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Abstract 

Background 

To date, approximately 25% of patients with pulmonary arterial hypertension (PAH) have been 

found to harbour rare mutations in disease-causing genes. Given the small number of patients 

affected by mutations in most PAH genes, the identification of the missing heritability in PAH is 

challenging. We hypothesised that integrating deep phenotyping data with whole-genome 

sequencing data will reveal additional disease variants that are extremely rare and/or have a 

unique phenotypic signature. 

Methods  

We analysed whole-genome sequencing data from 13,037 participants enrolled in the NIHR 

BioResource - Rare Diseases (NIHRBR-RD) study, of which 1148 were recruited to the PAH 

domain. To test for genetic associations between genes and selected phenotypes of pulmonary 

hypertension (PH), we used the Bayesian rare-variant association method BeviMed. We defined 

the groups for comparison by assigning labels (‘tags’) inferred from the current diagnostic 

classification of PAH, stratification by age at diagnosis and transfer coefficient of carbon 

monoxide (KCO).  

Results 

Protein truncating variants (PTV) in KDR were strongly associated with the lower KCO tertile 

(posterior probability (PP)=0.989) and the higher age tertile (PP=0.912) groups. On computed 

tomographic imaging of the lungs, a range of parenchymal abnormalities were observed in the 
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patients harbouring PTV in KDR. KCO stratification also highlighted an association between 

Isocitrate Dehydrogenase (NAD(+)) 3 Non-Catalytic Subunit Gamma  (IDH3G) and moderately 

reduced KCO in patients with pulmonary hypertension (PP=0.920). The US PAH Biobank was 

used to independently validate these findings and identified four additional PAH cases with PTV 

in KDR and two in IDH3G. We confirmed associations between previously established genes 

and PAH.  

Conclusions  

PTVs in KDR, the gene encoding vascular endothelial growth factor receptor 2 (VEGFR2), are 

significantly associated with two specific phenotypes of PAH, reduced KCO and later age of 

onset, highlighting a role for VEGF signalling in the pathogenesis of human PAH. We also report 

IDH3G as a new PAH risk gene. Moreover, we demonstrate that the use of deep clinical 

phenotyping data advances the identification of novel causative rare variants. 
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Introduction 

Pulmonary arterial hypertension is a rare condition characterised by pulmonary vascular 

narrowing and obliteration, causing elevation of pulmonary vascular resistance and ultimately, 

right ventricular failure. Multiple concepts have been proposed to explain the mechanisms 

leading to pulmonary vessel remodelling1. More recently, hallmarks of cancer, such as aberrant 

angiogenesis2, metabolic reprogramming3 and resistance to apoptosis4, have been proposed. A 

breakthrough in our understanding of PAH pathobiology was the discovery of heterozygous 

germline mutations in the gene encoding bone morphogenetic protein type 2 receptor 

(BMPR2)5,6. It is now established that BMPR2 mutations are responsible for over 70% of familial 

cases of PAH (HPAH) and 15-20% of idiopathic cases of PAH (IPAH). The penetrance of BMPR2 

mutations is incomplete, so not all carriers develop the disease7. A smaller proportion (up to 

10%) of PAH is caused by mutations in activin-like kinase 1 (ACVRL1)8, endoglin (ENG)9, SMAD 

family member 9 (SMAD9)10, caveolin-1 (CAV1), involved in colocalization of BMP receptors11, 

and the potassium channel, KCNK3, responsible for membrane potential and vascular tone12. 

Using burden tests, we have recently identified rare pathogenic variants in growth differentiation 

factor 2 (GDF2), which encodes BMP9, a major ligand for BMPR2, as well as rare variants in 

ATPase 13A3 (ATP13A3), aquaporin 1 (AQP1) and SRY-box 17 (SOX17), and reported a list of 

additional putative genes potentially contributing to the pathobiology of PAH13. Together, these 

established genes explain approximately 25% of cases with idiopathic/hereditary pulmonary 

arterial hypertension (I/HPAH). To identify additional genes harbouring potentially causal rare 

variants in PAH cases, we increased the cohort size and deployed a Bayesian framework 

incorporating refined phenotype data.  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2019. ; https://doi.org/10.1101/2019.12.11.871210doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.11.871210
http://creativecommons.org/licenses/by-nd/4.0/


7 

Methods 

Study design, ethics, and subject recruitment 

The National Institute for Health Research BioResource - Rare Diseases study (NIHRBR-RD), the 

Rare Disease pilot for Genomics England Ltd. 100,000 Genomes Project, was established to 

identify genetic causes, improve rates of molecular diagnosis and develop new treatments for 

rare diseases through whole-genome sequencing and deep phenotyping14. Of the 18 domains, 

15 were defined either as a single rare disease or a group of rare disorders (Table S1). The PAH 

domain comprised 1148 subjects including individuals diagnosed with either idiopathic or 

heritable PAH, pulmonary veno-occlusive disease (PVOD) or pulmonary capillary 

haemangiomatosis (PCH) and a small number of healthy relatives. Adult and paediatric onset 

cases were eligible, as well as incident and prevalent cases. Recruitment was carried out across 

the nine PAH specialist centres in the UK and retrospectively by international collaborators at 

the Université Paris-Saclay and Sorbonne Université (France), University of Giessen and Marburg 

(Germany), and hospitals in Graz (Austria), Pavia (Italy) and Amsterdam (The Netherlands). 

Patients recruited to the NIHRBR-RD study provided written, informed consent for genetic 

analysis and clinical data capture (REC REF: 13/EE/0325); patients recruited by European 

collaborators consented to genetic testing and clinical data collection locally. 

Patients with rare diseases recruited to domains other than PAH were used as non-PAH controls 

in the genetic analysis (Table 1).  

For validation, we used the US PAH Biobank cohort comprising exome sequencing data from 

2572 subjects diagnosed with group 1 PAH15 and a biobank of 440 PAH patients established at 

Columbia University Medical Center composed of 29 FPAH, 195 IPAH and 216 APAH 

individuals16. 
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Phenotyping of patients 

Clinical phenotyping and case-control cohort using phenotypic ‘tags’ 

Pseudonymised results of routinely performed clinical tests were stored across twenty-one 

electronic Clinical Case Report Forms (eCRFs) in the OpenClinica data capture system  (Table 

S2). All cases were diagnosed between January 2002 to December 2017, and the diagnostic 

classification was made according to international guidelines using a multidisciplinary 

assessment that included echocardiography, comprehensive blood testing, pulmonary function 

testing, overnight oximetry, isotope perfusion scanning, high-resolution computed tomography, 

and right heart catheterisation. To aid data analysis and improve data quality, a number of quality 

assurance procedures were introduced (see Supplemental Material). Diagnosis in all patients 

was verified based on haemodynamic criteria, reported comorbidities (history of pulmonary 

embolism, chronic obstructive pulmonary disease, interstitial lung disease (ILD), left heart 

disease, connective tissue disease, structural heart abnormalities, anorexigen use) and results 

of pulmonary function tests, heart and lung imaging and clinical blood tests (autoantibody 

screen). Cases in which the diagnosis was questionable were reported back to recruiting centres 

for verification. Appropriate diagnostic and phenotypic tags were assigned to all recruited 

patients to be used in the subsequent case-control analysis (Figure S1). The full set of tags, with 

corresponding numbers of cases, controls and excluded relatives, can be found in Table 1. 

Analysis of computerised tomography scans 

Diagnostic chest computerised tomography (CT) scans were performed and reported in 613 

study participants. The analysis of these scans was done in PAH centres and subsequently 

transcribed to study eCRFs. Of 613 scans, 294 were available for repeated analysis. The scans 
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were anonymised and transferred to Department of Infection, Immunity and Cardiovascular 

Disease, University of Sheffield, Sheffield, UK where they were reviewed by two independent 

cardiothoracic radiologists with expertise in pulmonary hypertension (AS and SR), who were 

blinded to the underlying diagnosis, mutation and smoking status. For consistency and 

reproducibility, all measurements were reported on a customised proforma (Table S3). 

CT scans were obtained between 2002 and 2018 (n=269), CT pulmonary angiogram (CTPA, 

n=241), high resolution computed tomography (HRCT no CTPA, n=28). Slice thickness was less 

than 5mm for all studies, typically ≤1mm. Images were analysed on open source software Horos 

(Annapolis, MD USA). Cardiac and vascular measurements were taken by one observer (MC) 

and reviewed by the Consultant Radiologist (AS). Thoracic Radiological features were scored 

semi-quantitatively by two independent Cardiothoracic Radiologist observers each with 9 years 

experience in pulmonary hypertension imaging (AS, SR) with a very good interobserver 

agreement (see Supplement, Table S10) 

Whole-genome sequencing, short read alignment and variant 

calling 

Samples were received as either DNA extracted from whole blood or as whole blood EDTA 

samples that were extracted at central DNA extraction and QC laboratory in Cambridge (UK). 

They were subsequently tested for adequate DNA concentration, DNA degradation and purity. 

Next-generation paired-end whole-genome sequencing, using three read lengths 100bp (377 

samples), 125bp (3,154 samples) and 150bp (9,656 samples), was performed on cases and 

controls using Illumina HiSeq2500 and HiSeq X (Illumina Inc, San Diego, USA). 

Reads were aligned against the Genome Reference Consortium human genome build 37 

(GRCh37, https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.13/) using the Illumina 
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Isaac Aligner version SAAC00776.15.01.2717 and variants were called using the Illumina Starling 

software version 2.1.4.2 

(https://support.illumina.com/help/BS_App_TS_Amplicon_OLH_15055858/Content/Source/Info

rmatics/Apps/IsaacVariantCaller_appENR.htm). The variants were then left-aligned, normalized 

with bcftools and loaded into our Hbase database to produce multi-sample variant calls to 

undertake the genetic association studies14. 

Genetic association between rare variants and selected 

diagnostic and phenotypic tags 

Schematic analysis pipeline is depicted in Figure 1A.  We hypothesised that groups of patients 

who share a particular feature may also share a similar genetic aetiology and used the current 

diagnostic classification of pulmonary hypertension and stratification by age at diagnosis and 

KCO (% predicted), to define a set of phenotypic tags (Table 1). We defined cases as individuals 

carrying a particular tag whereas the individuals from the non-PAH domains served as controls 

(Figure 1, Table S1). Variants were extracted from each gene as previously described14 including 

a PMAFx (for a given variant, the probability that the minor allele count is at least the observed 

minor allele count, given that MAF=1/X) <0.05 with x=1,000 for the recessive and x=10,000 for 

the dominant association model, and a CADD Phred score ≥10. The analysis was restricted to 

the Ensembl annotated canonical transcript. Bayesian model comparison method called 

BeviMed18 was applied to the extracted rare variants from a set of unrelated individuals to test 

posterior probability of gene-tag associations under dominant and recessive modes of 

inheritance. Patients with rare deleterious variants in previously established PAH disease genes 

(BMPR2, ACVRL1, ENG, CAV1, SMAD1, SMAD4, SMAD9, KCNK3, EIF2AK4, TBX4, AQP1, 
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ATP13A3, GDF2, SOX17) that were deemed disease-causing by a genetic multidisciplinary team 

according to the ACMG Standards and Guidelines19, were excluded from the association testing 

for other genes to minimise false-positive associations. To increase power in scenarios where 

only variants of particular consequence types were associated with the disease risk, association 

models were fitted to different subsets of variants according to the consequences provided by 

Ensembl (https://www.ensembl.org/info/genome/variation/prediction/predicted_data.html): the 

High category, comprised only variants of “high” impact, including PTVs and large deletions; the 

Moderate category contains variants of impact “moderate”, including missense variants or 

consequence “non_coding_transcript_exon_variant”; the combined category Moderate and 

High, combining the respective consequence types. The prior probability of association across 

all association models was set to 0.001. Our choice of prior was informed by the estimation that 

approximately 30 genes might be involved in the pathogenesis of pulmonary arterial 

hypertension out of the 32,606 protein-coding and non-coding genes (defined by the selected 

gene biotypes provided by Ensembl, see supplemental material) tested after applying the filtering 

described above. 

Descriptive statistics 

Statistical analysis and data visualisation were performed in R (www.r-project.org). Summary 

statistics are shown as mean (±SD) or median [IQR] according to data distribution (normality 

testing was performed with the Shapiro-Wilk test and QQ plots). The number of available data 

points is reported in tables. Comparisons between the categorical variables were performed 

using Fisher’s exact and Chi-square test, comparisons between continuous non-normally 

distributed variables were performed with the Mann-Whitney’ test (for two groups) or the Kruskal-

Wallis test (three and more groups). Adjustment for multiple comparisons was performed when 
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appropriate. The Kaplan-Meier method was used to visualise survival curves; the log-rank test 

was used to compare survival between two or more groups; Cox proportional hazards regression 

was used to examine the effect of variables on survival. Testing for the proportional hazards 

assumption, influential observations and non-linearity were done, and the assumptions were 

met. To measure the magnitude of agreement between CT scan readers, 22 randomly selected 

tests were assessed by both radiologists. For categorical variables, the weighted (ordinal data) 

and unweighted (for non-ordinal data) Cohen’s Kappa for two readers were calculated and for 

continuous variables, the intraclass correlation coefficient (ICC) was computed with the R 

package (“irr”). 

Results 

Characterization of study cohorts and tag definition 

Whole-genome sequencing was performed in 13,037 participants of the NIHRBR-RD study, of 

which 1148 were recruited to the PAH domain. The PAH domain included 23 unaffected parents 

and 3 cases with an unknown phenotype, which were subsequently removed from the analysis 

(Table S1, Figure 1B). Of the remaining 1122 participants, 972 (86.6%) had a clinical diagnosis 

of IPAH, 73 (6.5%) of HPAH, and 20 (1.8%) were diagnosed with PVOD/PCH. Verification of 

diagnosis based on the collected clinical information revealed that 57 participants (5%) had a 

diagnosis other than IPAH, HPAH or PVOD/PCH. These cases were subsequently relabelled and 

moved to the respective tag group for analysis (see Table S4, Table 1). The population structure 

of the PAH cohort was comparable to previously studied European PAH populations, with a 

median age at diagnosis of 49[35;63] years, and female predominance of 68% (760 individuals). 

Among the most common comorbidities were hypertension (24%), diabetes mellitus type 2 
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(12%) and hypothyroidism (12%). Most patients were treated with combination therapies (44%) 

followed by monotherapy with sildenafil (24%) (Table S4). Overall survival in the studied 

population was 97% at 1-year, 91% at 3-years and 84% at 5-years. When the cohort was divided 

into prevalent and incident cases 1-, 3-, and 5-year survival was 98%, 93%, 87% and 97%, 

84%, 72% respectively. 

Transfer coefficient of carbon monoxide (KCO) measured at diagnosis was available for 644 

patients (57%) (see Supplemental Material, Table S5, Figure S1). Median KCO in the entire 

studied population was 71[52;86]% predicted (Figure S2). Cases in the lower tertile or below the 

KCO threshold of 50% predicted were more commonly male, older at diagnosis, had a current 

or past history of cigarette smoking and an increased number of cardiorespiratory comorbidities 

(Table S6, Table S7). Survival in these groups was significantly worse than in those with 

preserved or mildly reduced KCO (Figure S3 A and B). Even after adjusting for confounding 

factors (age, sex, comorbidities, smoking status and whether the case was prevalent or incident), 

KCO remained an independent predictor of survival (Table S8).  

Age at diagnosis was calculated as age at the time of diagnostic right heart catheter (RHC) and 

was available in all but 10 cases. When patients were divided by age, those in higher age tertile 

showed more functional impairment despite milder haemodynamics, lower FEV1/FVC ratio and 

KCO % predicted as well as milder emphysematous and fibrotic changes on CT scans (Figure 

S2 and Table S9). 

Rare variants in previously established genes 

We identified variants in previously established genes (namely, BMPR2, ACVRL1, ENG, SMAD1, 

SMAD4, SMAD9, KCNK3, TBX4, EIF2AK4, AQP1, ATP13A3, GDF2, SOX17) in 271 (24.2%) of 

the 1122 cases and interpreted them based on the ACMG standards and guidelines19. The 
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majority of these variants have already been described in Gräf et al.13 (see supplemental material). 

Larger deletions are depicted in Figure S4 A-F. 

