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Abstract 22 

Background 23 

Understanding transcriptome is critical for explaining functional as well as regulatory 24 

roles of genomic regions. Current methods for the identification of transcription unit 25 

(TU) uses RNA-seq which, however, requires large quantities of mRNA limiting the 26 

identification of inherently unstable TUs e.g. for miRNA precursors.  This problem can 27 

be resolved by chromatin based approaches due to a correlation between histone 28 

modifications and transcription. 29 

Results 30 

Here we introduce EPIGENE, a novel chromatin segmentation method for the 31 

identification of active TUs using transcription associated histone modifications. Unlike 32 

existing chromatin segmentation approaches, EPIGENE uses a constrained, semi-33 

supervised multivariate hidden markov model (HMM) that models the observed 34 

combination of histone modifications using a product of independent Bernoulli random 35 

variables, to identify active TUs. Our results show that EPIGENE can identify genome-36 

wide TUs unbiasedly. EPIGENE predicted TUs showed an enrichment of RNA 37 

Polymerase II in transcription start site and gene body indicating that they have been 38 

transcribed. Comprehensive validation with existing annotations revealed that 93% of 39 

EPIGENE TUs can be explained by existing gene annotations and 5% of EPIGENE 40 

TUs in HepG2 can be explained by microRNA annotations. EPIGENE outperforms 41 

existing RNA-Seq based approaches in TU prediction precision across human cell 42 

lines. Finally, we identify 381 novel TUs in K562 and 43 novel cell-specific TUs all of 43 

which are supported by RNA Polymerase II data. 44 

 45 
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Conclusions 46 

We demonstrate the applicability of HMM to identify genome-wide active TUs and 47 

provides valuable information about unannotated TUs. EPIGENE is an open-source 48 

method and is freely available at: https://github.com/imbeLab/EPIGENE . 49 

Keywords 50 

Transcription, epigenetics, histone modifications, hidden markov model, transcript 51 

identification 52 

1. Background 53 

Transcription unit (TU) represents the transcribed regions of genome which generates 54 

protein-coding genes as well as regulatory non-coding RNAs like microRNA. Accurate 55 

identification of TUs is important to better understand the transcriptomic landscape of 56 

the genome. With the rapid development of low‐cost high‐throughput sequencing 57 

technologies, RNA sequencing (RNA-seq) has become the major tool for genome‐58 

wide TU identification. As a result, popular TU prediction tools such as AUGUSTUS 59 

[1], Cufflinks [2], StringTie [3], Oases [4] use RNA-seq data. Though RNA-seq based 60 

TU prediction can be considered the state-of-the-art method to annotate the genome, 61 

its main drawback lies in the dependence on relatively high quantities of target RNAs. 62 

This is problematic for accurate identification of inherently unstable TUs like primary 63 

miRNA. This shortcoming of RNA-Seq can be partly alleviated by chromatin-based 64 

approaches [5,6], due to the association between histone modifications and 65 

transcription. 66 

Eukaryotic DNA is tightly packaged into macromolecular complex called chromatin, 67 

which consists of repeating units of 147 DNA base pairs (bp) wrapped around an 68 

octamer of four histones H2A, H2B, H3, and H4 called the nucleosome. Post-69 
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translational modifications (PTM) to histones in the form of acetylation, methylation, 70 

phosphorylation and ubiquitination, play an important role in the transcriptional 71 

process. These PTMs are added, read and removed by so called writers, readers and 72 

erasers. In this way nucleosomes serve as signalling platforms [7] that enable the 73 

localized activity of chromatin signalling networks partaking in transcription and other 74 

chromatin-related processes [8]. Indeed, it has been shown that histone modifications 75 

are correlated to the transcriptional status of chromatin [9,10]. For example, H3K4me3 76 

and H3K36me3 are positively correlated with transcription initiation [11,12] and 77 

elongation [13] and are considered as transcription activation marks, whereas 78 

H3K9me3 and H3K27me3 [11,14], are considered as repressive marks as they are 79 

commonly found in repressed regions. Therefore, it is reasonable to assume that 80 

histone modifications profiles can be used to identify cell-type-specific TUs. Given a 81 

deluge of cell-type-specific epigenome data available through many consortia, such 82 

as ENCODE [15], NIH Roadmap Epigenomics [16], DEEP [17], Blueprint [18], 83 

CEEHRC [19] and IHEC [20], a highly robust TU annotation pipeline based on 84 

epigenome markers becomes feasible.  85 

Currently many computational approaches such as ChromHMM [21], EpicSeg [22], 86 

chroModule [23], GenoSTAN [24] etc., have been developed that use histone 87 

modifications as an input to provide a genome annotation. These chromatin 88 

segmentation approaches use a variety of mathematical models with most prominent 89 

one being hidden markov models (HMM). HMMs are a powerful tool for chromatin 90 

state identification based on histone modifications, due to their assumption that a 91 

combination of histone modifications is generated by an underlying hidden chromatin 92 

state emitting a combination of histone modifications according to a particular 93 

probability distribution. 94 
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Based on the training, these HMMs can be classified as: (1) unsupervised (methods 95 

like ChromHMM, EpicSeg and GenoSTAN), that do not include prior biological 96 

information and require user to interpret and annotate the learned states based on 97 

existing knowledge about functional genomics. (2) supervised (methods like 98 

chroModule), that relies on a set of positive samples to train on and consequently 99 

yields predictions that reflect the properties of the training set. Although these 100 

approaches annotate genome modules such as promoter, enhancer, transcribed 101 

regions etc, they fail to identify active TUs as they do not constrain the chromatin state 102 

sequence to begin with a transcription start site (TSS) and end with a transcription 103 

