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Comparing the composition of microbial communities among
groups of interest (e.g., patients vs healthy individuals) is a cen-
tral aspect in microbiome research. It typically involves se-
quencing, data processing, statistical analysis and graphical rep-
resentation of the detected signatures. Such an analysis is nor-
mally obtained by using a set of different applications that re-
quire specific expertise for installation, data processing and in
some case, programming skills. Here, we present SHAMAN,
an interactive web application we developed in order to fa-
cilitate the use of (i) a bioinformatic workflow for metataxo-
nomic analysis, (ii) a reliable statistical modelling and (iii) to
provide among the largest panels of interactive visualizations
as compared to the other options that are currently available.
SHAMAN is specifically designed for non-expert users who may
benefit from using an integrated version of the different analytic
steps underlying a proper metagenomic analysis. The applica-
tion is freely accessible at http://shaman.pasteur.fr/, and may
also work as a standalone application with a Docker container
(aghozlane/shaman), conda and R. The source code is written in
R and is available at https://github.com/aghozlane/shaman. Us-
ing two datasets (a mock community sequencing and published
16S metagenomic data), we illustrate the strengths of SHAMAN
in quickly performing a complete metataxonomic analysis.
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Introduction

Quantitative metagenomic techniques have been broadly de-
ployed to identify associations between microbiome and en-
vironmental or individual factors (e.g., disease, geographical
origin, etc.). Analyzing changes in the composition and/or
the abundance of microbial communities yielded promis-
ing biomarkers, notably associated with liver cirrhosis(1),
diarrhea(2), colorectal cancer(3), or associated with various
pathogenic(4) or probiotic effects(5) on the host.

In metataxonomic studies, a choice is made prior to sequenc-
ing in order to specifically amplify one or several regions of
the rRNA (usually the 16S or the 18S rRNA for procary-
otes/archaea and the ITS, the 23S or the 28S rRNA for eu-
karyotes) so that the composition of microbial communities
may be characterized with affordable techniques.

A typical workflow includes successive steps: (i) OTU
(Operational Taxonomic Unit) picking (dereplication,
denoising, chimera filtering and clustering)(6), (ii)) OTU

quantification in each sample and (iii) OTU annotating with
respect to a reference taxonomic database. This process may
require substantial computational resources depending on
both the number of samples involved and the sequencing
depth. Several methods are currently available to complete
these tasks, such as Mothur(7), Usearch(8), DADA2(9) or
Vsearch(10). The popular Qiime(11) simplifies these tasks
(i to iii) and visualizations by providing a python-integrated
environment. Schematically, once data processing is over,
both a contingency table and a taxonomic table are obtained.
They contain the abundance of OTUs in the different sam-
ples and the taxonomic annotations of OTUs, respectively.
The data are normally represented in the standard BIOM
format(12).

Statistical analysis is then performed to screen significant
variation in microbial abundance. To this purpose, sev-
eral R packages were developed, such as Metastats(13)
or Metagenomeseq(14). It is worth noticing that other
approaches which were originally designed for RNA-seq,
namely DESeq2(15) and EdgeR(16), are also commonly
used to carry out metataxonomic studies(17, 18). They
provide an R integrated environment for statistical modelling
in order to test the effects of a particular factor on OTU
abundance. Nevertheless using all of these different methods
requires a technical skills in Unix, R and experience in
processing metagenomics data. To this end, we developed
SHAMAN in order to provide a method that simplifies the
analysis of metataxonomic data, especially for users who
are not familiar with the technicalities of bioinformatic and
statistical methods that are commonly applied in this field.