Rare variant association testing 

We used the rare variant association test BeviMed to consolidate previously reported and 

discover novel genotype-phenotype associations. The BeviMed analysis identified 42 significant 

gene-tag associations with posterior probability (PP) above 0.6 (Table 2 and Figure 2A). BMPR2, 

TBX4, EIF2AK4, ACVRL1 show the highest association (PP ≥0.99) and further confirmed 

significant associations in the majority of other previously established genes13. Our analysis 

showed that individuals with rare variants in BMPR2, TBX4, EIF2AK4 (autosomal recessive 

model) and SOX17 have a significantly earlier age of disease onset (tag: young age). We also 

confirmed the association of rare variants in AQP1 with HPAH (PP=0.994). The refined phenotype 

approach corroborated the association between mutations in BMPR2 and preserved KCO (KCO 

higher tertile, PP=1) as well as an association between biallelic EIF2AK4 mutations and 

significantly reduced KCO (KCO <50% predicted, PP=1). 

Under an autosomal dominant mode of inheritance, protein-truncating variants (PTVs) in kinase 

insert domain receptor (KDR) were associated with a significantly reduced KCO (KCO lower 

tertile, PP=0.989), as well as older age at diagnosis (tag: old age, PP=0.912). Furthermore, KCO 

stratification highlighted an association between isocitrate dehydrogenase (NAD(+)) 3 non-

catalytic subunit gamma (IDH3G) and moderately reduced KCO in patients with pulmonary 

hypertension (PP = 0.920).  
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Rare variants in the new PAH risk genes: KDR and IDH3G 

We identified a total of five rare protein-truncating variants in KDR in the study cohort.  Four of 

these were in PAH cases: 1 frameshift variant in exon 3 of 30 (c.183del, p.Tryp61CysfsTer16), 2 

nonsense variants, one in exon 3 (c.183G>A, p.Trp61Ter) and one in exon 22 (c.3064C>T, 

p.Arg1022Ter) and 1 splice acceptor variant in intron 4 of 29 (c.490-1G>A). In addition, one 

nonsense variant was identified in exon 27 (p.Glu1206Ter) in a non-PAH control subject (Table 

3). This latter nonsense variant appears late in the amino acid sequence, in exon 29 of 30, which 

might have limited impact on KDR function. Furthermore, 13 PAH cases (1%) and 102 non-PAH 

controls (0.9%) harboured rare predicted deleterious KDR missense variants (Figure 3). The 

missense variant carriers, however, did not exhibit a reduced KCO or older age of diagnosis. 

Instead, these patients show the opposite trend in KCO (Table 4 and Figure 2C and D). 

Importantly, seven of the 13 KDR missense variants seen in the PAH cases also were detected 

in several non-PAH controls, and thus are unlikely to be playing a causal role. Furthermore, three 

of the KDR missense variants co-occurred with predicted deleterious variants in established PAH 

risk genes (two patients with variants in BMPR2 and one with variant in AQP1). 

We also identified three missense variants (c.74C>T, p.Pro25Leu; c.1037C>T, p.Thr346Ile; 

c.1067T>C, p.Met356Thr) and one large deletion (X:147511939-154854072) in the gene IDH3G 

in five individuals. The missense variant (c.74C>T, p.Pro25Leu) was present in two IPAH 

individuals, whereas the large deletion (X:147511939-154854072) was present in one IPAH and 

one control case. The “Moderate and high” impact category contributed to the detected 

association. IPAH patients harbouring variants in IDH3G were all females with early-onset 

disease, median age 34 [27;51] and relatively preserved KCO (Table 3, Table S11).  
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Clinical characterisation of KDR mutation carriers 

Patients with PTV in KDR were older and exhibited significantly reduced KCO compared with 

KDR missense variant carriers and BMPR2 mutation carriers (Figure 2C). In order to determine 

whether the reduction in KCO was the result of coexistent emphysema secondary to smoking or 

other parenchymal lung diseases, we performed a detailed analysis of thoracic CT imaging. 

Three of the four cases did not have a history of smoking. CT scans were available in all four 

patients harbouring PTV in KDR and showed a range of lung parenchymal changes in all four 

cases (Figure 4). W000229 had evidence of mild mainly subpleural ILD, mild emphysema and 

air trapping. W000274 had signs of ILD with traction bronchiectasis in the lower zones, mild 

air trapping, and mild diffuse ground glass opacities (GGO) and neovascularity. Also, E001392 

showed mild centrilobular ground glass nodularity in addition to moderate pleural effusion 

and a trace of air trapping, but no ILD. In these cases it seemed likely that the observed 

parenchymal changes contributed to the low KCO. In contrast, E003448 had a low KCO 

despite only a trace of central non-specific ground glass change on the CT images. 

Comparisons of CT findings between patients harbouring deleterious mutations in BMPR2, 

EIF2AK4, KDR, other PAH risk genes and patients without mutations are presented in Table S11. 

There were no differences in the frequency of comorbidities between patients harbouring 

missense and PTV in KDR although the frequency of systemic hypertension was high in both UK 

and US cohorts (44% and 50%, respectively) (Table 4 and Table S11). None of the PTV carriers 

had a family history of PAH. Survival in this group could not be assessed because of the small 

number of patients harbouring the mutation, as well as only one event occurring in this group. 
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Additional cases in US PAH cohorts 

To replicate our findings, we analysed subjects recruited to the US PAH Biobank15 and the 

Pulmonary Hypertension Center at Columbia University16 to identify additional patients carrying 

predicted pathogenic rare variants in the new PAH risk genes. Four individuals harbouring KDR 

PTVs were identified. These comprised, 2 nonsense variants, one in exon 3 (c.303C>A, 

p.Tyr101Ter) and one in exon 22 (c.3064C>T, p.Arg1022Ter) and two splice donor variants, one 

in intron 2 of 29 (c.161+1G>T) and one in intron 5 (c.658+1G>A). Interestingly, the nonsense 

variant p.Arg1022Ter appeared in both cohorts (Figure 3). Patient-level data for these individuals 

are summarised in Table S3. Three of the four patients were diagnosed with idiopathic PAH at 

72, 65 and 42 years respectively, whereas one patient was diagnosed at age 4 with PAH 

associated with double outlet right ventricle. Diffusion capacity of carbon monoxide was 

available for one patient and was decreased at 35% predicted, with only minor pleural scarring 

in the left upper lobe found on CT imaging. Two out of four patients harbouring PTV in KDR had 

also been diagnosed with systemic hypertension. 

Additionally, two individuals carrying missense variants in IDH3G locus were found in US PAH 

Biobank and Pulmonary Hypertension Center at Columbia University cohorts; one male neonate 

diagnosed with Scimitar syndrome, hypoplastic right lung and atrial septal defect (ASD) 

(c.1091C>T, p.Pro364Leu) and a 55-year-old female with large ASD (c.217G>C, p.Val73Leu). 

Discussion 

One of the critical translational steps in identifying novel, causative genes in rare disorders is the 

discovery of genotype-phenotype associations to inform patient care and impact outcomes. A 

pragmatic focus on deeply-phenotyped individuals and “smart” experimental design cannot be 
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overestimated20. With this in mind, we studied the molecular genetic architecture of PAH using 

BeviMed18. To generate case/control labels, we tagged PAH cases with diagnostic labels and 

stratified them by age at diagnosis and KCO. Analyses were then performed to identify 

associations between tags and rare gene variants. 

Our findings strongly suggest a link between rare protein-truncating KDR variants and reduced 

KCO and older age at diagnosis. The human KDR gene, located on chromosome 4q11–q12, 

encodes vascular endothelial growth factor receptor 2 (VEGFR-2)21. VEGFR-2 is composed of 

an extracellular domain, which comprises seven Ig-like domains (I–VII), of which domains II and 

III bind VEGF-A, a critical growth factor for physiological and pathological angiogenesis in 

vascular endothelial cells. In mice, even though VegfA haploinsufficiency is embryonically 

lethal22, heterozygosity of its receptor, Vegfr2, is compatible with life and unimpaired vascular 

development23. 

The role of VEGF signalling in the pathogenesis of PAH has been an area of intense interest since 

reports of increased expression of VEGF, VEGFR1 and VEGFR2 in rat lung tissue in response to 

acute and chronic hypoxia24. An increase in lung VEGF has also been reported in rats with PH 

following monocrotaline exposure25. In humans, VEGFA is highly expressed in plexiform lesions 

in patients with IPAH26, tracheal aspirates from neonates with a persistent PH of the newborn27 

and small pulmonary arteries from infants with PH associated with a congenital diaphragmatic 

hernia28. In view of these findings, it is surprising that the overexpression of VEGFA ameliorates 

hypoxia-induced PAH29. In contrast, inhibition of VEGF signalling by SU5416 (sugen) combined 

with chronic hypoxia triggers severe angioproliferative PH30. SU5416, a small-molecule inhibitor 

of the tyrosine kinase segment of VEGF receptors inhibits VEGFR131 and VEGFR232 causing 

endothelial cell apoptosis, loss of lung capillaries and emphysema33. In combination with chronic 

hypoxia, SU5416 causes cell-death dependent compensatory pulmonary endothelial cell 

proliferation and severe PH30. Further evidence supporting the role of VEGF inhibition in the 
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pathobiology of PAH comes from reports of PH in patients treated with bevacizumab34 and the 

multi-tyrosine kinase inhibitors, dasatinib35 and bosutinib, have also been associated with PAH36. 

Both preclinical and patient data show that inhibition of VEGF is associated with considerable 

cardiovascular side effects37. Among common side effects of VEGF inhibitors are systemic 

hypertension, proteinuria, renal impairment and thyroid dysfunction. The overall incidence of 

systemic hypertension induced by bevacizumab and RTKIs scale from 9 to 67% and is dose-

dependent38. Mechanisms implicated in systemic hypertensive response include impairment of 

nitric oxide (NO) signalling, increased arterial stiffness39, reduced capillary density40 or functional 

rarefaction41 and activation of the endothelin system42, all of which are relevant to the 

pathobiology of PAH. Notably, two out of four of our cases with PTVs at the KDR locus had 

systemic hypertension. Also, the frequency of thyroid dysfunction was higher (although not 

statistically significant) in patients with KDR PTVs (25% UK cohort, 50% US cohort) than in 

patients without mutations in PAH risk genes (13.2%). The proportion of patients with renal 

impairment was not different between KDR PTV and missense variant carriers or the rest of the 

study population. Mutations in KDR have also been reported in other cardiovascular diseases; 

Bleyl et al. reported that KDR might be a candidate for familial total anomalous pulmonary venous 

return43. In addition, haploinsufficiency in KDR locus has also been associated with tetralogy of 

Fallot44. We report one patient (US cohort) with PAH associated with congenital heart disease 

and KDR protein-truncating splice donor variant (c.161+1G>T). IDH3G is a protein-coding gene 

encoding enzyme catalyzing the decarboxylation of isocitrate (ICT) into alpha-ketoglutarate, a 

tricarboxylic acid (TCA) cycle intermediate. Metabolomic3 and imaging studies45 have previously 

shown disrupted bioenergetics in IPAH characterised by the accumulation of TCA cycle 

intermediates. This indicates suppression of mitochondrial glucose oxidation, central to which is 

inhibition of pyruvate dehydrogenase (PDH)46. Alpha-ketoglutarate is a required cofactor for 

PDH, the enzyme that under normal conditions causes proteasomal degradation of hypoxia-
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inducible factor (HIF)47. Citrate and alpha-ketoglutarate have also been implicated in acetylation48 

and methylation49 of nuclear histones. Interestingly isocitrate dehydrogenase (IDH) activity has 

been reported to be increased both in PAEC and serum in patients harbouring BMPR2 

pathogenic variants50. IDH has the capacity to catalyze against TCA flow by converting alpha-

ketoglutarate to isocitrate leading to depletion of the PDH co-factor alpha-ketoglutarate and 

causing decreased hydroxylation of HIF leading to its proteasomal degradation50. Such findings 

have potential therapeutic implications, as pyruvate dehydrogenase kinase inhibitor 

(dichloroacetate) has shown some efficacy in genetically susceptible PAH patients51. 

In the present study, we highlight that deep clinical phenotyping in combination with genotype 

data can accelerate the identification of novel disease risk genes and disease subtypes, which 

may have prognostic and therapeutic implications. Of particular interest is the association of 

KDR PTVs with significantly reduced KCO. Reduced KCO, which reflects impairment of alveolar-

capillary membrane function, has been noted in the analysis of early registry data52 to be an 

independent predictor of survival. Decreased KCO was also found in patients with PVOD/PCH 

with or without biallelic EIF2AK4 mutations53. Although some reduction in KCO is one of the 

typical features of pulmonary vascular disease, PVOD patients show the lowest KCO values 

when compared to IPAH or CTEPH. In contrast, KCO is relatively preserved in BMPR2 mutation 

carriers54. Strong association with survival and a link with other causative mutations makes the 

KCO phenotype particularly attractive for genetic studies, and KCO should be consistently 

collected in future PAH registries. 

As lung disease should always be taken under consideration as a cause of low KCO, we applied 

the World Symposium on PH criteria55 to exclude lung disease as a cause of PH: TLC ≥70% 

pred., FVC ≥70% pred., FEV1 ≥60% pred., and no severe fibrosis and/or emphysema on chest 

HRCT. None of the PTV KDR cases met these criteria although two of the four patients did show 

evidence of early ILD. Another potential reason for low KCO in the PAH population is the 
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diagnosis of PVOD/PCH56. Again, careful analysis of CT scans and clinical data did not reveal 

convincing evidence for this diagnosis in KDR PTV carriers. Cigarette smoking is a well-known 

factor leading to the decrease of KCO, which can be explained by increased carboxyhemoglobin 

levels57 and smoking-induced emphysema58; only one of the 4 KDR PTV carriers was a previous 

smoker with 15 pack-years of exposure but non-smoker for over 20 years prior to diagnosis and 

with no signs of emphysema on CT. These findings suggest that PTVs in KDR are associated 

with a form of PAH characterised by a range of lung parenchymal abnormalities, including small 

airways disease, emphysema and ILD, as two of the four patients harbouring PTV in KDR had 

mild fibrotic lung changes. Of note, the patients with mutations in other PAH risk genes or those 

without identified genetic mutation showed less than 10% incidence of fibrotic changes on CT 

imaging. Further larger studies are needed to determine the full range of lung parenchymal 

abnormalities in PAH cases with PTVs in KDR. 

In summary, this study shows how deep phenotyping enabled patient stratification into 

subgroups with shared pathobiology and increased the power to detect genotype-phenotype 

associations. We provided statistical evidence of a strong association between PTVs in the gene 

KDR and significantly decreased KCO as well as later age of disease onset, and moderate impact 

variants in IDH3G and preserved KCO. 
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Figure legends 

Figure 1. Design of the genetic association study. A, Overview of the analytical approach. 

Using deep phenotyping, data tags were assigned to patients who shared phenotypic features 

(see Figure S1 for more details). Rare sequence variants, called from whole-genome sequencing 

data, were filtered and explained cases were labelled. BeviMed was applied to a set of unrelated 

individuals, to test the posterior probability of gene-tag associations. B, Consort diagram 

summarising the size of the study cohort. C, Schematic representation of the definition of cases, 

exemplified by the KCO lower tertile tag. Cases were defined as individuals carrying a particular 

tag, whereas patients with missing information or those without a tag were removed from the 

gene-tag association testing. Individuals from non-PAH domains served as controls. KCO - 

transfer coefficient of carbon monoxide, MAF - minor allele frequency. 

 

 

Figure 2. Genetic association study results revealing established and novel genotype-

phenotype links. A, Figure showing phenotype tags on the x-axis and their corresponding 

posterior probability on the y-axis, as calculated by BeviMed. This measure predicts associations 

between tags and rare, predicted deleterious variants within a given gene. The definitions of the 

tags are listed in Table 1. Shape and colour of points indicate the mode of inheritance and 

consequence type/impact of variants driving the association. Box-and-whisker plots showing 

the distribution of transfer coefficient of carbon monoxide (B) and age at diagnosis (C) stratified 

by genotype across the PAH domain. The two-tailed Wilcoxon signed-rank test was used to 

determine differences in the medians of the distributions, which are indicated by the bars at the 

top of the figures providing the respective p-values. bial. - biallelic, het. - heterozygous, pt. - 

protein-truncating, mis. - missense. 
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Figure 3. Summary of single nucleotide variants (SNVs), small insertions and deletions 

(indels) and large deletions identified in the two novel candidate PAH disease risk genes. 

