.005 267 319 1
A02 - A65 0.291 0.057 34 30 1 0.262 0.001 - 3.20 · 1003 0 0.275 0.015 117 112 1
A02 - A85 0.311 0.103 20 17 1 0.265 0.000 - 8.27 · 1016 0 0.321 0.177 11 10 1
A02 - A96 0.295 0.069 27 25 1 0.261 0.000 - 1.13 · 1016 0 0.298 0.077 26 23 1
Measures Equivalent diameter (pixels) Aspect ratio Circularity
Comparison a c n̂α nα Θα,γ a c n̂α nα Θα,γ a c n̂α nα Θα,γ
A02 - A03 0.267 0.002 509 688 0 0.282 0.027 74 63 1 0.277 0.022 78 77 1
A02 - A09 0.264 0.002 - 923 0 0.277 0.016 103 104 1 0.261 0.000 - 1.33 · 1013 0
A02 - A16 0.320 0.149 13 12 1 0.384 0.327 7 6 1 0.319 0.162 12 11 1
A02 - A29 0.312 0.129 16 14 1 0.275 0.019 86 90 1 0.260 0.001 - 2313 0
A02 - A35 0.311 0.106 19 17 1 0.281 0.042 44 40 1 0.259 0.000 - 1.22 · 1015 0
A02 - A55 0.313 0.112 18 16 1 0.318 0.154 13 12 1 0.289 0.056 36 31 1
A02 - A65 0.326 0.137 16 13 1 0.306 0.094 20 19 1 0.313 0.113 18 16 1
A02 - A85 0.330 0.167 13 11 1 0.290 0.068 27 25 1 0.338 0.238 9 8 1
A02 - A96 0.351 0.252 9 7 1 0.326 0.149 13 12 1 0.337 0.187 11 10 1
Measures Roundness
Comparison a c n̂α nα Θα,γ
A02 - A03 0.277 0.022 78 77 1
A02 - A09 0.261 0.000 - 1.33 · 1013 0
A02 - A16 0.319 0.162 12 11 1
A02 - A29 0.260 0.001 - 2313 0
A02 - A35 0.259 0.000 - 1.2 · 1015 0
A02 - A55 0.289 0.056 36 31 1
A02 - A65 0.313 0.113 18 16 1
A02 - A85 0.338 0.238 9 8 1
A02 - A96 0.337 0.187 11 10 1

Table S5. Parameters of the exponential function ae−cn for cell nuclei morphology measures, theoretical minimum size (nα) and estimated
one (n̂α) for a 95% (α = 0.05) of statistical significance, and decision index Θα,γ , for γ = 5 · 10−6.
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Measures CXCR4 surface expression
Comparison a c n̂α nα Θα,γ
Vehicle - MP 20 mcg/dL 0.286 0.048 40 36 1
Vehicle - MP 200 mcg/dL 0.286 0.049 37 35 1
MP 20 mcg/dL - MP 200 mcg/dL 0.256 1.69·10−4 - 9680 0

Table S6. Parameters of the exponential function ae−cn for the differential expression of CXCR4, theoretical minimum size (nα) and its
estimator (n̂α) for a 95% (α = 0.05) of statistical significance, and decision index Θα,γ , for γ = 5 · 10−6. MP: Methylprednisolone
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γ 2.5 · 10−6 5 · 10−6 5 · 10−5 5 · 10−4

Comparison Θα,γ δα,γ Θα,γ δα,γ Θα,γ δα,γ Θα,γ δα,γ n̂α

N (0, 1) - N (0, 1) 0 -490.25 0 -490.25 0 -490.25 0 -490.25 0
N (0, 1) - N (0.01, 1) 0 -3576 0 -488.25 0 -488.25 0 -488.25 0
N (0, 1) - N (0.1, 1) 1 0.782 0 -21.922 0 -79.938 0 -42.375 1237
N (0, 1) - N (0.25, 1) 1 9.523 1 5.848 0 -5.840 0 -12.945 186
N (0, 1) - N (0.5, 1) 1 0 1 0 1 0 1 0 45
N (0, 1) - N (0.75, 1) 1 0 1 0 1 0 1 0 22
N (0, 1) - N (1, 1) 1 0 1 0 1 0 1 0 0
N (0, 1) - N (1.5, 1) 1 0 1 0 1 0 1 0 0
N (0, 1) - N (2, 1) 1 0 1 0 1 0 1 0 0
N (0, 1) - N (2.5, 1) 1 0 1 0 1 0 1 0 0
N (0, 1) - N (3, 1) 1 0 1 0 1 0 1 0 0

Table S7. Table of decision index Θα,γ , difference δα,γ = Aαγ −Ap(nγ) and estimated minimum size (n̂α) for α = 0.05 and γ = 2.5 · 10−6, 5 ·
10−6, 5 · 10−5, 5 · 10−4.
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N grid size N grid size
Comparison F reduction 10 20 50 100 150 200 Comparison F reduction 10 20 50 100 150 200

