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Abstract

Background

Understanding transcriptome is critical for explaining functional as well as regulatory
roles of genomic regions. Current methods for the identification of transcription unit
(TU) uses RNA-seq which, however, requires large quantities of mRNA limiting the
identification of inherently unstable TUs e.g. for miRNA precursors. This problem can
be resolved by chromatin based approaches due to a correlation between histone

modifications and transcription.

Results

Here we introduce EPIGENE, a novel chromatin segmentation method for the
identification of active TUs using transcription associated histone modifications. Unlike
existing chromatin segmentation approaches, EPIGENE uses a constrained, semi-
supervised multivariate hidden markov model (HMM) that models the observed
combination of histone modifications using a product of independent Bernoulli random
variables, to identify active TUs. Our results show that EPIGENE can identify genome-
wide TUs unbiasedly. EPIGENE predicted TUs showed an enrichment of RNA
Polymerase Il in transcription start site and gene body indicating that they have been
transcribed. Comprehensive validation with existing annotations revealed that 93% of
EPIGENE TUs can be explained by existing gene annotations and 5% of EPIGENE
TUs in HepG2 can be explained by microRNA annotations. EPIGENE outperforms
existing RNA-Seq based approaches in TU prediction precision across human cell
lines. Finally, we identify 381 novel TUs in K562 and 43 novel cell-specific TUs all of

which are supported by RNA Polymerase Il data.
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Conclusions

We demonstrate the applicability of HMM to identify genome-wide active TUs and
provides valuable information about unannotated TUs. EPIGENE is an open-source

method and is freely available at: https://github.com/imbelLab/EPIGENE .

Keywords

Transcription, epigenetics, histone modifications, hidden markov model, transcript

identification

1. Background

Transcription unit (TU) represents the transcribed regions of genome which generates
protein-coding genes as well as regulatory non-coding RNAs like microRNA. Accurate
identification of TUs is important to better understand the transcriptomic landscape of
the genome. With the rapid development of low-cost high-throughput sequencing
technologies, RNA sequencing (RNA-seq) has become the major tool for genome-
wide TU identification. As a result, popular TU prediction tools such as AUGUSTUS
[1], Cufflinks [2], StringTie [3], Oases [4] use RNA-seq data. Though RNA-seq based
TU prediction can be considered the state-of-the-art method to annotate the genome,
its main drawback lies in the dependence on relatively high quantities of target RNAs.
This is problematic for accurate identification of inherently unstable TUs like primary
mMiRNA. This shortcoming of RNA-Seq can be partly alleviated by chromatin-based
approaches [5,6], due to the association between histone modifications and
transcription.

Eukaryotic DNA is tightly packaged into macromolecular complex called chromatin,
which consists of repeating units of 147 DNA base pairs (bp) wrapped around an

octamer of four histones H2A, H2B, H3, and H4 called the nucleosome. Post-
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translational modifications (PTM) to histones in the form of acetylation, methylation,
phosphorylation and ubiquitination, play an important role in the transcriptional
process. These PTMs are added, read and removed by so called writers, readers and
erasers. In this way nucleosomes serve as signalling platforms [7] that enable the
localized activity of chromatin signalling networks partaking in transcription and other
chromatin-related processes [8]. Indeed, it has been shown that histone modifications
are correlated to the transcriptional status of chromatin [9,10]. For example, H3K4me3
and H3K36me3 are positively correlated with transcription initiation [11,12] and
elongation [13] and are considered as transcription activation marks, whereas
H3K9me3 and H3K27me3 [11,14], are considered as repressive marks as they are
commonly found in repressed regions. Therefore, it is reasonable to assume that
histone modifications profiles can be used to identify cell-type-specific TUs. Given a
deluge of cell-type-specific epigenome data available through many consortia, such
as ENCODE [15], NIH Roadmap Epigenomics [16], DEEP [17], Blueprint [18],
CEEHRC [19] and IHEC [20], a highly robust TU annotation pipeline based on
epigenome markers becomes feasible.