SHAMAN is an all-inclusive approach to estimate the com-
position and abundance of OTUs, based on raw sequencing
data, and to perform the statistical analysis of the processed
files. First, the user can submit raw data in FASTQ format
and define the parameters of the bioinformatic workflow. The
output returns a BIOM file for each database used as refer-
ence for annotation, a phylogenetic tree in Newick format as
well as FASTA-formatted sequences of all OTUs that were
identified. The second step consists in performing statistical
analysis. The user has to provide a "target" file that associates
each sample with one or several explanatory variables. These
variables are automatically detected in the target file. An au-
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tomatic filtering of the contingency matrix of OTUs may be
activated in order to remove features with low frequency. Set-
ting up the contrasts to be compared was also greatly simpli-
fied. It consists in filling in a form that orients the choices of
users when defining the groups of interest. Several options to
visualize data are available at three important steps of the pro-
cess: quality control, bio-analysis and contrast comparison.
At each step, a number of common visual displays are imple-
mented in SHAMAN to explore data. In addition, SHAMAN
also includes a variety of original displays that is not avail-
able in other applications such as an abundance tree to visu-
alize count distribution according to the taxonomic tree and
variables, or the logit plot to compare feature p-values in two
contrasts. Figures may be tuned to emphasize particular sta-
tistical results (e.g., displaying significant features in a given
contrast, performing intersection between contrasts), to be
more specific (e.g. feature abundance in a given modality)
or to improve the aesthetics of the graph (by changing visual
parameters). Figures fit publication standards and the corre-
sponding file can be easily downloaded.

Several web applications were developed to analyze data
of metataxonomic studies, notably, FROGS(19) as well
as Qiita(20) for bioinformatic data processing, Shiny-
phyloseq(21) for statistical analysis, Metaviz(22) and
VAMPS2(23) that make a particular focus on data visualiza-
tion. While these interfaces propose related functionalities,
the main specificity of SHAMAN is to combine of all these
steps in a single user-friendly application. Last, SHAMAN
may register a complete analysis which may be of particular
interest for matters of reproducibility.

DESCRIPTION

SHAMAN is implemented in R using the shiny-dashboard
framework. The application is divided into three main com-
ponents (Fig. S1): a bioinformatic workflow to process the
raw FASTQ-formatted sequences, a statistical workflow to
normalize and further analyse data, as well as a visualization
platform.

Metataxonomic pipeline. The bioinformatic workflow im-
plemented in SHAMAN relies on the Galaxy platform(24)
that provides modular and scalable analyses. SHAMAN
includes a daemon-program (written in Python) using
bioblend(25) to communicate with Galaxy. It is worth
noticing that previous studies, e.g. performed on mosquito
microbiota(26), showed that some non-annotated OTUs
turned to be sequences of the host organism. To overcome
such issues, the user can optionally filter out reads that align
with the host genome and the PhiX174 genome (used as a
control in Illumina sequencers). The latter task is performed
with Bowtie2 v2.2.6(27). By default, quality of reads is
checked with AlienTrimmer(28) v0.4.0, a software for trim-
ming off contaminant sequences and clipping. Paired-end
reads are then merged with Pear(29) v0.9.10.1. OTU picking,
taxonomic annotation and OTU quantification are performed
using Vsearch(10) v2.3.4.0, a software which is both accurate
and efficient (6). The process also includes several steps of
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dereplication, singleton removal and chimera detection. By
default, clustering is performed with a threshold of 97% in
sequence identity. The input amplicons are aligned against
the set of detected OTUs to create a contingency table con-
taining the number of amplicons assigned to each OTU. The
taxonomic annotation of OTUs is performed based on various
databases, i.e., with SILVA(30) rev. 132 SSU (for 16S, 18S)
and LSU (for 23S and 28S sequences), Greengenes(31) (for
16S, 18S sequences) and Underhill rev. 1.6.1(32), Unite rev.
8.0(33) and Findley(34) for ITS sequences. These databases
are kept up-to-date every two month with biomaj.pasteur.fr.
OTU annotations are filtered according to their identity with
the reference(35). Phylum annotations are kept when the
identity between the OTU sequence and reference sequence
is > 75%, > 78.5% for classes, > 82% for orders, > 86.5%
for families, > 94.5% for genera and > 98% for species.
In addition, a taxonomic inference made based on a naive
Bayesian approach, RDP classifier(36) v2.12, is systemati-
cally provided. By default, RDP annotations are included
whenever the annotation probability is > 0.5. All the above-
mentioned thresholds may be tuned by the user.

A phylogenetic analysis of OTUs is provided: multiple align-
ments are obtained with Mafft(37) v7.273.1, filtering of re-
gions that are insufficiently conserved is processed using
BMGE(@8) v1.12 and finally, FastTree(39) v2.1.9 is used to
infer the phylogenetic tree. Based on the latter tree, a Unifrac
distance(40) may be computed in SHAMAN to compare mi-
crobial communities. The outcomes of the overall work-
flow are stored in several files: a BIOM file (per reference
database), a phylogenetic tree as well as a summary file de-
scribing the number of elements passing the differents steps
of the workflow. The data are associated to a key that is
unique to a project. Such a key allows to automatically re-
load all the results previously obtained in a given project.