termination site (TTS). 104 

To address these shortcomings, we developed a semi-supervised HMM, EPIGENE 105 

(EPIgenomic GENE), which is trained on the combinatorial pattern of IHEC class I 106 

epigenomes (H3K27ac, H3K4me1, H3K4me3, H3K36me3, H3K27me3 and 107 

H3K9me3) that are indicative of active transcription to infer the hidden “transcription 108 

unit state”. The emission probabilities represent the probability of a histone mark 109 

occurring in a TU state and the transition probabilities capture the topology of TU 110 

states. The HMM comprises of TU states and background states. The transcription 111 

start site (TSS), exons (first, internal and last exon), introns (first, internal and last 112 

intron) and transcription termination site (TTS) are referred to as the TU states. As, 113 

every TU begins with a TSS state, proceeds through intragenic states like exon and 114 

intron and terminates with a TTS state, a background state can only be reached from 115 

a TTS state and a TSS state can only be reached from a background or TTS (in case 116 

of genes occurring in close proximity to each other) state.   117 

In the forthcoming sections, we describe the method, validate the predicted EPIGENE 118 

transcription units with existing annotations, RNA-Seq and ChIP-seq evidence, 119 
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compare the performance of EPIGENE to existing RNA-Seq based TU prediction 120 

methods within and across cell lines and show that EPIGENE outperforms state-of-art 121 

RNA-Seq based approaches in prediction resolution and precision. In summary, 122 

EPIGENE yields predictions with a high resolution and provides a pre-trained model 123 

that can robustly be applied across samples.   124 

2. Results and discussion  125 

2.1 Schematic overview of EPIGENE 126 

EPIGENE uses a multivariate HMM (shown in Figure 1A (ii)), which allows the 127 

probabilistic modelling of the combinatorial presence and absence of multiple IHEC 128 

class I histone modifications. It receives a list of aligned ChIP and control reads for 129 

each histone modification, which are converted into presence or absence calls across 130 

the genome using normR (see Materials and Methods section 4.5). By default, TU 131 

states are analysed at 200 bp non-overlapping intervals called bins. The HMM 132 

comprises of 14 TU states and 3 background states where each transcription unit state 133 

captures individual elements of gene such as TSS, exons, introns and TTS. The 134 

transition probability of transcription unit states were trained in a supervised manner 135 

using GENCODE annotations [25] and their emission probabilities were trained on a 136 

highly confident set of GENCODE transcripts [25] which showed an enrichment for 137 

RNA Polymerase II in K562 cell line (see Materials and Methods section 4.7). The 138 

transition and emission probabilities of background states were trained in an 139 

unsupervised manner (see Materials and Methods section 4.7). The HMM outputs a 140 

vector where each bin is assigned to a TU or background state, which is further refined 141 

to obtain active TUs (see Figure 1B). 142 

2.2 Validation with existing gene annotations and RNA-Seq 143 
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We validate the predicted transcription units with existing gene annotations and RNA-144 

Seq evidence, for this we combined the EPIGENE predictions (24,571 TUs) and RNA-145 

Seq predictions that was obtained from Cufflinks (32,079 TUs) and StringTie (101,656 146 

TUs; refer Table 2-4 in Supplementary file A1 for summary statistics) to generate a 147 

consensus TU set. This consensus TU set comprises of 24,874 TUs, which were then 148 

overlaid with GENCODE and CHESS gene annotation [25,26] (Figure 2). We find that 149 

93% of EPIGENE TUs can be explained by existing gene annotations. We additionally 150 

identified 14,797 (11,584: annotated, 3213: unannotated) RNA-Seq-exclusive TUs 151 

and 1304 (718: annotated, 586: unannotated) EPIGENE-exclusive TUs, of which 65% 152 

of EPIGENE and 31% of RNA-Seq unannotated predictions show enrichment of RNA 153 

Polymerase II. Additional details about RNA Polymerase II enrichment in the 154 

consensus TU set can be seen in Supplementary table S1.  155 

2.3 Histone modifications and RNA Polymerase II occupancy 156 

The correctness of predicted transcription units was estimated in K562, due to the 157 

availability of matched RNA Polymerase II and RNA-Seq profiles. We predicted 158 

24,571 TUs in K562 cell line, majority of which showed typical gene characteristics, 159 

with high enrichment of H3K27ac, H3K4me3 and H3K36me3 in TSS and gene bodies 160 

(Figure 3A).  161 

It is already known that eukaryotic transcription is regulated by phosphorylation of RNA 162 

Polymerase II carboxy-terminal domain in serine 2, 5 and 7. The signal for serine 5 163 

and 7 is strong at promoter region where as signal for serine 2 and 5 phosphorylation 164 

is strong at actively transcribing regions [27]. Therefore, we incorporated RNA 165 

Polymerase II evidence in all the forthcoming analyses. Genome wide RNA 166 

Polymerase II profile for K562 cell line was obtained using four antibodies that capture 167 

RNA Polymerase II signal at transcription initiation and gene bodies. The enrichment 168 
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of RNA Polymerase II in predicted TUs was computed using normR [28] (see Materials 169 

and Methods section 4.5). The predicted TUs were classified as: high and low RPKM 170 

based on mRNA levels (threshold = upper quartile). Figure 3B shows the distribution 171 

of RNA Polymerase II enrichment in both the classes of predicted TUs. We observe a 172 

significant proportion of predicted TUs (78%) show a positive enrichment score 173 

indicating the biological correctness of our predictions. We also come across 24 174 

unannotated TUs that report an enrichment score above 0.5 but have a reduced or no 175 

RNA-Seq evidence.  176 

2.4 Method comparison 177 

Currently multiple approaches exist for predicting TU that rely on RNA-Seq evidence. 178 

