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Abstract 1 

Glycosyltransferases (GTs) are prevalent across the tree of life and regulate nearly all aspects of 2 

cellular functions by catalyzing synthesis of glycosidic linkages between diverse donor and 3 

acceptor substrates. Despite the availability of GT sequences from diverse organisms, the 4 

evolutionary basis for their complex and diverse modes of catalytic and regulatory functions 5 

remain enigmatic. Here, based on deep mining of over half a million GT-A fold sequences from 6 

diverse organisms, we define a minimal core component shared among functionally diverse 7 

enzymes. We find that variations in the common core and the emergence of hypervariable loops 8 

extending from the core contributed to the evolution of catalytic and functional diversity. We 9 

provide a phylogenetic framework relating diverse GT-A fold families for the first time and show 10 

that inverting and retaining mechanisms emerged multiple times independently during the course 11 

of evolution. We identify conserved modes of donor and acceptor recognition in evolutionarily 12 

divergent families and pinpoint the sequence and structural features for functional specialization. 13 

Using the evolutionary information encoded in primary sequences, we trained a machine learning 14 

classifier to predict donor specificity with nearly 88% accuracy and deployed it for the annotation 15 

of understudied GTs in five model organisms. Our studies provide an evolutionary framework for 16 

investigating the complex relationships connecting GT-A fold sequence, structure, function and 17 

regulation.  18 

Introduction 19 

Complex carbohydrates make up a large bulk of the biomass of any living cell and play essential 20 

roles in biological processes ranging from cellular interactions, pathogenesis, immunity, quality 21 

control of protein folding and structural stability (1). Biosynthesis of complex carbohydrates in 22 

most organisms is carried out by a large and diverse family of Glycosyltransferases (GTs) that 23 
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transfer sugars from activated donors such as nucleotide diphosphate and monophosphate 24 

sugars or lipid linked sugars to a wide range of acceptors that include saccharides, lipids, nucleic 25 

acids and metabolites. Nearly 1% of protein coding genes in the human genome, and more than 26 

2% of the Arabidopsis genome, are estimated to be GTs. GTs have undergone extensive variation 27 

in primary sequence and three-dimensional structure to catalyze glycosidic linkages between 28 

diverse donor and acceptor substrates. However, an incomplete understanding of the 29 

relationships connecting sequence, structure, function and regulation presents a major bottleneck 30 

in understanding pathogenicity, metabolic and neurodegenerative diseases associated with 31 

abnormal GT functions (2, 3).  32 

Structurally, GTs adopt one of three folds (GT-A, -B or -C) with the GT-A Rossmann like fold being 33 

the most common. The GT-A fold is characterized by alternating β-sheets and α-helices (α/β/α 34 

sandwich) found in most nucleotide binding proteins (4). Majority of GT-A fold enzymes are metal 35 

dependent and conserve a DxD motif in the active site that helps coordinate the metal ion and 36 

the nucleotide sugar. Currently, 109 GT-A families have been catalogued in the Carbohydrates 37 

Active Enzymes (CAZy) database (5). These families can be broadly classified into two categories 38 

based on their mechanism of action and the anomeric configuration of the glycosidic product 39 

relative to the sugar donor, namely, inverting or retaining. Inverting GTs generally employ an SN2 40 

single displacement reaction mechanism that results in inversion of anomeric configuration for the 41 

product, whereas retaining GTs generally employ a dissociative SNi-type mechanism that retains 42 

the anomeric configuration of the product (6). While the sequence basis for inverting and retaining 43 

mechanisms is not well understood, most inverting GT-As have a conserved Asp or Glu within a 44 

xED motif that serves as the catalytic base to deprotonate the incoming nucleophile of the 45 

acceptor, and initiate nucleophilic attack with direct displacement of the phosphate leaving group 46 

(7, 8). Retaining GT-As bind the sugar donor similarly to the inverting enzymes, but shift the 47 

position of the acceptor nucleophile to attack the anomeric carbon from an obtuse angle using a 48 
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phosphate oxygen of the sugar donor as the catalytic base and employ a dissociative mechanism 49 

that retains the anomeric linkage for the resulting glycosidic product (6). Such mechanistic 50 

diversity of GTs is further illustrated by recent crystal structures of GTs bound to acceptor and 51 

donor substrates which show that different acceptors are accommodated in the active site through 52 

variable loop regions emanating from the catalytic core (6). However, whether these observations 53 

hold for the entire super-family is not known because of the lack of structural information for the 54 

vast number of GTs.  55 

The wealth of sequence data available on GTs provides an opportunity to infer underlying 56 

mechanisms through deep mining of large sequence datasets. In this regard, the CAZY database 57 

serves as a valuable resource for generating new functional hypotheses by classifying GT 58 

enzymes into individual families based on overall sequence similarity. However, a broader 59 

understanding of how these enzymes evolved to recognize diverse donor and acceptor substrates 60 

requires a global comparison of diverse GT-A fold enzymes. Such comparisons are currently a 61 

challenge due to limited sequence similarity between families and the lack of a phylogenetic 62 

framework to relate evolutionarily divergent families. Previous efforts to investigate GT evolution 63 

have largely focused on individual families or pathways (9, 10) and have not explicitly addressed 64 

the challenge of mapping the evolution of functional diversity across families. 65 

Here through deep mining of over half a million GT-A fold related sequences from diverse 66 

organisms, and application of specialized computational tools developed for the study of large 67 

gene families (11, 12), we define a common core shared among diverse GT-A fold enzymes. 68 

Using the common core features, we generate a phylogenetic framework for relating functionally 69 

diverse enzymes and show that inverting and retaining mechanisms emerged independently 70 

multiple times during evolution. We identify convergent modes of substrate recognition in 71 

evolutionarily divergent families and pinpoint sequence and structural features associated with 72 

functional specialization. Finally, based on the evolutionary and structural features gleaned from 73 
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a broad analysis of diverse GT-A fold enzymes, we develop a machine learning (ML) framework 74 

for predicting donor specificity with nearly 88% accuracy. We predict donor specificity for 75 

uncharacterized GT-A enzymes in diverse model organisms and provide testable hypotheses for 76 

investigating the relationships connecting GT-A fold structure, function and evolution.   77 