Statistical workflow. The statistical analysis in SHAMAN
is based on DESeq2 which is a method to model OTU counts
with a negative binomial distribution. It is known as one of
the most accurate approach to detect differentially abundant
bacteria in metagenomic data(17, 18). Relying on a robust
estimation of variation in OTUs, the DESeq2 method shows
suitable performances with datasets characterized by a rela-
tively low number of observations per group together with a
high number of OTUs.

This method typically requires the following input files: a
contingency table, a taxonomic table and a target file describ-
ing the experimental design. These data are processed to
generate a meta-table that assign to each OTU a taxonomic
annotation and a raw count per sample.

Normalization. Normalization of the raw counts is one of the
key issues when analyzing microbiome experiments. The
uniformity of the sequencing depth is affected by sample
preparation and dye effects(41). Normalizing data is there-
fore expected to increase the accuracy of comparisons. It is
done by adjusting the abundance of OTUs across samples.
Four different normalization methods are currently imple-
mented in SHAMAN. For the sake of consistency, all of these
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methods are applied at the OTU level.

A first method is the relative log expression (RLE) normaliza-
tion and is implemented in the DESeq?2 package. It consists
in calculating a size factor of each sample, i.e., a multiplica-
tion factor that increases or decreases the OTU counts in sam-
ples. It is defined as the median ratio, between a given count
and the geometric mean of each OTU. Such a normalization
was shown to be suited for metataxonomic studies(17). In
practice, many OTUs are found in a few samples only, which
translate into sparse count matrices(14). In this case, the RLE
method may lead to a defective normalization - as only a few
OTU are taken into account - or might be impossible if all
OTUs show a null abundance in one sample at least. In the
Phyloseq(42) R package, the decision was made to replace
the null abundance by a count of 1. In SHAMAN, we decided
to include two new normalization methods. They are modi-
fied versions of the original RLE so that they better account
for matrix sparsity (number of zero-valued elements divided
by the total number of elements). In the non-null normaliza-
tion (1) cells with null values are excluded from the compu-
tation of the geometric mean. This method therefore takes
all OTUs into account when estimating the size factor. In the
second method that we coined as the weighted non-null nor-
malization (2), weights are introduced so that OTUs with a
big number of occurrences have a higher influence when cal-
culating the geometric mean.

Assume that C' = (cj;)1<i<k;1<j<n 1S a contingency table
where k£ and n are the number of features (e.g. OTUs) and
the number of samples, respectively. Here, ¢;; represents the
abundance of the feature ¢ in the sample j. The size factor of
sample j is denoted by s;.
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where S5; stands for the subset of samples with non null val-
ues for the feature j and n; is the size of this subset. The
function w.median corresponds to a weighted median.

An alternative normalization technique is the total counts(43)
which is convenient for highly unbalanced OTU distribution
among samples.

Using a simulation-based approach, we addressed the ques-
tion of the performance of the non-null and the weighted non-
null normalization techniques when the matrix sparsity and
the number of observations increase. We compared these new
methods to those normally performed with DESeq2 and Phy-
loseq. To do so, we normalized 500 matrices with varied
sparsity levels (i.e., 0.28, 0.64 and 0.82) and a different num-
ber of observations (i.e., 4, 10 and 30). We calculated the
average coefficient of variation (CVmean)(44) for each nor-
malization method (Fig. S2). Considering that these OTUs
are assumed to have relatively constant abundance within
the simulations, the coefficient of variation is expected to be
lower when the normalization is more efficient. Overall, the

= w.median;
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non-null and the weighted non-null normalization methods
exhibited a lower coefficient of variation as compared to the
other methods, when sparsity in the count matrix is high and
the number of observations is increased. These differences
were clear especially when comparing DESeq2 and Phyloseq
to the weighted non-null normalization (sparsity ratio of 0.28,
0.64 and 0.82, with 30 samples; t-tests p < 0.001) (Fig. S2).