We compare the performance of EPIGENE with two existing RNA-Seq based 179 

transcript prediction approaches, Cufflinks and StringTie, both of which are known to 180 

predict novel TUs in addition to annotated TUs. The method comparison was 181 

performed in two stages: within cell type and cross cell type comparison using RNA 182 

Polymerase II enrichment as performance indicator (see Materials and methods 183 

section 4.8). The confusion matrix defining the true positives (TP), true negatives (TN), 184 

false positives (FP) and false negatives (FN) can be seen in Figure 4A.  185 

2.4.1   Within cell type comparison 186 

For this comparison, we use the ChIP-seq profile of RNA Polymerase II in K562 cell 187 

line that was obtained using PolIIS5P4H8 antibody, due to its ability to identify RNA 188 

Polymerase II occupancy in TSS and actively transcribed regions. 189 

As, evident from Figure 4B and 4C, EPIGENE outperforms both the RNA-Seq based 190 

approaches and reports a higher AUC (PRC: 0.81, ROC: 0.82) in both the curves 191 

compared to Cufflinks (PRC: 0.59, ROC: 0.64) and StringTie (PRC: 0.75, ROC: 0.79). 192 

The above analysis was repeated for varying resolutions (50,100 and 500 bp); the 193 
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AUC reported for varying resolution can be seen in Figure 4D. As observed in the 194 

figure, Cufflinks achieve a lower AUC compared to StringTie and EPIGENE, which is 195 

likely due to the usage of the RABT assembler which results in large number of false 196 

positives [29].  197 

EPIGENE reports a higher AUC than StringTie for varying RNA Polymerase II 198 

resolutions, this can be due to (1) the usage of RNA Polymerase II enrichment as a 199 

performance measure might lead to a ChIP-seq biasness towards EPIGENE, which is 200 

also a ChIP-seq based approach. This results in more true positives compared to 201 

RNA-Seq based approaches, or (2) RNA-mapping artefacts that results in more false 202 

positives than EPIGENE. Therefore, we examined the precision, sensitivity and 203 

specificity values for EPIGENE, Cufflinks and StringTie and found that the increased 204 

AUC for EPIGENE is due to spurious read mappings of RNA-Seq that results in higher 205 

false positives in StringTie and Cufflinks. Figure S2 (included in Supplementary file 206 

A1) shows an example of Cufflinks and StringTie TU that was identified due to 207 

spurious read mapping. This TU exactly overlaps with a repetitive sequence that 208 

occurs in four chromosomes (chromosome 1, 5, 6, X). 209 

2.4.2   Cross cell type comparison 210 

In order to evaluate the performance of EPIGENE across cell types, we applied K562- 211 

trained models to samples from different cell types. We compared the approaches on 212 

three different datasets provided by the ENCODE [15] and DEEP [17,30] consortium: 213 

1. IMR90: lung fibroblast cells with 6 histone modifications,1 RNA Polymerase II, 214 

two control experiments (one each for RNA Polymerase II and histone 215 

modifications) and one RNA-Seq obtained from ENCODE, 216 

2. HepG2_1 and HepG2_2: hepatocellular carcinoma with 6 histone 217 

modifications, one control experiment and one RNA-Seq obtained from DEEP 218 
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where two replicates per histone modification and RNA-Seq are available, RNA 219 

Polymerase II ChIP and control experiments obtained from ENCODE. 220 

As shown in Figure 5 A, B and C, K562-trained EPIGENE models consistently achieve 221 

a higher prediction accuracy, outperforming Cufflinks and StringTie. 222 

2.5 EPIGENE identifies transcription units with negligible 223 

RNA-Seq evidence 224 

Previous analyses (see section 2.3 and 2.4) indicated the presence of transcription 225 

units with RNA Polymerase II evidence and reduced or no RNA-Seq evidence. Here 226 

we evaluate these transcription units within and across cell lines by: (1) identifying cell-227 

type specific transcription units that show gene characteristics but lack RNA-Seq 228 

evidence, and (2) looking for the presence of microRNAs that were not identified by 229 

RNA-Seq. 230 

2.5.1 EPIGENE identifies cell-type specific transcription units 231 

We create a consensus set of transcription units by overlaying the EPIGENE 232 

predictions from K562, HepG2 and IMR90. This consensus TU set comprised of 233 

18,248 TUs, of which ~78% showed an enrichment for RNA-Polymerase II. We 234 

identified 10,233 differential TU, of which 8047 were exclusive to cell lines (K562: 235 

4247, IMR90: 2545, HepG2: 1255; see Figure S3 in Supplementary file A1). We 236 

additionally identified 43 highly confident cell-specific TUs (K562: 24, IMR90: 17, 237 

HepG2: 2; additional details in Supplementary table S2) which lacked RNA-Seq 238 

evidence but showed typical characteristics of a TU, with RNA Polymerase II 239 

enrichment at TSS and transcribing regions, H3K4me3 and H3K27ac enrichment at 240 

the TSS and H3K36me3 enrichment in gene body. An example of one such TU can 241 

be seen in Figure 5D. 242 

2.5.2 Identifying microRNAs that lack RNA-Seq evidence 243 
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MicroRNAs are small (~22 bp), evolutionally conserved non-coding RNAs [31,32] 244 

derived from large primary microRNAs (pri-miRNA), that are processed to ~70 bp 245 

precursors (pre-miRNA) and consequently to their mature form by endonucleases 246 

[33,34]. They regulate various fundamental biological processes such as 247 

development, differentiation or apoptosis by means of post-transcriptional regulation 248 

of target genes via gene silencing [35,36] and are involved in human diseases [37].  249 

