

Deep evolutionary analysis reveals the design principles of fold A glycosyltransferases

Rahil TAUJALE^{a,b}, Aarya Venkat^c, Liang-Chin Huang^a, Wayland Yeung^a, Khaled Rasheed^d, Arthur S. Edison^{a,b,c}, Kelley W. Moremen^{b,c}, Natarajan Kannan^{a,c}

^aInstitute of Bioinformatics, ^bComplex Carbohydrate Research Center and Departments of

^cBiochemistry and Molecular Biology and ^dComputer Science, University of Georgia, Athens, GA 30602

* Corresponding Author: Natarajan Kannan, nkannan@uga.edu

Keywords

glycosyltransferases, GT evolution, common core, GT machine learning, donor prediction

1 **Abstract**

2 Glycosyltransferases (GTs) are prevalent across the tree of life and regulate nearly all aspects of
3 cellular functions by catalyzing synthesis of glycosidic linkages between diverse donor and
4 acceptor substrates. Despite the availability of GT sequences from diverse organisms, the
5 evolutionary basis for their complex and diverse modes of catalytic and regulatory functions
6 remain enigmatic. Here, based on deep mining of over half a million GT-A fold sequences from
7 diverse organisms, we define a minimal core component shared among functionally diverse
8 enzymes. We find that variations in the common core and the emergence of hypervariable loops
9 extending from the core contributed to the evolution of catalytic and functional diversity. We
10 provide a phylogenetic framework relating diverse GT-A fold families for the first time and show
11 that inverting and retaining mechanisms emerged multiple times independently during the course
12 of evolution. We identify conserved modes of donor and acceptor recognition in evolutionarily
13 divergent families and pinpoint the sequence and structural features for functional specialization.
14 Using the evolutionary information encoded in primary sequences, we trained a machine learning
15 classifier to predict donor specificity with nearly 88% accuracy and deployed it for the annotation
16 of understudied GTs in five model organisms. Our studies provide an evolutionary framework for
17 investigating the complex relationships connecting GT-A fold sequence, structure, function and
18 regulation.

19 **Introduction**

20 Complex carbohydrates make up a large bulk of the biomass of any living cell and play essential
21 roles in biological processes ranging from cellular interactions, pathogenesis, immunity, quality
22 control of protein folding and structural stability (1). Biosynthesis of complex carbohydrates in
23 most organisms is carried out by a large and diverse family of Glycosyltransferases (GTs) that

24 transfer sugars from activated donors such as nucleotide diphosphate and monophosphate
25 sugars or lipid linked sugars to a wide range of acceptors that include saccharides, lipids, nucleic
26 acids and metabolites. Nearly 1% of protein coding genes in the human genome, and more than
27 2% of the *Arabidopsis* genome, are estimated to be GTs. GTs have undergone extensive variation
28 in primary sequence and three-dimensional structure to catalyze glycosidic linkages between
29 diverse donor and acceptor substrates. However, an incomplete understanding of the
30 relationships connecting sequence, structure, function and regulation presents a major bottleneck
31 in understanding pathogenicity, metabolic and neurodegenerative diseases associated with
32 abnormal GT functions (2, 3).

33 Structurally, GTs adopt one of three folds (GT-A, -B or -C) with the GT-A Rossmann like fold being
34 the most common. The GT-A fold is characterized by alternating β -sheets and α -helices ($\alpha/\beta/\alpha$
35 sandwich) found in most nucleotide binding proteins (4). Majority of GT-A fold enzymes are metal
36 dependent and conserve a DxD motif in the active site that helps coordinate the metal ion and
37 the nucleotide sugar. Currently, 109 GT-A families have been catalogued in the Carbohydrates
38 Active Enzymes (CAZy) database (5). These families can be broadly classified into two categories
39 based on their mechanism of action and the anomeric configuration of the glycosidic product
40 relative to the sugar donor, namely, inverting or retaining. Inverting GTs generally employ an S_N2
41 single displacement reaction mechanism that results in inversion of anomeric configuration for the
42 product, whereas retaining GTs generally employ a dissociative S_{Ni} -type mechanism that retains
43 the anomeric configuration of the product (6). While the sequence basis for inverting and retaining
44 mechanisms is not well understood, most inverting GT-As have a conserved Asp or Glu within a
45 xED motif that serves as the catalytic base to deprotonate the incoming nucleophile of the
46 acceptor, and initiate nucleophilic attack with direct displacement of the phosphate leaving group
47 (7, 8). Retaining GT-As bind the sugar donor similarly to the inverting enzymes, but shift the
48 position of the acceptor nucleophile to attack the anomeric carbon from an obtuse angle using a

49 phosphate oxygen of the sugar donor as the catalytic base and employ a dissociative mechanism
50 that retains the anomeric linkage for the resulting glycosidic product (6). Such mechanistic
51 diversity of GTs is further illustrated by recent crystal structures of GTs bound to acceptor and
52 donor substrates which show that different acceptors are accommodated in the active site through
53 variable loop regions emanating from the catalytic core (6). However, whether these observations
54 hold for the entire super-family is not known because of the lack of structural information for the
55 vast number of GTs.

56 The wealth of sequence data available on GTs provides an opportunity to infer underlying
57 mechanisms through deep mining of large sequence datasets. In this regard, the CAZY database
58 serves as a valuable resource for generating new functional hypotheses by classifying GT
59 enzymes into individual families based on overall sequence similarity. However, a broader
60 understanding of how these enzymes evolved to recognize diverse donor and acceptor substrates
61 requires a global comparison of diverse GT-A fold enzymes. Such comparisons are currently a
62 challenge due to limited sequence similarity between families and the lack of a phylogenetic
63 framework to relate evolutionarily divergent families. Previous efforts to investigate GT evolution
64 have largely focused on individual families or pathways (9, 10) and have not explicitly addressed
65 the challenge of mapping the evolution of functional diversity across families.

66 Here through deep mining of over half a million GT-A fold related sequences from diverse
67 organisms, and application of specialized computational tools developed for the study of large
68 gene families (11, 12), we define a common core shared among diverse GT-A fold enzymes.
69 Using the common core features, we generate a phylogenetic framework for relating functionally
70 diverse enzymes and show that inverting and retaining mechanisms emerged independently
71 multiple times during evolution. We identify convergent modes of substrate recognition in
72 evolutionarily divergent families and pinpoint sequence and structural features associated with
73 functional specialization. Finally, based on the evolutionary and structural features gleaned from

74 a broad analysis of diverse GT-A fold enzymes, we develop a machine learning (ML) framework
75 for predicting donor specificity with nearly 88% accuracy. We predict donor specificity for
76 uncharacterized GT-A enzymes in diverse model organisms and provide testable hypotheses for
77 investigating the relationships connecting GT-A fold structure, function and evolution.

78 **Results**

79 **An ancient common core shared among diverse GT-A fold enzymes**

80 To define common features shared among diverse GT-A fold enzymes, we generated a multiple
81 sequence alignment of over 600,000 GT-A fold related sequences in the non-redundant (NR)
82 sequence database (13) using curated multiple-aligned profiles of diverse GTs (Table S1). The
83 alignment profiles were curated using available crystal structures (Methods)(14). The resulting
84 alignment revealed a GT-A common core consisting of 231 aligned positions. These aligned
85 positions are referred to throughout this analysis and are mapped to representative structures in
86 Dataset S1. The common core is defined by eight β sheets and six α helices, including three β
87 sheets and α helices from the N-terminal Rossmann fold (Fig. 1A,B).

88 Quantification of the evolutionary constraints imposed on the common core reveal twenty residues
89 shared among diverse GT-A fold families. These include the DxD and the xED motif residues
90 involved in catalytic functions, and other residues not typically associated with catalysis (Fig. 1A)
91 such as the conserved glycine at aligned position 151 (G335 in 2z87) in the flexible G-loop and a
92 histidine residue (H386 in 2z87) in the C-terminal tail at aligned position 207, henceforth referred
93 to as the C-His. Residues from the G-loop in some families, such as the blood ABOs (GT6) and
94 glucosyl-3-phosphoglycerate synthases (GpgS; GT81), contribute to donor binding (15, 16). The
95 C-His, likewise, coordinates with the metal ion and contributes to catalysis in a subset of GTs,
96 such as polypeptide N-acetylgalactosaminyl transferases (ppGalNAcTs; GT27) and

97 lipopolysaccharyl- α -1,4-galactosyltransferase C (LgtC; GT8) (17, 18). The conservation of these
 98 residues across diverse GT-A fold enzymes suggest that they likely perform similar functional
 99 roles in other families as well.

