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Abstract

Glycosyltransferases (GTs) are prevalent across the tree of life and regulate nearly all aspects of
cellular functions by catalyzing synthesis of glycosidic linkages between diverse donor and
acceptor substrates. Despite the availability of GT sequences from diverse organisms, the
evolutionary basis for their complex and diverse modes of catalytic and regulatory functions
remain enigmatic. Here, based on deep mining of over half a million GT-A fold sequences from
diverse organisms, we define a minimal core component shared among functionally diverse
enzymes. We find that variations in the common core and the emergence of hypervariable loops
extending from the core contributed to the evolution of catalytic and functional diversity. We
provide a phylogenetic framework relating diverse GT-A fold families for the first time and show
that inverting and retaining mechanisms emerged multiple times independently during the course
of evolution. We identify conserved modes of donor and acceptor recognition in evolutionarily
divergent families and pinpoint the sequence and structural features for functional specialization.
Using the evolutionary information encoded in primary sequences, we trained a machine learning
classifier to predict donor specificity with nearly 88% accuracy and deployed it for the annotation
of understudied GTs in five model organisms. Our studies provide an evolutionary framework for
investigating the complex relationships connecting GT-A fold sequence, structure, function and

regulation.

Introduction

Complex carbohydrates make up a large bulk of the biomass of any living cell and play essential
roles in biological processes ranging from cellular interactions, pathogenesis, immunity, quality
control of protein folding and structural stability (1). Biosynthesis of complex carbohydrates in

most organisms is carried out by a large and diverse family of Glycosyltransferases (GTs) that
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transfer sugars from activated donors such as nucleotide diphosphate and monophosphate
sugars or lipid linked sugars to a wide range of acceptors that include saccharides, lipids, nucleic
acids and metabolites. Nearly 1% of protein coding genes in the human genome, and more than
2% of the Arabidopsis genome, are estimated to be GTs. GTs have undergone extensive variation
in primary sequence and three-dimensional structure to catalyze glycosidic linkages between
diverse donor and acceptor substrates. However, an incomplete understanding of the
relationships connecting sequence, structure, function and regulation presents a major bottleneck
in understanding pathogenicity, metabolic and neurodegenerative diseases associated with

abnormal GT functions (2, 3).

Structurally, GTs adopt one of three folds (GT-A, -B or -C) with the GT-A Rossmann like fold being
the most common. The GT-A fold is characterized by alternating p-sheets and a-helices (a/B/a
sandwich) found in most nucleotide binding proteins (4). Majority of GT-A fold enzymes are metal
dependent and conserve a DxD motif in the active site that helps coordinate the metal ion and
the nucleotide sugar. Currently, 109 GT-A families have been catalogued in the Carbohydrates
Active Enzymes (CAZy) database (5). These families can be broadly classified into two categories
based on their mechanism of action and the anomeric configuration of the glycosidic product
relative to the sugar donor, namely, inverting or retaining. Inverting GTs generally employ an Sn2
single displacement reaction mechanism that results in inversion of anomeric configuration for the
product, whereas retaining GTs generally employ a dissociative Sni-type mechanism that retains
the anomeric configuration of the product (6). While the sequence basis for inverting and retaining
mechanisms is not well understood, most inverting GT-As have a conserved Asp or Glu within a
XED motif that serves as the catalytic base to deprotonate the incoming nucleophile of the
acceptor, and initiate nucleophilic attack with direct displacement of the phosphate leaving group
(7, 8). Retaining GT-As bind the sugar donor similarly to the inverting enzymes, but shift the

position of the acceptor nucleophile to attack the anomeric carbon from an obtuse angle using a
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phosphate oxygen of the sugar donor as the catalytic base and employ a dissociative mechanism
that retains the anomeric linkage for the resulting glycosidic product (6). Such mechanistic
diversity of GTs is further illustrated by recent crystal structures of GTs bound to acceptor and
donor substrates which show that different acceptors are accommodated in the active site through
variable loop regions emanating from the catalytic core (6). However, whether these observations
hold for the entire super-family is not known because of the lack of structural information for the

vast number of GTs.

The wealth of sequence data available on GTs provides an opportunity to infer underlying
mechanisms through deep mining of large sequence datasets. In this regard, the CAZY database
serves as a valuable resource for generating new functional hypotheses by classifying GT
enzymes into individual families based on overall sequence similarity. However, a broader
understanding of how these enzymes evolved to recognize diverse donor and acceptor substrates
requires a global comparison of diverse GT-A fold enzymes. Such comparisons are currently a
challenge due to limited sequence similarity between families and the lack of a phylogenetic
framework to relate evolutionarily divergent families. Previous efforts to investigate GT evolution
have largely focused on individual families or pathways (9, 10) and have not explicitly addressed

the challenge of mapping the evolution of functional diversity across families.

Here through deep mining of over half a million GT-A fold related sequences from diverse
organisms, and application of specialized computational tools developed for the study of large
gene families (11, 12), we define a common core shared among diverse GT-A fold enzymes.
Using the common core features, we generate a phylogenetic framework for relating functionally
diverse enzymes and show that inverting and retaining mechanisms emerged independently
multiple times during evolution. We identify convergent modes of substrate recognition in
evolutionarily divergent families and pinpoint sequence and structural features associated with

functional specialization. Finally, based on the evolutionary and structural features gleaned from
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a broad analysis of diverse GT-A fold enzymes, we develop a machine learning (ML) framework
for predicting donor specificity with nearly 88% accuracy. We predict donor specificity for
uncharacterized GT-A enzymes in diverse model organisms and provide testable hypotheses for

investigating the relationships connecting GT-A fold structure, function and evolution.