Currently many computational approaches such as ChromHMM [21], EpicSeg [22],
chroModule [23], GenoSTAN [24] etc., have been developed that use histone
modifications as an input to provide a genome annotation. These chromatin
segmentation approaches use a variety of mathematical models with most prominent
one being hidden markov models (HMM). HMMs are a powerful tool for chromatin
state identification based on histone modifications, due to their assumption that a
combination of histone modifications is generated by an underlying hidden chromatin
state emitting a combination of histone modifications according to a particular

probability distribution.
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95 Based on the training, these HMMs can be classified as: (1) unsupervised (methods
96 like ChromHMM, EpicSeg and GenoSTAN), that do not include prior biological
97 information and require user to interpret and annotate the learned states based on
98 existing knowledge about functional genomics. (2) supervised (methods like
99 chroModule), that relies on a set of positive samples to train on and consequently
100 vyields predictions that reflect the properties of the training set. Although these
101 approaches annotate genome modules such as promoter, enhancer, transcribed
102  regions etc, they fail to identify active TUs as they do not constrain the chromatin state
103 sequence to begin with a transcription start site (TSS) and end with a transcription
104  termination site (TTS).

105 To address these shortcomings, we developed a semi-supervised HMM, EPIGENE
106 (EPIgenomic GENE), which is trained on the combinatorial pattern of IHEC class |
107 epigenomes (H3K27ac, H3K4mel, H3K4me3, H3K36me3, H3K27me3 and
108 H3K9me3) that are indicative of active transcription to infer the hidden “transcription
109 unit state”. The emission probabilities represent the probability of a histone mark
110  occurring in a TU state and the transition probabilities capture the topology of TU
111  states. The HMM comprises of TU states and background states. The transcription
112  start site (TSS), exons (first, internal and last exon), introns (first, internal and last
113  intron) and transcription termination site (TTS) are referred to as the TU states. As,
114  every TU begins with a TSS state, proceeds through intragenic states like exon and
115 intron and terminates with a TTS state, a background state can only be reached from
116 a TTS state and a TSS state can only be reached from a background or TTS (in case
117  of genes occurring in close proximity to each other) state.

118 In the forthcoming sections, we describe the method, validate the predicted EPIGENE

119 transcription units with existing annotations, RNA-Seq and ChlP-seq evidence,
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120 compare the performance of EPIGENE to existing RNA-Seq based TU prediction
121  methods within and across cell lines and show that EPIGENE outperforms state-of-art
122 RNA-Seq based approaches in prediction resolution and precision. In summary,
123  EPIGENE yields predictions with a high resolution and provides a pre-trained model

124  that can robustly be applied across samples.

125 2. Results and discussion

126 2.1 Schematic overview of EPIGENE

127 EPIGENE uses a multivariate HMM (shown in Figure 1A (ii)), which allows the
128  probabilistic modelling of the combinatorial presence and absence of multiple IHEC
129 class | histone modifications. It receives a list of aligned ChIP and control reads for
130 each histone modification, which are converted into presence or absence calls across
131 the genome using normR (see Materials and Methods section 4.5). By default, TU
132 states are analysed at 200 bp non-overlapping intervals called bins. The HMM
133  comprises of 14 TU states and 3 background states where each transcription unit state
134  captures individual elements of gene such as TSS, exons, introns and TTS. The
135 transition probability of transcription unit states were trained in a supervised manner
136 using GENCODE annotations [25] and their emission probabilities were trained on a
137  highly confident set of GENCODE transcripts [25] which showed an enrichment for
138 RNA Polymerase Il in K562 cell line (see Materials and Methods section 4.7). The
139 transition and emission probabilities of background states were trained in an
140 unsupervised manner (see Materials and Methods section 4.7). The HMM outputs a
141  vector where each bin is assigned to a TU or background state, which is further refined

142  to obtain active TUs (see Figure 1B).