Results 78 

An ancient common core shared among diverse GT-A fold enzymes 79 

To define common features shared among diverse GT-A fold enzymes, we generated a multiple 80 

sequence alignment of over 600,000 GT-A fold related sequences in the non-redundant (NR) 81 

sequence database (13) using curated multiple-aligned profiles of diverse GTs (Table S1). The 82 

alignment profiles were curated using available crystal structures (Methods)(14). The resulting 83 

alignment revealed a GT-A common core consisting of 231 aligned positions. These aligned 84 

positions are referred to throughout this analysis and are mapped to representative structures in 85 

Dataset S1. The common core is defined by eight β sheets and six α helices, including three β 86 

sheets and α helices from the N-terminal Rossmann fold (Fig. 1A,B).  87 

Quantification of the evolutionary constraints imposed on the common core reveal twenty residues 88 

shared among diverse GT-A fold families. These include the DxD and the xED motif residues 89 

involved in catalytic functions, and other residues not typically associated with catalysis (Fig. 1A) 90 

such as the conserved glycine at aligned position 151 (G335 in 2z87) in the flexible G-loop and a 91 

histidine residue (H386 in 2z87) in the C-terminal tail at aligned position 207, henceforth referred 92 

to as the C-His. Residues from the G-loop in some families, such as the blood ABOs (GT6) and 93 

glucosyl-3-phosphoglycerate synthases (GpgS; GT81), contribute to donor binding (15, 16). The 94 

C-His, likewise, coordinates with the metal ion and contributes to catalysis in a subset of GTs, 95 

such as polypeptide N-acetylgalactosaminyl transferases (ppGalNAcTs; GT27) and 96 
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lipopolysaccharyl-α-1,4-galactosyltransferase C (LgtC; GT8) (17, 18). The conservation of these 97 

residues across diverse GT-A fold enzymes suggest that they likely perform similar functional 98 

roles in other families as well. 99 

 

 

Figure 1: The GT-A common core and its elements. A) Plot showing the schematics of the GT-

A common core with 231 aligned positions. Conserved secondary structures (red α-helices, blue 

β-sheets, green loops) and hypervariable regions (HVs)(orange) are shown. Conservation score 

for each aligned position is plotted in the line graph above the schematics. Evolutionarily 

constrained regions in the core: the hydrophobic positions (yellow) and the active site residues 

(DxD: Cyan, xED: Magenta, G-loop: green, C-His: olive) are highlighted above the positions. B) 

The conserved secondary structures and the location of HVs are shown in the N-terminal GT2 

domain of the multidomain chondroitin polymerase structure from E. coli (PDB: 2z87) that is used 

as a prototype as it displays closest similarity to the common core consensus (SI Methods). C) 

Active site residues of the prototypic GT-A structure. Metal ion and donor substrate are shown as 

a brown sphere and sticks, respectively. D) Architecture of the hydrophobic core (Yellow: core 

conserved in all Rossmann fold containing enzymes, Red: core elements present only in the GT-

A fold). Residues are labeled based on their aligned positions. Numbers within parentheses 

indicate their position in the prototypic (PDB: 2z87) structure. 
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The remaining core conserved residues include fourteen hydrophobic residues that are dispersed 100 

in sequence, but spatially cluster to connect the catalytic and donor binding sites in the Rossmann 101 

fold. Eleven out of the fourteen residues (highlighted in yellow in Fig. 1D) are shared by other 102 

Rossmann fold proteins (Fig. S1) suggesting a role for these residues in maintaining the overall 103 

fold. Three hydrophobic residues (V249, F340, F365; shown in red surface in Fig. 1D), however, 104 

are unique to GT-A fold enzymes, and structurally bridge the αF helix (containing the xED motif), 105 

the αD helix and the Rossmann fold domain. Although the functional significance of this 106 

hydrophobic coupling is not evident from crystal structures, in some families (GT15 and GT55) 107 

the hydrophobic coupling between αF and the Rossmann fold domain is replaced by charged 108 

interactions (Fig. S2). The structural and functional significance of these family specific variations 109 

are discussed below.  110 

Our broad evolutionary analysis also reveals three hypervariable regions (HVs) extending from 111 

the common core. These include an extended loop segment connecting β3 strand and αC helix 112 

(HV1), a segment longer than 28 amino acids connecting β7 and β8 strand (HV2) and a C-terminal 113 

tail extending from the β8 strand (HV3) in the common core. These HVs, while conserved within 114 

families, display significant conformational and sequence variability across families (Fig. 1A, Fig. 115 

S3) and encode family-specific motifs that contribute to acceptor specificity in individual families, 116 

as discussed below. 117 

A phylogenetic framework relating diverse GT-A fold families  118 

Having delineated the common core, we next sought to generate a phylogenetic tree relating 119 

diverse GT-A fold families using the core alignment. Because of the inherent challenges in the 120 

generation and visualization of large trees (19), we used a representative set of GT-A fold 121 

sequences for phylogenetic analysis by first clustering the ~600,000 sequences into functional 122 

categories using a Bayesian Partitioning with Pattern Selection (BPPS) method (20). The BPPS 123 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 1, 2020. ; https://doi.org/10.1101/2019.12.31.891697doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.31.891697
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
8 

method partitions sequences in a multiple sequence alignment into hierarchical sub-groups based 124 

on correlated residue patterns characteristic of each sub-group (Methods). This revealed 99 sub-125 

groups with distinctive patterns. Representative sequences across diverse phyla from these sub-126 

groups (993 sequences, Dataset S2) were then used to generate a phylogenetic tree (Fig. 2). 127 

Based on the phylogenetic placement of these sequences, we broadly define fifty-three major 128 

sub-groups, thirty-one of which correspond to CAZy-defined families (Table S2). The remaining 129 

sub-groups correspond to sub-families within larger CAZy families. In particular, we sub-classified 130 

the largest GT family in the CAZy database, GT2, into ten phylogenetically distinct sub-families. 131 