Only predicted deleterious variants in KDR (A) and IDH3G (B, C) are shown (MAF<1/10,000 and 

CADD>=15). SNVs and indels are represented by coloured lollipops on top of the protein 

sequence. Lollipop colour indicates the consequence type and size represents the variant 

frequency within a cohort. The domain annotations were retrieved from Uniprot (accession 

numbers P35968 [KDR (A)] and P51553 [IDH3G (D)]). PTVs are labelled with the respective HGVS 

notation. Splice variants are marked by dark grey arrows. The large deletion identified in IDH3G 

(C) is depicted in light blue; the respective gene locus is highlighted in red. The number of 

variants by predicted consequence type and cohort is provided in the tables. 

 

Figure 4. Pulmonary computerised tomography (CT) scans of patients carrying protein-

truncating KDR mutations. A, Axial image of pulmonary CT angiogram at the level of the right 

ventricle (RV) moderator band, showing flattening of intraventricular septum, leftwards bowing 

of the interatrial septum and the enlargement of the right atrium (RA) and RV, indicative of RV 

strain; bilateral pleural effusion, larger on the right side. B, Axial image of a pulmonary CT 

angiogram demonstrating enlarged pulmonary artery and mild central lung ground glass opacity 

(GGO). C, Axial high-resolution CT slice of the chest in the lung window showing a trace of non-

specific GGO with a central distribution. D, Coronal image showing the trace of central GGO and 

enlarged central pulmonary arteries. Axial high-resolution CT slice of the chest in the lung 

window showing apical subpleural fibrosis (E), and very minor subpleural fibrosis at the lung 

bases (F). Axial high-resolution CT slice of the chest in the lung window showing subpleural GGO 
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at apical level (G), and mild GGO at mid-thoracic level (H). Patients: E001392 (A, B), E003448 (C, 

D), W000229 (E, F), W000274 (G and H). 

Supplemental figure legends 

Figure S1. Summary of missing data. A, The fraction of missing data for KCO, in comparison 

to diagnosis, age at diagnosis and lung function tests. B, The missingness pattern in KCO, in 

relation to diagnosis, age at diagnosis and lung function tests. KCO - transfer coefficient of 

carbon monoxide. FEV1 - forced expiratory volume in 1 second, FVC - forced vital capacity, TLC 

- total lung capacity. 

 

Figure S2. Flowchart describing the definition of diagnostic and phenotypic tags. A detailed 

description is provided in the supplemental material. The definition of tags is listed in Table 1. 

 

Figure S3. Characterisation and survival analysis of the cohort. Distribution of transfer 

coefficient of carbon monoxide (KCO), coloured by KCO tertiles (A), and coloured by KCO below 

and above the 50% predicted threshold (B). C, Distribution of age tertiles. D, Kaplan-Meier 

survival curves for KCO tertiles. E, Kaplan-Meier survival curves for KCO below and above 50% 

predicted threshold. F, Kaplan-Meier survival curves for age tertiles. 

 

Figure S4. Summary of large deletions identified in previously established disease genes. 

Deletions are indicated by light blue boxes. The protein-coding genes, annotated in the displayed 

region by Ensembl (GRCh37, version 75), are depicted in the bottom panels. The affected 

genomic regions, with the disease gene locus highlighted in red and the magnified  view focusing 

on the gene loci, are shown for BMPR2 (A, B), GDF2 (C, D) and TBX4 (E, F). 
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Table legends 

Table 1. Definitions of labels and the number of unrelated cases and controls for genetic 

association analysis with BeviMed. mPAP - mean pulmonary artery pressure, PH - pulmonary 

hypertension, PAH - pulmonary arterial hypertension, I/HPAH - Idiopathic/Hereditary Pulmonary 

Arterial Hypertension, PVOD - Pulmonary veno-occlusive disease, PCH - Pulmonary capillary 

haemangiomatosis, APAH - Associated Pulmonary Arterial Hypertension, CHD - Congenital 

Heart Disease, CTD - Connective Heart Disease, PPH, LHD - Left Heart Disease, LD - Lung 

Disease, CTEPH - Chronic Thromboembolic Pulmonary Hypertension, KCO - transfer coefficient 

of carbon monoxide. 

 

Table 2. BeviMed analysis results. Posterior probabilities and Bayes factors of gene-tag 

associations. The "High" category, comprise only variants of “high” impact, including PTVs and 

large deletions; the Moderate category contains variants of impact “moderate”, including 

missense variants or consequence “non_coding_transcript_exon_variant”; the combined 

category Moderate and High, include both respective consequence types.  

 

Table 3. Gene changes for IPAH patients harbouring protein-truncating variants (PTV)  in the 

KDR gene and PTV and missense variants in the IDH3G gene. KDR - Kinase insert domain 

receptor, IDH3G - Isocitrate dehydrogenase (NAD(+)) 3 non-catalytic subunit gamma, WHO FC 

- World Health Organisation functional class, 6MWD - 6-minute walk distance, SpO2 - arterial 

oxygen saturation, mRAP - mean right atrial pressure, mPAP - mean pulmonary artery pressure, 

mPAWP - mean pulmonary artery wedge pressure, CO - cardiac output, PVR - pulmonary 

vascular resistance, FEV1 - forced expiratory volume in 1 sec, FVC - forced vital capacity, KCO 

- transfer factor coefficient for carbon monoxide. None of the KDR variants has been previously 
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reported in gnomAD,  ExAC or internal controls. For KDR HGVSc notations are based on 

transcript sequence ENST00000263923.4. HGVSp notations are based on amino acid sequence 

ENSP00000263923.4. None of the patients harbouring PTV in KDR  had capillary hemangioma,  

*DLCO% predicted; For IDH3G HGVSc notations are based on transcript sequence 

ENST00000217901.5, HGVSp notations are based on amino acid sequence 

ENSP00000217901.5. Protein truncating variants were defined as stop gained, splice acceptor 

variants or frameshift variants.  

 

Table 4. Clinical characteristics of IPAH patients harbouring protein truncating variants in the 

KDR gene. KDR - Kinase insert domain receptor, IPAH - idiopathic pulmonary arterial 

hypertension, BMI - Body Mass Index, WHO FC - World Health Organisation functional class, 

6MWD - six-minute walk distance, SpO2 - arterial oxygen saturation,  mRAP - mean right atrial 

pressure, mPAP - mean pulmonary artery pressure, PAWP - pulmonary artery wedge pressure, 

CO - cardiac output, PVR - pulmonary vascular resistance, NO - nitric oxide, FEV1 - forced 

expiratory volume in 1 second, FVC - forced vital capacity, KCO - transfer factor coefficient for 

carbon monoxide, COPD - chronic obstructive pulmonary disease, CAD - coronary artery 

disease, HTN - systemic hypertension, CKD - chronic kidney disease, Hb - haemoglobin, WBC 

- white blood cells, TSH - thyroid-stimulating hormone. Comorbidities are reported as the 

number and percentage of cases possessing a disease entity. None of the patients had a history 

of pulmonary embolism or asthma. Three of the KDR missense variants co-occurred with 

predicted deleterious variants in established PAH risk genes (BMPR2 and AQP1) 
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Supplemental table legends 

Table S1. NIHR BioResource - Rare Diseases domain definitions. 

 

Table S2. Summary of electronic clinical report forms (CRFs) constructed to capture phenotypic 

information 

 

Table S3. Reporting proforma for CT scan revision. CTPA - Computerised Tomography 

Pulmonary Angiogram, HRCT - High-Resolution Computerised Tomography, GGO - ground 

glass opacities 

 

Table S4. Clinical characterisation of the study population. BMI - body mass index, WHO FC - 

World Health Organisation Functional Class, 6MWD - 6-minute walk distance, mRAP - mean 

right atrial pressure, mPAP - mean pulmonary artery pressure, CO - cardiac output, FEV1 - forced 

expiratory capacity in 1 second, FVC - forced vital capacity, KCO - transfer factor coefficient for 

carbon monoxide, Hb - haemoglobin, RDW - red cell distribution width, WBC - white blood cell 

count, NTproBNP - N-terminal pro b-type natriuretic peptide, BNP - B-type natriuretic peptide, 

CRP - C-Reactive Protein Protein, HTN - hypertension, DM - diabetes mellitus, CAD - coronary 

artery disease, CVA - cerebrovascular  accident, COPD - chronic obstructive pulmonary disease, 

CCB - calcium channel blocker, ERA - endothelin receptor antagonists, PA - prostacyclin 

analogues, PED5 - phosphodiesterase type 5, sGC - soluble guanylate cyclase; Entire cohort 

(n=1122) was composed of  IPAH (n=972),  HPAH (n=73),  PVOD/PCH (n=20), PH associated 

with left heart disease (n=7), PH associated with lung disease (n=8),  chronic thromboembolic 

pulmonary hypertension (n=6),  multifactorial PH (n=6), hereditary hemorrhagic telangiectasia 

(n=1) 
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Table S5. Clinical differences between patients with present and missing transfer coefficient 

results. BMI - body mass index, WHO FC - World Health Organisation Functional Class, 6MWD 

- 6-minute walk distance, mRAP - mean right atrial pressure, mPAP - mean pulmonary artery 

pressure, PAWP - Pulmonary Artery Wedge Pressure, CI - cardiac index, PVR - pulmonary 

vascular resistance, SvO2 [%] - mixed venous saturation, HRCT - High-Resolution Computerised 

Tomography, FEV1 - forced expiratory capacity in 1 second, FVC - forced vital capacity, COPD 

- chronic obstructive pulmonary disease, OSA - obstructive sleep apnoea  

 

Table S6. Clinical characteristics of unrelated individuals used in gene-tag association analysis 

by KCO threshold. BMI - body mass index, WHO FC - World Health Organisation Functional 

Class, 6MWD - 6-minute walk distance, SpO2 - peripheral capillary oxygen saturation, mRAP - 

mean right atrial pressure, mPAP - mean pulmonary artery pressure, PAWP - Pulmonary Artery 

Wedge Pressure, CO - cardiac output, SvO2 - Mixed venous oxygen saturation, FEV1 - forced 

expiratory capacity in 1 second, FVC - forced vital capacity, TLC - Total Lung Capacity, KCO - 

transfer coefficient of carbon monoxide, HRCT - High-Resolution Computerised Tomography,  

NTproBNP - N-terminal pro B-Type Natriuretic Peptide, BNP - B-Type Natriuretic Peptide, CRP 

- C-Reactive Protein Protein, Hb - haemoglobin, WBC - white blood cell count, COPD - chronic 

obstructive pulmonary disease, OSA - obstructive sleep apnoea, CAD - coronary artery disease, 

CVA - cerebrovascular accident,  PAD - peripheral artery disease, HTN - hypertension, DM - 

diabetes mellitus; none of the patients had systemic lupus erythematosus, systemic sclerosis, 

undifferentiated connective tissue disease or ankylosing spondylitis       

 

Table S7. Clinical characteristics of unrelated individuals used in gene-tag association analysis 

by KCO tertiles. BMI - body mass index, WHO FC - World Health Organisation Functional Class, 
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6MWD - 6-minute walk distance, SpO2 - peripheral capillary oxygen saturation, mRAP - mean 

right atrial pressure, mPAP - mean pulmonary artery pressure, PAWP - Pulmonary Artery Wedge 

Pressure, CO - cardiac output, SvO2 - mixed venous oxygen saturation, NO - nitric oxide, FEV1 

- forced expiratory capacity in 1 second, FVC - forced vital capacity, TLC - Total Lung Capacity, 

KCO - transfer coefficient of carbon monoxide, HRCT - High-Resolution Computerised 

Tomography, NTproBNP - N-terminal pro b-type natriuretic peptide, BNP - B-type natriuretic 

peptide, CRP - C-Reactive Protein Protein, Hb - haemoglobin, WBC - white blood cell count, 

COPD - chronic obstructive pulmonary disease,  OSA - obstructive sleep apnoea, CAD - 

coronary artery disease, CVA - cerebrovascular accident,  PAD - peripheral artery disease, HTN 

- hypertension, DM - diabetes mellitus; none of the patients had systemic lupus erythematosus, 

systemic sclerosis, undifferentiated connective tissue disease or ankylosing spondylitis 

 

Table S8. Result of Cox regression analysis relating overall survival to selected variables at 

baseline. CI - Confidence interval, 6MWD - 6-minute walking distance, mPAP - mean pulmonary 

arterial pressure, mRAP - mean right atrial pressure, PVR - pulmonary vascular resistance, WU 

- Wood units, KCO - transfer coefficient of carbon monoxide, CAD - coronary artery disease, 

COPD - chronic obstructive pulmonary disease, HTN - systemic hypertension, HRCT - High-

Resolution Computerised Tomography 

 

Table S9. Clinical characteristics of unrelated individuals used in gene-tag association by age 

tertiles. BMI - body mass index, WHO FC - World Health Organisation Functional Class, 6MWD 

- 6-minute walk distance, SpO2 - peripheral capillary oxygen saturation, mRAP - mean right atrial 

pressure, mPAP - mean pulmonary artery pressure, PAWP - Pulmonary Artery Wedge Pressure, 

CO - cardiac output, SvO2 - Mixed venous oxygen saturation, NO - nitric oxide, FEV1 - forced 

expiratory capacity in 1 second, FVC - forced vital capacity, TLC - Total Lung Capacity, KCO - 
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transfer factor coefficient for carbon monoxide, NTproBNP - N-terminal pro b-type natriuretic 

peptide, BNP - B-type natriuretic peptide, CRP - C-Reactive Protein Protein,  Hb - haemoglobin, 

WBC - white blood cell count, COPD - chronic obstructive pulmonary disease,  OSA - obstructive 

sleep apnoea, CAD - coronary artery disease, CVA - cerebrovascular accident, PAD - peripheral 

artery disease, HTN - hypertension, DM - diabetes mellitus; none of the patients had 

undifferentiated connective tissue disease, incident cases were defined as those diagnosed 

within 6 months from study commencement. 