Due to the unstable nature of primary microRNA, traditional identification approaches 250 

relying on RNA-Seq are challenging. Here, we investigate the presence of primary 251 

microRNA that lack RNA-Seq evidence across cell lines. We create a consensus TU 252 

set (used in section 2.2) for individual cell lines (K562, HepG2 and IMR90) and overlaid 253 

them with miRbase annotations [38] to obtain potential primary microRNA TUs. We 254 

identified 655 EPIGENE TUs (5% of total EPIGENE TUs common in both replicates) 255 

that can be explained by miRbase annotations. We observe that majority of these are 256 

supported by RNA-Seq and Polymerase II evidence (Figure 6A and Figure S4 257 

Supplementary file A1). We additionally identify 2 primary microRNA TUs in HepG2 258 

cell line, which showed an enrichment for H3K4me3 in promoters, H3K36me3 in gene 259 

body and RNA Polymerase II in TSS and transcribing regions; and lacked RNA-Seq 260 

evidence. One of these transcription units overlaps with a microRNA cluster located 261 

between RP-11738B7.1 (lincRNA) and NRF1 gene (see Figure 6B).  262 

2.6 Discussion 263 

In this work, we introduced EPIGENE, a semi-supervised HMM that identifies active 264 

TUs using histone modifications. EPIGENE comprises of TU and background sub-265 

models. The TU sub-model was trained in a supervised manner on predefined training 266 

sets, while the background was trained in an unsupervised manner. This semi-267 
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supervised approach captures (1) the biological topology of active TUs, and (2) 268 

probability of occurrence of histone modifications in different parts of a TU. 269 

We first showed that majority of the predicted TUs can be explained by existing gene 270 

annotations, histone modifications and RNA Polymerase II. A quantitative comparison 271 

with RNA-Seq reveals the presence of TUs with RNA-Polymerase II enrichment but 272 

negligible RNA-Seq evidence. Considering RNA-Polymerase II as true transcription 273 

indicator, we compared the performance of EPIGENE with two RNA-Seq based 274 

approaches Cufflinks and StringTie. Based solely on the AUC of PRC and ROC curve 275 

as performance measure, EPIGENE achieves a superior performance than RNA-Seq 276 

based approaches. We further showed that EPIGENE can be reliably applied across 277 

different cell lines without the need for re-training and accomplishes a superior 278 

performance than RNA-seq based approaches. 279 

We examine other performance scores like precision, sensitivity and specificity values, 280 

and observe that the high AUC of EPIGENE is due to RNA Seq mapping artefacts that 281 

result in high number of false positive in Cufflinks and StringTie. We further evaluate 282 

the presence of differentially identified TUs in K562, HepG2 and IMR90 cell line that 283 

lack RNA-Seq evidence. The results suggest the presence of cell line exclusive 284 

transcripts that lack RNA-Seq evidence. We additionally identify microRNAs that lack 285 

RNA-Seq evidence due to their labile nature. All of the aforementioned TUs show an 286 

enrichment of RNA Polymerase II in TSS and gene body indicating that they have 287 

been transcribed. 288 

It is important to note that EPIGENE does not differentiate between functional and 289 

non-functional units of a TU (exons and introns) as the association between histone 290 

modifications and alternative splicing is yet to be elucidated [39]. However, EPIGENE 291 

identifies active TUs with greater precision as shown in section 2.4 and in the example 292 
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regions presented in this work. The accuracy of EPIGENE predictions depends on the 293 

sequencing depth of the input histone modifications, therefore, high quality ChIP-seq 294 

profiles of histone modifications should be used to obtain confident transcription unit 295 

annotation.  296 

Altogether, the superior performance within and across cell lines, identification of TUs 297 

especially primary microRNAs lacking RNA-Seq evidence as well as interpretability 298 

makes EPIGENE a powerful tool for epigenome based gene annotation.  299 

3. Conclusion 300 

With increasing efforts in the direction of epigenetics, many consortia continue to 301 

provide high quality genome-wide maps of histone modifications but determining the 302 

genome-wide transcriptomic landscape using this data has remained unexplored so 303 

far. Extensive evaluations in this work demonstrated the superior accuracy of 304 

EPIGENE over existing transcript annotation methods based on true transcription 305 

indicators. EPIGENE framework is user-friendly and can be executed by solely 306 

providing binarized enrichments for ChIP-seq experiments, without the need to re-train 307 

the model parameters. The resulting transcript annotations are in good agreement with 308 

RNA-Polymerase II evidence and can be used to provide a cell specific, epigenome-309 

based gene annotation. 310 

4. Materials and methods 311 

4.1 Library preparation of histone modifications ChIP-seq  312 

For K562 cell line presented in this study, ChIP against six core histone modifications, 313 

H3K27ac, H3K27me3, H3K4me1, H3K4me3, H3K36me3 and H3K9me3, was 314 

performed. The sheared chromatin without antibody (input) served as control. 10 × 106 315 

K562 cells were cultured as recommended by ATCC. Chromatin immunoprecipitations 316 
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were preformed using the Diagenode auto histone ChIP seq kit and libraries were 317 

made using microplex kits according to manufacturer’s instructions and 10 PCR 318 

cycles.  319 

4.2 Library preparation of RNA Polymerase II ChIP-seq 320 

K562 cells were cultured in IMDM (#21980Gibco) with 10% FBS and P/S. Cells at a 321 

concentration of 1.2mio/ml were fixed with 1% Formalin at 37°C for 8min. Nuclei were 322 

isolated with a douncer, chromatin concentration was measured and 750µg chromatin 323 

per CHIP was used. Samples were sonicated with Biorupter for 33 cycles (3x 11 324 

cycles). Chromatin, antibodies (RNA Pol II Ser2P (H5), RNA Pol II Ser5P (4H8), RNA 325 