Likewise, GT8 and GT31 were classified into seven and five sub-families, respectively. These 132 

sub-families are not explicitly captured in CAZy and are annotated based on overall sequence 133 

similarity to functionally characterized members.  For example, “GT2-LpsRelated” corresponds to 134 

a sub-family within GT2 most closely related to the bacterial β-1-4-glucosyltransferases (lgtF) 135 

involved in Lipopolysaccharide biosynthesis (Fig. 2, Fig. S4). Such a hierarchical classification 136 

captures the evolutionary relationships between GT-A fold families/sub-families while keeping the 137 

nomenclature consistent with CAZy. 138 

GT-A fold families and sub-families can be further grouped into clades based on shared sequence 139 

features and placement in the phylogenetic tree (Fig. 2). For example, clade 1 places four GT2 140 

sub-families (GT2-CeS, GT2-CWR, GT2-Chitin-HAS and GT2-Bre3) with GT84 and GT21 141 

supported by high bootstrap values. Members of these six families are all involved in either 142 

polysaccharide or glycosphingolipid biosynthesis. Additionally, the pattern-based classification 143 

identified a conserved [QR]XXRW motif in the C-terminal HV3 (Fig. S5) which is unique to 144 

members of this clade. The [QR]XXRW motif residues coordinate with the donor and acceptor in 145 

a bacterial cellulose synthase (from GT2-CeS family) (21) and mutation of these residues in 146 

bacterial cyclic β-1,2-glucan synthetase (Cgs, GT84) abrogates activity (22), suggesting a critical 147 

role of this motif in functional specialization of clade 1 GT-As.  148 
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The GT8 sub-families form sub-clades within the larger clade 9. For example, GT8 sequences 149 

involved in the biosynthesis of pectin components group together in the GT8-GAUT and GT8-150 

GATL families (Fig. 2). The human LARGE1 and LARGE2 glycosyltransferases are multi-domain 151 

enzymes with two tandem GT-A domains. Their N-terminal GT-A domains fall into the GT8-Lrg 152 

subfamily that groups closely with GT8-xylosyltransferase (GT8-XylT) subfamily enzymes and 153 

places all the GT8 xylosyltransferases into a single well supported sub clade. The 154 

lipopolysaccharide α-glucosyltransferases (GT8-LpsGlt) group with the glucosyltransferases of 155 

the GT24 family, suggesting a common ancestor associated with glucose donor specificity. On 156 

the other hand, the GT8-Glycogenin sub family, which also includes members that transfer a 157 

glucose, is placed in a separate sub-clade, possibly indicating an early divergence for its unique 158 

ability to add glucose units to itself (23). Clade 9 members also share common sequence features 159 

associated with substrate binding that includes a lysine residue within the commonly shared KPW 160 

motif in HV3 that coordinates with the phosphate group of the donor (e.g. bacterial LgtC (GT8-161 

LpsGlt) and other structures of clade 9 members)(Fig. S5).   162 

We noticed that three out of four MGAT GT-A families responsible for the branching of N-glycans 163 

(GT13 MGAT1, GT16 MGAT2 and GT54 MGAT4) fall in the same clade (clade 6), as expected 164 

(Fig. 2). In contrast, the fourth family, GT17 MGAT3, which adds a bisecting GlcNAc to a core β-165 

mannose with a β-1,4 linkage, is placed in a separate clade with GT14 and GT82 (clade 7), while 166 

a fifth MGAT member creating β-1,6-GlcNAc linkages (GT18 MGAT5) is a GT-B fold enzyme (24).  167 

We further note that fifteen out of fifty-three GT-A families are found in both prokaryotes and 168 

eukaryotes. These fifteen families fall on different clades throughout the tree. GT-A families 169 

present only in prokaryotes, like GT81, GT82 and GT88, are also spread out in different clades 170 

(Fig. 2). Similarly, other GT-A families that are present within restricted subsets of taxonomic 171 

groups (like GT40 and GT60 present only in prokaryotes and protists) are also scattered 172 
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throughout the tree. These observations suggest that the divergence of most GT-A families 173 

predates the separation of prokaryotes and eukaryotes. 174 

 

 

Figure 2: Phylogenetic tree highlighting the 53 major GT-A fold subfamilies. Tips in this tree 

represent GT-A sub-families condensed from the original tree for illustration. Support values are 

indicated using different circles. Circles at the tips indicate bootstrap support for the GT-A family 

clade represented by that tip. Tips missing the circles represent GT-A families that do not form a 

single monophyletic clade. Nodes missing circles have a bootstrap support less than 50% and 

are unresolved. Icon labels indicate the taxonomic diversity of that sub clade. Colors indicate the 

mechanism for the families (blue: Inverting, red: Retaining). Detailed tree with support values and 

expanded nodes are provided in Fig. S4 and in Newick format in Dataset S4. The family names 

are described in Table S2. 
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Multiple evolutionary lineages for inverting and retaining mechanisms 175 

To obtain insights into the evolution of catalytic mechanism, we annotated the phylogenetic tree 176 

based on known mechanisms of action (inverting or retaining). Inverting GTs are colored in blue 177 

in the phylogenetic tree, while retaining GTs are colored in red (Fig. 2). The dispersion of inverting 178 

and retaining families in multiple clades suggests that these catalytic mechanisms emerged 179 

independently multiple times during GT-A fold evolution. We find that natural perturbations in the 180 

catalytic base residue, an important distinction between the inverting and retaining mechanisms, 181 

correlates well with these multiple emergences across the tree. The residue that acts as a catalytic 182 

base for inverting GTs (aspartate within the xED motif, xED-Asp) is variable across the retaining 183 

families consistent with its lack of role in the retaining SNi mechanism (6). In the inverting families, 184 

the xED-Asp is nearly always conserved and appropriately positioned to function as a catalytic 185 

base (Fig. 3A), though some exceptions have been noted (6, 25). Out of the five clades grouping 186 

inverting and retaining families, inverting families in three of these clades do not conserve the 187 

xED-Asp (GT2-DPs, GT2-LpsRelated and GT43). The heterogeneous nature of this residue in 188 

these families suggests that change of the catalytic base residue could be a key event in the 189 

transition between inverting and retaining mechanisms. Unlike families that conserve the xED-190 