Contingency table filtering. In metataxonomic studies, con-
tingency tables are often very sparse and after statistical anal-
ysis, some significant differences among groups may not be
of great relevance. This may arise when a feature, distributed
in many samples with a low abundance, is slightly more
abundant in a group of comparison. These artifacts are gener-
ally excluded by DESeq2 with an independent filtering. Fur-
thermore, if a feature is found in a few samples only, it may
lead to non-reliable results when its abundance is high (when
it is not 0). Such distributions may also impact the normal-
ization process as well as the dispersion estimates. In order
to avoid misinterpretation of results, we propose an optional
extra-step of filtering: by excluding features characterized by
a low abundance and/or a low number of occurrence in sam-
ples (e.g. features occurring in less than 20% of the sam-
ples). To set a by-default abundance threshold, SHAMAN
search for an inflection point at which the curve between the
number of observations and the abundance of feature changes
from being linear to concave. This process is performed with
linear regression in the following manner:

Zij Cij

1. We define I the interval |min; (3, cij); =7

2. For each x € I, we compute h(x) defined as the num-
ber of observations with a total abundance higher than
x.

3. We compute the linear regression between h(x) and x.
4. The intercept is set as the default threshold.

(see Appendix 1 for more information). This extra-filtering
aims at refining the first filtering processed with DESeq?2 and
may lead to a significant decrease of the computation time.
The impact of filtering steps may be visually assessed with
plots displaying the features that will be included in the anal-
ysis and those that will be discarded.

Statistical modelling. The statistical model relies on the vari-
ables that are available in the file of experimental design. By
default, all variables are included in the model but the end-
user can edit this selection and further add interactions be-
tween variables of interest. In addition, other variables such
as batches or clinical data (e.g., age, sex, etc.) may be used as
covariates. SHAMAN then automatically checks whether the
model is statistically suitable (i.e., whether all the model pa-
rameters may be estimated). When it is not the case, an warn-
ing message appears and a "how to" box proposes a practi-
cal way to solve the issue. In SHAMAN, statistical models
may be fitted at any taxonomic levels. Normalized counts are
summed up within a given a taxonomic level.
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To extract features that exhibit significant differential abun-
dance (between two groups), the user must define a con-
trast vector. Both a guided mode and an expert mode
are available in SHAMAN. In the guided mode, the
user specifies the groups to be compared using a drop-
down menu. This mode is only available for DESeq2
v1.6.3 which is implemented in DESeq2shaman package
(https://github.com/aghozlane/DESeq2shaman). In advanced
comparisons, the user may define a contrast vector by speci-
fying coefficients (e.g., -1, 0, 1) assigned to each variable.

Visualization. After running a statistical analysis, many dis-
plays are available:

(i) Diagnostic plots (such as barplots, boxplots, PCA, PCoA,
NMDS and hierarchical clustering) help the user examine
both raw and normalized data. For instance, these plots
may reveal clusters, sample mislabelling and/or batch effects.
Scatterplots of size factors and dispersion (i.e., estimates that
are specific to DESeq2) are useful when assessing both the
relevance and robustness of statistical models. PCA- and
PCoA-plots associated with a PERMANOVA test may be
used as preliminary results in the differential analysis as they
may reveal global effects among groups of interest.

(i1) Significant features are gathered in a table including, the
base mean (mean of the normalized counts), the fold change
(i.e., the factor by which the average abundance changes from
one group to the other), as well as the corresponding adjusted
p-values. The user may view tables for any contrasts and can
export it into several formats. Volcano plots and bar charts of
p-values and log2 fold change are also available this section.
(iii) A global visualization section provides a choice of 9 in-
teractive plots such as barplots, heatmaps and boxplots to
represent differences in abundance across groups of interest.
Diversity plots display the distribution of various diversity
indices: alpha, beta, gamma, Shannon, Simpson and inverse
Simpson. Scatterplots and network plots show association
between feature abundance with other variables from the tar-
get file. To explore variations of abundance across the tax-
onomic classification, we included an interactive abundance
tree and a Krona plot(45). Rarefaction curves are of great use
to further consider the number of features in samples with re-
spect to the sequencing depth.