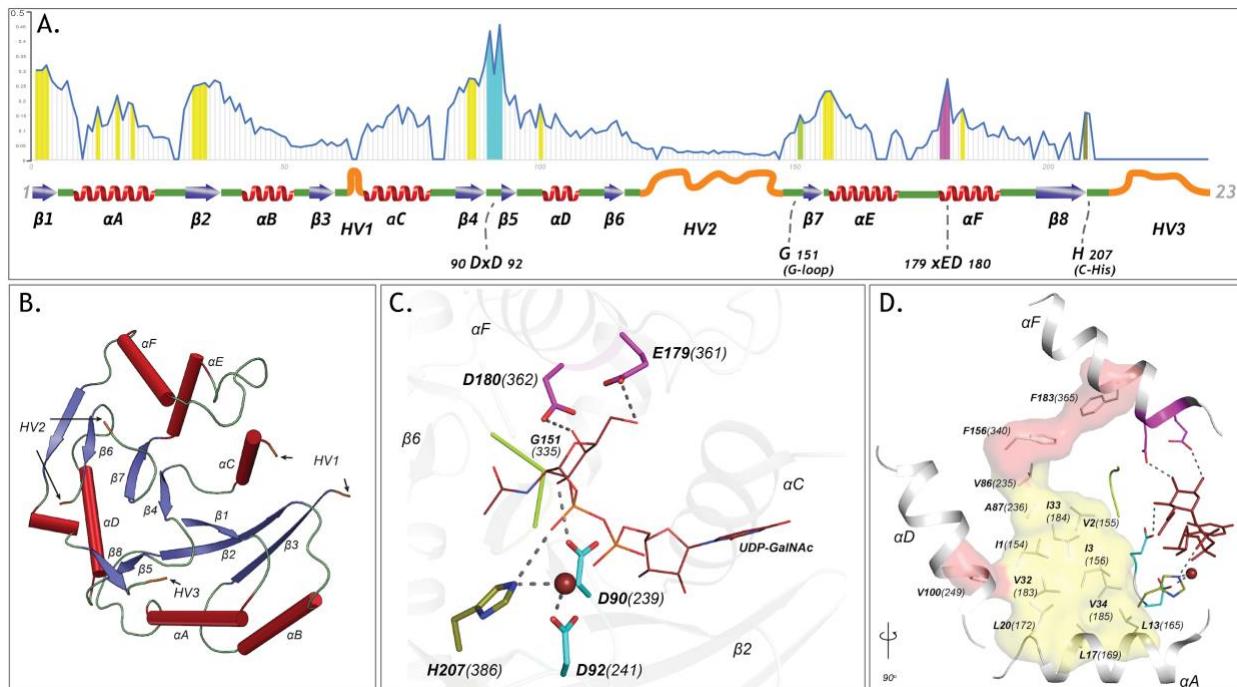


Figure 1: The GT-A common core and its elements. A) Plot showing the schematics of the GT-A common core with 231 aligned positions. Conserved secondary structures (red α -helices, blue β -sheets, green loops) and hypervariable regions (HVs)(orange) are shown. Conservation score for each aligned position is plotted in the line graph above the schematics. Evolutionarily constrained regions in the core: the hydrophobic positions (yellow) and the active site residues (DxD: Cyan, xED: Magenta, G-loop: green, C-His: olive) are highlighted above the positions. B) The conserved secondary structures and the location of HVs are shown in the N-terminal GT2 domain of the multidomain chondroitin polymerase structure from *E. coli* (PDB: 2z87) that is used as a prototype as it displays closest similarity to the common core consensus (SI Methods). C) Active site residues of the prototypic GT-A structure. Metal ion and donor substrate are shown as a brown sphere and sticks, respectively. D) Architecture of the hydrophobic core (Yellow: core conserved in all Rossmann fold containing enzymes, Red: core elements present only in the GT-A fold). Residues are labeled based on their aligned positions. Numbers within parentheses indicate their position in the prototypic (PDB: 2z87) structure.

100 The remaining core conserved residues include fourteen hydrophobic residues that are dispersed
101 in sequence, but spatially cluster to connect the catalytic and donor binding sites in the Rossmann
102 fold. Eleven out of the fourteen residues (highlighted in yellow in Fig. 1D) are shared by other
103 Rossmann fold proteins (Fig. S1) suggesting a role for these residues in maintaining the overall
104 fold. Three hydrophobic residues (V249, F340, F365; shown in red surface in Fig. 1D), however,
105 are unique to GT-A fold enzymes, and structurally bridge the α F helix (containing the xED motif),
106 the α D helix and the Rossmann fold domain. Although the functional significance of this
107 hydrophobic coupling is not evident from crystal structures, in some families (GT15 and GT55)
108 the hydrophobic coupling between α F and the Rossmann fold domain is replaced by charged
109 interactions (Fig. S2). The structural and functional significance of these family specific variations
110 are discussed below.

111 Our broad evolutionary analysis also reveals three hypervariable regions (HVs) extending from
112 the common core. These include an extended loop segment connecting β 3 strand and α C helix
113 (HV1), a segment longer than 28 amino acids connecting β 7 and β 8 strand (HV2) and a C-terminal
114 tail extending from the β 8 strand (HV3) in the common core. These HVs, while conserved within
115 families, display significant conformational and sequence variability across families (Fig. 1A, Fig.
116 S3) and encode family-specific motifs that contribute to acceptor specificity in individual families,
117 as discussed below.

118 **A phylogenetic framework relating diverse GT-A fold families**

119 Having delineated the common core, we next sought to generate a phylogenetic tree relating
120 diverse GT-A fold families using the core alignment. Because of the inherent challenges in the
121 generation and visualization of large trees (19), we used a representative set of GT-A fold
122 sequences for phylogenetic analysis by first clustering the ~600,000 sequences into functional
123 categories using a Bayesian Partitioning with Pattern Selection (BPPS) method (20). The BPPS

124 method partitions sequences in a multiple sequence alignment into hierarchical sub-groups based
125 on correlated residue patterns characteristic of each sub-group (Methods). This revealed 99 sub-
126 groups with distinctive patterns. Representative sequences across diverse phyla from these sub-
127 groups (993 sequences, Dataset S2) were then used to generate a phylogenetic tree (Fig. 2).
128 Based on the phylogenetic placement of these sequences, we broadly define fifty-three major
129 sub-groups, thirty-one of which correspond to CAZy-defined families (Table S2). The remaining
130 sub-groups correspond to sub-families within larger CAZy families. In particular, we sub-classified
131 the largest GT family in the CAZy database, GT2, into ten phylogenetically distinct sub-families.
132 Likewise, GT8 and GT31 were classified into seven and five sub-families, respectively. These
133 sub-families are not explicitly captured in CAZy and are annotated based on overall sequence
134 similarity to functionally characterized members. For example, “GT2-LpsRelated” corresponds to
135 a sub-family within GT2 most closely related to the bacterial β -1-4-glucosyltransferases (IgtF)
136 involved in Lipopolysaccharide biosynthesis (Fig. 2, Fig. S4). Such a hierarchical classification
137 captures the evolutionary relationships between GT-A fold families/sub-families while keeping the
138 nomenclature consistent with CAZy.

139 GT-A fold families and sub-families can be further grouped into clades based on shared sequence
140 features and placement in the phylogenetic tree (Fig. 2). For example, clade 1 places four GT2
141 sub-families (GT2-CeS, GT2-CWR, GT2-Chitin-HAS and GT2-Bre3) with GT84 and GT21
142 supported by high bootstrap values. Members of these six families are all involved in either
143 polysaccharide or glycosphingolipid biosynthesis. Additionally, the pattern-based classification
144 identified a conserved [QR]XXRW motif in the C-terminal HV3 (Fig. S5) which is unique to
145 members of this clade. The [QR]XXRW motif residues coordinate with the donor and acceptor in
146 a bacterial cellulose synthase (from GT2-CeS family) (21) and mutation of these residues in
147 bacterial cyclic β -1,2-glucan synthetase (Cgs, GT84) abrogates activity (22), suggesting a critical
148 role of this motif in functional specialization of clade 1 GT-As.

149 The GT8 sub-families form sub-clades within the larger clade 9. For example, GT8 sequences
150 involved in the biosynthesis of pectin components group together in the GT8-GAUT and GT8-
151 GATL families (Fig. 2). The human LARGE1 and LARGE2 glycosyltransferases are multi-domain
152 enzymes with two tandem GT-A domains. Their N-terminal GT-A domains fall into the GT8-Lrg
153 subfamily that groups closely with GT8-xylosyltransferase (GT8-XylT) subfamily enzymes and
154 places all the GT8 xylosyltransferases into a single well supported sub clade. The
155 lipopolysaccharide α -glucosyltransferases (GT8-LpsGlt) group with the glucosyltransferases of
156 the GT24 family, suggesting a common ancestor associated with glucose donor specificity. On
157 the other hand, the GT8-Glycogenin sub family, which also includes members that transfer a
158 glucose, is placed in a separate sub-clade, possibly indicating an early divergence for its unique
159 ability to add glucose units to itself (23). Clade 9 members also share common sequence features
160 associated with substrate binding that includes a lysine residue within the commonly shared KPW
161 motif in HV3 that coordinates with the phosphate group of the donor (e.g. bacterial LgtC (GT8-
162 LpsGlt) and other structures of clade 9 members)(Fig. S5).

163 We noticed that three out of four MGAT GT-A families responsible for the branching of N-glycans
164 (GT13 MGAT1, GT16 MGAT2 and GT54 MGAT4) fall in the same clade (clade 6), as expected
165 (Fig. 2). In contrast, the fourth family, GT17 MGAT3, which adds a bisecting GlcNAc to a core β -
166 mannose with a β -1,4 linkage, is placed in a separate clade with GT14 and GT82 (clade 7), while
167 a fifth MGAT member creating β -1,6-GlcNAc linkages (GT18 MGAT5) is a GT-B fold enzyme (24).

168 We further note that fifteen out of fifty-three GT-A families are found in both prokaryotes and
169 eukaryotes. These fifteen families fall on different clades throughout the tree. GT-A families
170 present only in prokaryotes, like GT81, GT82 and GT88, are also spread out in different clades
171 (Fig. 2). Similarly, other GT-A families that are present within restricted subsets of taxonomic
172 groups (like GT40 and GT60 present only in prokaryotes and protists) are also scattered

173 throughout the tree. These observations suggest that the divergence of most GT-A families
 174 predates the separation of prokaryotes and eukaryotes.