Asp, these families achieve inversion of stereochemistry through alternative modes that may 191 

relieve the constraints necessary to conserve the xED-Asp. For example, in GT43, the Asp base 192 

is replaced by a glutamate residue, which shifts the reaction center by one carbon bond (6). 193 

Further, the dolichol phosphate transferases (DPMs and DPGs) in the GT2-DP family, which lack 194 

the xED-Asp entirely, transfer sugars to a negatively charged acceptor substrate (a phosphate 195 

group) and thus do not need a catalytic base to initiate nucleophilic attack (25). Other GT-A 196 

inverting families lacking the xED-Asp (GT12, GT14, GT17, GT49 and GT82) are grouped into 197 

separate monophyletic clades segregating them from inverting families with conserved the xED-198 

Asp (Fig. 2). Out of these, only GT14 has representative crystal structures where a glutamate 199 
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serves as the catalytic base (26). For other inverting families with a non-conserved xED-Asp, 200 

residues from other structural regions may serve as a catalytic base. On the other hand, retaining 201 

families like GT64 conserve the xED-Asp, yet do not use it as a catalytic base. Thus, there may 202 

be multiple ways in which inverting and retaining mechanisms diverge, with one path being 203 

mutation of this xED-Asp catalytic base. 204 

One strongly supported clade that includes both inverting and retaining families is clade 2 that 205 

groups inverting GT-A family members that transfer sugars to phosphate acceptors (GT2-DPs) 206 

with three retaining GT-A families that also have phosphate-linked acceptors (GT55, GT78 and 207 

GT81). This placement is further supported by the observation that these families share 208 

structurally equivalent conserved residues in the HV2 region that coordinate the phosphate group 209 

of the acceptor. In the GT2-DP subfamily, R117, R131 and S135 (Fig. 4A) in HV2 coordinate with 210 

the acceptor phosphate groups. The conservation of these residues in GT55 and GT81 suggests 211 

that they likely perform similar interactions in these latter subclades. Indeed, in the crystal 212 

structure of M. tuberculosis GpgS (GT81), HV2 adopts a conformation similar to GT2-DPs and 213 

the shared residues G184, R185 and T187 (equivalent to R117, R131 and S135) form similar 214 

interactions with the phosphate group of the acceptor (Fig. S5).   215 

Clade 5 places the inverting GT7 and GT2-CHS with the retaining GT27 and GT60 families (Fig. 216 

2). This supports the evolution of these families from a close common ancestor through gene 217 

duplication and divergence, which has been suggested through structural similarities between 218 

GT7 and GT27 (27). After this initial divergence in mechanism within clade 5, the subclades group 219 

the β-1,4-GalNAc transferase domains of bacterial and protist chondroitin polymerases (involved 220 

in the elongation of glycosaminoglycan chondroitin)(GT2-CHS) with the GT7 family. The GT7 221 

family includes the higher organism counterparts of the β-1,4-GalNAc transferase domains of 222 

chondroitin synthases, along with β-1,4 Gal transferases. The close placement of GT60 and GT27 223 

families in this clade is also directly supported by previous literature indicating that these families 224 
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share a conserved mode of polypeptide Ser/Thr O-glycosylation (28). Clade 5 thus consolidates 225 

previous independent findings and suggests a shared ancestor, potentially extending the common 226 

ancestry of GT2-CHS and GT7 to include GT27 and GT60, with an ancestral divergence in 227 

mechanism. 228 

Variations in the core and hypervariable regions contribute to unique modes of 229 

substrate specificity  230 

Analysis of the patterns of conservation and variation in the common core indicates that each 231 

residue position within the core has been mutated in some context during the course of evolution, 232 

highlighting the tolerance of the GT-A fold to extensive sequence variation. While some of these 233 

variations are confined to specific clades or families, such as replacement of DxD motif with DxH 234 

motif in GT27 and GT60, other variations are found independently across distal clades (Fig. 3A). 235 

For example, GT14 and prokaryotic members of GT6 that fall on different clades, have 236 

independently lost the DxD motif and no longer require a metal ion for activity (26, 29).  237 

The C-His is also lost independently in multiple clades (Fig.3A). In order to investigate how the 238 

loss of metal binding C-His is compensated, we analyzed the C-His-metal ion interactions across 239 

all available crystal structures. Structural alignment of crystal structures from families that are 240 

missing the C-His such as GT13, GT6 and GT64 families revealed a water molecule coordinating 241 

the metal ion in a manner similar to the C-His sidechain (Fig. 3B). In other families, such as GT24, 242 

we found that the C-His is substituted by an aspartate (D1427), which coordinates with the metal 243 

ion similar to C-His (Fig. 3B, bottom panel). Likewise, the conserved hydrophobic coupling 244 

between αF helix and the Rossmann domain is replaced by charged interactions (R388 and E274, 245 

respectively) in some retaining GTs such as GT15 and GT55 (Fig. S2). These substitutions point 246 

to the ability of GT-As to accommodate changes, even in conserved positions at the core, through 247 

compensatory mechanisms. 248 
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Figure 3: Variations in the conserved core of the GT-A families. A) Weblogo depicting the 

conservation of active site residues in the common core are shown for each of the GT-A families. 

Residues are colored based on their physiochemical properties. B) Variations in the C-His is 

compensated either using a water molecule (red sphere) or other charged residues (olive sticks) 

to conserve its interactions. The metal ion is shown as a purple sphere. The donor substrate is 

shown as brown lines. Interactions between the residues, metal ion and the donor are shown 

using dotted lines. 
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Figure 4: Family specific conserved features in the HV regions help coordinate the 

acceptor. Conserved residues in A) HV2 of the DPM1 sequences in the GT2-DP subfamily 

coordinate the phosphate group of the acceptor. B) HV1 of GT16 MGAT1 provide acceptor 

specificity. C) HV2 and HV3 of EXTL GT64 family (C-terminal GT domain of the multidomain 

sequences) coordinate the acceptor. Left: Alignments highlighting the constrained residues are 

shown for each family. The family specific conserved residues are shown using black dots above 

the alignment. Red bars above these dots indicate the significance of conservation (Higher bar 

corresponds to more significantly conserved position). Right: Representative pdb structures are 

shown for each family (GT2-DP:5mm1, GT16:5vcs, GT64:1on8); Donor substrates are colored 

brown. Acceptors are colored purple. HVs are highlighted in orange. The position of the conserved 

DxD and xED motif for each structure is shown as cyan and magenta circles respectively. 