Pol II Ser7P (4E12) and PolII (8WG16)) and protein G beads were combined and 326 

rotated at 4°C. For elution 250µl elution buffer (1% SDS) was used and after reverse 327 

crosslinking DNA was isolated by Phenol Chloroform extraction and elute in 1xTE. 328 

Final concentration was measured by Qubit. Bioanalyzer was done to check fragment 329 

sizes. 330 

4.3 Sequencing and processing of ChIP-seq data 331 

Sequencing for RNA-Polymerase II and histone modifcations was performed on an 332 

Illumina Highseq 2500 using a paired end 50-flow cell and version 3 chemistry. The 333 

resulting raw sequencing reads were aligned to the genome assembly “hs37d5” with 334 

STAR [40] and duplicates were marked using Picard tools [41]. We used 335 

plotFingerprint which is a part of deepTools [42] to access the quality metrics of for all 336 

ChIP-seq experiments. 337 

4.4 Processing of RNA-Seq data 338 

The raw reads from RNA-Seq experiments were downloaded from European 339 

Nucleotide Archive (SRR315336, SRR315337 for K562), European Genome Archive 340 
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(EGAD00001002527 for HepG2) and ENCODE (ENCSR00CTQ for IMR90) and were 341 

aligned to the genome assembly “hs37d5” with STAR [40]. 342 

4.5 Binarization of enrichment levels 343 

EPIGENE requires the enrichment values of IHEC class I histone modifications in a 344 

binarized data form or a "class matrix" to learn a transcription state model. This was 345 

done by partitioning the mappable regions of the genome of interest into non-346 

overlapping sub-regions of the same size called bins. In the current setup, the 347 

transcription states are analysed at 200bp resolution, as it roughly corresponds to the 348 

size of a nucleosome and spacer region. Given the ChIP and input alignment files for 349 

each of the histone modifications, the class matrix for multivariate HMM is generated 350 

using the following approach: 351 

1. Obtaining read counts: Read counts for all the bins is performed using 352 

bamCount method from R package bamsignals [43], with the following 353 

parameter settings:  mapqual = 255, filteredFlag = 1024, paired.end = midpoint. 354 

2. Enrichment calling and binarization: After having obtained the read counts, 355 

enrichment and binarization for each of the histone modification across all bins 356 

is computed using enrichR (binFilter = zero) and getClasses (fdr = 0.2) method 357 

from normR [28], which uses a negative binomial distribution to perform 358 

enrichment and binarization. This step yields the class matrix that serves as an 359 

input for the multivariate HMM.  360 

4.6 The EPIGENE model 361 

EPIGENE uses a multivariate HMM (shown in Figure 1A (ii)) to model the class matrix 362 

and identify active transcription units. Class matrix 𝐶 is a m x n matrix, where, 𝒎 = 363 

total number of 200 bp bins, and, 𝒏 = number of histone modifications. Each entry 𝐶𝑖𝑗 364 

in the class matrix 𝐶 corresponds to the binarized enrichment in i-th bin for the j-th 365 
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histone modification. The model constitutes 𝑘 number of hidden states (which is an 366 

input parameter of the algorithm), and each row of the class matrix corresponds to a 367 

hidden state. The emission probability vector for each hidden state corresponds to the 368 

probability with which each histone mark is found for that hidden state. The transition 369 

probabilities between the states enables the model to capture the position biases of 370 

gene states relative to each other. The emission probabilities of each state represents 371 

the probability with which each histone mark occurs in a state. Given this model, the 372 

algorithm does the following: 373 

1. Initializes the emission, transition, and initial probabilities. 374 

2. Fits the emission, transition, and initial probabilities using the Baum-Welch 375 

algorithm [44]. 376 

3. As we are concerned about the most probable sequence of active transcription 377 

unit, therefore, the sequence of hidden states is inferred using the Viterbi 378 

algorithm [45]. 379 

4.7 Training the model parameters 380 

The transition and emission probabilities of the multivariate HMM are trained using 381 

GENCODE annotations with the following approach. 382 

1. Bins overlapping gencode transcripts are identified and termed as gencode 383 

bins. 384 

2. The gencode bins were categorized as TSS, TTS, 1st, internal and last exon 385 

and intron bins, and were subsequently grouped based on transcript IDs. 386 

3. The coverage (in bp) of individual transcription unit component (i.e TSS, 1st 387 

exon, 1st intron etc) for each transcript is computed to generate the coverage 388 

list, where each entry of the coverage list contains the coverage information (in 389 

bp) for individual transcripts. 390 
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4. The transition probability of each "transcription unit state" was computed from 391 

the coverage list, and the missing probabilities from and to the “background 392 

state" are generated in an unsupervised manner. 393 

5. We filtered the gencode transcripts to obtain transcripts that report an 394 

enrichment for RNA Polymerase II. This was done by clustering the binarized 395 

enrichment values of RNA Polymerase II in TSS and TTS bins of the transcripts 396 

and obtaining TSS and TTS bins that reports a high cluster mean for RNA 397 

Polymerase II. The emission probability of each “transcription unit state” was 398 

computed from class matrix and coverage of these transcripts (coverage 399 

computed from Step 2). The missing emission probabilities for the background 400 

states are trained in an unsupervised manner. 401 

4.8 Performance evaluation 402 

The performance of EPIGENE and RNA-Seq based transcript prediction approaches 403 

is evaluated using RNA Polymerase as performance indicator. This is done by 404 

removing assembly gaps in the genomic regions of interest and partitioning the 405 

remaining contigs into non-overlapping bins of 200 bps. The actual transcription status 406 

of each 200 bp bin was given by the observed binarized RNA Polymerase II 407 

enrichment in the bin and the predicted transcription status of the bin for method m, 408 