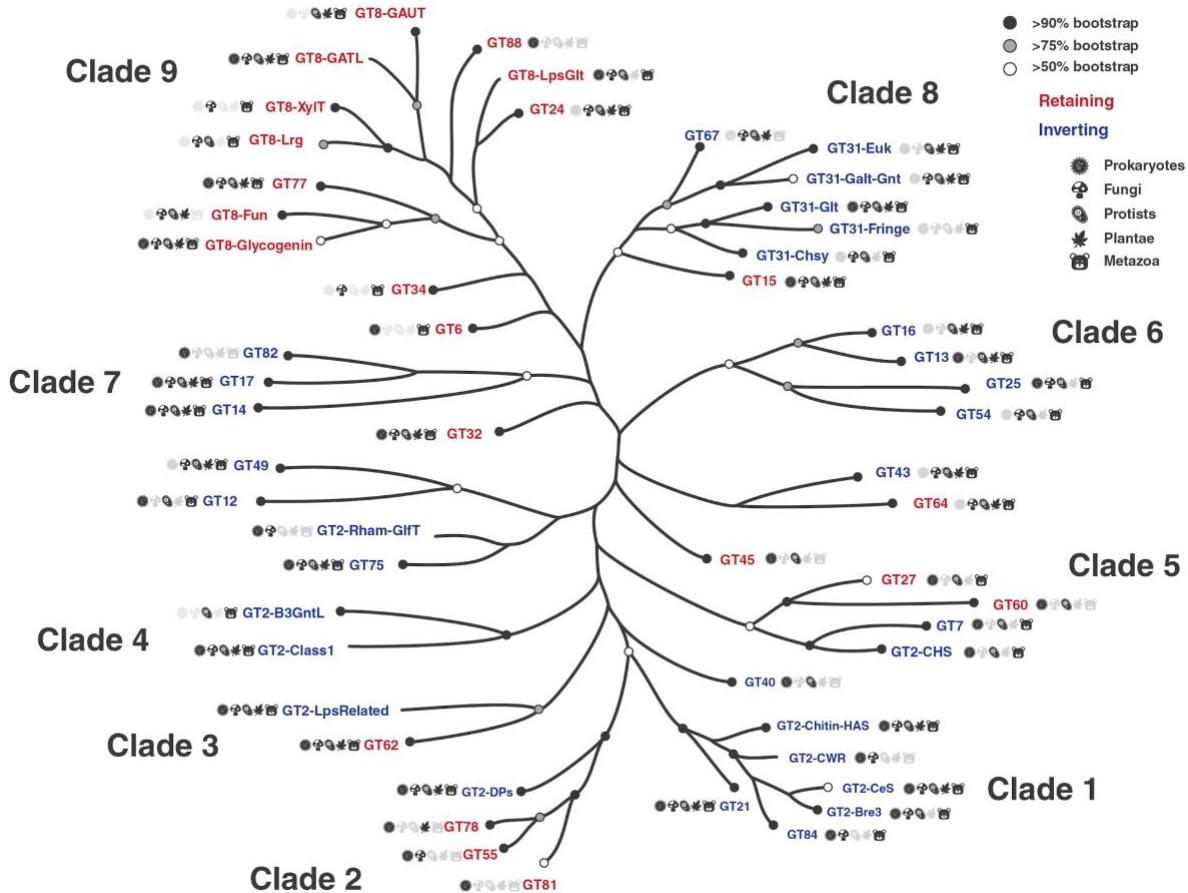


Figure 2: Phylogenetic tree highlighting the 53 major GT-A fold subfamilies. Tips in this tree represent GT-A sub-families condensed from the original tree for illustration. Support values are indicated using different circles. Circles at the tips indicate bootstrap support for the GT-A family clade represented by that tip. Tips missing the circles represent GT-A families that do not form a single monophyletic clade. Nodes missing circles have a bootstrap support less than 50% and are unresolved. Icon labels indicate the taxonomic diversity of that sub clade. Colors indicate the mechanism for the families (blue: Inverting, red: Retaining). Detailed tree with support values and expanded nodes are provided in Fig. S4 and in Newick format in Dataset S4. The family names are described in Table S2.

175 **Multiple evolutionary lineages for inverting and retaining mechanisms**

176 To obtain insights into the evolution of catalytic mechanism, we annotated the phylogenetic tree
177 based on known mechanisms of action (inverting or retaining). Inverting GTs are colored in blue
178 in the phylogenetic tree, while retaining GTs are colored in red (Fig. 2). The dispersion of inverting
179 and retaining families in multiple clades suggests that these catalytic mechanisms emerged
180 independently multiple times during GT-A fold evolution. We find that natural perturbations in the
181 catalytic base residue, an important distinction between the inverting and retaining mechanisms,
182 correlates well with these multiple emergences across the tree. The residue that acts as a catalytic
183 base for inverting GTs (aspartate within the xED motif, xED-Asp) is variable across the retaining
184 families consistent with its lack of role in the retaining S_{Ni} mechanism (6). In the inverting families,
185 the xED-Asp is nearly always conserved and appropriately positioned to function as a catalytic
186 base (Fig. 3A), though some exceptions have been noted (6, 25). Out of the five clades grouping
187 inverting and retaining families, inverting families in three of these clades do not conserve the
188 xED-Asp (GT2-DPs, GT2-LpsRelated and GT43). The heterogeneous nature of this residue in
189 these families suggests that change of the catalytic base residue could be a key event in the
190 transition between inverting and retaining mechanisms. Unlike families that conserve the xED-
191 Asp, these families achieve inversion of stereochemistry through alternative modes that may
192 relieve the constraints necessary to conserve the xED-Asp. For example, in GT43, the Asp base
193 is replaced by a glutamate residue, which shifts the reaction center by one carbon bond (6).
194 Further, the dolichol phosphate transferases (DPMs and DPGs) in the GT2-DP family, which lack
195 the xED-Asp entirely, transfer sugars to a negatively charged acceptor substrate (a phosphate
196 group) and thus do not need a catalytic base to initiate nucleophilic attack (25). Other GT-A
197 inverting families lacking the xED-Asp (GT12, GT14, GT17, GT49 and GT82) are grouped into
198 separate monophyletic clades segregating them from inverting families with conserved the xED-
199 Asp (Fig. 2). Out of these, only GT14 has representative crystal structures where a glutamate

200 serves as the catalytic base (26). For other inverting families with a non-conserved xED-Asp,
201 residues from other structural regions may serve as a catalytic base. On the other hand, retaining
202 families like GT64 conserve the xED-Asp, yet do not use it as a catalytic base. Thus, there may
203 be multiple ways in which inverting and retaining mechanisms diverge, with one path being
204 mutation of this xED-Asp catalytic base.

205 One strongly supported clade that includes both inverting and retaining families is clade 2 that
206 groups inverting GT-A family members that transfer sugars to phosphate acceptors (GT2-DPs)
207 with three retaining GT-A families that also have phosphate-linked acceptors (GT55, GT78 and
208 GT81). This placement is further supported by the observation that these families share
209 structurally equivalent conserved residues in the HV2 region that coordinate the phosphate group
210 of the acceptor. In the GT2-DP subfamily, R117, R131 and S135 (Fig. 4A) in HV2 coordinate with
211 the acceptor phosphate groups. The conservation of these residues in GT55 and GT81 suggests
212 that they likely perform similar interactions in these latter subclades. Indeed, in the crystal
213 structure of *M. tuberculosis* GpgS (GT81), HV2 adopts a conformation similar to GT2-DPs and
214 the shared residues G184, R185 and T187 (equivalent to R117, R131 and S135) form similar
215 interactions with the phosphate group of the acceptor (Fig. S5).

216 Clade 5 places the inverting GT7 and GT2-CHS with the retaining GT27 and GT60 families (Fig.
217 2). This supports the evolution of these families from a close common ancestor through gene
218 duplication and divergence, which has been suggested through structural similarities between
219 GT7 and GT27 (27). After this initial divergence in mechanism within clade 5, the subclades group
220 the β -1,4-GalNAc transferase domains of bacterial and protist chondroitin polymerases (involved
221 in the elongation of glycosaminoglycan chondroitin)(GT2-CHS) with the GT7 family. The GT7
222 family includes the higher organism counterparts of the β -1,4-GalNAc transferase domains of
223 chondroitin synthases, along with β -1,4 Gal transferases. The close placement of GT60 and GT27
224 families in this clade is also directly supported by previous literature indicating that these families

225 share a conserved mode of polypeptide Ser/Thr O-glycosylation (28). Clade 5 thus consolidates
226 previous independent findings and suggests a shared ancestor, potentially extending the common
227 ancestry of GT2-CHS and GT7 to include GT27 and GT60, with an ancestral divergence in
228 mechanism.

229 **Variations in the core and hypervariable regions contribute to unique modes of**
230 **substrate specificity**

231 Analysis of the patterns of conservation and variation in the common core indicates that each
232 residue position within the core has been mutated in some context during the course of evolution,
233 highlighting the tolerance of the GT-A fold to extensive sequence variation. While some of these
234 variations are confined to specific clades or families, such as replacement of DxD motif with DxH
235 motif in GT27 and GT60, other variations are found independently across distal clades (Fig. 3A).
236 For example, GT14 and prokaryotic members of GT6 that fall on different clades, have
237 independently lost the DxD motif and no longer require a metal ion for activity (26, 29).