N (0, 1) - N (0, 1) 0.1 100 100 100 100 100 100 N (0, 1) - N (0.75, 1) 0.1 100 100 100 100 100 100
0.2 100 100 100 100 100 100 0.2 100 100 100 100 100 100
1/3 100 100 100 100 100 100 1/3 100 100 100 100 100 100
0.5 100 100 100 100 100 100 0.5 100 100 100 100 100 100
1 100 100 100 100 100 100 1 100 100 100 100 100 100

N (0, 1) - N (0.01, 1) 0.1 100 100 100 100 100 100 N (0, 1) - N (1, 1) 0.1 100 100 100 100 100 100
0.2 100 100 100 100 100 100 0.2 100 100 100 100 100 100
1/3 100 100 100 100 100 100 1/3 100 100 100 100 100 100
0.5 100 100 100 100 100 100 0.5 100 100 100 100 100 100
1 100 100 100 100 100 100 1 100 100 100 100 100 100

N (0, 1) - N (0.1, 1) 0.1 99 100 100 100 100 100 N (0, 1) - N (1.5, 1) 0.1 100 100 100 100 100 100
0.2 100 100 100 100 100 100 0.2 100 100 100 100 100 100
1/3 100 100 100 100 100 100 1/3 100 100 100 100 100 100
0.5 100 100 100 100 100 100 0.5 100 100 100 100 100 100
1 100 100 100 100 100 100 1 100 100 100 100 100 100

N (0, 1) - N (0.25, 1) 0.1 100 100 100 100 100 100 N (0, 1) - N (2, 1) 0.1 100 100 100 100 100 100
0.2 100 100 100 100 100 100 0.2 100 100 100 100 100 100
1/3 100 100 100 100 100 100 1/3 100 100 100 100 100 100
0.5 100 100 100 100 100 100 0.5 100 100 100 100 100 100
1 100 100 100 100 100 100 1 100 100 100 100 100 100

N (0, 1) - N (0.5, 1) 0.1 89 95 99 99 100 100 N (0, 1) - N (3, 1) 0.1 100 100 100 100 100 100
0.2 96 99 100 100 100 100 0.2 100 100 100 100 100 100
1/3 100 99 100 100 100 100 1/3 100 100 100 100 100 100
0.5 99 100 100 100 100 100 0.5 100 100 100 100 100 100
1 100 100 100 100 100 100 1 100 100 100 100 100 100

Table S8. Table of results for different sizes ofN and F grids. Each value represents the probability (%) of obtaining the same decision index
Θ0.05,5 as the one shown in Table S9.
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Variable Cell body size
γ 2.5 · 10−6 5 · 10−6 5 · 10−5 5 · 10−4

Comparison Θα,γ δα,γ Θα,γ δα,γ Θα,γ δα,γ Θα,γ δα,γ n̂α

Control - 1 nM Taxol 1 8.67 0 -4.12 0 -41.26 - - 670
Control - 50 nM Taxol 1 9.37 1 4.82 0 -9.69 - - 250
1 nM - 50 nM Taxol 1 5.38 1 3.74 0 -1.47 0 5.84 83
Variable Cell body perimeter
γ 2.5 · 10−6 5 · 10−6 5 · 10−5 5 · 10−4

Comparison Θα,γ δα,γ Θα,γ δα,γ Θα,γ δα,γ Θα,γ δα,γ n̂α

Control - 1 nM Taxol 1 1.37 0 -17.84 0 -69.41 - - 1160
Control - 50 nM Taxol 0 -5.75 0 -29.94 0 -90.28 - - 1331
1 nM - 50 nM Taxol 1 9.44 1 4.69 0 -10.43 - - 257
Variable Cell body roundness
γ 2.5 · 10−6 5 · 10−6 5 · 10−5 5 · 10−4

Comparison Θα,γ δα,γ Θα,γ δα,γ Θα,γ δα,γ Θα,γ δα,γ n̂α

Control - 1 nM Taxol 1 9.17 0 -2.67 0 -37.41 - - 617
Control - 50 nM Taxol 1 3.42 1 2.57 0 -0.25 0 -2.87 47
1 nM - 50 nM Taxol 1 2.39 1 1.84 1 0.05 0 -1.59 29
Variable Protrusions binary
γ 2.5 · 10−6 5 · 10−6 5 · 10−5 5 · 10−4

Comparison Θα,γ δα,γ Θα,γ δα,γ Θα,γ δα,γ Θα,γ δα,γ n̂α

Control - 1 nM Taxol 0 0.00 0 0.00 0 0.00 - - -
Control - 50 nM Taxol 1 5.72 1 4.72 1 1.41 0 -1.55 42
1 nM - 50 nM Taxol 1 5.72 1 4.72 1 1.46 0 -1.42 41
Variable Protrusions size
γ 2.5 · 10−6 5 · 10−6 5 · 10−5 5 · 10−4