𝑷𝑻𝒎(𝒃𝒊𝒏) is given by: 409 

𝑷𝑻𝒎(𝒃𝒊𝒏) =  {
𝟏 
𝟎

𝒊𝒇 𝑶(𝒃𝒊𝒏, 𝑷𝒎) ≥  𝟏
𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 410 

where, 𝑶(𝒃𝒊𝒏, 𝑷𝒎) is the overlap between the bin and method m predictions 𝑷𝒎. 411 

The predictions of EPIGENE and other RNA-Seq based approaches is evaluated by 412 

computing the area under curve for Precision-Recall (AUC-PRC) and Receiver 413 

Operating Characteristic curve (AUC-ROC) with primary focus on AUC-PRC. 414 
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Considering a very high class imbalance i.e. 𝒃𝒊𝒏𝒔𝑹𝑵𝑨 𝑷𝒐𝒍𝒚𝒎𝒆𝒓𝒂𝒔𝒆 𝑰𝑰+ ≪415 

 𝒃𝒊𝒏𝒔𝑹𝑵𝑨 𝑷𝒐𝒍𝒚𝒎𝒆𝒓𝒂𝒔𝒆 𝑰𝑰− , the AUC-PRC and AUC-ROC is computed using random 416 

sampling as: 417 

𝑨𝑼𝑪 = 𝒎𝒆𝒂𝒏(𝑳𝑨𝑼𝑪) − (
𝒔𝒕𝒅𝑫𝒆𝒗(𝑳𝑨𝑼𝑪)

√𝒏 
) 418 

where, 𝒏 is the sampling size or number of iterations and 𝑳𝑨𝑼𝑪 is the list of AUCs 419 

obtained for sampling size 𝒏.  420 

Declarations 421 

Ethics approval and consent to participate 422 

Not applicable 423 

Consent for publication 424 

Not applicable 425 

Availability of data and material 426 

Data for ChIP-seq experiments for K562 cell line are available via European 427 

Nucleotide Archive (PRJEB34999). Additional details about other ChIP-seq and RNA-428 

Seq data used in this work can be found in the Supplementary file A1, Table 1. 429 

EPIGENE code is available at: https://github.com/imbeLab/EPIGENE. 430 

Competing interests 431 

The authors declare that they have no competing interests 432 

Funding 433 

This work was supported by the Else Kröner-Fresenius-Stiftung grant (2016_A105). 434 

Funding for open access charge (2016_A105 to H.C.). 435 

Authors’ contributions 436 

The project was conceived by HC. AS performed all the analyses and wrote the 437 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 18, 2019. ; https://doi.org/10.1101/2019.12.17.878454doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.17.878454
http://creativecommons.org/licenses/by-nd/4.0/


 19 

manuscript with inputs from HC. NL performed the ChIP-seq for histone modifcations 438 

in K562. ID performed the ChIP-seq for RNA Polymerase II in K562. 439 

Acknowledgements 440 

The authors would like to thank Clemens Thoelken for helpful comments on the 441 

manuscript. Many thanks to Sarah Kinkley, Anna Ramisch, Tobias Zehnder and 442 

Giuseppe Gallone from MPIMG for their valuable comments and inspiring discussions. 443 

References 444 

1. Stanke M, Morgenstern B. AUGUSTUS: a web server for gene prediction in 445 

eukaryotes that allows user-defined constraints. Nucleic Acids Res. Oxford 446 

University Press; 2005;33:W465–7.  447 

2. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. 448 

Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts 449 

and isoform switching during cell differentiation. Nat Biotechnol; 2010;28:511–5.  450 

3. Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL. 451 

StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. 452 

Nat Biotechnol; 2015;33:290–5.  453 

4. Schulz MH, Zerbino DR, Vingron M, Birney E. Oases: robust de novo RNA-seq 454 

assembly across the dynamic range of expression levels. Bioinformatics. Oxford 455 

University Press; 2012;28:1086–92. 456 

5. Ozsolak F, Milos PM. RNA sequencing: advances, challenges and opportunities. 457 

Nat Rev Genet; 2011;12:87–98.  458 

6. Ozsolak F, Poling LL, Wang Z, Liu H, Liu XS, Roeder RG, et al. Chromatin 459 

structure analyses identify miRNA promoters. Genes Dev. Cold Spring Harbor 460 

Laboratory Press; 2008;22:3172–83.  461 

7. Turner BM. The adjustable nucleosome: an epigenetic signaling module. Trends 462 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 18, 2019. ; https://doi.org/10.1101/2019.12.17.878454doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.17.878454
http://creativecommons.org/licenses/by-nd/4.0/


 20 

Genet. Elsevier Current Trends; 2012;28:436–44.  463 

8. Perner J, Chung H-R. Chromatin signaling and transcription initiation. Front Life 464 

Sci. Taylor & Francis; 2013;7:22–30.  465 

9. Karlic R, Chung H-R, Lasserre J, Vlahovicek K, Vingron M. Histone modification 466 

levels are predictive for gene expression. Proc Natl Acad Sci. 2010;107:2926–31.  467 

10. Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell. 468 

Elsevier; 2007;128:707–19. 469 

11. Barski A, Cuddapah S, Cui K, Roh T-Y, Schones DE, Wang Z, et al. High-470 

Resolution Profiling of Histone Methylations in the Human Genome. Cell. 471 

2007;129:823–37.  472 

12. Bernstein BE, Humphrey EL, Erlich RL, Schneider R, Bouman P, Liu JS, et al. 473 

Methylation of histone H3 Lys 4 in coding regions of active genes. Proc Natl Acad 474 