(iv) In the comparison section, plots displaying comparisons
among contrasts may be created. It includes several options
such as, Venn diagram or upsetR graph(46) (displaying sub-
sets of common features across contrast), heatmap, a logit
plot(47) (showing the log2 fold-change values in each fea-
ture), a density plot and a multiple Venn diagram to summa-
rize the number of features captured by each contrast. All
these graphs can be exported into four format (eps, png, pdf
and svg).

APPLICATION

Comparison of SHAMAN with other available tools for
meta-taxonomic analyses. A brief qualitative assessment
of the strengths and limits of SHAMAN was done in com-
parison with other similar web interfaces (Table 1). We first
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identified a list of important considerations that have practical
implications for the user such as processing of raw sequenc-
ing data, statistical workflow, visualization, data storage and
accessibility. For each similar web interface, we then eval-
uated whether it met those criteria. Besides that SHAMAN
presents a number of advantages, we think that such nested
solution is essential for a careful interpretation of the results.
Any results in SHAMAN may be cross-checked with a quan-
tification or an annotation performed at an earlier stage. Fur-
thermore several applications presented in Table 1, impose
the burden to import/export R objects which requires skills
in R programming. It may also represent a source of issues
for reproducibility, notably in terms of compatibility of the
packages over time.

User case. To illustrate how SHAMAN works, we per-
formed the analysis of two sequencing experiments: a mock
sequencing and a published dataset, afribiota dataset(48). In
both analyses, we submitted the raw FASTQ files and pro-
vided a target file containing sample information (needed for
statistical analysis).

Zymo Mock dataset. The mock sequencing (EBI ENA
code PRJEB33737) of the ZymoBIOMICS™ Micro-
bial Community DNA was performed with an Illu-
mina MiSeq. The Zymo mock community is com-
posed with 8 phylogenetically distant bacterial strains, 3
of which are gram-negative and 5 of which are gram-
positive. DNA of two yeast strains that are normally
present in this community were not amplified. Genomic
DNA from each bacterial strain was mixed in equimolar
proportions (https://www.zymoresearch.com/zymobiomics-
community-standard). We compared the impact of both the
number of amplification cycles (25 and 30 cycles) and the
amount of DNA loaded in the flow cell (0.5ng and 1ng),
on the microbial abundance. Each sample was sequenced 3
times (experimental plan provided in supplementary materi-
als). Sequencing report provided by the sequencing facilities
indicated the presence of contaminants. To handle this issue,
we filtered out the genera occurring in less than 12 samples
and outliers with a reduced log abundance as compared to the
other genera (Fig. S3). This process selected the 8 bacterial
stains of Zymo mock (Fig. 1). We then defined a statisti-
cal model that included DNA amount and the number of am-
plification cycle as main effects and an interaction between
these variables. The statistical comparison showed a signif-
icant impact of the number of amplification cycle compared
to DNA amount. We found no differential features between
0.5 ng and 1 ng DNA for each possible number of cycle (25
and 30 cycles), while the comparison of number of amplifica-
tion cycle for each given amount of DNA showed significant
impact on the abundance of mock bacteria (Table. S1, S2).
These results are in agreement with previous studies that pre-
sented the PCR-induced bias on equivalent mix(49, 50).

Afribiota dataset. The second dataset included samples of

microbial communities in stunted children aged 2-5y liv-
ing in sub-Saharan Africa (48). Three groups (nutritional
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status) of individuals were considered: NN=non stunted,
MCM=moderately stunted, MCS=severely stunted. Samples
originated from the small intestine fluids (gastric and duo-
denal) and feces. The authors performed the bioinformatic
treatment with QIIME framework and the statistical analysis
with several R packages including Phyloseq for the normal-
ization and DESeq?2 for the differential analysis. 541 samples
were available on EBI ENA (code PRJEB27868).

Using SHAMAN, raw reads were filtered against Human
HG38 and PhiX174 genomes. A total of 2386 OTUs were
calculated and 76% were annotated with SILVA database at
genus level. The sparsity rate of the contingency table was
high with 0.84. In consequence, we used the weighted non-
null normalization which is particularly efficient when the
matrix highly sparse (Fig. S2).