Results

An ancient common core shared among diverse GT-A fold enzymes

To define common features shared among diverse GT-A fold enzymes, we generated a multiple
sequence alignment of over 600,000 GT-A fold related sequences in the non-redundant (NR)
sequence database (13) using curated multiple-aligned profiles of diverse GTs (Table S1). The
alignment profiles were curated using available crystal structures (Methods)(14). The resulting
alignment revealed a GT-A common core consisting of 231 aligned positions. These aligned
positions are referred to throughout this analysis and are mapped to representative structures in
Dataset S1. The common core is defined by eight B sheets and six a helices, including three 3

sheets and a helices from the N-terminal Rossmann fold (Fig. 1A,B).

Quantification of the evolutionary constraints imposed on the common core reveal twenty residues
shared among diverse GT-A fold families. These include the DxD and the xED maotif residues
involved in catalytic functions, and other residues not typically associated with catalysis (Fig. 1A)
such as the conserved glycine at aligned position 151 (G335 in 2z87) in the flexible G-loop and a
histidine residue (H386 in 2z87) in the C-terminal tail at aligned position 207, henceforth referred
to as the C-His. Residues from the G-loop in some families, such as the blood ABOs (GT6) and
glucosyl-3-phosphoglycerate synthases (GpgS; GT81), contribute to donor binding (15, 16). The
C-His, likewise, coordinates with the metal ion and contributes to catalysis in a subset of GTs,

such as polypeptide N-acetylgalactosaminyl transferases (ppGalNAcTs; GT27) and
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97 lipopolysaccharyl-a-1,4-galactosyltransferase C (LgtC; GT8) (17, 18). The conservation of these
98 residues across diverse GT-A fold enzymes suggest that they likely perform similar functional

99 roles in other families as well.

|A.
B AN ==y LU= = Wi = mmy )i m gk i MU e Ui s’
] U
B1 aA p2 aB B3 HV1 aC B4 |/ p5 ab B6 HV2 i B7 aE : aF B8 i HV3
90 DxD 92 ((;Gf,izp) 179 XED 180 7[2;:57)
B. C; D. A

aF

aF 9
> E179(361) | o
D180(362) f $
u‘ F183(365) =\ .2
. A
B 6 G1 5.1.~ Freeged ] h
Nss} L X

) . \
/ aC V86(235) 4 ( 3
| \ as7(236) 133 ;
I/ . ) (184) Tyz(155) L
SN2 UDP-GalNAc ab 1154 B \ | ’
’ | ¢ (158 Y -
‘.- . va2 g‘
s D90(239) V100(249) (183) 2 ]
L20(172) - S L13(165) /
| 7 -
/ B2 + L17(169) -~
H207(386) D92(241) i 5 - o o,

Figure 1: The GT-A common core and its elements. A) Plot showing the schematics of the GT-
A common core with 231 aligned positions. Conserved secondary structures (red a-helices, blue
B-sheets, green loops) and hypervariable regions (HVs)(orange) are shown. Conservation score
for each aligned position is plotted in the line graph above the schematics. Evolutionarily
constrained regions in the core: the hydrophobic positions (yellow) and the active site residues
(DxD: Cyan, xED: Magenta, G-loop: green, C-His: olive) are highlighted above the positions. B)
The conserved secondary structures and the location of HVs are shown in the N-terminal GT2
domain of the multidomain chondroitin polymerase structure from E. coli (PDB: 2z87) that is used
as a prototype as it displays closest similarity to the common core consensus (S| Methods). C)
Active site residues of the prototypic GT-A structure. Metal ion and donor substrate are shown as
a brown sphere and sticks, respectively. D) Architecture of the hydrophobic core (Yellow: core
conserved in all Rossmann fold containing enzymes, Red: core elements present only in the GT-
A fold). Residues are labeled based on their aligned positions. Numbers within parentheses
indicate their position in the prototypic (PDB: 2z87) structure.
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100 The remaining core conserved residues include fourteen hydrophobic residues that are dispersed
101 in sequence, but spatially cluster to connect the catalytic and donor binding sites in the Rossmann
102 fold. Eleven out of the fourteen residues (highlighted in yellow in Fig. 1D) are shared by other
103 Rossmann fold proteins (Fig. S1) suggesting a role for these residues in maintaining the overall
104  fold. Three hydrophobic residues (V249, F340, F365; shown in red surface in Fig. 1D), however,
105 are unique to GT-A fold enzymes, and structurally bridge the aF helix (containing the xED motif),
106 the oD helix and the Rossmann fold domain. Although the functional significance of this
107  hydrophobic coupling is not evident from crystal structures, in some families (GT15 and GT55)
108 the hydrophobic coupling between aF and the Rossmann fold domain is replaced by charged
109 interactions (Fig. S2). The structural and functional significance of these family specific variations

110 are discussed below.

111  Our broad evolutionary analysis also reveals three hypervariable regions (HVs) extending from
112  the common core. These include an extended loop segment connecting B3 strand and aC helix
113  (HV1), asegmentlongerthan 28 amino acids connecting 37 and 38 strand (HV2) and a C-terminal
114 tail extending from the B8 strand (HV3) in the common core. These HVs, while conserved within
115 families, display significant conformational and sequence variability across families (Fig. 1A, Fig.
116  S3) and encode family-specific motifs that contribute to acceptor specificity in individual families,

117 as discussed below.

118 A phylogenetic framework relating diverse GT-A fold families

119 Having delineated the common core, we next sought to generate a phylogenetic tree relating
120 diverse GT-A fold families using the core alignment. Because of the inherent challenges in the
121 generation and visualization of large trees (19), we used a representative set of GT-A fold
122  sequences for phylogenetic analysis by first clustering the ~600,000 sequences into functional

123  categories using a Bayesian Partitioning with Pattern Selection (BPPS) method (20). The BPPS
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124  method partitions sequences in a multiple sequence alignment into hierarchical sub-groups based
125 on correlated residue patterns characteristic of each sub-group (Methods). This revealed 99 sub-
126  groups with distinctive patterns. Representative sequences across diverse phyla from these sub-
127  groups (993 sequences, Dataset S2) were then used to generate a phylogenetic tree (Fig. 2).
128 Based on the phylogenetic placement of these sequences, we broadly define fifty-three major
129  sub-groups, thirty-one of which correspond to CAZy-defined families (Table S2). The remaining
130  sub-groups correspond to sub-families within larger CAZy families. In particular, we sub-classified
131 the largest GT family in the CAZy database, GT2, into ten phylogenetically distinct sub-families.
132 Likewise, GT8 and GT31 were classified into seven and five sub-families, respectively. These
133  sub-families are not explicitly captured in CAZy and are annotated based on overall sequence
134  similarity to functionally characterized members. For example, “GT2-LpsRelated” corresponds to
135 a sub-family within GT2 most closely related to the bacterial B-1-4-glucosyltransferases (IgtF)
136 involved in Lipopolysaccharide biosynthesis (Fig. 2, Fig. S4). Such a hierarchical classification
137  captures the evolutionary relationships between GT-A fold families/sub-families while keeping the

138 nomenclature consistent with CAZy.