 

As noted above, we found that the hypervariable regions display significant variations across GT 249 

families but conserve family specific residues that contribute to acceptor specificity. For example, 250 

a distinctive arginine (R117) and aspartate (D154) along with R131 and serine S135 within the 251 

HV2 of DPM1 (GT2-DP sub-family) contribute to specificity towards a dolichol phosphate acceptor 252 
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by creating a charged binding pocket for the phosphate group (Fig. 4A). Likewise, family-specific 253 

residues (R198, H221 and E224 in 5vcm) within the HV1 of MGAT2 (GT16) form a unique scaffold 254 

for recognizing the terminal GlcNAc of the N-glycan acceptor (Fig. 4B). Similarly, the C-terminal 255 

GT64 domain of the multidomain EXTLs contain specific residues in HV2 (R181 and Y193) and 256 

HV3 (H289 and R293) that form a unique binding pocket for the tetrasaccharide linker acceptor 257 

used to synthesize glycosaminoglycans (Fig. 4C). Together these examples illustrate the ability 258 

of HVs to evolve family specific motifs to recognize different acceptors.  259 

Machine learning to predict the donor specificity of GT-A sequences 260 

As discussed above, the conserved catalytic residues dictate the mechanism of sugar transfer 261 

and metal binding while the extended HVs use family specific motifs to dictate acceptor specificity. 262 

We also find some clade specific features (such as the conserved Lys in clade 9, and QXXRW in 263 

clade 1) and G-loop residues involved in donor binding, however, the overall framework that 264 

dictates donor sugar specificity in GTs is largely unknown. Sequence homology alone is 265 

insufficient to predict donor specificity because evolutionarily divergent families can bind to 266 

common substrates, and sometimes even two closely related sequences bind to different donors 267 

(Fig. S6)(15). Our global analysis of GT-A families provides a comparative basis to contrast 268 

sequences that bind to different donors. To test whether evolutionary features gleaned from this 269 

global analysis can be used to better predict donor substrate specificity, we employed a machine 270 

learning (ML) framework that learns from the specificity-determining residues of functionally 271 

characterized enzymes to predict specificity of understudied sequences. In brief, using an 272 

alignment of a well curated set of 713 GT-A sequences (Dataset S5, SI Methods) with known 273 

donor sugars, we derived five amino acid properties (hydrophobicity, polarity, charge, side chain 274 

volume and accessible surface area) from each aligned position within the common core. These 275 

properties were then used as features to train multiple machine learning methods. Among the six 276 

methods used, random forest model achieved the best prediction performance (accuracy ~88%)  277 
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Figure 5: Outline and results of the ML analysis. Training set input into the pipeline are shown 

in green squares. Steps of the ML analysis in purple boxes are associated with different panels 

of the figure. A) Percent accuracy based on 10-fold CV for each of the trained ML models. B) 

Confusion matrix from the best model (random forest using 239 features). The full model was 

used to generate this matrix which was then evaluated using 10-fold CV. Panels C, D and E show 

the 15 most contributing features mapped into representative structures. Metal ion and donor 

substrate are shown in purple sphere and brown sticks respectively. C) R71 interacts with the 

donor sugar and forms a bridge between D179 and D90 in GT6 (5c4b). D) The top contributing 

features (position 176 and 177, yellow surface) line the donor binding pocket in GT7 (1o23). E) 

The top contributing feature positions not directly involved in donor binding fall around the active 

site and are shown using yellow surface in the prototypic GT-A (2z87). F) Scatter plot showing 

the probability scores assigned for each predicted sequence by the predicted donor type. Colors 

indicate the confidence level of the prediction derived using the probability and its difference from 

the 2nd class (SI Methods, Dataset S6) 

 

based on a 10-fold cross validation (CV) using 239 contributing features (SI Methods, Fig. 5A,B, 278 

Table S6). To further validate the model, we tested its performance on a validation set of 64 279 

sequences that were not used to train the ML model but have known sugar specificities. The 280 

random forest classifier correctly predicted donor substrates for 92% of these sequences, nearly 281 

80% of which were predicted with high confidence (blue rows in Dataset S6).  282 

This model was then used to predict donor sugars for GT-A domains with unknown specificities 283 

from 5 organisms: H. sapiens, C. elegans, D. melanogaster, A. thaliana and S.cerevisiae (Dataset 284 
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S6). Each prediction is associated with a confidence level derived from the probability for each of 285 

the 6 donor classes (SI Methods). 55% of the predictions have high and moderate confidence 286 

levels and present good candidates for further investigation (Fig. 5F). The remaining 45% of the 287 

predictions are low confidence. This likely reflects the promiscuity of GT-As for donor preferences, 288 

as seen across many GT-As (16, 30), or non-catalytic GT-As like C1GALT1C1 (Cosmc) (31).  289 

Our predictions assign putative donors for 10 uncharacterized human GT-A domains (Dataset 290 

S6). B3GNT9 is predicted to employ UDP-GlcNAc with high confidence like other GT31 β-3-N-291 

acetylglucosaminyltransferases (B3GNTs) in humans (32). The two procollagen 292 

galactosyltransferases in humans (COLGALT1 and COLGALT2) are multidomain proteins with 293 

two tandem GT domains. While their respective C-terminal domains catalyze β-Gal addition to 294 

hydroxylysine side-chains in collagen, our predictions assign a putative GlcNAc transferase role 295 

for their N-terminal GT domain. More interestingly, GLT8D1, a GT8 glycosyltransferase with an 296 

unknown function implicated in neurodegenerative diseases (33), is predicted to have a 297 

glucosyltransferase specificity. In other organisms, the GT2 sequences in A. thaliana (mostly 298 

involved in plant cell wall biosynthesis) are predicted to bind glucose and mannose substrates, 299 

the primary components of the plant cell wall (Dataset S6). We also identify a novel 300 

galactosyltransferase function for a GT25 enzyme in C. elegans. These predictions can guide 301 

characterization of new GT sequences with unknown functions.  302 

We next performed feature selection to identify features that contribute most to substrate (donor) 303 

prediction. Fifteen features selected by a combination of multiple feature selection methods (SI 304 