238 The C-His is also lost independently in multiple clades (Fig.3A). In order to investigate how the
239 loss of metal binding C-His is compensated, we analyzed the C-His-metal ion interactions across
240 all available crystal structures. Structural alignment of crystal structures from families that are
241 missing the C-His such as GT13, GT6 and GT64 families revealed a water molecule coordinating
242 the metal ion in a manner similar to the C-His sidechain (Fig. 3B). In other families, such as GT24,
243 we found that the C-His is substituted by an aspartate (D1427), which coordinates with the metal
244 ion similar to C-His (Fig. 3B, bottom panel). Likewise, the conserved hydrophobic coupling
245 between α F helix and the Rossmann domain is replaced by charged interactions (R388 and E274,
246 respectively) in some retaining GTs such as GT15 and GT55 (Fig. S2). These substitutions point
247 to the ability of GT-As to accommodate changes, even in conserved positions at the core, through
248 compensatory mechanisms.

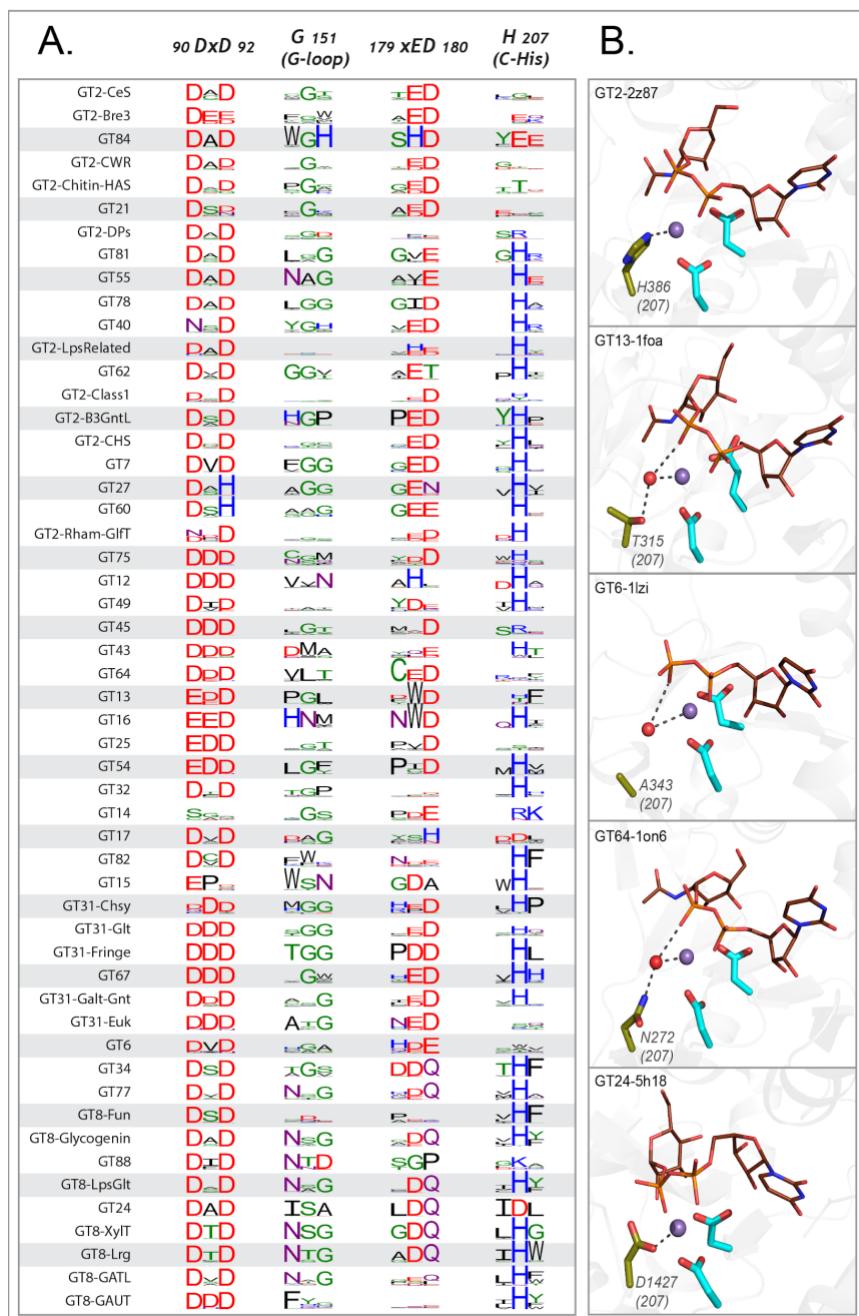


Figure 3: Variations in the conserved core of the GT-A families. A) Weblogo depicting the conservation of active site residues in the common core are shown for each of the GT-A families. Residues are colored based on their physiochemical properties. B) Variations in the C-His is compensated either using a water molecule (red sphere) or other charged residues (olive sticks) to conserve its interactions. The metal ion is shown as a purple sphere. The donor substrate is shown as brown lines. Interactions between the residues, metal ion and the donor are shown using dotted lines.

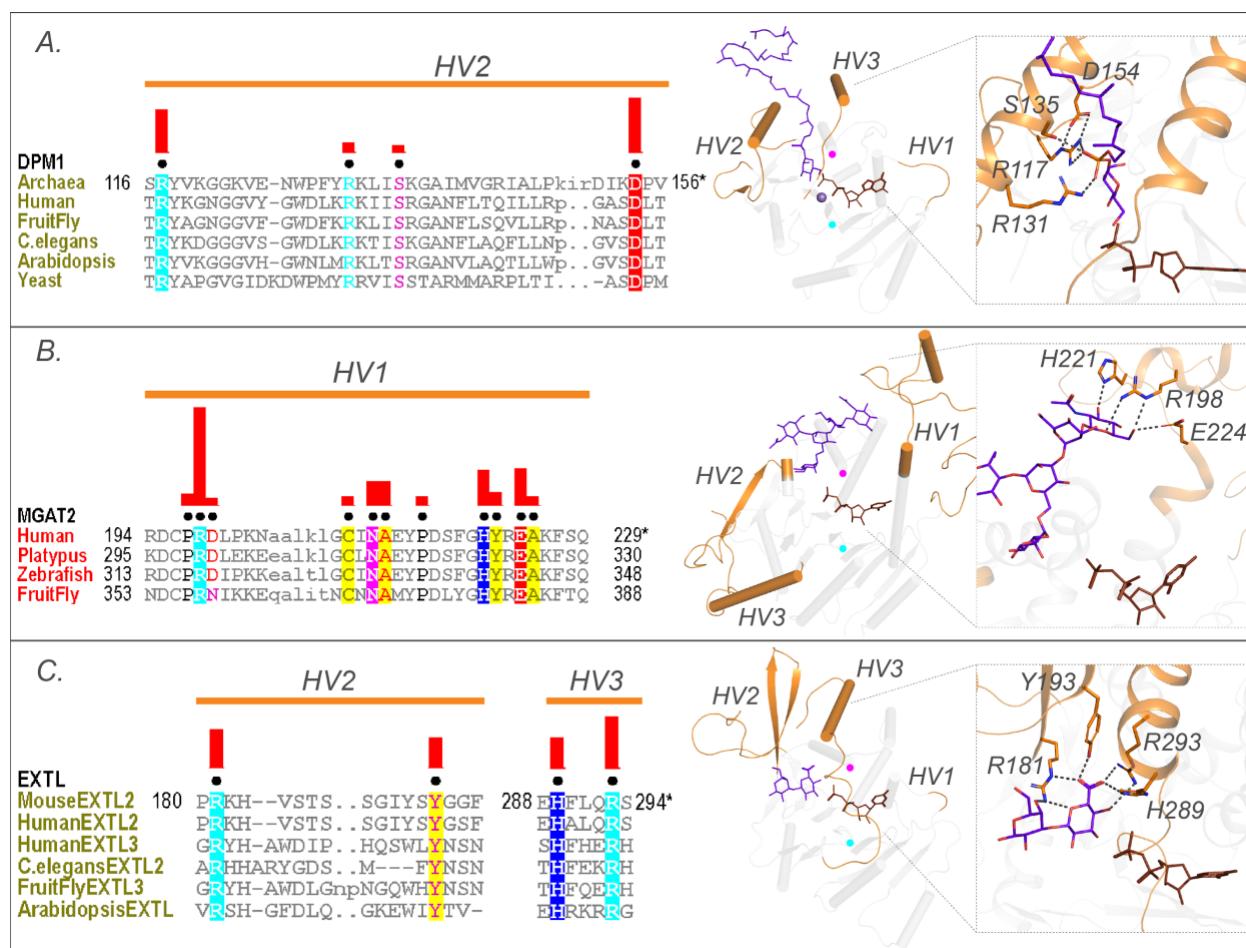


Figure 4: Family specific conserved features in the HV regions help coordinate the acceptor. Conserved residues in A) HV2 of the DPM1 sequences in the GT2-DP subfamily coordinate the phosphate group of the acceptor. B) HV1 of GT16 MGAT1 provide acceptor specificity. C) HV2 and HV3 of EXTL GT64 family (C-terminal GT domain of the multidomain sequences) coordinate the acceptor. Left: Alignments highlighting the constrained residues are shown for each family. The family specific conserved residues are shown using black dots above the alignment. Red bars above these dots indicate the significance of conservation (Higher bar corresponds to more significantly conserved position). Right: Representative pdb structures are shown for each family (GT2-DP:5mm1, GT16:5vcs, GT64:1on8); Donor substrates are colored brown. Acceptors are colored purple. HVs are highlighted in orange. The position of the conserved DxD and xED motif for each structure is shown as cyan and magenta circles respectively.