139 GT-Afold families and sub-families can be further grouped into clades based on shared sequence
140 features and placement in the phylogenetic tree (Fig. 2). For example, clade 1 places four GT2
141  sub-families (GT2-CeS, GT2-CWR, GT2-Chitin-HAS and GT2-Bre3) with GT84 and GT21
142  supported by high bootstrap values. Members of these six families are all involved in either
143  polysaccharide or glycosphingolipid biosynthesis. Additionally, the pattern-based classification
144  identified a conserved [QR]XXRW motif in the C-terminal HV3 (Fig. S5) which is unique to
145  members of this clade. The [QR]XXRW motif residues coordinate with the donor and acceptor in
146  a bacterial cellulose synthase (from GT2-CeS family) (21) and mutation of these residues in
147  bacterial cyclic p-1,2-glucan synthetase (Cgs, GT84) abrogates activity (22), suggesting a critical

148 role of this motif in functional specialization of clade 1 GT-As.
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149 The GT8 sub-families form sub-clades within the larger clade 9. For example, GT8 sequences
150 involved in the biosynthesis of pectin components group together in the GT8-GAUT and GT8-
151  GATL families (Fig. 2). The human LARGEL1 and LARGEZ2 glycosyltransferases are multi-domain
152  enzymes with two tandem GT-A domains. Their N-terminal GT-A domains fall into the GT8-Lrg
153  subfamily that groups closely with GT8-xylosyltransferase (GT8-XyIT) subfamily enzymes and
154 places all the GT8 «xylosyltransferases into a single well supported sub clade. The
155 lipopolysaccharide a-glucosyltransferases (GT8-LpsGlt) group with the glucosyltransferases of
156 the GT24 family, suggesting a common ancestor associated with glucose donor specificity. On
157 the other hand, the GT8-Glycogenin sub family, which also includes members that transfer a
158 glucose, is placed in a separate sub-clade, possibly indicating an early divergence for its unique
159  ability to add glucose units to itself (23). Clade 9 members also share common sequence features
160 associated with substrate binding that includes a lysine residue within the commonly shared KPW
161  motif in HV3 that coordinates with the phosphate group of the donor (e.g. bacterial LgtC (GT8-

162  LpsGlt) and other structures of clade 9 members)(Fig. S5).

163  We noticed that three out of four MGAT GT-A families responsible for the branching of N-glycans
164 (GT13 MGAT1, GT16 MGAT2 and GT54 MGATA4) fall in the same clade (clade 6), as expected
165 (Fig. 2). In contrast, the fourth family, GT17 MGAT3, which adds a bisecting GIcNAc to a core f3-
166  mannose with a B-1,4 linkage, is placed in a separate clade with GT14 and GT82 (clade 7), while

167  afifth MGAT member creating B-1,6-GIcNAc linkages (GT18 MGATS5) is a GT-B fold enzyme (24).

168  We further note that fifteen out of fifty-three GT-A families are found in both prokaryotes and
169 eukaryotes. These fifteen families fall on different clades throughout the tree. GT-A families
170  present only in prokaryotes, like GT81, GT82 and GT88, are also spread out in different clades
171 (Fig. 2). Similarly, other GT-A families that are present within restricted subsets of taxonomic

172  groups (like GT40 and GT60 present only in prokaryotes and protists) are also scattered
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173 throughout the tree. These observations suggest that the divergence of most GT-A families

174  predates the separation of prokaryotes and eukaryotes.
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Figure 2: Phylogenetic tree highlighting the 53 major GT-A fold subfamilies. Tips in this tree
represent GT-A sub-families condensed from the original tree for illustration. Support values are
indicated using different circles. Circles at the tips indicate bootstrap support for the GT-A family
clade represented by that tip. Tips missing the circles represent GT-A families that do not form a
single monophyletic clade. Nodes missing circles have a bootstrap support less than 50% and
are unresolved. Icon labels indicate the taxonomic diversity of that sub clade. Colors indicate the
mechanism for the families (blue: Inverting, red: Retaining). Detailed tree with support values and
expanded nodes are provided in Fig. S4 and in Newick format in Dataset S4. The family names
are described in Table S2.
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175 Multiple evolutionary lineages for inverting and retaining mechanisms