 

Table S10. Summary of imaging analysis. IPAH - idiopathic pulmonary arterial hypertension, 

HPAH - hereditary pulmonary arterial hypertension, PVOD - pulmonary veno-occlusive disease, 

PCH - Pulmonary capillary haemangiomatosis, GGO - ground glass opacities, BA - bronchial 

artery, C - central, U - upper, Z - zonal,  D - diffuse; Intra-rater reliability: GGO centrilobular 

pattern severity weighted Cohen's Kappa=0.679, p-value <0.001; GGO distribution unweighted 

Cohen's Kappa = 1, p-value 0.046; Severity of GGO non-specific pattern - no positive findings; 

Pulmonary arteriovenous malformations - no positive findings; largest BA size - no positive 

findings; Mediastinal venous collaterals: unweighted Cohen's Kappa = 1, p-value <0.001;  

Intralobular septal thickening weighted Cohen's Kappa = 1, p-value <0.001; Mediastinal 

lymphadenopathy unweighted Cohen's Kappa=0.83, p-value <0.001; Mediastinal 

lymphadenopathy size [mm] intraclass correlation coefficient (ICC) 0.717, p-value 0.088; 

Emphysema - not enough positive findings, Bronchial wall thickening - not enough positive 

findings, Fibrosis - no positive findings; Pleural effusion weighted Cohen's Kappa 0.826, p-value 

<0.001; Air trapping weighted Cohen's Kappa 0.845, p-value <0.001; Subpleural scarring - not 

enough positive findings.  
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Table S11. Clinical characteristics of IPAH patients who harbour protein-truncating variants in 

BMPR2, EIF2AK4, KDR and IDH3G. BMI - body mass index, WHO FC - World Health 

Organisation functional class, 6MWD - 6-minute walk distance, SpO2 - arterial oxygen saturation, 

mRAP - mean right atrial pressure, mPAP - mean pulmonary artery pressure, mPAWP - mean 

pulmonary artery wedge pressure, CO - cardiac output, PVR - pulmonary vascular resistance, 

NO - nitric oxide challenge, FEV1 - forced expiratory volume in 1 second, FVC - forced vital 

capacity, KCO - transfer factor coefficient for carbon monoxide, COPD - chronic obstructive 

pulmonary disease, OSA - obstructive sleep apnea, CAD - coronary artery disease, HTN - 

systemic hypertension, CKD - chronic kidney disease, Hb - haemoglobin, WBC - white blood 

cells, TSH - thyroid-stimulating hormone. Comorbidities are reported as the number and 

percentage of cases possessing a disease entity. 
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Figure 1. Design of the genetic association study. A, Overview of the analytical approach. Using deep 
phenotyping, data tags were assigned to patients who shared phenotypic features (see Figure S1 for more details). 
Rare sequence variants, called from whole-genome sequencing data, were filtered and explained cases were 
labelled. BeviMed was applied to a set of unrelated individuals, to test the posterior probability of gene-tag 
associations. B, Consort diagram summarising the size of the study cohort. C, Schematic representation of the 
definition of cases, exemplified by the KCO lower tertile tag. Cases were defined as individuals carrying a particular 
tag, whereas patients with missing information or those without a tag were removed from the gene-tag association 
testing. Individuals from non-PAH domains served as controls. KCO - transfer coefficient of carbon monoxide, MAF - 
minor allele frequency.
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Figure 2. Genetic association study results revealing established and novel genotype-phenotype links. A, Figure 
showing phenotype tags on the x-axis and their corresponding posterior probability on the y-axis, as calculated by 
BeviMed. This measure predicts associations between tags and rare, predicted deleterious variants within a given gene. 
The definitions of the tags are listed in Table 1. Shape and colour of points indicate the mode of inheritance and 
consequence type/impact of variants driving the association. Box-and-whisker plots showing the distribution of transfer 
coefficient of carbon monoxide (B) and age at diagnosis (C) stratified by genotype across the PAH domain. The two-
tailed Wilcoxon signed-rank test was used to determine differences in the medians of the distributions, which are 
indicated by the bars at the top of the figures providing the respective p-values. bial. - biallelic, het. - heterozygous, pt. - 
protein-truncating, mis. - missense.
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US Biobank PAH cases
p.Arg1022*

p.Trp101*

c.161+1G>T

c.658+1G>A
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Figure 3. Summary of single nucleotide variants (SNVs), small insertions and deletions (indels) and large deletions 
identified in the two novel candidate PAH disease risk genes. Only predicted deleterious variants in KDR (A) and IDH3G 
(B, C) are shown (MAF<1/10,000 and CADD>=15). SNVs and indels are represented by coloured lollipops on top of the 
protein sequence. Lollipop colour indicates the consequence type and size represents the variant frequency within a cohort. 
The domain annotations were retrieved from Uniprot (accession numbers P35968 [KDR (A)] and P51553 [IDH3G (D)]). PTVs 
are labelled with the respective HGVS notation. Splice variants are marked by dark grey arrows. The large deletion identified 
in IDH3G (C) is depicted in light blue; the respective gene locus is highlighted in red. The number of variants by predicted 
consequence type and cohort is provided in the tables.
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Figure 4. Pulmonary computerised tomography (CT) scans of patients carrying protein-truncating KDR 
mutations. A, Axial image of pulmonary CT angiogram at the level of the right ventricle (RV) moderator band, showing 
flattening of intraventricular septum, leftwards bowing of the interatrial septum and the enlargement of the right atrium 
(RA) and RV, indicative of RV strain; bilateral pleural effusion, larger on the right side. B, Axial image of a pulmonary CT 
angiogram demonstrating enlarged pulmonary artery and mild central lung ground glass opacity (GGO). C, Axial high-
resolution CT slice of the chest in the lung window showing a trace of non-specific GGO with a central distribution. D, 
Coronal image showing the trace of central GGO and enlarged central pulmonary arteries. Axial high-resolution CT slice 
of the chest in the lung window showing apical subpleural fibrosis (E), and very minor subpleural fibrosis at the lung 
bases (F). Axial high-resolution CT slice of the chest in the lung window showing subpleural GGO at apical level (G), 
and mild GGO at mid-thoracic level (H). Patients: E001392 (A, B), E003448 (C, D), W000229 (E, F), W000274 (G and 
H).
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Figure S1. Summary of missing data. A, The fraction of missing data for KCO, in comparison to diagnosis, age at 
diagnosis and lung function tests. B, The missingness pattern in KCO, in relation to diagnosis, age at diagnosis and lung 
function tests. KCO - transfer coefficient of carbon monoxide. FEV1 - forced expiratory volume in 1 second, FVC - forced 
vital capacity, TLC - total lung capacity.
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Figure S2. Flowchart describing the definition of diagnostic and phenotypic tags. A detailed description is 
provided in the supplemental material. The definition of tags is listed in Table 1.
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Figure S3. Characterisation and survival analysis of the cohort. Distribution of transfer coefficient of carbon monoxide 
(KCO), coloured by KCO tertiles (A), and coloured by KCO below and above the 50% predicted threshold (B). C, 
Distribution of age tertiles. D, Kaplan-Meier survival curves for KCO tertiles. E, Kaplan-Meier survival curves for KCO below 
and above 50% predicted threshold. F, Kaplan-Meier survival curves for age tertiles.
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Figure S4. Summary of large deletions identified in previously established disease genes. Deletions are indicated 
by light blue boxes. The protein-coding genes, annotated in the displayed region by Ensembl (GRCh37, version 75), are 
depicted in the bottom panels. The affected genomic regions, with the disease gene locus highlighted in red and the 
magnified  view focusing on the gene loci, are shown for BMPR2 (A, B), GDF2 (C, D) and TBX4 (E, F).
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Table 1. Definitions of labels and the number of unrelated cases and controls for genetic association analysis with BeviMed. mPAP - mean pulmonary 
artery pressure, PH - pulmonary hypertension, PAH - pulmonary arterial hypertension, I/HPAH - Idiopathic/Hereditary Pulmonary Arterial 
Hypertension, PVOD - Pulmonary veno-occlusive disease, PCH - Pulmonary capillary haemangiomatosis, APAH - Associated Pulmonary Arterial 
Hypertension, CHD - Congenital Heart Disease, CTD - Connective Heart Disease, PPH, LHD - Left Heart Disease, LD - Lung Disease, CTEPH - 
Chronic Thromboembolic Pulmonary Hypertension, KCO - transfer coefficient of carbon monoxide

Tag Tag description Cases Controls 
Excluded 
relatives

PH Individuals with mPAP > 25 mmHg 1112 9134 2786

PAH Patients with one of the following diagnoses: IPAH, HPAH, PVOD, PCH, APAH:
CHD-PAH, APAH:CTD-PAH, APAH:HIV-PAH, APAH:PH-PAH

1085 9134 2786

I/HPAH Patients with a clinical diagnosis of IPAH or HPAH 1036 9134 2786

IPAH Patients with a clinical diagnosis of IPAH 972 9134 2785

HPAH Patients with a clinical diagnosis of HPAH 67 9136 2779

PVOD/PCH Patients with a clinical diagnosis of PVOD/PCH 20 9136 2778

I/HPAH/PVOD/PCH Patients with one of the following diagnoses: IPAH, HPAH, PVOD, PCH 1056 9134 2786

FPAH Patients with one of the following diagnoses: IPAH, HPAH, PVOD, PCH and a 
positive family history

80 9136 2781

APAH Patients with one of the following diagnoses: APAH:CHD_PAH, APAH:CTD-PAH, 
APAH:HIV-PAH, APAH:PH-PAH

29 9136 2778

APAH: CHD-PAH Patients with PAH associated with congenital heart disease 17 9136 2778

APAH: CTD-PAH Patients with PAH associated with connective tissue disease 10 9136 2778

APAH: PoPH Patients with PAH associated with portopulmonary hypertension 1 9136 2778

APAH: HIV-PAH Patients with PAH associated with HIV 1 9136 2778

PH-LHD Patients with pulmonary hypertension associated with left heart disease (Group 2) 7 9136 2778

PH-LD Patients with pulmonary hypertension associated with lung disease (Group 3) 8 9136 2778

CTEPH Chronic thromboembolic pulmonary hypertension (Group 4) 6 9136 2778

PH-multifactorial Multifactorial pulmonary hypertension (Group 5) 6 9136 2778

young age Lower age tertile (<40.8 years) 378 9136 2785

middle age Middle age tertile  (40.8 - 58.6 years) 376 9134 2779

old age Higher age tertile (>58.6 years) 355 9136 2778

low KCO KCO < 50% pred. 152 9136 2778

KCO lower tertile KCO  <60% pred. 211 9136 2778

KCO middle tertile KCO  60-80% pred. 215 9136 2778

KCO higher tertile KCO >80% pred. 215 9134 2779
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Table 2. BeviMed analysis results. Posterior probabilities and Bayes factors of gene-tag associations. The 
"High" category, comprise only variants of “high” impact, including PTVs and large deletions; the Moderate 
category contains variants of impact “moderate”, including missense variants or consequence 
“non_coding_transcript_exon_variant”; the combined category Moderate and High, include both respective 
consequence types. 

Gene Transcript Tag
Log Bayes 
factor

Posterior 
probability 

Consequence 
type

Mode of 
inheritance

BMPR2 ENST00000374580 I/HPAH 265.762 1.000 High dominant
BMPR2 ENST00000374580 PAH 265.639 1.000 High dominant
BMPR2 ENST00000374580 I/HPAH/PVOD/PCH 263.481 1.000 High dominant
BMPR2 ENST00000374580 young age 149.576 1.000 Moderate and high dominant
BMPR2 ENST00000374580 HPAH 149.091 1.000 Moderate and high dominant
BMPR2 ENST00000374580 FPAH 147.822 1.000 Moderate and high dominant
BMPR2 ENST00000374580 IPAH 144.582 1.000 High dominant
BMPR2 ENST00000374580 KCO higher tertile 99.923 1.000 High dominant
BMPR2 ENST00000374580 middle age 63.119 1.000 Moderate and high dominant
BMPR2 ENST00000374580 KCO middle tertile 52.706 1.000 Moderate and high dominant
EIF2AK4 ENST00000263791 low KCO 29.741 1.000 Moderate and high recessive
EIF2AK4 ENST00000263791 KCO lower tertile 26.247 1.000 Moderate and high recessive
TBX4 ENST00000240335 I/HPAH 23.783 1.000 High dominant
TBX4 ENST00000240335 I/HPAH/PVOD/PCH 23.549 1.000 High dominant
TBX4 ENST00000240335 PAH 23.141 1.000 High dominant
EIF2AK4 ENST00000263791 young age 20.547 1.000 Moderate and high recessive
TBX4 ENST00000240335 IPAH 19.990 1.000 High dominant
EIF2AK4 ENST00000263791 I/HPAH/PVOD/PCH 15.718 1.000 Moderate and high recessive
ACVRL1 ENST00000388922 HPAH 15.501 1.000 Moderate and high dominant
EIF2AK4 ENST00000263791 PAH 15.407 1.000 Moderate and high recessive
EIF2AK4 ENST00000263791 PVOD/PCH 14.441 0.999 Moderate and high recessive
AQP1 ENST00000311813 HPAH 12.075 0.994 Moderate dominant
EIF2AK4 ENST00000263791 FPAH 11.858 0.993 High recessive
TBX4 ENST00000240335 young age 11.500 0.990 High dominant
AQP1 ENST00000311813 I/HPAH 11.466 0.990 Moderate and high dominant
KDR ENST00000263923 KCO lower tertile 11.362 0.989 High dominant
AQP1 ENST00000311813 I/HPAH/PVOD/PCH 11.291 0.988 Moderate and high dominant
AQP1 ENST00000311813 PAH 11.047 0.984 Moderate and high dominant
AQP1 ENST00000311813 FPAH 10.023 0.958 Moderate dominant
IDH3G ENST00000217901 KCO middle tertile 9.346 0.920 Moderate and high dominant
KDR ENST00000263923 old age 9.249 0.912 High dominant
GDF2 ENST00000249598 I/HPAH 9.091 0.899 Moderate and high dominant
BMPR2 ENST00000374580 old age 8.913 0.881 High dominant
GDF2 ENST00000249598 I/HPAH/PVOD/PCH 8.775 0.866 Moderate and high dominant
SOX17 ENST00000297316 young age 8.554 0.839 Moderate and high dominant
GDF2 ENST00000249598 PAH 8.478 0.828 Moderate and high dominant
ATP13A3 ENST00000439040 KCO higher tertile 8.035 0.755 High dominant
GDF2 ENST00000249598 middle age 7.818 0.713 Moderate and high dominant
KDR ENST00000263923 low KCO 7.636 0.675 High dominant

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2019. ; https://doi.org/10.1101/2019.12.11.871210doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.11.871210
http://creativecommons.org/licenses/by-nd/4.0/


Table 3. Gene changes for IPAH patients harbouring protein-truncating variants (PTV)  in the KDR gene and PTV and missense variants in the IDH3G gene. KDR - Kinase insert domain receptor, IDH3G - Isocitrate dehydrogenase (NAD(+)) 3 non-catalytic subunit gamma, WHO FC - World Health Organisation functional 
class, 6MWD - 6-minute walk distance, SpO₂ - arterial oxygen saturation, mRAP - mean right atrial pressure, mPAP - mean pulmonary artery pressure, mPAWP - mean pulmonary artery wedge pressure, CO - cardiac output, PVR - pulmonary vascular resistance, FEV₁ - forced expiratory volume in 1 sec, FVC - forced 
vital capacity, KCO - transfer factor coefficient for carbon monoxide. None of the KDR variants has been previously reported in gnomAD,  ExAC or internal controls. For KDR HGVSc notations are based on transcript sequence ENST00000263923.4. HGVSp notations are based on amino acid sequence 
ENSP00000263923.4. None of the patients harbouring PTV in KDR  had capillary hemangioma,  *DLCO% predicted; For IDH3G  HGVSc notations are based on transcript sequence ENST00000217901.5, HGVSp notations are based on amino acid sequence ENSP00000217901.5. Protein truncating variants were 
defined as stop gained, splice acceptor variants or frameshift variants. 

Gene KDR IDH3G

Cohort UK US UK US

WGS ID W000229 E003448 W000274 E001392 CUMC-JM161 CCHMC12-190 CCHMC-19-023 CCHMC-27-015 E004190 E004149 E004194 E001063 W000031 CCHMC_22-105 CCHMC_10-074

Exon 3 22 3 2 3 5 22 1-13 1 1 12 12 13 4

HGVSc c.183G>A c.490-1G>A c.3064C>T c.183del c.161+1G>T c.303C>A c.658+1G>A c.3064C>T c.1067T>C c.1037C>T c.74C>T c.74C>T c.1091C>T c.217G>C

HGVSp p.Trp61Ter - p.Arg1022Ter p.Trp61CysfsTer16 p.Tyr101Ter p.Arg1022Ter p.Met356Thr p.Thr346Ile p.Pro25Leu p.Pro25Leu p.Pro364Leu p.Val73Leu

Consequence type stop gained splice acceptor 
variant

stop gained frameshift variant splice donor 
variant

stop gained stop gained stop gained large deletion missense variant missense variant missense variant missense variant missense variant missense variant

Shared PAH(1) PAH(1) PAH(1) PAH(1) No No No No GEL(1); PAH(1) PAH(1) PAH(1) PAH(2) PAH(2) NA NA

gnomAD NA NA NA NA NA NA NA NA NA NA NA NA NA 5.47E-06 1.09E-05

CADD_PHRED_v1.4 40 34 36 33 26 38 24 37 23.9 17.15 23.7 23.7 23.3 21.7

GerpN 5.93 5.75 5.95 5.93 5.83 5.83 5.8 5.95 5.46 5.46 5.22 5.22 5.18 4.72

Ansestry European European European European East-Asian European European European East-Asian European European European European European European

Sex male female male female female male female female female female female female female female male 

Diagnosis IPAH IPAH IPAH IPAH APAH-CHD 
secondary to 
double outlet RV

IPAH IPAH IPAH IPAH IPAH IPAH IPAH IPAH CHD-PAH CHD-PAH

Age at diagnosis [years] 71 62 67 61 4 72 65 42 23 27 34 51 68 0 55

WHO FC 2 3 3 3 2 NA NA NA 4 3 4 4 2 3 3

6MWD [m] 472 422 660 180 NA 380 NA 245 350 414 414 NA 316

SpO₂ pre [%] 95 97 98 97 NA NA NA NA 99 96 95 98 96 NA

SpO₂ post [%] 86 86 NA 91 NA NA NA NA 97 99 96 95 NA

FEV₁ [% pred.] 116 90 83 67.3 85% NA 77% NA 74 87 104 95 99.1 NA

FVC [% pred.] 115 94 91 72.8 92% NA 83% NA 76 90 109 95.8 96.3 NA

TLC [% pred.] NA NA NA NA NA NA 65% NA NA NA 105 76 98 NA

KCO [% pred.] 44 46 46 55.2 NA NA 35%* NA 73 71 64 78 73 NA

Smoking history Never Never Ex-smoker Never Never Never Ex-smoker Never Never Ex-smoker Never Never Never Never

mRAP [mmHg] 5 8 8 3 NA 5 29 14 15 14 8 12 6 3 7

mPAP [mmHg] 62 57 41 44 NA 49 66 60 58 64 49 50 62 46 69

PAWP [mmHg] 4 15 12 9 NA 5 16 15 15 8 10 12 7 NA 10

CO [L/min] 3.6 4.58 5.97 5.23 NA 4.33 1.8 4.6 2.37 3.23 NA 3.29 4.1 4.4

PVR 16.11 9.17 4.86 6.69 NA NA 27.9 9.8 18.1 17.3 NA 11.6 13.4 NA

Comrobidities hyperlipidemia, 
HTN, DM type 2

HTN, 
hypothyrodism

DM type 2 CAD, DM type 2 No HTN, 
hyperlipidemia,

HTN, 
hypothyrpoidism, 
OA

Obesity, CAD, DM 
type 2, 
hypothyroidism

No No No PFO No Scimitar 
syndrome, 
hypoplastic rght 
lung, ASD with 
spontaneous 
closure

Large ASD

Family history No No No No No No No No No No No No No ? ?