249 As noted above, we found that the hypervariable regions display significant variations across GT
 250 families but conserve family specific residues that contribute to acceptor specificity. For example,
 251 a distinctive arginine (R117) and aspartate (D154) along with R131 and serine S135 within the
 252 HV2 of DPM1 (GT2-DP sub-family) contribute to specificity towards a dolichol phosphate acceptor

253 by creating a charged binding pocket for the phosphate group (Fig. 4A). Likewise, family-specific
254 residues (R198, H221 and E224 in 5vcm) within the HV1 of MGAT2 (GT16) form a unique scaffold
255 for recognizing the terminal GlcNAc of the N-glycan acceptor (Fig. 4B). Similarly, the C-terminal
256 GT64 domain of the multidomain EXTLs contain specific residues in HV2 (R181 and Y193) and
257 HV3 (H289 and R293) that form a unique binding pocket for the tetrasaccharide linker acceptor
258 used to synthesize glycosaminoglycans (Fig. 4C). Together these examples illustrate the ability
259 of HVs to evolve family specific motifs to recognize different acceptors.

260 **Machine learning to predict the donor specificity of GT-A sequences**

261 As discussed above, the conserved catalytic residues dictate the mechanism of sugar transfer
262 and metal binding while the extended HVs use family specific motifs to dictate acceptor specificity.
263 We also find some clade specific features (such as the conserved Lys in clade 9, and QXXRW in
264 clade 1) and G-loop residues involved in donor binding, however, the overall framework that
265 dictates donor sugar specificity in GTs is largely unknown. Sequence homology alone is
266 insufficient to predict donor specificity because evolutionarily divergent families can bind to
267 common substrates, and sometimes even two closely related sequences bind to different donors
268 (Fig. S6)(15). Our global analysis of GT-A families provides a comparative basis to contrast
269 sequences that bind to different donors. To test whether evolutionary features gleaned from this
270 global analysis can be used to better predict donor substrate specificity, we employed a machine
271 learning (ML) framework that learns from the specificity-determining residues of functionally
272 characterized enzymes to predict specificity of understudied sequences. In brief, using an
273 alignment of a well curated set of 713 GT-A sequences (Dataset S5, SI Methods) with known
274 donor sugars, we derived five amino acid properties (hydrophobicity, polarity, charge, side chain
275 volume and accessible surface area) from each aligned position within the common core. These
276 properties were then used as features to train multiple machine learning methods. Among the six
277 methods used, random forest model achieved the best prediction performance (accuracy ~88%)

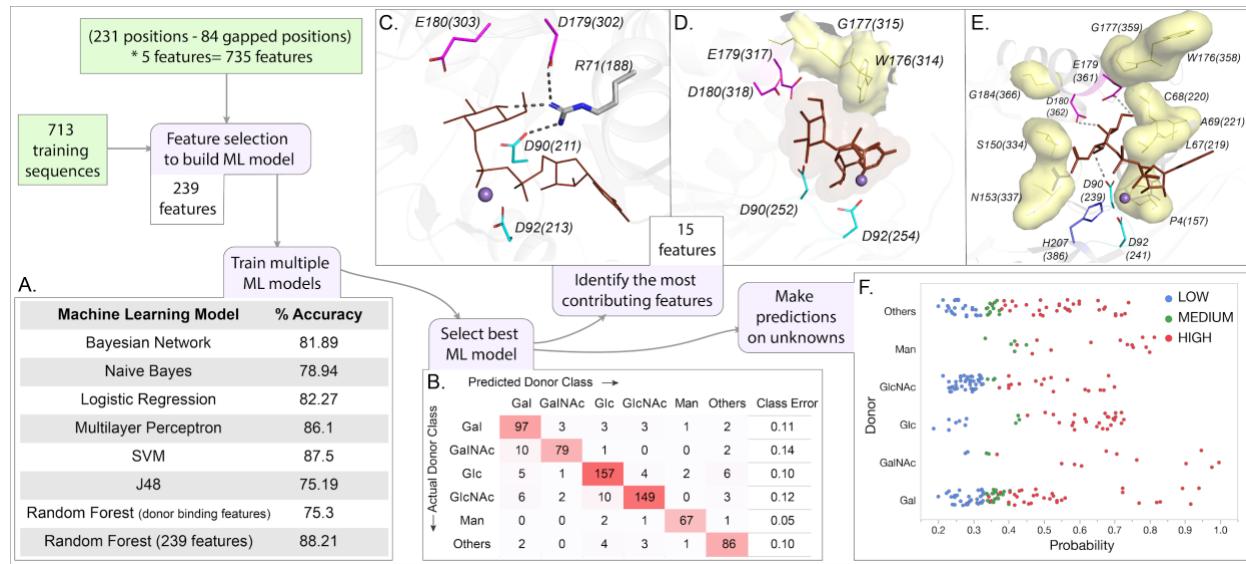


Figure 5: Outline and results of the ML analysis. Training set input into the pipeline are shown in green squares. Steps of the ML analysis in purple boxes are associated with different panels of the figure. A) Percent accuracy based on 10-fold CV for each of the trained ML models. B) Confusion matrix from the best model (random forest using 239 features). The full model was used to generate this matrix which was then evaluated using 10-fold CV. Panels C, D and E show the 15 most contributing features mapped into representative structures. Metal ion and donor substrate are shown in purple sphere and brown sticks respectively. C) R71 interacts with the donor sugar and forms a bridge between D179 and D90 in GT6 (5c4b). D) The top contributing features (position 176 and 177, yellow surface) line the donor binding pocket in GT7 (1o23). E) The top contributing feature positions not directly involved in donor binding fall around the active site and are shown using yellow surface in the prototypic GT-A (2z87). F) Scatter plot showing the probability scores assigned for each predicted sequence by the predicted donor type. Colors indicate the confidence level of the prediction derived using the probability and its difference from the 2nd class (SI Methods, Dataset S6)

278 based on a 10-fold cross validation (CV) using 239 contributing features (SI Methods, Fig. 5A,B,
 279 Table S6). To further validate the model, we tested its performance on a validation set of 64
 280 sequences that were not used to train the ML model but have known sugar specificities. The
 281 random forest classifier correctly predicted donor substrates for 92% of these sequences, nearly
 282 80% of which were predicted with high confidence (blue rows in Dataset S6).
 283 This model was then used to predict donor sugars for GT-A domains with unknown specificities
 284 from 5 organisms: *H. sapiens*, *C. elegans*, *D. melanogaster*, *A. thaliana* and *S. cerevisiae* (Dataset

285 S6). Each prediction is associated with a confidence level derived from the probability for each of
286 the 6 donor classes (SI Methods). 55% of the predictions have high and moderate confidence
287 levels and present good candidates for further investigation (Fig. 5F). The remaining 45% of the
288 predictions are low confidence. This likely reflects the promiscuity of GT-As for donor preferences,
289 as seen across many GT-As (16, 30), or non-catalytic GT-As like C1GALT1C1 (Cosmc) (31).

290 Our predictions assign putative donors for 10 uncharacterized human GT-A domains (Dataset
291 S6). B3GNT9 is predicted to employ UDP-GlcNAc with high confidence like other GT31 β -3-N-
292 acetylglucosaminyltransferases (B3GNTs) in humans (32). The two procollagen
293 galactosyltransferases in humans (COLGALT1 and COLGALT2) are multidomain proteins with
294 two tandem GT domains. While their respective C-terminal domains catalyze β -Gal addition to
295 hydroxylysine side-chains in collagen, our predictions assign a putative GlcNAc transferase role
296 for their N-terminal GT domain. More interestingly, GLT8D1, a GT8 glycosyltransferase with an
297 unknown function implicated in neurodegenerative diseases (33), is predicted to have a
298 glucosyltransferase specificity. In other organisms, the GT2 sequences in *A. thaliana* (mostly
299 involved in plant cell wall biosynthesis) are predicted to bind glucose and mannose substrates,
300 the primary components of the plant cell wall (Dataset S6). We also identify a novel
301 galactosyltransferase function for a GT25 enzyme in *C. elegans*. These predictions can guide
302 characterization of new GT sequences with unknown functions.

303 We next performed feature selection to identify features that contribute most to substrate (donor)
304 prediction. Fifteen features selected by a combination of multiple feature selection methods (SI
305 Methods) contributed most to substrate prediction. Some of these features correspond to residues
306 involved in substrate binding and catalytic functions such as the Asp within the DxD motif,
307 residues in the G-loop and the C-His (15, 16, 25). One such contributing feature is a positively
308 charged residue at aligned position 71 that emanates from the α C helix and interacts with the
309 donor sugar. In a crystal structure of ABO (GT6), R71 (R188 in 5c4b) has been shown to bridge

310 the DxD and the xED motif to keep the catalytic site intact (Fig. 5C)(34). Our ML model identifies
311 the charge and accessible surface area of R71 as a major contributing feature in donor specificity.
312 The remaining features, surprisingly, are not directly involved in donor binding. For example, the
313 total volume of the residues in a loop preceding the xED motif (aligned position 176-177, WG358-
314 359 in 2z87, Fig. 5D) contributes significantly to donor specificity (Table S3), presumably by
315 controlling the accessibility of the donor binding site. Further, an ML model trained using features
316 from only the donor binding residues performs with an accuracy of only 75%, indicating the
317 importance of features other than those directly involved in donor binding. Thus, despite only a
318 few residues being directly involved in donor interactions, additional contributions to donor
319 specificity come from residues more distal from the active site. Contributions from these peripheral
320 secondary shell features surrounding the donor binding site (Fig. 5E) highlight the potential role
321 of higher order (allosteric) interactions in determining donor substrate specificity.