176  To obtain insights into the evolution of catalytic mechanism, we annotated the phylogenetic tree
177  based on known mechanisms of action (inverting or retaining). Inverting GTs are colored in blue
178 inthe phylogenetic tree, while retaining GTs are colored in red (Fig. 2). The dispersion of inverting
179 and retaining families in multiple clades suggests that these catalytic mechanisms emerged
180 independently multiple times during GT-A fold evolution. We find that natural perturbations in the
181 catalytic base residue, an important distinction between the inverting and retaining mechanisms,
182  correlates well with these multiple emergences across the tree. The residue that acts as a catalytic
183  base for inverting GTs (aspartate within the xED motif, XED-Asp) is variable across the retaining
184  families consistent with its lack of role in the retaining Sni mechanism (6). In the inverting families,
185 the XED-Asp is nearly always conserved and appropriately positioned to function as a catalytic
186 base (Fig. 3A), though some exceptions have been noted (6, 25). Out of the five clades grouping
187  inverting and retaining families, inverting families in three of these clades do not conserve the
188 XED-Asp (GT2-DPs, GT2-LpsRelated and GT43). The heterogeneous nature of this residue in
189 these families suggests that change of the catalytic base residue could be a key event in the
190 transition between inverting and retaining mechanisms. Unlike families that conserve the xED-
191  Asp, these families achieve inversion of stereochemistry through alternative modes that may
192 relieve the constraints necessary to conserve the XED-Asp. For example, in GT43, the Asp base
193 s replaced by a glutamate residue, which shifts the reaction center by one carbon bond (6).
194  Further, the dolichol phosphate transferases (DPMs and DPGSs) in the GT2-DP family, which lack
195 the xED-Asp entirely, transfer sugars to a negatively charged acceptor substrate (a phosphate
196 group) and thus do not need a catalytic base to initiate nucleophilic attack (25). Other GT-A
197 inverting families lacking the XED-Asp (GT12, GT14, GT17, GT49 and GT82) are grouped into
198 separate monophyletic clades segregating them from inverting families with conserved the xED-

199  Asp (Fig. 2). Out of these, only GT14 has representative crystal structures where a glutamate

11
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200 serves as the catalytic base (26). For other inverting families with a non-conserved xED-Asp,
201 residues from other structural regions may serve as a catalytic base. On the other hand, retaining
202 families like GT64 conserve the XED-Asp, yet do not use it as a catalytic base. Thus, there may
203  be multiple ways in which inverting and retaining mechanisms diverge, with one path being

204  mutation of this xED-Asp catalytic base.

205 One strongly supported clade that includes both inverting and retaining families is clade 2 that
206  groups inverting GT-A family members that transfer sugars to phosphate acceptors (GT2-DPs)
207  with three retaining GT-A families that also have phosphate-linked acceptors (GT55, GT78 and
208 GT81). This placement is further supported by the observation that these families share
209 structurally equivalent conserved residues in the HV2 region that coordinate the phosphate group
210 ofthe acceptor. In the GT2-DP subfamily, R117, R131 and S135 (Fig. 4A) in HV2 coordinate with
211  the acceptor phosphate groups. The conservation of these residues in GT55 and GT81 suggests
212 that they likely perform similar interactions in these latter subclades. Indeed, in the crystal
213  structure of M. tuberculosis GpgS (GT81), HV2 adopts a conformation similar to GT2-DPs and
214  the shared residues G184, R185 and T187 (equivalent to R117, R131 and S135) form similar

215 interactions with the phosphate group of the acceptor (Fig. S5).

216  Clade 5 places the inverting GT7 and GT2-CHS with the retaining GT27 and GT60 families (Fig.
217  2). This supports the evolution of these families from a close common ancestor through gene
218 duplication and divergence, which has been suggested through structural similarities between
219 GT7 and GT27 (27). After this initial divergence in mechanism within clade 5, the subclades group
220 the B-1,4-GalNAc transferase domains of bacterial and protist chondroitin polymerases (involved
221  in the elongation of glycosaminoglycan chondroitin)(GT2-CHS) with the GT7 family. The GT7
222  family includes the higher organism counterparts of the 3-1,4-GalNAc transferase domains of
223  chondroitin synthases, along with $-1,4 Gal transferases. The close placement of GT60 and GT27

224  families in this clade is also directly supported by previous literature indicating that these families
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225  share a conserved mode of polypeptide Ser/Thr O-glycosylation (28). Clade 5 thus consolidates
226  previous independent findings and suggests a shared ancestor, potentially extending the common
227  ancestry of GT2-CHS and GT7 to include GT27 and GT60, with an ancestral divergence in

228 mechanism.

229 Variations in the core and hypervariable regions contribute to unigue modes of

230 substrate specificity

231  Analysis of the patterns of conservation and variation in the common core indicates that each
232 residue position within the core has been mutated in some context during the course of evolution,
233 highlighting the tolerance of the GT-A fold to extensive sequence variation. While some of these
234  variations are confined to specific clades or families, such as replacement of DxD motif with DxH
235 motif in GT27 and GT60, other variations are found independently across distal clades (Fig. 3A).
236  For example, GT14 and prokaryotic members of GT6 that fall on different clades, have

237  independently lost the DxD motif and no longer require a metal ion for activity (26, 29).

238 The C-His is also lost independently in multiple clades (Fig.3A). In order to investigate how the
239 loss of metal binding C-His is compensated, we analyzed the C-His-metal ion interactions across
240 all available crystal structures. Structural alignment of crystal structures from families that are
241  missing the C-His such as GT13, GT6 and GT64 families revealed a water molecule coordinating
242  the metal ion in a manner similar to the C-His sidechain (Fig. 3B). In other families, such as GT24,
243  we found that the C-His is substituted by an aspartate (D1427), which coordinates with the metal
244  ion similar to C-His (Fig. 3B, bottom panel). Likewise, the conserved hydrophobic coupling
245  between aF helix and the Rossmann domain is replaced by charged interactions (R388 and E274,
246  respectively) in some retaining GTs such as GT15 and GT55 (Fig. S2). These substitutions point
247  to the ability of GT-As to accommodate changes, even in conserved positions at the core, through

248 compensatory mechanisms.
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Figure 3: Variations in the conserved core of the GT-A families. A) Weblogo depicting the
conservation of active site residues in the common core are shown for each of the GT-A families.
Residues are colored based on their physiochemical properties. B) Variations in the C-His is
compensated either using a water molecule (red sphere) or other charged residues (olive sticks)
to conserve its interactions. The metal ion is shown as a purple sphere. The donor substrate is
shown as brown lines. Interactions between the residues, metal ion and the donor are shown
using dotted lines.
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Figure 4: Family specific conserved features in the HV regions help coordinate the
acceptor. Conserved residues in A) HV2 of the DPM1 sequences in the GT2-DP subfamily
coordinate the phosphate group of the acceptor. B) HV1 of GT16 MGAT1 provide acceptor
specificity. C) HV2 and HV3 of EXTL GT64 family (C-terminal GT domain of the multidomain
sequences) coordinate the acceptor. Left: Alignments highlighting the constrained residues are
shown for each family. The family specific conserved residues are shown using black dots above
the alignment. Red bars above these dots indicate the significance of conservation (Higher bar
corresponds to more significantly conserved position). Right: Representative pdb structures are
shown for each family (GT2-DP:5mm1, GT16:5vcs, GT64:10n8); Donor substrates are colored
brown. Acceptors are colored purple. HVs are highlighted in orange. The position of the conserved
DxD and XxED motif for each structure is shown as cyan and magenta circles respectively.