Comparison Θα,γ δα,γ Θα,γ δα,γ Θα,γ δα,γ Θα,γ δα,γ n̂α

Control - 1 nM Taxol 1 11.99 1 1.15 0 -31.16 - - 563
Control - 50 nM Taxol 1 6.23 1 4.68 0 -0.42 0 -4.73 75
1 nM - 50 nM Taxol 1 9.50 1 6.07 0 -4.98 0 -11.98 170
Variable Protrusions perimeter
γ 2.5 · 10−6 5 · 10−6 5 · 10−5 5 · 10−4

Comparison Θα,γ δα,γ Θα,γ δα,γ Θα,γ δα,γ Θα,γ δα,γ n̂α

Control - 1 nM Taxol 1 7.75 0 -9.85 0 -58.09 - - 754
Control - 50 nM Taxol 1 5.54 1 4.29 1 0.15 0 -3.40 58
1 nM - 50 nM Taxol 1 6.77 1 4.77 0 -1.63 0 -6.71 98
Variable Protrusions length
γ 2.5 · 10−6 5 · 10−6 5 · 10−5 5 · 10−4

Comparison Θα,γ δα,γ Θα,γ δα,γ Θα,γ δα,γ Θα,γ δα,γ n̂α

Control - 1 nM Taxol 0 -14.70 0 -45.38 0 -114.17 - - 1695
Control - 50 nM Taxol 1 5.10 1 3.90 0 -0.04 0 -3.45 58
1 nM - 50 nM Taxol 1 6.09 1 4.45 0 -0.90 0 -5.37 80
Variable Protrusions diameter
γ 2.5 · 10−6 5 · 10−6 5 · 10−5 5 · 10−4

Comparison Θα,γ δα,γ Θα,γ δα,γ Θα,γ δα,γ Θα,γ δα,γ n̂α

Control - 1 nM Taxol 1 9.64 0 -4.80 0 -45.90 0 -12.24 707
Control - 50 nM Taxol 1 5.63 1 4.29 0 -0.29 0 -4.20 68
1 nM - 50 nM Taxol 1 8.34 1 5.81 0 -2.49 0 -8.57 127

Table S9. Table of decision index Θα,γ , difference δα,γ = Aαγ −Ap(nγ) and estimated minimum size n̂α for α = 0.05 and γ = 2.5 · 10−6, 5 ·
10−6, 5 · 10−5, 5 · 10−4.
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Variables Cell body size Cell body perimeter Cell body roundness Protrusions binary
N grid size N grid size N grid size N grid size

Comparison reduction 10 20 50 100 10 20 50 100 10 20 50 100 10 20 50 100
Control - 1 nM Taxol 0.01 80 98 82 94 95 100 99 100 71 92 71 79 100 100 100 100

0.02 86 99 79 99 99 100 100 100 71 98 84 95 100 100 100 100
0.1 100 100 99 100 100 100 100 100 93 100 98 100 100 100 100 100
0.2 100 100 100 100 100 100 100 100 96 100 100 100 100 100 100 100
1/3 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
0.5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Control - 50 nM Taxol 0.01 93 100 99 100 100 100 100 100 89 100 93 94 92 99 88 87
0.02 100 100 100 100 100 100 100 100 100 100 96 100 94 99 87 98
0.1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
0.2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
1/3 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
0.5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

1 nM - 50 nM Taxol 0.01 95 99 98 98 98 100 100 100 80 94 81 89 79 98 78 91
0.02 98 100 100 100 99 100 100 100 89 99 93 96 90 99 90 99
0.1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 98 100
0.2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
1/3 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
0.5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Variables Protrusions size Protrusions perimeter Protrusions length Protrusions diameter
n grid size n grid size n grid size n grid size

Comparison reduction 10 20 50 100 10 20 50 100 10 20 50 10 20 50 100
Control - 1 nM Taxol 0.01 45 28 46 51 76 79 80 82 88 84 97 98 76 84 76 77

0.02 36 35 50 60 74 65 79 90 86 89 99 100 78 79 85 90
0.1 51 36 61 71 78 58 98 100 98 98 100 100 86 82 97 99
0.2 64 24 59 83 89 57 100 100 99 100 100 100 91 95 100 100
1/3 68 22 75 97 97 68 100 100 100 100 100 100 98 98 100 100
0.5 66 17 82 99 98 75 100 100 100 100 100 100 100 100 100 100

Control - 50 nM Taxol 0.01 76 79 91 95 82 73 84 99 74 69 88 93 74 67 90 97
0.02 91 98 99 99 85 85 95 98 75 89 93 98 83 86 94 98
0.1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
0.2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
1/3 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
0.5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

1 nM - 50 nM Taxol 0.01 71 67 96 99 73 67 92 100 72 75 90 95 75 72 94 100
0.02 92 80 100 100 87 84 99 100 94 90 98 100 86 87 99 100
0.1 100 100 100 100 98 100 100 100 99 100 100 100 100 100 100 100
0.2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
1/3 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
0.5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Table S10. Table of results for different sizes of N and F grids. Each value represents the probability (%) of obtaining the same decision
index Θ0.05,5e−06 as the one shown in Table S9.
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