143 2.2 Validation with existing gene annotations and RNA-Seq
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144 We validate the predicted transcription units with existing gene annotations and RNA-
145  Seq evidence, for this we combined the EPIGENE predictions (24,571 TUs) and RNA-
146  Seq predictions that was obtained from Cufflinks (32,079 TUs) and StringTie (101,656
147  TUs; refer Table 2-4 in Supplementary file A1l for summary statistics) to generate a
148 consensus TU set. This consensus TU set comprises of 24,874 TUs, which were then
149  overlaid with GENCODE and CHESS gene annotation [25,26] (Figure 2). We find that
150 93% of EPIGENE TUs can be explained by existing gene annotations. We additionally
151 identified 14,797 (11,584. annotated, 3213: unannotated) RNA-Seg-exclusive TUs
152 and 1304 (718: annotated, 586: unannotated) EPIGENE-exclusive TUs, of which 65%
153  of EPIGENE and 31% of RNA-Seq unannotated predictions show enrichment of RNA
154  Polymerase II. Additional details about RNA Polymerase Il enrichment in the

155  consensus TU set can be seen in Supplementary table S1.

156 2.3 Histone modifications and RNA Polymerase Il occupancy

157  The correctness of predicted transcription units was estimated in K562, due to the
158 availability of matched RNA Polymerase Il and RNA-Seq profiles. We predicted
159 24,571 TUs in K562 cell line, majority of which showed typical gene characteristics,
160  with high enrichment of H3K27ac, H3K4me3 and H3K36me3 in TSS and gene bodies
161  (Figure 3A).

162 Itis already known that eukaryotic transcription is regulated by phosphorylation of RNA
163  Polymerase Il carboxy-terminal domain in serine 2, 5 and 7. The signal for serine 5
164 and 7 is strong at promoter region where as signal for serine 2 and 5 phosphorylation
165 is strong at actively transcribing regions [27]. Therefore, we incorporated RNA
166 Polymerase Il evidence in all the forthcoming analyses. Genome wide RNA
167 Polymerase Il profile for K562 cell line was obtained using four antibodies that capture

168 RNA Polymerase Il signal at transcription initiation and gene bodies. The enrichment
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169 of RNA Polymerase Il in predicted TUs was computed using normR [28] (see Materials
170  and Methods section 4.5). The predicted TUs were classified as: high and low RPKM
171  based on mRNA levels (threshold = upper quartile). Figure 3B shows the distribution
172 of RNA Polymerase Il enrichment in both the classes of predicted TUs. We observe a
173  significant proportion of predicted TUs (78%) show a positive enrichment score
174 indicating the biological correctness of our predictions. We also come across 24
175 unannotated TUs that report an enrichment score above 0.5 but have a reduced or no

176  RNA-Seq evidence.

177 2.4 Method comparison

178  Currently multiple approaches exist for predicting TU that rely on RNA-Seq evidence.
179 We compare the performance of EPIGENE with two existing RNA-Seq based
180 transcript prediction approaches, Cufflinks and StringTie, both of which are known to
181  predict novel TUs in addition to annotated TUs. The method comparison was
182  performed in two stages: within cell type and cross cell type comparison using RNA
183  Polymerase Il enrichment as performance indicator (see Materials and methods
184  section 4.8). The confusion matrix defining the true positives (TP), true negatives (TN),
185 false positives (FP) and false negatives (FN) can be seen in Figure 4A.

186 2.4.1 W.ithin cell type comparison

187  For this comparison, we use the ChIP-seq profile of RNA Polymerase Il in K562 cell
188 line that was obtained using PollIS5P4H8 antibody, due to its ability to identify RNA
189  Polymerase Il occupancy in TSS and actively transcribed regions.

190 As, evident from Figure 4B and 4C, EPIGENE outperforms both the RNA-Seq based
191 approaches and reports a higher AUC (PRC: 0.81, ROC: 0.82) in both the curves
192 compared to Cufflinks (PRC: 0.59, ROC: 0.64) and StringTie (PRC: 0.75, ROC: 0.79).