Status alive alive alive dead alive alive alive alive alive alive alive dead alive alive alive

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2019. ; https://doi.org/10.1101/2019.12.11.871210doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.11.871210
http://creativecommons.org/licenses/by-nd/4.0/


Table 4. Clinical characteristics of IPAH patients harbouring protein truncating variants in the KDR gene. KDR - Kinase insert domain 
receptor, IPAH - idiopathic pulmonary arterial hypertension, BMI - Body Mass Index, WHO FC - World Health Organisation functional 
class, 6MWD - six-minute walk distance, SpO₂ - arterial oxygen saturation,  mRAP - mean right atrial pressure, mPAP - mean pulmonary 
artery pressure, PAWP - pulmonary artery wedge pressure, CO - cardiac output, PVR - pulmonary vascular resistance, NO - nitric oxide, 
FEV₁ - forced expiratory volume in 1 second, FVC - forced vital capacity, KCO - transfer factor coefficient for carbon monoxide, COPD - 
chronic obstructive pulmonary disease, CAD - coronary artery disease, HTN - systemic hypertension, CKD - chronic kidney disease, Hb 
- haemoglobin, WBC - white blood cells, TSH - thyroid-stimulating hormone. Comorbidities are reported as the number and percentage 
of cases possessing a disease entity. None of the patients had a history of pulmonary embolism or asthma. Three of the KDR missense 
variants co-occurred with predicted deleterious variants in established PAH risk genes (BMPR2 and AQP1)

KDR missense  N=13 KDR PTV N=4 p-value N

Diagnosis verified: IPAH 13 (100%) 4 (100%) . 17

Age [years] 46 [36;59] 64 [62;68] 0.113 17

Sex: female 9 (69%) 2 (50%) 0.584 17

BMI [kg/m²] 29 [24;32] 26 [26;30] 1 13

WHO FC: II/III/IV [%] 23.1/9.2/7.7 25/75/0 1 17

6MWD [m] 312 [150;355] 301 [240;362] 0.814 11

SpO₂ pre [%] 95 [93;97] 97 [96;97] 0.335 11

SpO₂ post [%] 90 [80;96] 86 [86;88] 0.926 12

mRAP [mmHg] 8 [6;13] 6 [4;8] 0.431 14

mPAP [mmHg] 53 [42;62] 50 [43;58] 0.896 15

PAWP [mmHg] 10 [8;13] 10 [8;13] 0.642 13

CO [L/min] 4.0 [3.0;5.5] 4.9 [4.3;5.4] 0.514 15

PVR [WU] 10.2 [4.56;14.3] 7.93 [6.23;10.9] 1 13

Acute NO challenge: vasoresponder 1 (33.3%) 1 (25.0%) 1 7

FEV₁ [% pred.] 84 [65;94] 86 [79;96] 0.48 14

FVC [% pred.] 86 [72;97] 92 [86;99] 0.723 14

FEV₁/FVC ratio 0.78 [0.75;0.87] 0.78 [0.76;0.79] 0.671 14

KCO [% pred.] 89 [74;93] 46 [46;48] 0.008 11

Smoking history 6 (54.5%) 1 (25.0%) 0.677 15

COPD 1 (7.69%) 0 (0.00%) 1 17

Pulmonary fibrosis 0 (0.00%) 2 (50.0%) 0.044 17

CAD 1 (7.69%) 1 (25.0%) 0.426 17

HTN 5 (38.5%) 2 (50.0%) 1 17

CKD 1 (7.69%) 0 (0.00%) 1 17

Hb [g/l] 154 [140;166] 148 [135;152] 0.214 15

WBC [x10e9/l] 9.20 [6.30;11.0] 8.80 [8.23;9.55] 0.844 15

Platelets [x10e9/l] 262 [209;294] 216 [188;251] 0.361 15

Creatinine [umol/l] 78.0 [61.5;98.0] 67.0 [66.5;96.5] 0.866 13

TSH [mU/l] 3.65 [1.80;6.90] 1.76 [1.72;1.84] 0.234 12
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Table S1. NIHR BioResource - Rare Diseases domain definitions.

Project 
acronym

Project
Number of 
individuals in 
the project

GEL Genomics England Ltd 3058

BPD Bleeding, Thrombotic and Platelet Disorders 986

PID Primary Immune Disorders 1027

CNTRL Processed Controls 50

IRD Inherited Retinal Disorders 717

NDD Neurological and Developmental Disorders 518

EDS Ehlers Danlos Syndrome 15

HCM Hypertrophic Cardiomyopathy 239

PMG Primary Membranoproliferative Glomerulonephritis 181

SRNS Steroid Resistant Nephrotic Syndrome 234

CSVD Cerebral Small Vessel Disease 134

NPD Neuropathic Pain Disorder 185

ICP Intrahepatic Cholestasis of Pregnancy 267

LHON Leber Hereditary Optic Neuropathy 54

MPMT Multiple Primary Tumours 554

SMD Stem Cell & Myeloid Disorders 153

PAH Pulmonary arterial hypertension 1123

UKBio UK BioBank 764

10259
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Table S2. Summary of electronic clinical report forms (CRFs) constructed 
to capture phenotypic information

ID capture

Demographics

Functional class

Clinical features by history

Clinical features by examination

Risk factors

Haemodynamics

Echocardiography

Electrocardiogram

Lung function

Associated Diseases

Clinical blood tests

Survival

Arterial blood gases

Imaging

Exercise performance

Body system

Drug treatment history (PAH)

Drug treatment history (other)

Family history

Epidemiology questionnaire
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Table S3. Reporting proforma for CT scan revision. CTPA - Computerised Tomography Pulmonary Angiogram, HRCT - High-Resolution 
Computerised Tomography, GGO - ground glass opacities

Parameter Response

ID character

Reader character

CT scan date date

Slice thickness numeric

Number of slices numeric

CTPA done/not done

HRCT done/not done

Expiratory CT done/not done

Pleural effusion Nil; Trace; Mild; Moderate; Severe

Subcutaneous oedema present, absent

Severity of GGO centrilobular parttern Nil; Trace; Mild; Moderate; Severe

Severity of GGO non-specific mosaic pattern Nil; Trace; Mild; Moderate; Severe

Distribution of GGO C-central; U-upper; Z-zonal; D-diffuse

Pulmonary arteriovenous malformations present, absent

Largest bronchial artery size numeric [mm]

Mediastinal venous collaterals present, absent

Intralobular septal thickening Nil; Trace; Mild; Moderate; Severe

Mediastinal lymphadenopathy present, absent

Mediastinal lymphadenopathy subcarinal [mm]

Emphysema Nil; Mild; Moderate; Severe

Bronchial wall thickening Nil; Trace; Mild; Moderate; Severe

Fibrosis Nil; Mild; Moderate; Severe

Air trapping Nil; Trace; Mild; Moderate; Severe

Subpleural scarring Nil; Mild; Moderate; Severe
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Table S4. Clinical characterisation of the study population. BMI - body mass index, WHO FC - World Health Organisation 
Functional Class, 6MWD - 6-minute walk distance, mRAP - mean right atrial pressure, mPAP - mean pulmonary artery 
pressure, CO - cardiac output, FEV₁ - forced expiratory capacity in 1 second, FVC - forced vital capacity, KCO - transfer 
factor coefficient for carbon monoxide, Hb - haemoglobin, RDW - red cell distribution width, WBC - white blood cell count, 
NTproBNP - N-terminal pro b-type natriuretic peptide, BNP - B-type natriuretic peptide, CRP - C-Reactive Protein Protein, 
HTN - hypertension, DM - diabetes mellitus, CAD - coronary artery disease, CVA - cerebrovascular  accident, COPD - 
chronic obstructive pulmonary disease, CCB - calcium channel blocker, ERA - endothelin receptor antagonists, PA - 
prostacyclin analogues, PED5 - phosphodiesterase type 5, sGC - soluble guanylate cyclase; Entire cohort (n=1122) was 
composed of  IPAH (n=972),  HPAH (n=73),  PVOD/PCH (n=20), PH associated with left heart disease (n=7), PH associated 
with lung disease (n=8),  chronic thromboembolic pulmonary hypertension (n=6),  multifactorial PH (n=6), hereditary 
hemorrhagic telangiectasia (n=1)

ALL
N=1122 N

I/HPAH and PVOD/PCH
N=1065 N

Demographics and functional status

Sex: female 760 (68%) 1116 732 (69%) 1064

Age [years] 49 [35;63] 1112 49 [35;63] 1061

BMI [kg/m²] 27 [23;32] 1015 27 [23;31] 970

WHO FC:
I/II/III/IV 21 (2%)/217 (20%)/703 (65%)/138 (13%) 1079 21 (2%)/210 (20%)/663 (64%)/135 (13%) 1029

6MWD [m] 335 [220;415] 953 336 [220;415] 906

Haemodynamics

mRAP [mmHg] 8 [5;12] 985 8 [5;12] 939

mPAP [mmHg] 53 [44;61] 1052 53 [44;61] 1004

CO [L/min] 3.9 [3.1;4.9] 1003 3.9 [3.1;4.9] 960

FEV₁ [% pred.] 85 [73;97] 849 86 [74;97] 811

FVC [% pred.] 94 [81;106] 831 95 [82;106] 793

KCO [% pred.] 71 [52;86] 644 71 [52;86] 610

Clinical blood tests

Hb [g/l] 151 [138;165] 847 152 [138;164] 805

RDW [%] 14 [14;16] 413 14 [14;16] 392

WBC [x10e9/l] 8.2 [6.8;9.8] 839 8.2 [6.8;9.8] 797

Platelets [x10e9/l] 224 [182;272] 836 225 [183;274] 795

Creatinine [umol/l] 86 [70;102] 832 86 [70;102] 790

NTproBNP [ng/l] 926 [215;2637] 276 963 [217;2672] 265

BNP [ng/l] 195 [72;432] 271 197 [74.6;454] 252

CRP [mg/l] 4 [2;8] 639 4 [2;8] 604

Comorbidities

HTN 265 (24%) 1122 256 (24%) 1065

DM type 1 20 (2%) 1122 19 (2%) 1065

DM type 2 138 (12%) 1122 132 (12%) 1065

CAD 45 (4%) 1122 42 (4%) 1065

CVA 17 (2%) 1122 15 (1%) 1065

Hypothyroidism 135 (12%) 1122 130 (12%) 1065

COPD 66 (6%) 1122 57 (5%) 1065

Asthma 78 (7%) 1122 74 (7%) 1065

Cancer 4 (0.4%) 1122 3 (0.3%) 1065

Medication

Initial therapy: 631 604

  CCB 73 (12%) 72 (12%)

  combination therapy 279 (44%) 269 (45%)

  ERA 86 (14%) 82 (14%)

  PA 42 (7%) 41 (7%)

  PDE5 inhibitor 150 (24%) 139 (23%)

  sGC stimulator 1 (0%) 1 (0%)
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Table S5. Clinical differences between patients with present and missing transfer coefficient results. BMI - body mass index, WHO FC - World Health 
Organisation Functional Class, 6MWD - 6 minute walk distance, mRAP - mean right atrial pressure, mPAP - mean pulmonary artery pressure, PAWP - 
Pulmonary Artery Wedge Pressure, CI - cardiac index, PVR - pulmonary vascular resistance, SvO₂ - mixed venous saturation, HRCT - High-Resolution 
Computerised Tomography, FEV₁ - forced expiratory capacity in 1 second, FVC - forced vital capacity, COPD - chronic obstructive pulmonary disease, OSA 
- obstructive sleep apnoea 

[ALL] N=1122 KCO [% pred.] missing 
N=478

KCO [% pred.] present 
N=644

p-value N

Sex: Female 760 (68.1%) 326 (69.1%) 434 (67.4%) 0.597 1116

Prevalent cases 852 (75.9%) 411 (86.0%) 441 (68.5%) <0.001 1122

BMI [kg/m²] 26.9 [23.1;31.5] 25.6 [22.0;30.1] 27.7 [24.1;32.5] <0.001 1015

Age [years] 48.8 [34.8;62.7] 44.6 [31.0;58.5] 51.3 [38.1;65.5] <0.001 1112

WHO FC <0.001 1079

  I 21 (1.95%) 13 (2.88%) 8 (1.27%)

  II 217 (20.1%) 117 (25.9%) 100 (15.9%)

  III 703 (65.2%) 269 (59.6%) 434 (69.1%)

  IV 138 (12.8%) 52 (11.5%) 86 (13.7%)

6MWD [m] 340 [230;418] 364 [289;432] 314 [192;405] <0.001 702

FEV₁ [% pred.] 85.0 [73.0;97.0] 83.2 [69.6;97.0] 86.0 [74.0;97.0] 0.2 849

FVC [% pred.] 94.0 [81.4;106] 89.0 [73.0;103] 96.0 [82.6;107] <0.001 831

TLC [% pred.] 95.0 [85.0;104] 93.2 [83.7;104] 95.0 [86.0;103] 0.625 639

mRAP [mmHg] 8.00 [5.00;12.0] 7.00 [5.00;12.0] 9.00 [6.00;12.0] <0.001 985

mPAP [mmHg] 53.0 [44.0;61.0] 53.0 [44.0;61.0] 53.0 [45.0;61.0] 0.669 1052

PAWP [mmHg] 9.00 [7.00;12.0] 9.00 [6.00;11.0] 10.0 [7.00;12.0] 0.001 934

CI [L/min/m²] 2.17 [1.72;2.67] 2.31 [1.81;2.82] 2.07 [1.68;2.59] <0.001 946

PVR [WU] 11.0 [7.69;15.1] 10.6 [7.60;15.2] 11.1 [7.69;15.1] 0.622 893

SvO₂ [%] 64.0 [58.0;70.0] 64.7 [57.8;70.0] 63.8 [58.2;70.0] 0.732 817

Fibrosis [HRCT report]: 0.445 614

  none 586 (95.4%) 169 (96.0%) 417 (95.2%)

  minimal/mild 26 (4.23%) 6 (3.41%) 20 (4.57%)

  moderate 1 (0.16%) 0 (0.00%) 1 (0.23%)

  severe 1 (0.16%) 1 (0.57%) 0 (0.00%)

Emphysema [HRCT report]: 0.029 612

  none 560 (91.5%) 169 (96.0%) 391 (89.7%)

  minimal/mild 33 (5.39%) 3 (1.70%) 30 (6.88%)

  moderate 15 (2.45%) 4 (2.27%) 11 (2.52%)

  severe 4 (0.65%) 0 (0.00%) 4 (0.92%)