Sci. 2002;99:8695–700. 475 

13. Wagner EJ, Carpenter PB. Understanding the language of Lys36 methylation at 476 

histone H3. Nat Rev Mol Cell Biol. 2012;13:115–26.  477 

14. Beisel C, Paro R. Silencing chromatin: comparing modes and mechanisms. Nat 478 

Rev Genet. 2011;12:123–35. 479 

15. ENCODE Project Consortium TEP. The ENCODE (ENCyclopedia Of DNA 480 

Elements) Project. Science. American Association for the Advancement of Science; 481 

2004;306:636–40.  482 

16. Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, 483 

Meissner A, et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat 484 

Biotechnol. 2010;28:1045–8.  485 

17. Welcome to DEEP | DEEP. Available from: http://www.deutsches-epigenom-486 

programm.de/ 487 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 18, 2019. ; https://doi.org/10.1101/2019.12.17.878454doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.17.878454
http://creativecommons.org/licenses/by-nd/4.0/


 21 

18. Adams D, Altucci L, Antonarakis SE, Ballesteros J, Beck S, Bird A, et al. 488 

BLUEPRINT to decode the epigenetic signature written in blood. Nat Biotechnol; 489 

2012;30:224–6.  490 

19. Canadian Epigenetics, Environment and Health Research Consortium 491 

(CEEHRC) Network — Epigenomics. Available from: http://www.epigenomes.ca/ 492 

20. Welcome to IHEC · IHEC. Available from: http://ihec-epigenomes.org/welcome/ 493 

21. Ernst J, Kellis M. ChromHMM: automating chromatin-state discovery and 494 

characterization. Nat Methods; 2012;9:215–6. 495 

22. Mammana A, Chung H-R. Chromatin segmentation based on a probabilistic 496 

model for read counts explains a large portion of the epigenome. Genome Biol. 497 

BioMed Central; 2015;16:151. 498 

23. Won K-J, Zhang X, Wang T, Ding B, Raha D, Snyder M, et al. Comparative 499 

annotation of functional regions in the human genome using epigenomic data. 500 

Nucleic Acids Res; 2013;41:4423–32. 501 

24. Zacher B, Michel M, Schwalb B, Cramer P, Tresch A, Gagneur J. Accurate 502 

Promoter and Enhancer Identification in 127 ENCODE and Roadmap Epigenomics 503 

Cell Types and Tissues by GenoSTAN. Mantovani R, editor. PLoS One. Public 504 

Library of Science; 2017;12:e0169249. 505 

25. Frankish A, Diekhans M, Ferreira A-M, Johnson R, Jungreis I, Loveland J, et al. 506 

GENCODE reference annotation for the human and mouse genomes. Nucleic Acids 507 

Res. Oxford University Press; 2019;47:D766–73.  508 

26. Pertea M, Shumate A, Pertea G, Varabyou A, Breitwieser FP, Chang Y-C, et al. 509 

CHESS: a new human gene catalog curated from thousands of large-scale RNA 510 

sequencing experiments reveals extensive transcriptional noise. Genome Biol. 511 

BioMed Central; 2018;19:208.  512 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 18, 2019. ; https://doi.org/10.1101/2019.12.17.878454doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.17.878454
http://creativecommons.org/licenses/by-nd/4.0/


 22 

27. Komarnitsky P, Cho EJ, Buratowski S. Different phosphorylated forms of RNA 513 

polymerase II and associated mRNA processing factors during transcription. Genes 514 

Dev. 2000;14:2452–60.  515 

28. Johannes Helmuth and Ho Ryun Chung. Introduction to the normR package. 516 

Available from: http://bioconductor.org/packages/release/bioc/vignettes/normr/inst/ 517 

doc/normr.html 518 

29. Janes J, Hu F, Lewin A, Turro E. A comparative study of RNA-seq analysis 519 

strategies. Brief Bioinform. Oxford University Press; 2015;16:932–40. 520 

30. Salhab A, Nordström K, Gasparoni G, Kattler K, Ebert P, Ramirez F, et al. A 521 

comprehensive analysis of 195 DNA methylomes reveals shared and cell-specific 522 

features of partially methylated domains. Genome Biol. BioMed Central; 523 

2018;19:150.  524 

31. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of Novel 525 

Genes Coding for Small Expressed RNAs. Science. 2001;294:853–8. 526 

32. Lee RC, Ambros V. An Extensive Class of Small RNAs in Caenorhabditis 527 

elegans. Science. 2001;294:862–4. 528 

33. Bartel DP. MicroRNAs. Cell. Elsevier; 2004;116:281–97  529 

34. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat 530 

Rev Genet; 2004;5:522–31.  531 

35. Carleton M, Cleary MA, Linsley PS. MicroRNAs and Cell Cycle Regulation. Cell 532 

Cycle. Taylor & Francis; 2007;6:2127–32. 533 

36. Plasterk RHA. Micro RNAs in Animal Development. Cell; 2006;124:877–81.  534 

37. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer; 535 

2006;6:857–66.  536 

38. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: 537 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 18, 2019. ; https://doi.org/10.1101/2019.12.17.878454doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.17.878454
http://creativecommons.org/licenses/by-nd/4.0/


 23 

microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. Oxford 538 

University Press; 2006;34:D140–4.  539 

39. Zhou H-L, Luo G, Wise JA, Lou H. Regulation of alternative splicing by local 540 

histone modifications: potential roles for RNA-guided mechanisms. Nucleic Acids 541 

Res; 2014;42:701–13.  542 

40. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: 543 

ultrafast universal RNA-seq aligner. Bioinformatics. Oxford University Press; 544 