322 **Discussion**

323 Prior studies on the evolution of GTs have generally focused either on distinct GT subfamilies or
324 biosynthetic pathways with additional structural classifications of GTs into one of three distinct
325 protein fold superfamilies (6, 9, 10). In our present work we focused on the analysis of the largest
326 of the GT superfamilies, those that comprise a GT-A protein fold characterized by an extended
327 Rossmann domain with associated conserved helical segments. These enzymes generally
328 employ the Rossmann domain for nucleotide sugar donor interactions and extended loop regions
329 for acceptor glycan interactions (6). Using an unbiased profile search strategy, we assembled a
330 total of over 600,000 GT-A fold related sequences from all domains of life for deep evolutionary
331 analysis. To support this profile-based assembly, we leveraged structural alignments on GT-A
332 fold enzymes in PDB and secondary structure predictions when no crystal structures were
333 available. The resulting alignment allowed the definition of a common structural core shared

334 among the diverse GT-A fold enzymes and defined positions where hypervariable loop insertions
335 were elaborated to provide additional functional diversification (Fig. 1). In cases where data was
336 available for enzyme-acceptor complexes these latter loop insertions generally contribute to
337 unique, family specific acceptor interactions. Thus, a structural framework is presented for GT-A
338 fold enzyme evolution. Since the common core is present across all kingdoms of life, it presumably
339 represents the minimal ancestral structural unit for GT-A fold catalytic function by defining donor
340 substrate interactions and minimal elements for acceptor recognition and catalysis. In fact, we
341 find several archaeal and bacterial sequences that closely resemble this common core consensus
342 sequence (Dataset S7). Based on our studies, we propose a progressive diversification of
343 glycosyltransferase function through evolution of donor specificity by accumulation of mutations
344 in the common core region and divergence in acceptor recognition through expansion of the
345 hypervariable loop regions. Consistent with this view, we find conserved family-specific motifs
346 within the hypervariable regions that confer unique acceptor specificities in various families.
347 These expansions likely contributed to the evolution of new GT functions and catalyzed new
348 glycan diversification observed in all domains of life.

349 A surprising finding from our studies is the dispersion of inverting and retaining catalytic
350 mechanisms among families in the GT-A fold evolutionary tree (Fig. 2). Recent models indicate
351 that distinctions between inverting and retaining catalytic mechanisms arise from differences in
352 the angle of nucleophilic attack by the acceptor toward the anomeric center of the donor sugar
353 (6). Inverting mechanisms require an in-line attack and direct displacement by the nucleophile
354 relative to the departing nucleotide diphosphate of the sugar donor and a conserved placement
355 of the xED-Asp carboxyl group as catalytic base at the beginning of the α F helix. In contrast,
356 retaining enzymes generally alter the angle of nucleophilic attack by the acceptor, use a donor
357 phosphate oxygen as catalytic base, and employ a dissociative mechanism for sugar transfer (6).
358 The fundamental differences in these catalytic strategies would suggest an early divergence of

359 enzymes employing these respective mechanisms. However, the GT-A fold phylogenetic tree
360 strongly suggests that inverting and retaining mechanisms evolved independently at multiple
361 points in the evolution of GT-A families (Fig. 2). Since the main difference in these mechanisms
362 is the change in position of the nucleophilic hydroxyl and catalytic base, we believe this poses the
363 possibility for a transitional phase in the evolution between the two mechanisms. The xED-Asp
364 carboxyl group is highly conserved in the inverting enzymes and is appropriately placed for
365 acceptor deprotonation. Variants of this motif either lack the residue entirely, as seen in many
366 retaining enzymes, or use compensatory modes to accommodate changes at this position, as
367 seen for the inverting enzymes in GT43, GT2-DPs, and GT2-LPSRelated. In fact, in each of the
368 latter cases the respective inverting GT family is clustered with closely related GT families
369 employing a retaining catalytic mechanism. Thus, inverting enzyme variants that accommodate
370 changes to the xED motif group may represent examples of transitional phases in evolution
371 between inverting and retaining catalytic mechanisms. Other inverting enzymes harboring
372 variants in the xED motif segregate into separate clades and could represent outlier families that
373 have developed alternative ways to compensate for the loss of xED-Asp. This ability to evolve
374 distinct catalytic strategies, in some cases through presumed convergent evolution, could allow
375 each family to evolve independent capabilities for donor and acceptor interactions as well as for
376 anomeric linkage of sugar transfer, while retaining other essential aspects of protein structural
377 integrity through the use of a conserved and stable Rossmann fold core.

378 In an effort to define the sequence constraints for the respective catalytic mechanisms we also
379 employed a machine learning framework for prediction of the mechanism for unknown sequences
380 and were able to assign the donor sugar nucleotide for a test set of enzymes with high accuracy.
381 Surprisingly, the contributing features for accurate prediction include residues involved in donor
382 binding as well as positions that are distal to the active site likely as secondary shell effects or
383 allosteric interactions. Due to their indirect involvement, such positions are generally difficult to

384 pinpoint using structural studies alone emphasizing the need for robust sequence-based
385 comparative analysis to understand GT-A function. The predictions made from the ML framework
386 can serve as a valuable resource for generating and testing new hypotheses on GT-A functions.

387 Numerous additional insights into GT function were also revealed through inspection of the
388 aligned sequences and the phylogenetic tree. For example, the clustering of mammalian N-glycan
389 GlcNAc branching enzymes (MGAT1 (GT13), MGAT2 (GT16), and MGAT4 (GT54)) in the same
390 clade suggests a common origin for these enzymes, while placement of MGAT3 (GT17) in a
391 separate clade could point to its unique role in adding a bisecting GlcNAc to the N-glycan core
392 thereby regulating N-glycan extension (35). In contrast, MGAT5 (GT18) involved in N-glycan β 1,6-
393 GlcNAc branching is a GT-B fold enzyme with a clearly distinct evolutionary origin. While most
394 clades are well resolved, bootstrap support values for nodes at the base of the tree are low and
395 need to be interpreted with caution. This low resolution results from high divergence between
396 families and possibly other events like horizontal gene transfer and convergent evolution.
397 However, trees generated using alternative strategies support the overall topology (Fig S7) and
398 clades are congruent with clusters obtained using an orthogonal Bayesian classification scheme,
399 which adds confidence to the phylogeny (Table S2).

400 For some GT-A fold enzymes variations in the catalytic site can also be accommodated by other
401 compensatory changes. An example is the use of the C-His motif for coordination of the divalent
402 cation in most GT-A fold enzymes in contrast with enzyme variants that employ water molecules
403 to compensate for the loss of this residue (Fig. 3B). Similarly, some inverting GTs dispense with
404 the use of the divalent cation and the DxD motif and substitute interactions with the sugar donor
405 through use of basic side chains (e.g. GT14). A further extreme is the duplication, divergence and
406 pseudogenization within the GT31 family. Human C1GALT1C1 (GT31, COSMC) shares a high
407 sequence similarity to another GT31 member, C1GALT1 (T-synthase), yet COSMC has lost both
408 the DxD and the xED motifs and has no catalytic activity. Instead, COSMC acts as an important

409 scaffold and chaperone for the proper assembly and catalytic function of T-synthase (31). The
410 ability of GT-As to harbor such structural variations that allow them to develop new functions make
411 them well-suited to evolve rapidly and facilitate the synthesis of a diverse repertoire of glycans
412 across all living organisms.

413 Our unbiased, top-down sequence-based analysis suggests new and unanticipated evolutionary
414 relationships among the GT-A fold enzymes. Prior suggestions of such relationships have been
415 inferred by the clustering of GT sequences into families in the CAZy database. However, the
416 CAZy database of GT sequences does not provide access to the broader sequence relationships
417 among the GT-A fold enzymes or how a general model of a core conserved GT-A fold scaffold
418 can serve as a progenitor catalytic platform for binding sugar donors and facilitating glycan
419 extension. The sequence assembly, phylogenetic tree, and placement within the framework of
420 known GT-A fold structures in the present studies provide key insights into conserved elements
421 of the hydrophobic core, linkage to the DxD motif for cation and sugar donor interactions, and the
422 conserved α F helix harboring the xED catalytic base. Additional hypervariable extensions at
423 defined positions from this conserved core were then progressively recruited to confer unique
424 modes of acceptor interactions to develop new specificities and evolve new functions. Thus, the
425 core of the protein scaffold can be maintained to facilitate protein stability while rapid evolution of
426 the hypervariable loops can develop new glycan synthetic functionalities through presentation of
427 novel acceptors to the catalytic site. Variation in the location of the acceptor hydroxyl nucleophile
428 relative to the donor sugar anomeric center presents the opportunity for distinctions in catalytic
429 mechanism and anomeric outcome for sugar transfer. The result is a rapidly evolving set of GT
430 enzymatic templates as the biosynthetic machinery for diverse glycan extension on cell surface
431 and secreted glycoproteins and glycolipids. In such contexts the resulting glycoconjugates confer
432 potential functional selective advantages at the cell surface, but also act as ligands and pathogen
433 entry points for negative evolutionary pressure. The constant challenges to adapt to these Red

434 Queen effects of positive and negative selective pressures for glycan synthesis have led to the
435 remarkable diversity in the GT enzymes and their resulting glycan structural products. We
436 anticipate that the sequence and structural principles that drive GT-A fold evolution will also likely
437 extend to GT-B and GT-C fold enzymes and represent a common theme for the elaboration of
438 diverse glycan structures in all domains of life.