249  As noted above, we found that the hypervariable regions display significant variations across GT
250 families but conserve family specific residues that contribute to acceptor specificity. For example,
251  a distinctive arginine (R117) and aspartate (D154) along with R131 and serine S135 within the

252  HV2 of DPML1 (GT2-DP sub-family) contribute to specificity towards a dolichol phosphate acceptor
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253 by creating a charged binding pocket for the phosphate group (Fig. 4A). Likewise, family-specific
254  residues (R198, H221 and E224 in 5vem) within the HV1 of MGAT2 (GT16) form a unique scaffold
255  for recognizing the terminal GIcNAc of the N-glycan acceptor (Fig. 4B). Similarly, the C-terminal
256  GT64 domain of the multidomain EXTLs contain specific residues in HV2 (R181 and Y193) and
257  HV3 (H289 and R293) that form a unique binding pocket for the tetrasaccharide linker acceptor
258  used to synthesize glycosaminoglycans (Fig. 4C). Together these examples illustrate the ability

259  of HVs to evolve family specific motifs to recognize different acceptors.

260 Machine learning to predict the donor specificity of GT-A sequences

261  As discussed above, the conserved catalytic residues dictate the mechanism of sugar transfer
262  and metal binding while the extended HVs use family specific motifs to dictate acceptor specificity.
263  We also find some clade specific features (such as the conserved Lys in clade 9, and QXXRW in
264 clade 1) and G-loop residues involved in donor binding, however, the overall framework that
265 dictates donor sugar specificity in GTs is largely unknown. Sequence homology alone is
266 insufficient to predict donor specificity because evolutionarily divergent families can bind to
267 common substrates, and sometimes even two closely related sequences bind to different donors
268  (Fig. S6)(15). Our global analysis of GT-A families provides a comparative basis to contrast
269  sequences that bind to different donors. To test whether evolutionary features gleaned from this
270 global analysis can be used to better predict donor substrate specificity, we employed a machine
271 learning (ML) framework that learns from the specificity-determining residues of functionally
272  characterized enzymes to predict specificity of understudied sequences. In brief, using an
273  alignment of a well curated set of 713 GT-A sequences (Dataset S5, SI Methods) with known
274  donor sugars, we derived five amino acid properties (hydrophobicity, polarity, charge, side chain
275 volume and accessible surface area) from each aligned position within the common core. These
276  properties were then used as features to train multiple machine learning methods. Among the six

277  methods used, random forest model achieved the best prediction performance (accuracy ~88%)
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Figure 5: Outline and results of the ML analysis. Training set input into the pipeline are shown
in green squares. Steps of the ML analysis in purple boxes are associated with different panels
of the figure. A) Percent accuracy based on 10-fold CV for each of the trained ML models. B)
Confusion matrix from the best model (random forest using 239 features). The full model was
used to generate this matrix which was then evaluated using 10-fold CV. Panels C, D and E show
the 15 most contributing features mapped into representative structures. Metal ion and donor
substrate are shown in purple sphere and brown sticks respectively. C) R71 interacts with the
donor sugar and forms a bridge between D179 and D90 in GT6 (5c4b). D) The top contributing
features (position 176 and 177, yellow surface) line the donor binding pocket in GT7 (1023). E)
The top contributing feature positions not directly involved in donor binding fall around the active
site and are shown using yellow surface in the prototypic GT-A (2z87). F) Scatter plot showing
the probability scores assigned for each predicted sequence by the predicted donor type. Colors
indicate the confidence level of the prediction derived using the probability and its difference from
the 2nd class (S| Methods, Dataset S6)

278 based on a 10-fold cross validation (CV) using 239 contributing features (S| Methods, Fig. 5A,B,
279 Table S6). To further validate the model, we tested its performance on a validation set of 64
280 sequences that were not used to train the ML model but have known sugar specificities. The
281 random forest classifier correctly predicted donor substrates for 92% of these sequences, nearly

282  80% of which were predicted with high confidence (blue rows in Dataset S6).

283  This model was then used to predict donor sugars for GT-A domains with unknown specificities

284  from 5 organisms: H. sapiens, C. elegans, D. melanogaster, A. thaliana and S.cerevisiae (Dataset
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285  S6). Each prediction is associated with a confidence level derived from the probability for each of
286 the 6 donor classes (S| Methods). 55% of the predictions have high and moderate confidence
287 levels and present good candidates for further investigation (Fig. 5F). The remaining 45% of the
288  predictions are low confidence. This likely reflects the promiscuity of GT-As for donor preferences,

289 as seen across many GT-As (16, 30), or non-catalytic GT-As like CLGALT1C1 (Cosmc) (31).

290  Our predictions assign putative donors for 10 uncharacterized human GT-A domains (Dataset
291  S6). BSGNT9 is predicted to employ UDP-GIcNAc with high confidence like other GT31 3-3-N-
292  acetylglucosaminyltransferases (B3GNTs) in  humans (32). The two procollagen
293 galactosyltransferases in humans (COLGALT1 and COLGALTZ2) are multidomain proteins with
294  two tandem GT domains. While their respective C-terminal domains catalyze B-Gal addition to
295 hydroxylysine side-chains in collagen, our predictions assign a putative GIcNAc transferase role
296 for their N-terminal GT domain. More interestingly, GLT8D1, a GT8 glycosyltransferase with an
297 unknown function implicated in neurodegenerative diseases (33), is predicted to have a
298 glucosyltransferase specificity. In other organisms, the GT2 sequences in A. thaliana (mostly
299 involved in plant cell wall biosynthesis) are predicted to bind glucose and mannose substrates,
300 the primary components of the plant cell wall (Dataset S6). We also identify a novel
301 galactosyltransferase function for a GT25 enzyme in C. elegans. These predictions can guide

302 characterization of new GT sequences with unknown functions.