Smoking history: past/current 435 (50.6%) 97 (38.5%) 338 (55.7%) <0.001 859

COPD 66 (5.88%) 24 (5.02%) 42 (6.52%) 0.353 1122

OSA 58 (5.17%) 20 (4.18%) 38 (5.90%) 0.251 1122

Asthma 78 (6.95%) 15 (3.14%) 63 (9.78%) <0.001 1122
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Table S6. Clinical characteristics of unrelated individuals used in gene-tag association analysis by KCO threshold. BMI - body 
mass index, WHO FC - World Health Organisation Functional Class, 6MWD - 6-minute walk distance, SpO₂ - peripheral capillary 
oxygen saturation, mRAP - mean right atrial pressure, mPAP - mean pulmonary artery pressure, PAWP - Pulmonary Artery 
Wedge Pressure, CO - cardiac output, SvO₂ - Mixed venous oxygen saturation, FEV₁ - forced expiratory capacity in 1 second, 
FVC - forced vital capacity, TLC - Total Lung Capacity, KCO - transfer coefficient of carbon monoxide, HRCT - High-Resolution 
Computerised Tomography,  NTproBNP - N-terminal pro B-Type Natriuretic Peptide, BNP - B-Type Natriuretic Peptide, CRP - C-
Reactive Protein Protein, Hb - haemoglobin, WBC - white blood cell count, COPD - chronic obstructive pulmonary disease, OSA 
- obstructive sleep apnoea, CAD - coronary artery disease, CVA - cerebrovascular accident,  PAD - peripheral artery disease, 
HTN - hypertension, DM - diabetes mellitus; none of the patients had systemic lupus erythematosus, systemic sclerosis, 
undifferentiated connective tissue disease or ankylosing spondylitis                                          

[ALL] N=644 KCO > 50% pred N=492 KCO =< 50 % pred. N=152 p-value N

Age [years] 51 [38;66] 47 [36;60] 66 [54;71] <0.001 644

Sex: female 434 (67%) 352 (72%) 82 (54%) <0.001 644

Incident cases 203 (31.5%) 134 (27.2%) 69 (45.4%) <0.001 644

BMI [kg/m²] 27.7 [24.1;32.5] 27.7 [23.7;32.7] 27.7 [24.8;32.3] 0.806 629

WHO FC 0.013 628

  I 8 (1%) 7 (1%) 1 (1%)

  II 100 (16%) 88 (18%) 12 (8%)

  III 434 (69%) 320 (67%) 114 (77%)

  IV 86 (14%) 64 (13%) 22 (15%)

6MWD [m] 313 [190;404] 334 [229;414] 219 [120;348] <0.001 599

SpO₂ pre [%] 95.0 [93.0;97.0] 96.0 [93.0;98.0] 92.0 [89.0;95.0] <0.001 575

SpO₂ post [%] 91.0 [85.0;96.0] 93.0 [88.0;96.0] 83.0 [76.0;88.0] <0.001 529

mRAP [mmHg] 9 [6;12] 9 [6;13] 9 [6;12] 0.375 601

mPAP [mmHg] 53 [45;61] 54 [46;63] 50 [42;57] 0.001 625

PAWP [mmHg] 10 [7;12] 10 [7;12] 10 [8;12] 0.301 560

CO [L/min] 3.8 [3.1;4.8] 3.9 [3.1;4.9] 3.6 [3.1;4.7] 0.282 614

SvO₂ [%] 64 [58;70] 64 [59;71] 61 [55;67] <0.001 572

Acute NO challenge: vasoresponder 43 (17%) 38 (18%) 5 (10%) 0.204 257

FEV₁ [% pred.] 86.0 [74.0;97.0] 85.0 [73.4;96.0] 87.0 [77.0;98.0] 0.119 639

FVC [% pred.] 96.0 [82.6;107] 94.0 [81.0;106] 101 [87.0;113] <0.001 628

FEV₁/FVC ratio 0.76 [0.69;0.81] 0.76 [0.71;0.81] 0.70 [0.63;0.77] <0.001 614

TLC [% pred.] 95.0 [86.0;103] 95.0 [85.0;103] 95.0 [87.5;104] 0.564 485

KCO [%pred.] 71 [52;86] 78 [67;90] 37 [30;44] <0.001 644

Emphysema (HRCT scan) <0.001 436

  none 391 (90%) 307 (95%) 84 (74%)

  minimal/mild 30 (7%) 12 (4%) 18 (16%)

  moderate 11 (3%) 2 (1%) 9 (8%)

  severe 4 (1%) 1 (0%) 3 (3%)

Fibrosis (HRCT scan) <0.001 438

  none 417 (95%) 319 (98%) 98 (87%)

  minimal/mild 20 (5%) 6 (2%) 14 (12%)

  moderate 1 (0%) 0 (0%) 1 (1%)

Smoking history: past/current 338 (55.7%) 233 (50.0%) 105 (74.5%) <0.001 607

NTproBNP [ng/l] 980 [248;2673] 866 [257;2590] 1225 [249;2878] 0.359 220

BNP [ng/l] 200 [72.9;432] 198 [69.7;456] 200 [82.2;328] 0.798 143

Uric acid [mmol/l] 0.42 [0.32;0.53] 0.40 [0.30;0.51] 0.48 [0.39;0.56] 0.002 231

CRP [mg/l] 5.00 [2.00;8.60] 5.00 [2.00;8.00] 4.15 [2.00;9.00] 0.953 450

Hb [g/l] 154 [139;166] 153 [138;166] 154 [142;166] 0.658 603

WBC [x10e9/l] 8 [7;10] 8 [7;10] 9 [7;10] 0.011 597

Platelets [x10e9/l] 220 [179;268] 220 [179;270] 220 [182;254] 0.516 595

Sodium [mmol/l] 139 [138;141] 139 [138;141] 140 [138;141] 0.858 597

Potassium [mmol/l] 4.20 [4.00;4.50] 4.20 [3.90;4.50] 4.20 [4.00;4.50] 0.412 591

Urea [mmol/l] 5.80 [4.60;7.70] 5.60 [4.40;7.10] 7.00 [5.30;9.20] <0.001 594

Creatinine [umol/l] 88.0 [73.2;105] 87.0 [73.0;102] 95.0 [78.5;114] 0.002 598

COPD 42 (7%) 23 (5%) 19 (12%) 0.001 644

Asthma 63 (10%) 54 (11%) 9 (6%) 0.093 644

OSA 38 (6%) 29 (6%) 9 (6%) 1 644

CAD 26 (4%) 10 (2%) 16 (11%) <0.001 644

CVA 10 (2%) 5 (1%) 5 (3%) 0.061 644

PAD 2 (0%) 0 (0%) 2 (1%) 0.055 644

HTN 170 (26%) 116 (24%) 54 (36%) 0.005 644

DM type 1 9 (1%) 8 (2%) 1 (1%) 0.693 644

DM type 2 93 (14%) 60 (12%) 33 (22%) 0.005 644

Hypothyroidism 73 (11%) 60 (12%) 13 (9%) 0.275 644

Sjogren syndrome 3 (0%) 2 (0%) 1 (1%) 0.555 644
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Table S7. Clinical characteristics of unrelated individuals used in gene-tag association analysis by KCO tertiles. BMI - body mass index, WHO FC - World Health 
Organisation Functional Class, 6MWD - 6 minute walk distance, SpO₂ - peripheral capillary oxygen saturation, mRAP - mean right atrial pressure, mPAP - mean 
pulmonary artery pressure, PAWP - Pulmonary Artery Wedge Pressure, CO - cardiac output, SvO₂ - mixed venous oxygen saturation, NO - nitric oxide, FEV₁ - forced 
expiratory capacity in 1 second, FVC - forced vital capacity, TLC - Total Lung Capacity, KCO - transfer coefficient of carbon monoxide, HRCT - High-Resolution 
Computerised Tomography, NTproBNP - N-terminal pro b-type natriuretic peptide, BNP - B-type natriuretic peptide, CRP - C-Reactive Protein Protein, Hb - 
haemoglobin, WBC - white blood cell count, COPD - chronic obstructive pulmonary disease,  OSA - obstructive sleep apnoea, CAD - coronary artery disease, CVA - 
celebro-vascular accident,  PAD - peripheral artery disease, HTN - hypertension, DM - diabetes mellitus; none of the patients had systemic lupus erythematosus, 
systemic sclerosis, undifferentiated connective tissue disease or ankylosing spondylitis

[ALL] N=644 Higher tertile N=214 Middle tertile N=215 Lower tertile N=215 p.overall N

Age [years] 51 [38;66] 44 [37;58] 49 [34;61] 64 [50;71] <0.001 644

Sex: female 434 (67%) 149 (70%) 160 (74%) 125 (58%) 0.001 644

Incident cases 203 (31.5%) 58 (27.1%) 54 (25.1%) 91 (42.3%) <0.001 644

BMI [kg/m²] 27.7 [24.1;32.5] 29.1 [25.3;34.5] 26.8 [23.1;30.9] 27.4 [24.2;32.3] <0.001 629

WHO FC 0.028 628

  I 8 (1%) 4 (2%) 2 (1%) 2 (1%)

  II 100 (16%) 40 (19%) 40 (19%) 20 (10%)

  III 434 (69%) 143 (68%) 135 (65%) 156 (74%)

  IV 86 (14%) 22 (11%) 32 (15%) 32 (15%)

6MWD [m] 313 [190;404] 331 [240;420] 340 [230;418] 240 [131;360] <0.001 599

SpO₂ pre [%] 95.0 [93.0;97.0] 96.0 [94.0;98.0] 96.0 [93.0;98.0] 93.0 [90.0;96.0] <0.001 575

SpO₂ post [%] 91.0 [85.0;96.0] 94.0 [89.0;96.0] 93.0 [88.0;96.0] 85.0 [79.0;91.0] <0.001 529

mRAP [mmHg] 9 [6;12] 9 [7;13] 9 [6;12] 8 [5;12] 0.224 601

mPAP [mmHg] 53 [45;61] 55 [47;65] 53 [46;62] 51 [42;57] <0.001 625

PAWP [mmHg] 10 [7;12] 10 [8;12] 10 [7;12] 10 [7;12] 0.487 560

CO [L/min] 3.8 [3.1;4.8] 3.8 [3.0;5.0] 4.0 [3.1;4.8] 3.8 [3.1;4.8] 0.967 614

SvO₂ [%] 64 [58;70] 64 [60;71] 65 [59;70] 62 [56;68] 0.001 572

Acute NO challenge: vasoresponder 43 (17%) 15 (17%) 21 (24%) 7 (9%) 0.024 257

FEV₁ [% pred.] 86.0 [74.0;97.0] 83.8 [72.9;95.0] 86.0 [73.9;97.4] 87.0 [77.0;98.0] 0.08 639

FVC [% pred.] 96.0 [82.6;107] 90.0 [79.8;101] 95.9 [83.0;108] 100 [86.9;112] <0.001 628

FEV₁/FVC ratio 0.76 [0.69;0.81] 0.78 [0.72;0.82] 0.76 [0.69;0.81] 0.71 [0.65;0.78] <0.001 614

TLC [% pred.] 95.0 [86.0;103] 94.0 [86.2;103] 96.0 [83.0;104] 97.0 [87.0;102] 0.787 485

KCO [% pred.] 71 [52;86] 92 [86;101] 71 [67;76] 42 [33;52] <0.001 644

Emphysema (HRCT scan): <0.001 436

  none 391 (90%) 144 (99%) 128 (96%) 119 (76%)

  minimal/mild 30 (7%) 2 (1%) 4 (3%) 24 (15%)

  moderate 11 (3%) 0 (0%) 0 (0%) 11 (7%)

  severe 4 (1%) 0 (0%) 1 (1%) 3 (2%)

Fibrosis (HRCT scan): <0.001 438

  none 417 (95%) 145 (99%) 132 (99%) 140 (89%)

  minimal/mild 20 (5%) 2 (1%) 2 (1%) 16 (10%)

  moderate 1 (0%) 0 (0%) 0 (0%) 1 (1%)

Smoking history: past/current 338 (55.7%) 89 (42.4%) 106 (52.7%) 143 (73.0%) <0.001 607

NTproBNP [ng/l] 980 [248;2673] 842 [167;2358] 902 [310;2593] 1225 [237;2811] 0.539 220

BNP [ng/l] 200 [72.9;432] 193 [71.7;392] 145 [67.5;427] 214 [82.2;448] 0.659 143

Uric acid [mmol/l] 0.42 [0.32;0.53] 0.40 [0.28;0.47] 0.40 [0.32;0.51] 0.48 [0.38;0.55] 0.011 231

CRP [mg/l] 5.00 [2.00;8.60] 5.00 [2.00;8.00] 5.00 [2.00;9.32] 4.00 [2.00;8.57] 0.496 450

Hb [g/l] 154 [139;166] 160 [145;169] 149 [136;164] 151 [140;165] <0.001 603

WBC [x10e9/l] 8 [7;10] 8 [7;9] 8 [7;10] 9 [7;10] 0.005 597

Platelets [x10e9/l] 220 [179;268] 224 [183;262] 219 [174;276] 217 [184;262] 0.89 595

Sodium [mmol/l] 139 [138;141] 140 [138;141] 139 [137;141] 140 [138;141] 0.623 597

Potassium [mmol/l] 4.20 [4.00;4.50] 4.30 [4.00;4.50] 4.20 [3.90;4.40] 4.30 [4.00;4.50] 0.13 591

Urea [mmol/l] 5.80 [4.60;7.70] 5.50 [4.43;7.00] 5.70 [4.30;7.10] 6.70 [5.15;8.80] <0.001 594

Creatinine [μmol/l] 88.0 [73.2;105] 87.0 [73.0;99.5] 86.0 [72.0;102] 92.5 [77.0;111] 0.003 598

COPD 42 (7%) 5 (2%) 12 (6%) 25 (12%) <0.001 644

Asthma 63 (10%) 26 (12%) 25 (12%) 12 (6%) 0.039 644

OSA 38 (6%) 12 (6%) 11 (5%) 15 (7%) 0.698 644

CAD 26 (4%) 2 (1%) 4 (2%) 20 (9%) <0.001 644

CVA 10 (2%) 1 (0%) 3 (1%) 6 (3%) 0.174 644

PAD 2 (0%) 0 (0%) 0 (0%) 2 (1%) 0.332 644

HTN 170 (26%) 46 (21%) 53 (25%) 71 (33%) 0.02 644

DM type 1 9 (1%) 2 (1%) 5 (2%) 2 (1%) 0.526 644

DM type 2 93 (14%) 22 (10%) 22 (10%) 49 (23%) <0.001 644

Hypothyroidism 73 (11%) 25 (12%) 30 (14%) 18 (8%) 0.185 644

Sjogren syndrome 3 (0%) 2 (1%) 0 (0%) 1 (0%) 0.331 644
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Table S8. Result of Cox regression analysis relating overall survival to selected variables at baseline. CI - Confidence 
interval, 6MWD - 6-minute walking distance, mPAP - mean pulmonary arterial pressure, mRAP - mean right atrial pressure, 
PVR - pulmonary vascular resistance, WU - Wood units, KCO - transfer coefficient of carbon monoxide, CAD - coronary 
artery disease, COPD - chronic obstructive pulmonary disease, HTN - systemic hypertension, HRCT - High-Resolution 
Computerised Tomography

Univariate Multivariate

No event N=481 Event N=163 HR [95%CI] p-value HR [95%CI] p-value

Sex: <0.001 <0.001

  female 343 (71.3%) 91 (55.8%) Ref. Ref.

  male 138 (28.7%) 72 (44.2%) 1.98 [1.45;2.70] 2.93 [1.81;4.75]

Age [years] 4.80 (1.50) 6.17 (1.59) 1.75 [1.56;1.96] <0.001 1.57 [1.27;1.94] <0.001

Incident/Prevalent: <0.001 0.131

  incident 151 (31.4%) 52 (31.9%) Ref. Ref.

  prevalent 330 (68.6%) 111 (68.1%) 0.40 [0.28;0.58] 0.65 [0.37;1.14]

6MWD [m] 32.9 (15.0) 21.7 (12.9) 0.95 [0.94;0.96] <0.001 0.97 [0.95;0.99] 0.002

mRAP [mmHg] 1.84 (1.07) 2.15 (1.13) 1.26 [1.11;1.44] 0.001 1.28 [1.05;1.57] 0.016

mPAP [mmHg] 10.9 (2.75) 10.4 (2.34) 0.94 [0.88;1.00] 0.038 1.08 [0.97;1.2] 0.142

CI [L/min/m²] 2.28 (0.78) 2.10 (0.68) 0.67 [0.53;0.86] 0.002 0.98 [0.62;1.55] 0.923