Methods) contributed most to substrate prediction. Some of these features correspond to residues 305 

involved in substrate binding and catalytic functions such as the Asp within the DxD motif, 306 

residues in the G-loop and the C-His (15, 16, 25). One such contributing feature is a positively 307 

charged residue at aligned position 71 that emanates from the αC helix and interacts with the 308 

donor sugar. In a crystal structure of ABO (GT6), R71 (R188 in 5c4b) has been shown to bridge 309 
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the DxD and the xED motif to keep the catalytic site intact (Fig. 5C)(34). Our ML model identifies 310 

the charge and accessible surface area of R71 as a major contributing feature in donor specificity. 311 

The remaining features, surprisingly, are not directly involved in donor binding. For example, the 312 

total volume of the residues in a loop preceding the xED motif (aligned position 176-177, WG358-313 

359 in 2z87, Fig. 5D) contributes significantly to donor specificity (Table S3), presumably by 314 

controlling the accessibility of the donor binding site. Further, an ML model trained using features 315 

from only the donor binding residues performs with an accuracy of only 75%, indicating the 316 

importance of features other than those directly involved in donor binding. Thus, despite only a 317 

few residues being directly involved in donor interactions, additional contributions to donor 318 

specificity come from residues more distal from the active site. Contributions from these peripheral 319 

secondary shell features surrounding the donor binding site (Fig. 5E) highlight the potential role 320 

of higher order (allosteric) interactions in determining donor substrate specificity. 321 

Discussion 322 

Prior studies on the evolution of GTs have generally focused either on distinct GT subfamilies or 323 

biosynthetic pathways with additional structural classifications of GTs into one of three distinct 324 

protein fold superfamilies (6, 9, 10).  In our present work we focused on the analysis of the largest 325 

of the GT superfamilies, those that comprise a GT-A protein fold characterized by an extended 326 

Rossmann domain with associated conserved helical segments. These enzymes generally 327 

employ the Rossmann domain for nucleotide sugar donor interactions and extended loop regions 328 

for acceptor glycan interactions (6). Using an unbiased profile search strategy, we assembled a 329 

total of over 600,000 GT-A fold related sequences from all domains of life for deep evolutionary 330 

analysis. To support this profile-based assembly, we leveraged structural alignments on GT-A 331 

fold enzymes in PDB and secondary structure predictions when no crystal structures were 332 

available. The resulting alignment allowed the definition of a common structural core shared 333 
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among the diverse GT-A fold enzymes and defined positions where hypervariable loop insertions 334 

were elaborated to provide additional functional diversification (Fig. 1). In cases where data was 335 

available for enzyme-acceptor complexes these latter loop insertions generally contribute to 336 

unique, family specific acceptor interactions. Thus, a structural framework is presented for GT-A 337 

fold enzyme evolution. Since the common core is present across all kingdoms of life, it presumably 338 

represents the minimal ancestral structural unit for GT-A fold catalytic function by defining donor 339 

substrate interactions and minimal elements for acceptor recognition and catalysis. In fact, we 340 

find several archaeal and bacterial sequences that closely resemble this common core consensus 341 

sequence (Dataset S7). Based on our studies, we propose a progressive diversification of 342 

glycosyltransferase function through evolution of donor specificity by accumulation of mutations 343 

in the common core region and divergence in acceptor recognition through expansion of the 344 

hypervariable loop regions. Consistent with this view, we find conserved family-specific motifs 345 

within the hypervariable regions that confer unique acceptor specificities in various families. 346 

These expansions likely contributed to the evolution of new GT functions and catalyzed new 347 

glycan diversification observed in all domains of life. 348 

A surprising finding from our studies is the dispersion of inverting and retaining catalytic 349 

mechanisms among families in the GT-A fold evolutionary tree (Fig. 2). Recent models indicate 350 

that distinctions between inverting and retaining catalytic mechanisms arise from differences in 351 

the angle of nucleophilic attack by the acceptor toward the anomeric center of the donor sugar 352 

(6). Inverting mechanisms require an in-line attack and direct displacement by the nucleophile 353 

relative to the departing nucleotide diphosphate of the sugar donor and a conserved placement 354 

of the xED-Asp carboxyl group as catalytic base at the beginning of the αF helix. In contrast, 355 

retaining enzymes generally alter the angle of nucleophilic attack by the acceptor, use a donor 356 

phosphate oxygen as catalytic base, and employ a dissociative mechanism for sugar transfer (6). 357 

The fundamental differences in these catalytic strategies would suggest an early divergence of 358 
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enzymes employing these respective mechanisms. However, the GT-A fold phylogenetic tree 359 

strongly suggests that inverting and retaining mechanisms evolved independently at multiple 360 

points in the evolution of GT-A families (Fig. 2). Since the main difference in these mechanisms 361 

is the change in position of the nucleophilic hydroxyl and catalytic base, we believe this poses the 362 

possibility for a transitional phase in the evolution between the two mechanisms. The xED-Asp 363 

carboxyl group is highly conserved in the inverting enzymes and is appropriately placed for 364 

acceptor deprotonation. Variants of this motif either lack the residue entirely, as seen in many 365 

retaining enzymes, or use compensatory modes to accommodate changes at this position, as 366 

seen for the inverting enzymes in GT43, GT2-DPs, and GT2-LPSRelated. In fact, in each of the 367 

latter cases the respective inverting GT family is clustered with closely related GT families 368 

employing a retaining catalytic mechanism. Thus, inverting enzyme variants that accommodate 369 

changes to the xED motif group may represent examples of transitional phases in evolution 370 

between inverting and retaining catalytic mechanisms. Other inverting enzymes harboring 371 

variants in the xED motif segregate into separate clades and could represent outlier families that 372 

have developed alternative ways to compensate for the loss of xED-Asp. This ability to evolve 373 

distinct catalytic strategies, in some cases through presumed convergent evolution, could allow 374 

each family to evolve independent capabilities for donor and acceptor interactions as well as for 375 

anomeric linkage of sugar transfer, while retaining other essential aspects of protein structural 376 

integrity through the use of a conserved and stable Rossmann fold core.  377 

In an effort to define the sequence constraints for the respective catalytic mechanisms we also 378 

employed a machine learning framework for prediction of the mechanism for unknown sequences 379 

and were able to assign the donor sugar nucleotide for a test set of enzymes with high accuracy. 380 