303  We next performed feature selection to identify features that contribute most to substrate (donor)
304  prediction. Fifteen features selected by a combination of multiple feature selection methods (Sl
305 Methods) contributed most to substrate prediction. Some of these features correspond to residues
306 involved in substrate binding and catalytic functions such as the Asp within the DxD motif,
307 residues in the G-loop and the C-His (15, 16, 25). One such contributing feature is a positively
308 charged residue at aligned position 71 that emanates from the aC helix and interacts with the

309  donor sugar. In a crystal structure of ABO (GT6), R71 (R188 in 5¢c4b) has been shown to bridge
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310 the DxD and the XxED motif to keep the catalytic site intact (Fig. 5C)(34). Our ML model identifies
311 the charge and accessible surface area of R71 as a major contributing feature in donor specificity.
312  The remaining features, surprisingly, are not directly involved in donor binding. For example, the
313 total volume of the residues in a loop preceding the XED motif (aligned position 176-177, WG358-
314 359 in 2z87, Fig. 5D) contributes significantly to donor specificity (Table S3), presumably by
315 controlling the accessibility of the donor binding site. Further, an ML model trained using features
316  from only the donor binding residues performs with an accuracy of only 75%, indicating the
317 importance of features other than those directly involved in donor binding. Thus, despite only a
318 few residues being directly involved in donor interactions, additional contributions to donor
319  specificity come from residues more distal from the active site. Contributions from these peripheral
320 secondary shell features surrounding the donor binding site (Fig. 5E) highlight the potential role

321  of higher order (allosteric) interactions in determining donor substrate specificity.

322 Discussion

323  Prior studies on the evolution of GTs have generally focused either on distinct GT subfamilies or
324  biosynthetic pathways with additional structural classifications of GTs into one of three distinct
325  protein fold superfamilies (6, 9, 10). In our present work we focused on the analysis of the largest
326  of the GT superfamilies, those that comprise a GT-A protein fold characterized by an extended
327 Rossmann domain with associated conserved helical segments. These enzymes generally
328 employ the Rossmann domain for nucleotide sugar donor interactions and extended loop regions
329 for acceptor glycan interactions (6). Using an unbiased profile search strategy, we assembled a
330 total of over 600,000 GT-A fold related sequences from all domains of life for deep evolutionary
331 analysis. To support this profile-based assembly, we leveraged structural alignments on GT-A
332 fold enzymes in PDB and secondary structure predictions when no crystal structures were

333 available. The resulting alignment allowed the definition of a common structural core shared
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334 among the diverse GT-A fold enzymes and defined positions where hypervariable loop insertions
335 were elaborated to provide additional functional diversification (Fig. 1). In cases where data was
336 available for enzyme-acceptor complexes these latter loop insertions generally contribute to
337 unique, family specific acceptor interactions. Thus, a structural framework is presented for GT-A
338 fold enzyme evolution. Since the common core is present across all kingdoms of life, it presumably
339  represents the minimal ancestral structural unit for GT-A fold catalytic function by defining donor
340 substrate interactions and minimal elements for acceptor recognition and catalysis. In fact, we
341 find several archaeal and bacterial sequences that closely resemble this common core consensus
342 sequence (Dataset S7). Based on our studies, we propose a progressive diversification of
343  glycosyltransferase function through evolution of donor specificity by accumulation of mutations
344  in the common core region and divergence in acceptor recognition through expansion of the
345 hypervariable loop regions. Consistent with this view, we find conserved family-specific motifs
346  within the hypervariable regions that confer unique acceptor specificities in various families.
347 These expansions likely contributed to the evolution of new GT functions and catalyzed new

348 glycan diversification observed in all domains of life.

349 A surprising finding from our studies is the dispersion of inverting and retaining catalytic
350 mechanisms among families in the GT-A fold evolutionary tree (Fig. 2). Recent models indicate
351 that distinctions between inverting and retaining catalytic mechanisms arise from differences in
352 the angle of nucleophilic attack by the acceptor toward the anomeric center of the donor sugar
353  (6). Inverting mechanisms require an in-line attack and direct displacement by the nucleophile
354 relative to the departing nucleotide diphosphate of the sugar donor and a conserved placement
355 of the XED-Asp carboxyl group as catalytic base at the beginning of the aF helix. In contrast,
356 retaining enzymes generally alter the angle of nucleophilic attack by the acceptor, use a donor
357  phosphate oxygen as catalytic base, and employ a dissociative mechanism for sugar transfer (6).

358 The fundamental differences in these catalytic strategies would suggest an early divergence of
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359 enzymes employing these respective mechanisms. However, the GT-A fold phylogenetic tree
360 strongly suggests that inverting and retaining mechanisms evolved independently at multiple
361 points in the evolution of GT-A families (Fig. 2). Since the main difference in these mechanisms
362 isthe change in position of the nucleophilic hydroxyl and catalytic base, we believe this poses the
363  possibility for a transitional phase in the evolution between the two mechanisms. The xED-Asp
364  carboxyl group is highly conserved in the inverting enzymes and is appropriately placed for
365  acceptor deprotonation. Variants of this motif either lack the residue entirely, as seen in many
366 retaining enzymes, or use compensatory modes to accommodate changes at this position, as
367 seen for the inverting enzymes in GT43, GT2-DPs, and GT2-LPSRelated. In fact, in each of the
368 latter cases the respective inverting GT family is clustered with closely related GT families
369 employing a retaining catalytic mechanism. Thus, inverting enzyme variants that accommodate
370 changes to the XxXED motif group may represent examples of transitional phases in evolution
371 between inverting and retaining catalytic mechanisms. Other inverting enzymes harboring
372  variants in the XED motif segregate into separate clades and could represent outlier families that
373  have developed alternative ways to compensate for the loss of XED-Asp. This ability to evolve
374  distinct catalytic strategies, in some cases through presumed convergent evolution, could allow
375 each family to evolve independent capabilities for donor and acceptor interactions as well as for
376  anomeric linkage of sugar transfer, while retaining other essential aspects of protein structural

377  integrity through the use of a conserved and stable Rossmann fold core.