PVR [WU] 12.1 (5.96) 11.8 (4.94) 1.00 [0.97;1.03] 0.89

KCO [%pred] 7.35 (2.22) 5.71 (2.41) 0.71 [0.66;0.77] <0.001 0.79 [0.7;0.88] <0.001

Smoking history: 0.002 0.692

  no 215 (47.5%) 54 (35.1%) Ref. Ref.

past/current 238 (52.5%) 100 (64.9%) 1.67 [1.20;2.33] 1.11 [0.66;1.88]

CAD: 0.002 0.081

  no 467 (97.1%) 151 (92.6%) Ref. Ref.

  yes 14 (2.91%) 12 (7.36%) 2.51 [1.39;4.53] 0.38 [0.13;1.13]

COPD: 0.141 0.268

  no 452 (94.0%) 150 (92.0%) Ref. Ref.

  yes 29 (6.03%) 13 (7.98%) 1.53 [0.87;2.69] 0.59 [0.23;1.5]

HTN: <0.001

  no 374 (77.8%) 100 (61.3%) Ref. Ref.

  yes 107 (22.2%) 63 (38.7%) 1.92 [1.40;2.63] 1.12 [0.68;1.84]

Emphysema (HRCT scan): 0.012

  none 300 (91.5%) 91 (84.3%) Ref. Ref.

  minimal/mild 19 (5.79%) 11 (10.2%) 2.12 [1.13;3.98] 0.85 [0.38;1.92] 0.696

  moderate 6 (1.83%) 5 (4.63%) 2.83 [1.15;6.98] 0.7 [0.19;2.61] 0.594

  severe 3 (0.91%) 1 (0.93%) 2.36 [0.33;17.0] 0 [0;Inf] 0.996

Fibrosis (HRCT scan): 0.003

  none 321 (97.0%) 96 (89.7%) Ref. Ref.

  minimal/mild 10 (3.02%) 10 (9.35%) 2.79 [1.45;5.36] 0.83 [0.36;1.93] 0.672

  moderate 0 (0.00%) 1 (0.93%) 3.29 [0.46;23.6] 3.98 [0.47;33.58] 0.204
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Table S9. Clinical characteristics of unrelated individuals used in gene-tag association by age tertiles. BMI - body mass index, WHO 
FC - World Health Organisation Functional Class, 6MWD - 6-minute walk distance, SpO₂ - peripheral capillary oxygen saturation, 
mRAP - mean right atrial pressure, mPAP - mean pulmonary artery pressure, PAWP - Pulmonary Artery Wedge Pressure, CO - 
cardiac output, SvO₂ - Mixed venous oxygen saturation, NO - nitric oxide, FEV₁ - forced expiratory capacity in 1 second, FVC - 
forced vital capacity, TLC - Total Lung Capacity, KCO - transfer factor coefficient for carbon monoxide, NTproBNP - N-terminal pro 
b-type natriuretic peptide, BNP - B-type natriuretic peptide, CRP - C-Reactive Protein Protein,  Hb - haemoglobin, WBC - white 
blood cell count, COPD - chronic obstructive pulmonary disease,  OSA - obstructive sleep apnoea, CAD - coronary artery disease, 
CVA - cerebrovascular accident, PAD - peripheral artery disease, HTN - hypertension, DM - diabetes mellitus; none of the patients 
had undifferentiated connective tissue disease, incident cases were defined as those diagnosed within 6 months from study 
commencement.

[ALL] N=1112 Lower tertile N=381 Middle tertile N=376 Higher tertile N=355 p.overall N

Age [years] 49 [35;63] 30 [25;35] 50 [45;54] 68 [64;73] <0.001 1112

Sex: female 757 (68%) 276 (72%) 273 (73%) 208 (59%) <0.001 1112

Incident cases 270 (24.3%) 77 (20.2%) 74 (19.7%) 119 (33.5%) <0.001 1112

BMI [kg/m²] 26.9 [23.1;31.5] 24.2 [21.0;29.3] 28.0 [24.3;32.5] 28.1 [25.1;32.0] <0.001 1015

WHO FC <0.001 1078

  I 21 (2%) 15 (4%) 3 (1%) 3 (1%)

  II 217 (20%) 95 (26%) 79 (21%) 43 (12%)

  III 703 (65%) 201 (56%) 248 (67%) 254 (73%)

  IV 137 (13%) 50 (14%) 40 (11%) 47 (14%)

6MWD [m] 335 [220;415] 375 [302;460] 343 [250;420] 236 [134;348] <0.001 953

SpO₂ pre [%] 96.0 [93.0;97.0] 97.0 [95.0;98.0] 96.0 [93.0;97.0] 94.0 [90.0;96.0] <0.001 890

SpO₂ post [%] 91.0 [85.0;95.0] 94.0 [88.0;97.0] 92.0 [86.0;96.0] 88.0 [82.0;92.8] <0.001 830

mRAP [mmHg] 8 [5;12] 8 [5;12] 9 [6;13] 8 [5;12] 0.046 984

mPAP [mmHg] 53 [44;61] 55 [47;66] 55 [48;62] 48 [40;57] <0.001 1051

PAWP [mmHg] 9 [7;12] 9 [6;11] 9 [7;12] 10 [7;13] 0.004 933

CO [L/min] 3.9 [3.1;4.9] 4.0 [3.1;5.0] 3.9 [3.1;4.9] 3.8 [3.2;4.8] 0.651 1003

SvO₂ [%] 64 [58;70] 67 [60;72] 64 [58;70] 62 [57;67] <0.001 817

Acute NO challenge 59 (14%) 31 (17%) 21 (14%) 7 (7%) 0.078 435

FEV₁ [% pred.] 85.0 [73.0;97.0] 87.0 [77.0;97.0] 84.0 [71.0;96.0] 85.2 [71.1;97.9] 0.34 849

FVC  [% pred.] 94.0 [81.4;106] 90.0 [81.0;102] 96.0 [82.0;108] 96.3 [82.0;108] 0.018 831

FEV₁/FVC ratio 0.76 [0.69;0.81] 0.81 [0.77;0.86] 0.75 [0.69;0.80] 0.72 [0.66;0.77] <0.001 760

TLC [% pred.] 95.0 [85.0;104] 95.0 [85.0;103] 95.0 [87.0;106] 93.6 [83.0;102] 0.082 639

KCO [% pred.] 71 [52;86] 76 [65;91] 76 [62;88] 57 [40;78] <0.001 644

Emphysema: <0.001 611

  none 559 (91%) 193 (99%) 198 (93%) 168 (82%)

  minimal/mild 33 (5%) 1 (1%) 10 (5%) 22 (11%)

  moderate 15 (2%) 0 (0%) 4 (2%) 11 (5%)

  severe 4 (1%) 0 (0%) 0 (0%) 4 (2%)

Fibrosis: <0.001 613

  none 585 (95%) 193 (98%) 208 (98%) 184 (90%)

  minimal/mild 26 (4%) 3 (2%) 2 (1%) 21 (10%)

  moderate 1 (0%) 0 (0%) 1 (0%) 0 (0%)

  severe 1 (0%) 0 (0%) 1 (0%) 0 (0%)

Smoking history: past/current 435 (50.8%) 107 (36.9%) 153 (53.5%) 175 (62.3%) <0.001 857

NTproBNP [ng/l] 926 [215;2637] 345 [122;1640] 763 [158;1356] 1996 [501;3706] <0.001 276

BNP [ng/l] 195 [72.4;432] 117 [30.0;394] 181 [85.1;398] 236 [112;481] 0.005 271

Uric acid [mmol/l] 0.41 [0.31;0.52] 0.37 [0.26;0.46] 0.41 [0.30;0.50] 0.48 [0.36;0.56] <0.001 358

CRP [mg/l] 4.30 [2.00;8.50] 4.00 [2.00;7.00] 4.15 [2.00;8.50] 5.00 [2.50;9.10] 0.151 639

Hb [g/l] 151 [138;165] 152 [138;164] 154 [141;166] 149 [133;163] 0.007 847

WBC [x10e9/l] 8 [7;10] 8 [6;10] 8 [7;10] 8 [7;10] 0.73 839

Platelets [x10e9/l] 224 [182;272] 231 [186;280] 219 [181;261] 221 [179;272] 0.072 836

Sodium [mmol/l] 140 [138;141] 140 [138;141] 139 [138;141] 140 [137;141] 0.728 835

Potassium [mmol/l] 4.20 [3.90;4.50] 4.20 [3.98;4.40] 4.20 [3.90;4.40] 4.30 [4.00;4.50] 0.03 830

Urea [mmol/l] 5.70 [4.40;7.60] 4.80 [3.88;5.81] 5.50 [4.30;6.70] 7.60 [5.90;10.1] <0.001 830

Creatinine [μmol/l] 85.5 [70.0;102] 79.0 [68.0;93.5] 82.0 [69.0;96.0] 96.0 [80.0;121] <0.001 832

COPD 65 (6%) 2 (1%) 22 (6%) 41 (12%) <0.001 1112

Asthma 78 (7%) 32 (8%) 32 (9%) 14 (4%) 0.023 1112

OSA 57 (5%) 5 (1%) 21 (6%) 31 (9%) <0.001 1112

CAD 44 (4%) 0 (0%) 9 (2%) 35 (10%) <0.001 1112

CVA 17 (2%) 2 (1%) 6 (2%) 9 (3%) 0.084 1112

PAD 5 (0%) 0 (0%) 0 (0%) 5 (1%) 0.003 1112

HTN 264 (24%) 19 (5%) 80 (21%) 165 (46%) <0.001 1112

DM type 1 19 (2%) 7 (2%) 6 (2%) 6 (2%) 0.967 1112

DM type 2 137 (12%) 5 (1%) 37 (10%) 95 (27%) <0.001 1112

Hypothyroidism 135 (12%) 38 (10%) 49 (13%) 48 (14%) 0.274 1112

Systemic lupus erythormatosus 1 (0%) 0 (0%) 0 (0%) 1 (0%) 0.319 1112

Systemic sclerosis 1 (0%) 0 (0%) 0 (0%) 1 (0%) 0.319 1112

Ankylosing spondylitis 1 (0.09%) 0 (0.00%) 0 (0.00%) 1 (0.28%) 0.319 1112

Sjogren syndrome 5 (0%) 2 (1%) 1 (0%) 2 (1%) 0.871 1112
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Table S10. Summary of imaging analysis. IPAH - idiopathic pulmonary arterial hypertension, HPAH - hereditary pulmonary arterial hypertension, PVOD - pulmonary veno-occlusive disease, PCH - 
Pulmonary capillary haemangiomatosis, GGO - ground glass opacities,  BA - bronchial artery, C - central, U - upper, Z - zonal,  D - diffuse; Intra-rater reliability: GGO centrilobular pattern severity weighted 
Cohen's Kappa=0.679, p-value <0.001; GGO distribution unweighted Cohen's Kappa = 1, p-value 0.046; Severity of GGO non-specific pattern - no positive findings; Pulmonary arteriovenous malformations 
- no positive findings; largest BA size - no positive findings; Mediastinal venous collaterals: unweighted Cohen's Kappa = 1, p-value <0.001;  Intralobular septal thickening weighted Cohen's Kappa = 1, p-
value <0.001; Mediastinal lymphadenopathy unweighted Cohen's Kappa=0.83, p-value <0.001; Mediastinal lymphadenopathy size [mm] intraclass correlation coefficient (ICC) 0.717, p-value 0.088; 
Emphysema - not enough positive findings, Bronchial wall thickening - not enough positive findings, Fibrosis - no positive findings; Pleural effusion weighted Cohen's Kappa 0.826, p-value <0.001; Air 
trapping weighted Cohen's Kappa 0.845, p-value <0.001; Subpleural scarring - not enough positive findings. 

[ALL] N=269 BMPR2 N=44 EIF2AK4 N=6 EIF2AK4 bial. N=7 KDR missense N=5 KDR PTV N=4 no mutation N=185 other mutations N=18 p.overall N

Sex: female 179 (66.5%) 28 (63.6%) 5 (83.3%) 3 (42.9%) 3 (60.0%) 2 (50.0%) 129 (69.7%) 9 (50.0%) 0.341 269

Age of diagnosis 50.2 (17.0) 44.2 (13.7) 51.0 (16.7) 28.5 (10.8) 36.6 (13.1) 65.2 (4.3) 53.1 (17.2) 44.4 (14.1) <0.001 268

Diagnosis verified: . 269

HPAH 20 (7.4%) 13 (29.5%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 4 (2.2%) 3 (16.7%)

IPAH 237 (88.1%) 31 (70.5%) 5 (83.3%) 4 (57.1%) 5 (100.0%) 4 (100.0%) 173 (93.5%) 15 (83.3%)

PCH 1 (0.4%) 0 (0.0%) 0 (0.0%) 1 (14.3%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

PVOD 11 (4.1%) 0 (0.0%) 1 (16.7%) 2 (28.6%) 0 (0.0%) 0 (0.0%) 8 (4.3%) 0 (0.0%)

Severity of GGO centrilobular parttern: . 269

Nil 167 (62.1%) 22 (50.0%) 4 (66.7%) 2 (28.6%) 4 (80.0%) 2 (50.0%) 121 (65.4%) 12 (66.7%)

Trace 29 (10.8%) 3 (6.8%) 0 (0.0%) 1 (14.3%) 0 (0.0%) 0 (0.0%) 23 (12.4%) 2 (11.1%)

Mild 29 (10.8%) 9 (20.5%) 0 (0.0%) 1 (14.3%) 0 (0.0%) 2 (50.0%) 16 (8.6%) 1 (5.6%)

Moderate 24 (8.9%) 3 (6.8%) 0 (0.0%) 1 (14.3%) 1 (20.0%) 0 (0.0%) 17 (9.2%) 2 (11.1%)

Severe 20 (7.4%) 7 (15.9%) 2 (33.3%) 2 (28.6%) 0 (0.0%) 0 (0.0%) 8 (4.3%) 1 (5.6%)

Severity of GGO non-specific pattern: . 269

Nil 240 (89.2%) 42 (95.5%) 3 (50.0%) 5 (71.4%) 5 (100.0%) 2 (50.0%) 167 (90.3%) 16 (88.9%)

Trace 10 (3.7%) 1 (2.3%) 2 (33.3%) 0 (0.0%) 0 (0.0%) 1 (25.0%) 6 (3.2%) 0 (0.0%)

Mild 11 (4.1%) 1 (2.3%) 0 (0.0%) 1 (14.3%) 0 (0.0%) 1 (25.0%) 7 (3.8%) 1 (5.6%)

Moderate 7 (2.6%) 0 (0.0%) 1 (16.7%) 1 (14.3%) 0 (0.0%) 0 (0.0%) 4 (2.2%) 1 (5.6%)

Severe 1 (0.4%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (0.5%) 0 (0.0%)

Distribution of GGO: 0.108 122

C 11 (9.0%) 0 (0.0%) 1 (20.0%) 2 (40.0%) 0 (0.0%) 2 (66.7%) 6 (7.7%) 0 (0.0%)

D 81 (66.4%) 19 (90.5%) 3 (60.0%) 3 (60.0%) 2 (100.0%) 1 (33.3%) 48 (61.5%) 5 (62.5%)

U 14 (11.5%) 1 (4.8%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 12 (15.4%) 1 (12.5%)

Z 16 (13.1%) 1 (4.8%) 1 (20.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 12 (15.4%) 2 (25.0%)

Pulmonary arteriovenous malformations: Yes 4 (1.6%) 3 (7.3%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (0.6%) 0 (0.0%) 0.152 246

Largest BA size [mm] 3.0 (0.6) 3.4 (0.5) 3.0 (.) 2.5 (0.2) . (.) . (.) 2.5 (0.4) 4.0 (.) 0.037 12

Mediastinal venous collaterals: Yes 206 (94.1%) 37 (100.0%) 1 (100.0%) 0 (.%) 5 (100.0%) 3 (100.0%) 147 (91.9%) 13 (100.0%) 0.379 219

Intralobular septal thickening: 0.111 243

Nil 216 (88.9%) 37 (92.5%) 0 (0.0%) 0 (.%) 4 (80.0%) 4 (100.0%) 155 (88.6%) 16 (88.9%)

Trace 15 (6.2%) 2 (5.0%) 0 (0.0%) 0 (.%) 1 (20.0%) 0 (0.0%) 12 (6.9%) 0 (0.0%)