Surprisingly, the contributing features for accurate prediction include residues involved in donor 381 

binding as well as positions that are distal to the active site likely as secondary shell effects or 382 

allosteric interactions. Due to their indirect involvement, such positions are generally difficult to 383 
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pinpoint using structural studies alone emphasizing the need for robust sequence-based 384 

comparative analysis to understand GT-A function. The predictions made from the ML framework 385 

can serve as a valuable resource for generating and testing new hypotheses on GT-A functions. 386 

Numerous additional insights into GT function were also revealed through inspection of the 387 

aligned sequences and the phylogenetic tree. For example, the clustering of mammalian N-glycan 388 

GlcNAc branching enzymes (MGAT1 (GT13), MGAT2 (GT16), and MGAT4 (GT54)) in the same 389 

clade suggests a common origin for these enzymes, while placement of MGAT3 (GT17) in a 390 

separate clade could point to its unique role in adding a bisecting GlcNAc to the N-glycan core 391 

thereby regulating N-glycan extension (35). In contrast, MGAT5 (GT18) involved in N-glycan β1,6-392 

GlcNAc branching is a GT-B fold enzyme with a clearly distinct evolutionary origin. While most 393 

clades are well resolved, bootstrap support values for nodes at the base of the tree are low and 394 

need to be interpreted with caution. This low resolution results from high divergence between 395 

families and possibly other events like horizontal gene transfer and convergent evolution. 396 

However, trees generated using alternative strategies support the overall topology (Fig S7) and 397 

clades are congruent with clusters obtained using an orthogonal Bayesian classification scheme, 398 

which adds confidence to the phylogeny (Table S2). 399 

For some GT-A fold enzymes variations in the catalytic site can also be accommodated by other 400 

compensatory changes. An example is the use of the C-His motif for coordination of the divalent 401 

cation in most GT-A fold enzymes in contrast with enzyme variants that employ water molecules 402 

to compensate for the loss of this residue (Fig. 3B). Similarly, some inverting GTs dispense with 403 

the use of the divalent cation and the DxD motif and substitute interactions with the sugar donor 404 

through use of basic side chains (e.g. GT14). A further extreme is the duplication, divergence and 405 

pseudogenization within the GT31 family. Human C1GALT1C1 (GT31, COSMC) shares a high 406 

sequence similarity to another GT31 member, C1GALT1 (T-synthase), yet COSMC has lost both 407 

the DxD and the xED motifs and has no catalytic activity. Instead, COSMC acts as an important 408 
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scaffold and chaperone for the proper assembly and catalytic function of T-synthase (31). The 409 

ability of GT-As to harbor such structural variations that allow them to develop new functions make 410 

them well-suited to evolve rapidly and facilitate the synthesis of a diverse repertoire of glycans 411 

across all living organisms. 412 

Our unbiased, top-down sequence-based analysis suggests new and unanticipated evolutionary 413 

relationships among the GT-A fold enzymes. Prior suggestions of such relationships have been 414 

inferred by the clustering of GT sequences into families in the CAZy database. However, the 415 

CAZy database of GT sequences does not provide access to the broader sequence relationships 416 

among the GT-A fold enzymes or how a general model of a core conserved GT-A fold scaffold 417 

can serve as a progenitor catalytic platform for binding sugar donors and facilitating glycan 418 

extension. The sequence assembly, phylogenetic tree, and placement within the framework of 419 

known GT-A fold structures in the present studies provide key insights into conserved elements 420 

of the hydrophobic core, linkage to the DxD motif for cation and sugar donor interactions, and the 421 

conserved αF helix harboring the xED catalytic base. Additional hypervariable extensions at 422 

defined positions from this conserved core were then progressively recruited to confer unique 423 

modes of acceptor interactions to develop new specificities and evolve new functions. Thus, the 424 

core of the protein scaffold can be maintained to facilitate protein stability while rapid evolution of 425 

the hypervariable loops can develop new glycan synthetic functionalities through presentation of 426 

novel acceptors to the catalytic site. Variation in the location of the acceptor hydroxyl nucleophile 427 

relative to the donor sugar anomeric center presents the opportunity for distinctions in catalytic 428 

mechanism and anomeric outcome for sugar transfer. The result is a rapidly evolving set of GT 429 

enzymatic templates as the biosynthetic machinery for diverse glycan extension on cell surface 430 

and secreted glycoproteins and glycolipids. In such contexts the resulting glycoconjugates confer 431 

potential functional selective advantages at the cell surface, but also act as ligands and pathogen 432 

entry points for negative evolutionary pressure. The constant challenges to adapt to these Red 433 
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Queen effects of positive and negative selective pressures for glycan synthesis have led to the 434 

remarkable diversity in the GT enzymes and their resulting glycan structural products. We 435 

anticipate that the sequence and structural principles that drive GT-A fold evolution will also likely 436 

extend to GT-B and GT-C fold enzymes and represent a common theme for the elaboration of 437 

diverse glycan structures in all domains of life. 438 

Methods 439 

Generation of GT-A profiles and alignment 440 

Multiple alignments for 34 CAZy GT-A were collected from the Conserved Domain Database 441 

(CDD) (36) or were manually built using MAFFT v7.3 (37) from sequences curated at the CAZy 442 

database (Table S1). These seed profiles were then multiply aligned using the mapgaps scheme 443 