439 **Methods**

440 **Generation of GT-A profiles and alignment**

441 Multiple alignments for 34 CAZy GT-A were collected from the Conserved Domain Database
442 (CDD) (36) or were manually built using MAFFT v7.3 (37) from sequences curated at the CAZy
443 database (Table S1). These seed profiles were then multiply aligned using the mapgaps scheme
444 (14) guided by a structure based sequence alignments of all available pdb structures using
445 Expresso (38) and MAFFT to generate the GT-A profiles. Representative pdb structures
446 described in this study are listed and cited in Dataset S1. Finally, the alignment of secondary
447 structures and conserved motifs were manually examined and corrected, where necessary. Very
448 divergent GT-A families such as GT29 and GT42 sialyltransfases were not included in this
449 analysis (SI Methods). The GT-A profiles were then used for a sequence similarity search using
450 mapgaps to identify and align more than 600,000 GT-A domain sequences from the NCBIInr
451 database. This alignment was filtered for fragmentary sequences and false hits. This filtered
452 alignment was then used to define the boundaries of the GT-A common core (SI Methods).

453 **Bayesian Statistical analyses**

454 A representative subset of 24,650 GT-A sequences were generated from the ~600,000 putative
455 GT-A sequences by using a family-based sequence similarity filtering (SI Methods). This
456 sequence set was then used to apply the Optimal multiple-category Bayesian Partitioning with

457 Pattern Selection (omcBPPS) scheme (20). omcBPPS identifies patterns of column-wise amino
458 acid conservation and variation in the multiple sequence alignment. The resulting family specific
459 positions were then used as statistical measures to classify the GT-As into 99 unique sets that
460 correspond to the 53 families described in this study (Table S2). omcBPPS also identified aligned
461 positions that are conserved across all GT-A fold families. This revealed the 20 conserved
462 positions within the core component, that were also verified by calculating conservation scores
463 using the Jensen-Shannon divergence score as described and implemented by (39)(used in Fig.
464 1A).

465 **Phylogenetic analysis**

466 A smaller subset of 993 sequences were used for phylogenetic reconstruction of the GT-A
467 families. This set includes all the identified GT-A sequences from five model organisms: *H.*
468 *sapiens* (human), *C. elegans* (worm), *D. melanogaster* (fly), *A. thaliana* (dicot plant) and *S.*
469 *cerevisiae* (yeast) along with select sequences representing the diverse taxonomic group in each
470 family. These representative sequences were selected by finding the union of top hits for every
471 taxonomic group present within each of the 99 sets and the seed alignments for the 34 CAZy GT-
472 A families. This selection criteria maximized the phylogenetic and taxonomic diversity while
473 keeping the number of sequences to a minimum. The alignment for these 993 sequences were
474 then trimmed to remove the insert positions and keep only the 231 aligned positions described
475 above. This trimmed alignment was used to build a phylogenetic consensus tree using IQTree
476 v1.6.1 (40) with the following options: -nt AUTO -st AA -m MFP+MERGE -alrt 1000 -bb 1000 -wbt
477 -nm 1000 -bnni. Further support for the phylogenetic tree was collected by comparing its topology
478 to trees generated using orthogonal methods like Hidden Markov Model (HMM) distances and
479 structural similarities, that have been used in previous studies (41, 42)(Fig. S7, SI Methods).

480 **Defining the GT-A families and sub-families**

481 The GT-A sequences were first classified into pattern-based groups using omcBPPS. Based on
482 the placement of representative sequences from these groups in the phylogenetic tree, they were
483 merged into GT-A families and sub-families. The correspondence between the 53 GT-A families
484 and subfamilies with the 99 pattern-based groups are provided in Table S2. Sequences from
485 some families did not form any distinct pattern-based groups due to either a low number of
486 sequences for a statistically significant grouping (GT78) or a lack of distinguishing patterns within
487 the aligned positions (GT25, GT88). Representative sequences for these families were collected
488 from the seed alignments for these families as described above. We also identified the N-terminal
489 GT2 domain of the multidomain chondroitin polymerase structure from *E. coli* (Pdb Id: 2z87) as
490 the prototypic GT-A structure to use as a comparative basis for structural analyses. This sequence
491 was selected based on the lowest E-value and highest similarity score of a BLAST search of all
492 pdb structures against the GT-A consensus sequences. Weblogos for the conserved active site
493 residues were derived for each GT-A subfamily using Weblogo 3.6.0 (43).

494 **Machine learning analysis**

495 In order to train an ML model for GT-A donor substrate prediction, we first curated a training
496 dataset by mining the “characterized” tab of the CAZy GT database and the UniProt database to
497 find 713 GT-A domain sequences with known donor sugars. The donor sugar information for
498 these sequences were extracted from their assigned protein names. Based on the availability of
499 training sequences, 6 major donor type classes were defined: Glc, GlcNAc, Gal, GalNAc, Man,
500 and “Others” with each class having more than 70 sequences in the training dataset. The “Others”
501 category merged the least represented donor types with less than 50 training sequences each
502 (Ara, Fuc, GalF, GlcA, ManNAc, Rham, and Xyl). An alignment of the 713 sequences were
503 generated which was filtered and then used to derive 5 amino acid properties (charge, polarity,

504 hydrophobicity, average accessible surface area, and side chain volume) for each aligned position
505 that were used as features for machine learning. We implemented correlation-based feature
506 selection (CFS) (44) with 5-fold CV by using WEKA version 3.8.3 (45) under default settings to
507 select 239 informative features for building multiple multiclass classification models.

508 Using these features, we trained multiple models (SVM, multilayer perceptron, Bayesian network,
509 logistic regression, naive Bayes classifier, J48, and random forest) using WEKA and the R
510 package “randomForest” (46). These models were compared using 10-fold CV under default
511 settings. 10-fold CV evaluates the ML models by iteratively training on 90% of the data selected
512 at random and testing the prediction on the unseen 10% of the data. This is repeated 10 times
513 and the results on the testing dataset are summarized into an accuracy measure. The random
514 forest model trained with 239 features had the highest accuracy and overall performance and thus
515 was selected as the model of choice for predicting donor sugar substrates for GT-A enzymes.
516 Confidence scores were assigned for each prediction based on the probability for each of the 6
517 donor classes. Further details of the methods implemented for machine learning and generation
518 of confidence levels are provided in SI Methods.

519 **Author Contributions**

520 R.T., A.S.E., K.W.M. and N.K. designed research; R.T., A.V., L.C.H. and W.Y. performed
521 research; R.T., A.V., L.C.H., K.R., K.W.M. and N.K. analyzed data; and R.T., A.V., K.W.M. and
522 N.K. wrote the paper.