Two analyses were performed, a global analysis that included
duodenal, gastric as well as feces samples and a more specific
analysis including fecal samples only. Statistical models in-
cluded the following variables, age, gender, country of origin
and nutritional status. Overall our results obtained when us-
ing SHAMAN were highly consistent with those of Vonaesch
et al. (48). We detected a significant change in the com-
munity composition between gastric and duodenal samples
compared to feces samples at Genus level (Fig. 2a) (PER-
MANOVA, P=0.001). The most abundant genera were re-
ported in Fig. S4. «a-Diversity was not affected by stunting
(Fig.2b). We looked for a distinct signature of stunting in the
feces. We report in the volcano plot (Fig.2c) genera with dif-
ferential abundance between stunt samples compared to non-
stunt (complete list available in Table S3). Twelve microbial
taxa, corresponding to members of the oropharyngeal core
microbiota, were overrepresented in feces samples of stunted
children as compared with non-stunted children; more partic-
ularly Porphyromonas, Neisseira and Lactobacillus (Fig.2d).
These findings were in agreement with the conclusions of the
Afribiota consortium while being obtained within a few min-
utes of interaction with the SHAMAN interface.

Conclusion

SHAMAN enables user to run most of the classical metage-
nomics methods and makes use of statistical analyses to pro-
vide support to each visualization. The possibility to deploy
SHAMAN locally constitutes an important feature when the
data cannot be submitted on servers for privacy issues or in-
sufficient internet access. SHAMAN also simplifies the ac-
cess to open computational facilities, making a careful use of
the dedicated server, galaxy.pasteur.fr.

During its development, we felt a strong interest of the
metagenomics community. We recorded 82 active users per
month in 2019 (535 unique visitors in total) and 800 down-
loads of the docker application. We expect that SHAMAN
will help researcher performing a quantitative analysis of
metagenomics data.

Volant etal. | SHAMAN

Data availability

Sequence reads of Zymo Mock have been deposited in the
European Nucleotide Archive, https://www.ebi.ac.uk/ena/
accesion no. PRJEB33737.
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Fig. 1. Barplot of taxa abundance of ZYMO MOCK samples. We summed the abundance of the OTU annotated at genera level with SILVA database and plotted the
average abundance per condition.

Table 1. Comparison of SHAMAN with other web interface for metataxonomic analysis.

Category SHAMAN FROGS Qiita Shiny-phyloseq Metaviz Vamps
OTU processing Yes Yes Yes No No No
Normalization Yes Yes No No No No
Modelisation Yes Manova No D M No
Diversity analysis Yes Yes Yes Alpha Alpha Alpha
Phylogenetic analysis Yes Yes Yes Yes No Tree
Feature abundance plots Yes Yes Yes Yes Yes Yes
Ordination plots Yes Yes Yes Yes Yes Yes
Network plots Yes No No Yes No Yes
Geographic distribution plots No No No No No Yes
Statistics plots Yes No NR Yes NR NR
Interactive visualization 31 2;P 3 8 9 17
Raw data storage No No Yes No No Yes
Result storage Yes No Yes No No Yes
Online web Interface Yes No Yes No Yes Yes
R packaging No NR NR Yes Yes NR
Docker Yes No No No Yes No
Conda Yes Yes Yes No Yes No

D: Export from DESeq2, M: Export from Metagenomeseq, NR: Non relevant feature, P: Import/Export to Phyloseq, Number
of unique interactive visualization are reported for each application in section ’Interactive visualization’
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Fig. 2. Afribiota study of small intestine fluids and feces from stunt children compared to non stunt. (a) PCoA plot the Bray-Curtis dissimilarity index of the samples.
Duodenal samples are colored in blue, light blue for Gastric and orange for Feces. PERMANOVA test based on the sample type yielded a P value of 0.001. (b) Alpha diversity
analysis of non-stunt (NN), moderately stunted (MCM) and severely stunted (MCS). Overlapping confidence interval indicates that the diversity are not different between NN,
MCM and MCS in duodenal, gastric and feces samples. (c) Volcano plot of differentially abundant genera in the feces of stunt children compared to non-stunt. We plot the
log2 fold change against the -log 10 adjusted p-value. Microbial taxa in red correspond to an increase of abundance and in blue to a decrease abundance. Labeled dots
correspond to taxa from orpharyngeal core microbiota. (d) Log 2 abundance of differential abundant taxa from orpharyngeal core microbiota in stunt and non-stunt children

feces.
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