(14) guided by a structure based sequence alignments of all available pdb structures using 444 

Expresso (38) and MAFFT to generate the GT-A profiles. Representative pdb structures 445 

described in this study are listed and cited in Dataset S1. Finally, the alignment of secondary 446 

structures and conserved motifs were manually examined and corrected, where necessary. Very 447 

divergent GT-A families such as GT29 and GT42 sialyltransfearses were not included in this 448 

analysis (SI Methods). The GT-A profiles were then used for a sequence similarity search using 449 

mapgaps to identify and align more than 600,000 GT-A domain sequences from the NCBInr 450 

database. This alignment was filtered for fragmentary sequences and false hits. This filtered 451 

alignment was then used to define the boundaries of the GT-A common core (SI Methods). 452 

Bayesian Statistical analyses 453 

A representative subset of 24,650 GT-A sequences were generated from the ~600,000 putative 454 

GT-A sequences by using a family-based sequence similarity filtering (SI Methods). This 455 

sequence set was then used to apply the Optimal multiple-category Bayesian Partitioning with 456 
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Pattern Selection (omcBPPS) scheme (20). omcBPPS identifies patterns of column-wise amino 457 

acid conservation and variation in the multiple sequence alignment. The resulting family specific 458 

positions were then used as statistical measures to classify the GT-As into 99 unique sets that 459 

correspond to the 53 families described in this study (Table S2). omcBPPS also identified aligned 460 

positions that are conserved across all GT-A fold families. This revealed the 20 conserved 461 

positions within the core component, that were also verified by calculating conservation scores 462 

using the Jensen-Shannon divergence score as described and implemented by (39)(used in Fig. 463 

1A). 464 

Phylogenetic analysis 465 

A smaller subset of 993 sequences were used for phylogenetic reconstruction of the GT-A 466 

families. This set includes all the identified GT-A sequences from five model organisms: H. 467 

sapiens (human), C. elegans (worm), D. melanogaster (fly), A. thaliana (dicot plant) and S. 468 

cerevisiae (yeast) along with select sequences representing the diverse taxonomic group in each 469 

family. These representative sequences were selected by finding the union of top hits for every 470 

taxonomic group present within each of the 99 sets and the seed alignments for the 34 CAZy GT-471 

A families. This selection criteria maximized the phylogenetic and taxonomic diversity while 472 

keeping the number of sequences to a minimum. The alignment for these 993 sequences were 473 

then trimmed to remove the insert positions and keep only the 231 aligned positions described 474 

above. This trimmed alignment was used to build a phylogenetic consensus tree using IQTree 475 

v1.6.1 (40) with the following options: -nt AUTO -st AA -m MFP+MERGE -alrt 1000 -bb 1000 -wbt 476 

-nm 1000 -bnni. Further support for the phylogenetic tree was collected by comparing its topology 477 

to trees generated using orthogonal methods like Hidden Markov Model (HMM) distances and 478 

structural similarities, that have been used in previous studies (41, 42)(Fig. S7, SI Methods).  479 
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Defining the GT-A families and sub-families 480 

The GT-A sequences were first classified into pattern-based groups using omcBPPS. Based on 481 

the placement of representative sequences from these groups in the phylogenetic tree, they were 482 

merged into GT-A families and sub-families. The correspondence between the 53 GT-A families 483 

and subfamilies with the 99 pattern-based groups are provided in Table S2. Sequences from 484 

some families did not form any distinct pattern-based groups due to either a low number of 485 

sequences for a statistically significant grouping (GT78) or a lack of distinguishing patterns within 486 

the aligned positions (GT25, GT88). Representative sequences for these families were collected 487 

from the seed alignments for these families as described above. We also identified the N-terminal 488 

GT2 domain of the multidomain chondroitin polymerase structure from E. coli (Pdb Id: 2z87) as 489 

the prototypic GT-A structure to use as a comparative basis for structural analyses. This sequence 490 

was selected based on the lowest E-value and highest similarity score of a BLAST search of all 491 

pdb structures against the GT-A consensus sequences. Weblogos for the conserved active site 492 

residues were derived for each GT-A subfamily using Weblogo 3.6.0 (43). 493 

Machine learning analysis 494 

In order to train an ML model for GT-A donor substrate prediction, we first curated a training 495 

dataset by mining the “characterized” tab of the CAZy GT database and the UniProt database to 496 

find 713 GT-A domain sequences with known donor sugars. The donor sugar information for 497 

these sequences were extracted from their assigned protein names. Based on the availability of 498 

training sequences, 6 major donor type classes were defined: Glc, GlcNAc, Gal, GalNAc, Man, 499 

and “Others” with each class having more than 70 sequences in the training dataset. The “Others” 500 

category merged the least represented donor types with less than 50 training sequences each 501 

(Ara, Fuc, GalF, GlcA, ManNAc, Rham, and Xyl). An alignment of the 713 sequences were 502 

generated which was filtered and then used to derive 5 amino acid properties (charge, polarity, 503 
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hydrophobicity, average accessible surface area, and side chain volume) for each aligned position 504 

that were used as features for machine learning. We implemented correlation-based feature 505 

selection (CFS) (44) with 5-fold CV by using WEKA version 3.8.3 (45) under default settings to 506 

select 239 informative features for building multiple multiclass classification models. 507 

Using these features, we trained multiple models (SVM, multilayer perceptron, Bayesian network, 508 

logistic regression, naive Bayes classifier, J48, and random forest) using WEKA and the R 509 

package “randomForest” (46). These models were compared using 10-fold CV under default 510 

settings. 10-fold CV evaluates the ML models by iteratively training on 90% of the data selected 511 

at random and testing the prediction on the unseen 10% of the data. This is repeated 10 times 512 

and the results on the testing dataset are summarized into an accuracy measure. The random 513 

forest model trained with 239 features had the highest accuracy and overall performance and thus 514 

was selected as the model of choice for predicting donor sugar substrates for GT-A enzymes. 515 

Confidence scores were assigned for each prediction based on the probability for each of the 6 516 

donor classes. Further details of the methods implemented for machine learning and generation 517 

of confidence levels are provided in SI Methods. 518 
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