378 In an effort to define the sequence constraints for the respective catalytic mechanisms we also
379 employed a machine learning framework for prediction of the mechanism for unknown sequences
380 and were able to assign the donor sugar nucleotide for a test set of enzymes with high accuracy.
381  Surprisingly, the contributing features for accurate prediction include residues involved in donor
382 binding as well as positions that are distal to the active site likely as secondary shell effects or

383 allosteric interactions. Due to their indirect involvement, such positions are generally difficult to
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384  pinpoint using structural studies alone emphasizing the need for robust sequence-based
385 comparative analysis to understand GT-A function. The predictions made from the ML framework

386 can serve as a valuable resource for generating and testing new hypotheses on GT-A functions.

387 Numerous additional insights into GT function were also revealed through inspection of the
388 aligned sequences and the phylogenetic tree. For example, the clustering of mammalian N-glycan
389  GIcNAc branching enzymes (MGAT1 (GT13), MGAT2 (GT16), and MGAT4 (GT54)) in the same
390 clade suggests a common origin for these enzymes, while placement of MGAT3 (GT17) in a
391 separate clade could point to its unique role in adding a bisecting GIcNAc to the N-glycan core
392 thereby regulating N-glycan extension (35). In contrast, MGAT5 (GT18) involved in N-glycan 31,6-
393  GIcNAc branching is a GT-B fold enzyme with a clearly distinct evolutionary origin. While most
394 clades are well resolved, bootstrap support values for nodes at the base of the tree are low and
395 need to be interpreted with caution. This low resolution results from high divergence between
396 families and possibly other events like horizontal gene transfer and convergent evolution.
397 However, trees generated using alternative strategies support the overall topology (Fig S7) and
398 clades are congruent with clusters obtained using an orthogonal Bayesian classification scheme,

399  which adds confidence to the phylogeny (Table S2).

400 For some GT-A fold enzymes variations in the catalytic site can also be accommodated by other
401 compensatory changes. An example is the use of the C-His motif for coordination of the divalent
402  cation in most GT-A fold enzymes in contrast with enzyme variants that employ water molecules
403 to compensate for the loss of this residue (Fig. 3B). Similarly, some inverting GTs dispense with
404  the use of the divalent cation and the DxD motif and substitute interactions with the sugar donor
405  through use of basic side chains (e.g. GT14). A further extreme is the duplication, divergence and
406  pseudogenization within the GT31 family. Human C1GALT1C1 (GT31, COSMC) shares a high
407  sequence similarity to another GT31 member, CLGALTL1 (T-synthase), yet COSMC has lost both

408 the DxD and the XED motifs and has no catalytic activity. Instead, COSMC acts as an important
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409 scaffold and chaperone for the proper assembly and catalytic function of T-synthase (31). The
410  ability of GT-As to harbor such structural variations that allow them to develop new functions make
411  them well-suited to evolve rapidly and facilitate the synthesis of a diverse repertoire of glycans

412  across all living organisms.

413  Our unbiased, top-down sequence-based analysis suggests new and unanticipated evolutionary
414  relationships among the GT-A fold enzymes. Prior suggestions of such relationships have been
415 inferred by the clustering of GT sequences into families in the CAZy database. However, the
416 CAZy database of GT sequences does nhot provide access to the broader sequence relationships
417 among the GT-A fold enzymes or how a general model of a core conserved GT-A fold scaffold
418 can serve as a progenitor catalytic platform for binding sugar donors and facilitating glycan
419  extension. The sequence assembly, phylogenetic tree, and placement within the framework of
420 known GT-A fold structures in the present studies provide key insights into conserved elements
421  of the hydrophobic core, linkage to the DxD motif for cation and sugar donor interactions, and the
422  conserved aF helix harboring the XxED catalytic base. Additional hypervariable extensions at
423  defined positions from this conserved core were then progressively recruited to confer unique
424  modes of acceptor interactions to develop new specificities and evolve new functions. Thus, the
425  core of the protein scaffold can be maintained to facilitate protein stability while rapid evolution of
426  the hypervariable loops can develop new glycan synthetic functionalities through presentation of
427  novel acceptors to the catalytic site. Variation in the location of the acceptor hydroxyl nucleophile
428 relative to the donor sugar anomeric center presents the opportunity for distinctions in catalytic
429  mechanism and anomeric outcome for sugar transfer. The result is a rapidly evolving set of GT
430 enzymatic templates as the biosynthetic machinery for diverse glycan extension on cell surface
431  and secreted glycoproteins and glycolipids. In such contexts the resulting glycoconjugates confer
432  potential functional selective advantages at the cell surface, but also act as ligands and pathogen

433  entry points for negative evolutionary pressure. The constant challenges to adapt to these Red
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434  Queen effects of positive and negative selective pressures for glycan synthesis have led to the
435 remarkable diversity in the GT enzymes and their resulting glycan structural products. We
436  anticipate that the sequence and structural principles that drive GT-A fold evolution will also likely
437 extend to GT-B and GT-C fold enzymes and represent a common theme for the elaboration of

438  diverse glycan structures in all domains of life.