523 **Competing Interests**

524 The authors declare no competing interests.

525 **Funding**

526 Funding from NK and KWM from NIH R01GM130915 is acknowledged. RT was also supported
527 by T32 GM107004.

528 References

- 529 1. A. Varki, P. Gagneux, "Biological Functions of Glycans" in *Essentials of Glycobiology*, 3rd
530 Ed., A. Varki, *et al.*, Eds. (Cold Spring Harbor Laboratory Press, 2015) (September 29, 2019).
- 531 2. P. Ryan, *et al.*, O-GlcNAc Modification Protects against Protein Misfolding and
532 Aggregation in Neurodegenerative Disease. *ACS Chem. Neurosci.* **10**, 2209–2221 (2019).
- 533 3. C. J. Day, E. A. Semchenko, V. Korolik, Glycoconjugates Play a Key Role in
534 *Campylobacter jejuni* Infection: Interactions between Host and Pathogen. *Front. Cell. Infect.*
535 *Microbiol.* **2** (2012).
- 536 4. C. Breton, S. Fournel-Gigleux, M. M. Palcic, Recent structures, evolution and mechanisms
537 of glycosyltransferases. *Curr. Opin. Struct. Biol.* **22**, 540–549 (2012).
- 538 5. V. Lombard, H. Golaconda Ramulu, E. Drula, P. M. Coutinho, B. Henrissat, The
539 carbohydrate-active enzymes database (CAZy) in 2013. *Nucleic Acids Res.* **42**, D490–D495
540 (2014).
- 541 6. K. W. Moremen, R. S. Haltiwanger, Emerging structural insights into glycosyltransferase-
542 mediated synthesis of glycans. *Nat. Chem. Biol.* **15**, 853–864 (2019).
- 543 7. L. L. Lairson, B. Henrissat, G. J. Davies, S. G. Withers, Glycosyltransferases: Structures,
544 Functions, and Mechanisms. *Annu. Rev. Biochem.* **77**, 521–555 (2008).
- 545 8. T. M. Gloster, Advances in understanding glycosyltransferases from a structural
546 perspective. *Curr. Opin. Struct. Biol.* **28**, 131–141 (2014).
- 547 9. R. Taujale, Y. Yin, Glycosyltransferase Family 43 Is Also Found in Early Eukaryotes and
548 Has Three Subfamilies in Charophycean Green Algae. *PLOS ONE* **10**, e0128409 (2015).
- 549 10. J. Lombard, The multiple evolutionary origins of the eukaryotic N-glycosylation pathway. *Biol.*
550 *Direct* **11** (2016).
- 551 11. N. Kannan, S. S. Taylor, Y. Zhai, J. C. Venter, G. Manning, Structural and Functional Diversity
552 of the Microbial Kinome. *PLOS Biol.* **5**, e17 (2007).
- 553 12. A. Kwon, *et al.*, Tracing the origin and evolution of pseudokinases across the tree of life. *Sci.*
554 *Signal.* **12**, eaav3810 (2019).
- 555 13. K. D. Pruitt, T. Tatusova, D. R. Maglott, NCBI reference sequences (RefSeq): a curated non-
556 redundant sequence database of genomes, transcripts and proteins. *Nucleic Acids Res.* **35**, D61-
557 65 (2007).
- 558 14. A. F. Neuwald, Rapid detection, classification and accurate alignment of up to a million or
559 more related protein sequences. *Bioinformatics* **25**, 1869–1875 (2009).
- 560 15. S. I. Patenaude, *et al.*, The structural basis for specificity in human ABO(H) blood group
561 biosynthesis. *Nat. Struct. Biol.* **9**, 685–690 (2002).
- 562 16. N. Empadinhas, *et al.*, Functional and structural characterization of a novel mannosyl-3-
563 phosphoglycerate synthase from *Rubrobacter xylanophilus* reveals its dual substrate specificity.
564 *Mol. Microbiol.* **79**, 76–93 (2011).
- 565 17. T. A. Fritz, J. H. Hurley, L.-B. Trinh, J. Shiloach, L. A. Tabak, The beginnings of mucin
566 biosynthesis: The crystal structure of UDP-GalNAc:polypeptide α -N-
567 acetylgalactosaminyltransferase-T1. *Proc. Natl. Acad. Sci. U. S. A.* **101**, 15307–15312 (2004).

568 18. K. Persson, *et al.*, Crystal structure of the retaining galactosyltransferase LgtC from *Neisseria*
569 *meningitidis* in complex with donor and acceptor sugar analogs. *Nat. Struct. Biol.* **8**, 166–175
570 (2001).

571 19. M. J. Sanderson, A. C. Driskell, The challenge of constructing large phylogenetic trees. *Trends*
572 *Plant Sci.* **8**, 374–379 (2003).

573 20. A. F. Neuwald, A Bayesian Sampler for Optimization of Protein Domain Hierarchies. *J.*
574 *Comput. Biol.* **21**, 269–286 (2014).

575 21. J. L. W. Morgan, J. Strumillo, J. Zimmer, Crystallographic snapshot of cellulose synthesis and
576 membrane translocation. *Nature* **493**, 181–186 (2013).

577 22. A. E. Ciocchini, M. S. Roset, G. Briones, N. I. de Iannino, R. A. Ugalde, Identification of active
578 site residues of the inverting glycosyltransferase Cgs required for the synthesis of cyclic β -1,2-
579 glucan, a *Brucella abortus* virulence factor. *Glycobiology* **16**, 679–691 (2006).

580 23. M. D. Alonso, J. Lomako, W. M. Lomako, W. J. Whelan, A new look at the biogenesis of
581 glycogen. *FASEB J.* **9**, 1126–1137 (1995).

582 24. M. Nagae, *et al.*, Structure and mechanism of cancer-associated N -
583 acetylglucosaminyltransferase-V. *Nat. Commun.* **9**, 1–12 (2018).

584 25. R. Gandini, T. Reichenbach, T.-C. Tan, C. Divne, Structural basis for dolichylphosphate
585 mannose biosynthesis. *Nat. Commun.* **8**, 1–12 (2017).

586 26. D. C. Briggs, E. Hohenester, Structural Basis for the Initiation of Glycosaminoglycan
587 Biosynthesis by Human Xylosyltransferase 1. *Struct. England1993* **26**, 801-809.e3 (2018).

588 27. B. Ramakrishnan, P. K. Qasba, Structure-based Evolutionary Relationship of
589 Glycosyltransferases: A Case Study of Vertebrate β 1, 4-Galactosyltransferase, Invertebrate β 1,4-
590 N-acetylgalactosaminyltransferase and α -Polypeptidyl-N-acetylgalactosaminyltransferase. *Curr.*
591 *Opin. Struct. Biol.* **20**, 536–542 (2010).

592 28. N. Heise, *et al.*, Molecular analysis of a UDP-GlcNAc:polypeptide α -N-
593 acetylglucosaminyltransferase implicated in the initiation of mucin-type O-glycosylation in
594 *Trypanosoma cruzi*. *Glycobiology* **19**, 918–933 (2009).

595 29. T. T. K. Pham, *et al.*, Structures of Complexes of a Metal-independent Glycosyltransferase
596 GT6 from *Bacteroides ovatus* with UDP-N-Acetylgalactosamine (UDP-GalNAc) and Its Hydrolysis
597 Products. *J. Biol. Chem.* **289**, 8041–8050 (2014).

598 30. O. Blixt, I. van Die, T. Norberg, D. H. van den Eijnden, High-level expression of the *Neisseria*
599 *meningitidis* lgtA gene in *Escherichia coli* and characterization of the encoded N-
600 acetylglucosaminyltransferase as a useful catalyst in the synthesis of GlcNAc β 1→3Gal and
601 GalNAc β 1→3Gal linkages. *Glycobiology* **9**, 1061–1071 (1999).

602 31. R. P. Aryal, T. Ju, R. D. Cummings, Tight Complex Formation between Cosmc Chaperone
603 and Its Specific Client Non-native T-synthase Leads to Enzyme Activity and Client-driven
604 Dissociation. *J. Biol. Chem.* **287**, 15317–15329 (2012).

605 32. A. Togayachi, *et al.*, “Chapter Eleven - β 3GnT2 (B3GNT2), a Major Polylactosamine
606 Synthase: Analysis of B3gnt2-Deficient Mice” in *Methods in Enzymology*, Functional Glycomics.,
607 M. Fukuda, Ed. (Academic Press, 2010), pp. 185–204.

608 33. J. Cooper-Knock, *et al.*, Mutations in the Glycosyltransferase Domain of GLT8D1 Are
609 Associated with Familial Amyotrophic Lateral Sclerosis. *Cell Rep.* **26**, 2298-2306.e5 (2019).

610 34. S. M. L. Gagnon, *et al.*, Conserved residues Arg188 and Asp302 are critical for active site
611 organization and catalysis in human ABO(H) blood group A and B glycosyltransferases.
612 *Glycobiology* **28**, 624–636 (2018).

613 35. Y. Ikeda, H. Ihara, H. Tsukamoto, J. Gu, N. Taniguchi, “Mannosyl (Beta-1,4)-Glycoprotein
614 Beta-1,4-N-Acetylglucosaminyltransferase (MGAT3); β 1,4-N-Acetylglucosaminyltransferase III
615 (GnT-III, GlcNAcT-III)” in *Handbook of Glycosyltransferases and Related Genes*, N. Taniguchi, *et*
616 *al.*, Eds. (Springer Japan, 2014), pp. 209–222.

617 36. A. Marchler-Bauer, *et al.*, CDD/SPARCLE: functional classification of proteins via subfamily
618 domain architectures. *Nucleic Acids Res.* **45**, D200–D203 (2017).

619 37. K. Katoh, D. M. Standley, MAFFT Multiple Sequence Alignment Software Version 7:
620 Improvements in Performance and Usability. *Mol. Biol. Evol.* **30**, 772–780 (2013).

621 38. F. Armougom, *et al.*, Expresso: automatic incorporation of structural information in multiple
622 sequence alignments using 3D-Coffee. *Nucleic Acids Res.* **34**, W604–W608 (2006).

623 39. J. A. Capra, M. Singh, Predicting functionally important residues from sequence conservation.
624 *Bioinformatics* **23**, 1875–1882 (2007).

625 40. L.-T. Nguyen, H. A. Schmidt, A. von Haeseler, B. Q. Minh, IQ-TREE: A Fast and Effective
626 Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. *Mol. Biol. Evol.* **32**, 268–
627 274 (2015).

628 41. L. Huo, *et al.*, pHMM-tree: phylogeny of profile hidden Markov models. *Bioinformatics* **33**,
629 1093–1095 (2017).

630 42. K. Hashimoto, T. Madej, S. H. Bryant, A. R. Panchenko, Functional states of homooligomers:
631 insights from the evolution of glycosyltransferases. *J. Mol. Biol.* **399**, 196–206 (2010).

632 43. G. E. Crooks, WebLogo: A Sequence Logo Generator. *Genome Res.* **14**, 1188–1190 (2004).

633 44. M. A. Hall, “Correlation-based Feature Selection for Machine Learning” (1999).

634 45. I. H. Witten, E. Frank, M. A. Hall, C. J. Pal, *Data Mining, Fourth Edition: Practical Machine*
635 *Learning Tools and Techniques*, 4th Ed. (Morgan Kaufmann Publishers Inc., 2016).

636 46. A. Liaw, M. Wiener, Classification and Regression by randomForest. **2**, 5 (2002).