2013;29:15–21.  545 

41. Wysoker, A., Tibbetts, K., and Fennell T. Picard Tools. 2013. Available from: 546 

http://broadinstitute.github.io/picard/ 547 

42. Ramírez F, Dündar F, Diehl S, Grüning BA, Manke T. deepTools: a flexible 548 

platform for exploring deep-sequencing data. Nucleic Acids Res; 2014;42:W187–91.  549 

43. Mammana Alessandro and Helmuth Johannes. Introduction to the bamsignals 550 

package. Available from: 551 

http://bioconductor.org/packages/release/bioc/vignettes/bamsignals/inst/doc/bamsign552 

als.html 553 

44. Baum LE, Petrie T, Soules G, Weiss N. A Maximization Technique Occurring in 554 

the Statistical Analysis of Probabilistic Functions of Markov Chains. Ann Math Stat. 555 

Institute of Mathematical Statistics; 1970;41:164–71.  556 

45. Viterbi A. Error bounds for convolutional codes and an asymptotically optimum 557 

decoding algorithm. IEEE Trans Inf Theory. 1967;13:260–9.  558 

46. Yuan J, Zhang S, Zhang Y. Nrf1 is paved as a new strategic avenue to prevent 559 

and treat cancer, neurodegenerative and other diseases. Toxicol Appl Pharmacol. 560 

2018;360:273–83. 561 

 562 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 18, 2019. ; https://doi.org/10.1101/2019.12.17.878454doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.17.878454
http://creativecommons.org/licenses/by-nd/4.0/


 24 

List of supplementary files 563 

File name File format Title Description of data 

Supplementary_table-
S1 

.csv RNA Polymerase 
II enrichment 

RNA Polymerase II 
enrichment in 

consensus TU set 

Supplementary_table-
S2 

.csv Cell specific TUs Additional details 
about cell specific 

TUs that lack RNA-
Seq evidence 

Supplementary 
_file_A1 

.pdf Data details and 
additional results 

Details of datasets 
used and additional 

results 
 564 

Figure legends 565 

Figure 1: A. Schematic overview of EPIGENE framework. B. An example of EPIGENE 566 

prediction. EPIGENE predictions of METTL4 and NC80 gene, show an enrichment of 567 

H3K27ac and H3K4me3 at TSS (tracks shown in light violet), H3K36me3 in gene body 568 

(tracks shown in green), enhancer mark H3K4me1 few bps upstream or downstream 569 

of TSS (tracks shown in pink), RNA Polymerase II in TSS and gene body (tracks 570 

shown in blue). The predictions also show an absence of repression marks H3K27me3 571 

and H3K9me3 (tracks shown in black). The corresponding RNA-Seq evidence in this 572 

genomic region can be seen in lower most track (track shown in dark pink) 573 

Figure 2: Overlap of EPIGENE predictions with existing gene annotations and RNA-574 

Seq based predictions 575 

Figure 3: Correctness of EPIGENE predictions. A. EPIGENE estimated parameters 576 

for K562 using 17 chromatin states, ranging from 0 (white) to 1 (dark green). B. 577 

Distribution of RNA Polymerase enrichment score in EPIGENE predictions, 578 

predictions are divided as: high RPKM (RPKM >= upper quartile) and low RPKM 579 

(RPKM < upper quartile) based on RNA-Seq evidence in predicted transcripts 580 

Figure 4: Performance of EPIGENE compared to existing RNA-Seq based 581 

transcription unit annotation methods: Cufflinks and StringTie. A. Contingency matrix 582 
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used for method comparison. B. Receiver Operating Characteristic curve C. Precision-583 

Recall curve. D. Area under ROC and PRC curve for varying RNA Polymerase II 584 

resolution for EPIGENE, Cufflinks and StringTie 585 

Figure 5: A-C. Performance of K562-trained EPIGENE models, Cufflinks and 586 

StringTie across cell lines. D. Example of EPIGENE predicted TU that lacks RNA-Seq 587 

evidence (tracks shown in dark pink). The TU was predicted to be active in K562 but 588 

not in HepG2 and IMR90, and is located between pseudogene CASP3P1 and lncRNA 589 

RP5-952N6.1. The TU shows an enrichment of H3K27ac and H3K4me3 at TSS 590 

(tracks shown in light violet), H3K36me3 in gene body (tracks shown in green), 591 

enhancer mark H3K4me1 few bps upstream of TSS (tracks shown in pink), K562 RNA 592 

Polymerase II in TSS and gene body (tracks shown in blue). The TU also show an 593 

absence of repression marks H3K27me3 and H3K9me3 in K562 (tracks shown in 594 

black). We additionally observe the enrichment of repression mark in H3K27me3 in 595 

HepG2 and IMR90 indicating that the region is repressed in both these cell lines 596 

Figure 6: A. Overview of potential primary miRNAs predicted by EPIGENE in HepG2. 597 

B. Example of a TU overlapping a microRNA cluster was predicted by EPIGENE in 598 

HepG2 cell line. This region is located between lincRNA RP11-738B7.1 and gene 599 

NRF1 which was identified as a key player in maintaining cellular homeostasis and 600 

organ integrity [46]. The TU shows an enrichment of H3K27ac and H3K4me3 at TSS 601 

(tracks shown in light violet), H3K36me3 in gene body (tracks shown in green), 602 

enhancer mark H3K4me1 few bps upstream and downstream of TSS (tracks shown 603 

in pink), RNA Polymerase II in TSS (tracks shown in blue). The predictions also show 604 

an absence of repression marks H3K27me3 and H3K9me3 (tracks shown in black) 605 

and RNA-Seq evidence (tracks shown in dark pink). 606 
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