439 Methods

440 Generation of GT-A profiles and alignment

441  Multiple alignments for 34 CAZy GT-A were collected from the Conserved Domain Database
442  (CDD) (36) or were manually built using MAFFT v7.3 (37) from sequences curated at the CAZy
443  database (Table S1). These seed profiles were then multiply aligned using the mapgaps scheme
444  (14) guided by a structure based sequence alignments of all available pdb structures using
445  Expresso (38) and MAFFT to generate the GT-A profiles. Representative pdb structures
446  described in this study are listed and cited in Dataset S1. Finally, the alignment of secondary
447  structures and conserved motifs were manually examined and corrected, where necessary. Very
448  divergent GT-A families such as GT29 and GT42 sialyltransfearses were not included in this
449  analysis (Sl Methods). The GT-A profiles were then used for a sequence similarity search using
450 mapgaps to identify and align more than 600,000 GT-A domain sequences from the NCBInr
451 database. This alignment was filtered for fragmentary sequences and false hits. This filtered

452  alignment was then used to define the boundaries of the GT-A common core (S| Methods).

453 Bayesian Statistical analyses

454 A representative subset of 24,650 GT-A sequences were generated from the ~600,000 putative
455  GT-A sequences by using a family-based sequence similarity filtering (SI Methods). This

456  sequence set was then used to apply the Optimal multiple-category Bayesian Partitioning with
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457  Pattern Selection (omcBPPS) scheme (20). omcBPPS identifies patterns of column-wise amino
458  acid conservation and variation in the multiple sequence alignment. The resulting family specific
459  positions were then used as statistical measures to classify the GT-As into 99 unique sets that
460 correspond to the 53 families described in this study (Table S2). omcBPPS also identified aligned
461  positions that are conserved across all GT-A fold families. This revealed the 20 conserved
462  positions within the core component, that were also verified by calculating conservation scores
463  using the Jensen-Shannon divergence score as described and implemented by (39)(used in Fig.

464  1A).

465 Phylogenetic analysis

466 A smaller subset of 993 sequences were used for phylogenetic reconstruction of the GT-A
467  families. This set includes all the identified GT-A sequences from five model organisms: H.
468 sapiens (human), C. elegans (worm), D. melanogaster (fly), A. thaliana (dicot plant) and S.
469 cerevisiae (yeast) along with select sequences representing the diverse taxonomic group in each
470 family. These representative sequences were selected by finding the union of top hits for every
471  taxonomic group present within each of the 99 sets and the seed alignments for the 34 CAZy GT-
472 A families. This selection criteria maximized the phylogenetic and taxonomic diversity while
473  keeping the number of sequences to a minimum. The alignment for these 993 sequences were
474  then trimmed to remove the insert positions and keep only the 231 aligned positions described
475 above. This trimmed alignment was used to build a phylogenetic consensus tree using IQTree
476  v1.6.1 (40) with the following options: -nt AUTO -st AA -m MFP+MERGE -alrt 1000 -bb 1000 -wbt
477  -nm 1000 -bnni. Further support for the phylogenetic tree was collected by comparing its topology
478  to trees generated using orthogonal methods like Hidden Markov Model (HMM) distances and

479  structural similarities, that have been used in previous studies (41, 42)(Fig. S7, SI Methods).
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480 Defining the GT-A families and sub-families

481 The GT-A sequences were first classified into pattern-based groups using omcBPPS. Based on
482  the placement of representative sequences from these groups in the phylogenetic tree, they were
483 merged into GT-A families and sub-families. The correspondence between the 53 GT-A families
484  and subfamilies with the 99 pattern-based groups are provided in Table S2. Sequences from
485 some families did not form any distinct pattern-based groups due to either a low number of
486  sequences for a statistically significant grouping (GT78) or a lack of distinguishing patterns within
487  the aligned positions (GT25, GT88). Representative sequences for these families were collected
488 from the seed alignments for these families as described above. We also identified the N-terminal
489  GT2 domain of the multidomain chondroitin polymerase structure from E. coli (Pdb Id: 2z87) as
490 the prototypic GT-A structure to use as a comparative basis for structural analyses. This sequence
491  was selected based on the lowest E-value and highest similarity score of a BLAST search of all
492  pdb structures against the GT-A consensus sequences. Weblogos for the conserved active site

493  residues were derived for each GT-A subfamily using Weblogo 3.6.0 (43).

494  Machine learning analysis

495  In order to train an ML model for GT-A donor substrate prediction, we first curated a training
496  dataset by mining the “characterized” tab of the CAZy GT database and the UniProt database to
497  find 713 GT-A domain sequences with known donor sugars. The donor sugar information for
498 these sequences were extracted from their assigned protein names. Based on the availability of
499 training sequences, 6 major donor type classes were defined: Glc, GIcNAc, Gal, GalNAc, Man,
500 and “Others” with each class having more than 70 sequences in the training dataset. The “Others”
501 category merged the least represented donor types with less than 50 training sequences each
502 (Ara, Fuc, GalF, GIcA, ManNAc, Rham, and Xyl). An alignment of the 713 sequences were

503 generated which was filtered and then used to derive 5 amino acid properties (charge, polarity,
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504  hydrophobicity, average accessible surface area, and side chain volume) for each aligned position
505 that were used as features for machine learning. We implemented correlation-based feature
506 selection (CFS) (44) with 5-fold CV by using WEKA version 3.8.3 (45) under default settings to

507 select 239 informative features for building multiple multiclass classification models.

508 Using these features, we trained multiple models (SVM, multilayer perceptron, Bayesian network,
509 logistic regression, naive Bayes classifier, J48, and random forest) using WEKA and the R
510 package “randomForest” (46). These models were compared using 10-fold CV under default
511  settings. 10-fold CV evaluates the ML models by iteratively training on 90% of the data selected
512 at random and testing the prediction on the unseen 10% of the data. This is repeated 10 times
513 and the results on the testing dataset are summarized into an accuracy measure. The random
514  forest model trained with 239 features had the highest accuracy and overall performance and thus
515 was selected as the model of choice for predicting donor sugar substrates for GT-A enzymes.
516  Confidence scores were assigned for each prediction based on the probability for each of the 6
517  donor classes. Further details of the methods implemented for machine learning and generation

518 of confidence levels are provided in SI Methods.
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