Mild 9 (3.7%) 1 (2.5%) 0 (0.0%) 0 (.%) 0 (0.0%) 0 (0.0%) 7 (4.0%) 1 (5.6%)

Moderate 3 (1.2%) 0 (0.0%) 1 (100.0%) 0 (.%) 0 (0.0%) 0 (0.0%) 1 (0.6%) 1 (5.6%)

Mediastinal lymphoaenopathy: Yes 218 (81.3%) 40 (90.9%) 3 (50.0%) 3 (42.9%) 2 (50.0%) 1 (25.0%) 151 (81.6%) 18 (100.0%) <0.001 268

Mediastinal lymphoadenopathy [mm] 14.9 (4.0) 12.5 (1.3) 17.0 (3.6) 14.8 (2.4) 15.5 (0.7) 11.0 (0.0) 15.3 (4.4) . (.) 0.354 50

Emphysema: 0.813 269

Nil 235 (87.4%) 38 (86.4%) 5 (83.3%) 7 (100.0%) 4 (80.0%) 3 (75.0%) 161 (87.0%) 17 (94.4%)

Trace 20 (7.4%) 4 (9.1%) 1 (16.7%) 0 (0.0%) 1 (20.0%) 0 (0.0%) 13 (7.0%) 1 (5.6%)

Mild 8 (3.0%) 1 (2.3%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (25.0%) 6 (3.2%) 0 (0.0%)

Moderate 6 (2.2%) 1 (2.3%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 5 (2.7%) 0 (0.0%)

Bronchial wall thickening: 0.057 243

Nil 211 (86.8%) 33 (82.5%) 0 (0.0%) 0 (.%) 5 (100.0%) 3 (75.0%) 157 (89.7%) 13 (72.2%)

Trace 19 (7.8%) 5 (12.5%) 1 (100.0%) 0 (.%) 0 (0.0%) 0 (0.0%) 11 (6.3%) 2 (11.1%)

Mild 11 (4.5%) 2 (5.0%) 0 (0.0%) 0 (.%) 0 (0.0%) 1 (25.0%) 6 (3.4%) 2 (11.1%)

Moderate 2 (0.8%) 0 (0.0%) 0 (0.0%) 0 (.%) 0 (0.0%) 0 (0.0%) 1 (0.6%) 1 (5.6%)

Fibrosis: 0.059 269

Nil 257 (95.5%) 43 (97.7%) 6 (100.0%) 7 (100.0%) 5 (100.0%) 2 (50.0%) 177 (95.7%) 17 (94.4%)

Trace 5 (1.9%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 5 (2.7%) 0 (0.0%)

Mild 6 (2.2%) 1 (2.3%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 2 (50.0%) 3 (1.6%) 0 (0.0%)

Moderate 1 (0.4%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (5.6%)

Pleural effusion: . 269

Nil 242 (90.0%) 41 (93.2%) 5 (83.3%) 7 (100.0%) 4 (80.0%) 3 (75.0%) 167 (90.3%) 15 (83.3%)

Trace 11 (4.1%) 1 (2.3%) 1 (16.7%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 6 (3.2%) 3 (16.7%)

Mild 7 (2.6%) 2 (4.5%) 0 (0.0%) 0 (0.0%) 1 (20.0%) 0 (0.0%) 4 (2.2%) 0 (0.0%)

Moderate 7 (2.6%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (25.0%) 6 (3.2%) 0 (0.0%)

Severe 2 (0.7%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 2 (1.1%) 0 (0.0%)

Air trapping: . 269

Nil 216 (80.3%) 40 (90.9%) 5 (83.3%) 7 (100.0%) 4 (80.0%) 1 (25.0%) 146 (78.9%) 13 (72.2%)

Trace 26 (9.7%) 3 (6.8%) 1 (16.7%) 0 (0.0%) 0 (0.0%) 1 (25.0%) 17 (9.2%) 4 (22.2%)

Mild 18 (6.7%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 2 (50.0%) 15 (8.1%) 1 (5.6%)

Moderate 4 (1.5%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 4 (2.2%) 0 (0.0%)

Severe 5 (1.9%) 1 (2.3%) 0 (0.0%) 0 (0.0%) 1 (20.0%) 0 (0.0%) 3 (1.6%) 0 (0.0%)

Subpleural scarring: 0.736 243

Nil 237 (97.5%) 39 (97.5%) 1 (100.0%) 0 (.%) 5 (100.0%) 4 (100.0%) 170 (97.1%) 18 (100.0%)

Trace 2 (0.8%) 1 (2.5%) 0 (0.0%) 0 (.%) 0 (0.0%) 0 (0.0%) 1 (0.6%) 0 (0.0%)

Mild 4 (1.6%) 0 (0.0%) 0 (0.0%) 0 (.%) 0 (0.0%) 0 (0.0%) 4 (2.3%) 0 (0.0%)
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Table S11. Clinical characteristics of IPAH patients who harbour protein-truncating variants in BMPR2, EIF2AK4, KDR and 
IDH3G.  BMI - body mass index, WHO FC - World Health Organisation functional class, 6MWD - 6-minute walk distance, SpO₂ - 
arterial oxygen saturation, mRAP - mean right atrial pressure, mPAP - mean pulmonary artery pressure, mPAWP - mean 
pulmonary artery wedge pressure, CO - cardiac output, PVR - pulmonary vascular resistance, NO - nitric oxide challenge, FEV₁ - 
forced expiratory volume in 1 second, FVC - forced vital capacity, KCO - transfer factor coefficient for carbon monoxide, COPD - 
chronic obstructive pulmonary disease, OSA - obstructive sleep apnea, CAD - coronary artery disease, HTN - systemic 
hypertension, CKD - chronic kidney disease, Hb - haemoglobin, WBC - white blood cells, TSH - thyroid-stimulating hormone. 
Comorbidities are reported as the number and percentage of cases possessing a disease entity.

BMPR2 N=162 Biallelic EIF2AK4 
N=14

KDR PTV  N=4 IDH3G N=5 No mutation N=818 p.overall N

Age [years] 39 [32;51] 31 [23;42] 64 [62;68] 34 [27;51] 52 [38;66] <0.001 994

Sex: female 107 (66%) 7 (50%) 2 (50%) 5 (100%) 571 (70%) 0.146 998

BMI [kg/m²] 27 [23;32] 24 [20;27] 26 [26;30] 24 [21;24] 27 [23;32] 0.017 909

WHO FC 0.067 965

  I 2 (1.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 16 (2.0%)

  II 32 (19.9%) 2 (14.3%) 1 (25.0%) 1 (20.0%) 153 (19.6%)

  III 96 (59.6%) 9 (64.3%) 3 (75.0%) 1 (20.0%) 522 (66.8%)

  IV 31 (19.3%) 3 (21.4%) 0 (0.0%) 3 (60.0%) 90 (11.5%)

6MWD [m] 355 [288;421] 302 [210;466] 301 [240;362] 414 [382;414] 335 [218;412] 0.314 625

SpO₂ pre [%] 96 [94;98] 92 [90;96] 97 [96;97] 96 [96;98] 95 [93;97] 0.003 801

SpO₂ post [%] 94 [89;97] 83 [76;86] 86 [86;88] 96 [96;98] 90 [84;95] <0.001 740

mRAP [mmHg] 10 [6;14] 8 [6;10] 6 [4;8] 12 [8;14] 8 [5;12] 0.019 882

mPAP [mmHg] 57 [52;68] 52 [44;59] 50 [43;58] 58 [50;62] 52 [42;61] <0.001 946

mPAWP [mmHg] 10 [7;12] 11 [8;12] 10 [8;13] 10 [8;12] 9 [7;12] 0.902 838

CO [L/min] 3.3 [2.7;4.0] 4.5 [3.0;4.9] 4.9 [4.3;5.4] 3.3 [3.0;3.5] 4.0 [3.2;5.1] <0.001 903

PVR [WU] 14.4 [10.8;20.3] 9.56 [8.16;11.1] 7.93 [6.23;10.9] 15.4 [12.9;17.5] 10.3 [7.14;13.9] <0.001 806

Acute NO 
challenge: 
vasoresponder

1 (1.28%) 0 (0.00%) 1 (25.0%) 0 (0.00%) 52 (17.3%) <0.001 392

FEV₁ [% pred.] 91 [79;100] 93 [84;100] 86 [79;96] 95 [87;99] 84 [71;95] <0.001 764

FVC [% pred.] 100 (17) 101 (16) 93 (17) 93 (12) 93 (20) 0.003 748

FEV₁/FVC ratio 0.77 [0.73;0.82] 0.79 [0.69;0.81] 0.78 [0.76;0.79] 0.82 [0.78;0.84] 0.75 [0.68;0.81] 0.021 681

KCO [%pred.] 83 [74;96] 33 [30;35] 46 [46;48] 73 [71;73] 68 [48;83] <0.001 580

Smoking history: yes 53 (40.8%) 4 (30.8%) 1 (25.0%) 1 (20.0%) 330 (53.4%) 0.012 770

COPD 6 (3.70%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 49 (5.99%) 0.678 1003

Asthma 20 (12.3%) 4 (28.6%) 0 (0.00%) 0 (0.00%) 47 (5.75%) 0.003 1003

OSA 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 55 (6.72%) 0.001 1003

Pulmonary fibrosis 0 (0.00%) 0 (0.00%) 2 (50.0%) 0 (0.00%) 13 (1.59%) 0.002 1003

CAD 3 (1.85%) 1 (7.14%) 1 (25.0%) 0 (0.00%) 32 (3.91%) 0.115 1003

HTN 27 (16.7%) 0 (0.00%) 2 (50.0%) 0 (0.00%) 210 (25.7%) 0.005 1003

CKD 4 (2.47%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 41 (5.01%) 0.568 1003

Hypothyroidism 14 (8.64%) 1 (7.14%) 1 (25.0%) 0 (0.00%) 108 (13.2%) 0.338 1003

Hb [g/l] 162 [152;173] 165 [154;179] 148 [135;152] 151 [148;164] 149 [135;161] <0.001 760

WBC [x10e9/l] 8.74 [7.30;10.8] 7.43 [6.50;10.8] 8.80 [8.23;9.55] 7.30 [6.60;7.40] 8.10 [6.70;9.70] 0.03 753

Platelets [x10e9/l] 210 [174;251] 219 [206;234] 216 [188;251] 208 [160;211] 228 [181;276] 0.272 749

Creatinine [umol/l] 93.0 [77.2;102] 79.0 [72.2;95.0] 67.0 [66.5;96.5] 79.0 [73.0;85.0] 84.0 [70.0;103] 0.25 745

TSH [mU/l] 2.37 [1.67;3.65] 2.08 [1.09;3.69] 1.76 [1.72;1.84] 1.44 [1.43;2.02] 2.00 [1.10;3.16] 0.038 588
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Abbreviation Explanantion

WGS ID whole-genome sequencing indentifier

WES ID whole-exome sequencing identifier

HGVSc the HGVS coding sequence name

HGVSp the HGVS protein sequence name

gnomAD Genome Aggregation Database

CADD_PHRED_v1.3 Combined Annotation Dependent Depletion

CADD_PHRED_v1.4 Combined Annotation Dependent Depletion

SIFT Sorting Intolerant From Tolerant prediction score

PolyPhen Polymorphism Phenotyping v2 score

GerpN conservation score of each nucleotide in multi-species alignment

KDR Kinase Insert Domain Receptor

IDH3G Isocitrate Dehydrogenase (NAD(+)) 3 Non-Catalytic Subunit Gamma

BMPR2 Bone Morphogenetic Protein Type 2 Receptor

EIF2AK4 Eukaryotic Translation Initiation Factor 2 Alpha Kinase 4

ATP13A3 ATPase 13A3

SOX17 SRY-box 17

AQP1 Aquaporin 1

ENG Endoglin

ACVRL1 Activin-Like Kinase 1

CAV1 Caveolin-1

SMAD9 SMAD family member 9

SMAD1 SMAD family member 1

GDF2 Growth Differentiation Factor 2

TBX4 T-Box Transcription Factor 4

KCNK3 Potassium Two Pore Domain Channel Subfamily K Member 3

SMAD4 SMAD family member 4

shared
indicates if a variant appears in other cohort individuals, i.e. PAH(2), BPD(1) means 2 PAH 
cases and 1 BPD case harbour this variant

REVEL Rare Exome Variant Ensemble Learner

NIHRBR-RD
The National Institute for Health Research BioResource - Rare Diseases study (NIHRBR-
RD),

SvO₂ [%] Mixed venous oxygen saturation

WHO FC World Health Organisation functional class

6MWD [m] six minute walking distance

SpO₂  [%] peripheral capillary oxygen saturation

FEV₁ [% pred.] Forced Expiratory Volume in one second

FVC [% pred.] Forced Vital Capacity

TLC [% pred.] Total Lung Capacity

KCO [% pred.] Transfer Coefficient of Carbon Monoxide

mRAP [mmHg] mean Right Atrial Pressure

mPAP [mmHg] mean Pulmonary Artery Pressure

PAWP [mmHg] Pulmonary Artery Wedge Pressure

CO [L/min] cardiac output

CI [L/min/m²] cardiac index

PVR [WU] pulmonary vascular resistance

ILD interstitial lung disease

COPD chronic obstructive pulmonary disease

OSA obstructive sleep apnoea
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DM diabetes mellitus

HTN systemic hypertension

CKD chronic kidney disease

CAD coronary artery disease

CVA Celebro-Vascular Accident

PAD Peripheral Artery Disease

GGO Ground Glass Opacities

BA Bronchial Artery

Hb [g/l] Haemoglobin

NTproBNP [ng/l] N-terminal pro B-Type Natriuretic Peptide

BNP [ng/l] B-Type Natriuretic Peptide

CRP [mg/l] C reactive protein

WBC [x10e9/l] White Blood Cell Count

TSH [mU/l] Thryroid Stymulating Hormon    

PH Pulmonary Hypertension

PAH Pulmonary Arterial Hypertension

I/HPAH Idiopathic/Hereditary Pulmonary Arterial Hypertnsion

PVOD/PCH Pulmonary veno-occlusive disease/ Pulmonary capillary hemangiomatosis

APAH Associated Pulmonary Arterial Hypertension 

APAH: CHD-PAH PAH associated with congenital heart disease

APAH: CTD-PAH PAH associated with connective tissue disease

APAH: PPH-PAH/ should be PoPHPAH associated with portopulmonary hypertension

APAH: HIV-PAH PAH associated with HIV

PH-LHD pulmonary hypertension associated with left heart disease

PH-LD pulmonary hypertension associated with lung disease

CTEPH Chronic thromboembolic pulmonary hypertension 

PH-multifactorial Multifactorial pulmonary hypertension 

GEL Genomics England Ltd

BPD Bleeding, Thrombotic and Platelet Disorders

PID Primary Immune Disorders

CNTRL Processed Controls

IRD Inherited Retinal Disorders

NDD Neurological and Developmental Disorders

EDS Ehlers Danlos Syndrome

HCM Hypertrophic Cardiomyopathy

PMG Primary Membranoproliferative Glomerulonephritis

SRNS Steroid Resistant Nephrotic Syndrome

CSVD Cerebral Small Vessel Disease

NPD Neuropathic Pain Disorder

ICP Intrahepatic Cholestasis of Pregnancy

LHON Leber Hereditary Optic Neuropathy

MPMT Multiple Primary Tumours

SMD Stem Cell & Myeloid Disorders

PAH Pulmonary arterial hypertension

UKBio UK BioBank

FHx family history

CTPA Computerised Tomography Pulmonary Angiogram

HRCT High-Resolution Computerised Tomography

BMI Body Mass Index
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NO nitric oxide

BeviMed Bayesian Evaluation of Variant Involvement in Mendelian Disease

PTV Protein Truncating Variants

PP Posterior Probability

VEGFR2 vascular endotheial growth factor receptor 2

eCRF electronic Clinical Case Report Form

GRCh37 Genome Reference Consortium human genome build 37

PMAF The probability that the minor allele count is at least the observed minor allele count

ICC Intraclass Correlation Coefficient

CT Computerised Tomography

RHC Right Heart Cathetetherisation 

ASD Atrial Septal Defect

SU5416 sugen

PDH Pyruvate dehydrogenase

IDH isocitrate dehydrogenase

BHF British Heart Foundation

SNV Single Nucleotide Variants

MAF Minor Allele Frequency
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