193 The above analysis was repeated for varying resolutions (50,100 and 500 bp); the
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194  AUC reported for varying resolution can be seen in Figure 4D. As observed in the
195 figure, Cufflinks achieve a lower AUC compared to StringTie and EPIGENE, which is
196 likely due to the usage of the RABT assembler which results in large number of false
197  positives [29].

198 EPIGENE reports a higher AUC than StringTie for varying RNA Polymerase I
199 resolutions, this can be due to (1) the usage of RNA Polymerase Il enrichment as a
200 performance measure might lead to a ChlP-seq biasness towards EPIGENE, which is
201 also a ChlIP-seq based approach. This results in more true positives compared to
202 RNA-Seq based approaches, or (2) RNA-mapping artefacts that results in more false
203  positives than EPIGENE. Therefore, we examined the precision, sensitivity and
204  specificity values for EPIGENE, Cufflinks and StringTie and found that the increased
205 AUC for EPIGENE is due to spurious read mappings of RNA-Seq that results in higher
206 false positives in StringTie and Cufflinks. Figure S2 (included in Supplementary file
207  Al) shows an example of Cufflinks and StringTie TU that was identified due to
208  spurious read mapping. This TU exactly overlaps with a repetitive sequence that
209  occurs in four chromosomes (chromosome 1, 5, 6, X).

210 2.4.2 Cross cell type comparison

211 In order to evaluate the performance of EPIGENE across cell types, we applied K562-
212  trained models to samples from different cell types. We compared the approaches on

213 three different datasets provided by the ENCODE [15] and DEEP [17,30] consortium:

214 1. IMR90: lung fibroblast cells with 6 histone modifications,1 RNA Polymerase II,
215 two control experiments (one each for RNA Polymerase Il and histone
216 modifications) and one RNA-Seq obtained from ENCODE,

217 2. HepG2_1 and HepG2_ 2: hepatocellular carcinoma with 6 histone
218 modifications, one control experiment and one RNA-Seq obtained from DEEP
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219 where two replicates per histone modification and RNA-Seq are available, RNA
220 Polymerase Il ChIP and control experiments obtained from ENCODE.
221  Asshownin Figure 5 A, B and C, K562-trained EPIGENE models consistently achieve

222  a higher prediction accuracy, outperforming Cufflinks and StringTie.

223 2.5 EPIGENE identifies transcription units with negligible

224 RNA-Seq evidence

225 Previous analyses (see section 2.3 and 2.4) indicated the presence of transcription
226  units with RNA Polymerase Il evidence and reduced or no RNA-Seq evidence. Here
227  we evaluate these transcription units within and across cell lines by: (1) identifying cell-
228 type specific transcription units that show gene characteristics but lack RNA-Seq
229 evidence, and (2) looking for the presence of microRNAs that were not identified by

230 RNA-Seq.

231 2.5.1 EPIGENE identifies cell-type specific transcription units

232 We create a consensus set of transcription units by overlaying the EPIGENE
233  predictions from K562, HepG2 and IMR90. This consensus TU set comprised of
234 18,248 TUs, of which ~78% showed an enrichment for RNA-Polymerase Il. We
235 identified 10,233 differential TU, of which 8047 were exclusive to cell lines (K562:
236 4247, IMR90: 2545, HepG2: 1255; see Figure S3 in Supplementary file Al). We
237 additionally identified 43 highly confident cell-specific TUs (K562: 24, IMR90: 17,
238 HepG2: 2; additional details in Supplementary table S2) which lacked RNA-Seq
239 evidence but showed typical characteristics of a TU, with RNA Polymerase |l
240 enrichment at TSS and transcribing regions, H3K4me3 and H3K27ac enrichment at
241 the TSS and H3K36me3 enrichment in gene body. An example of one such TU can

242  be seen in Figure 5D.

243  2.5.2 Identifying microRNAs that lack RNA-Seq evidence

10
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244 MicroRNAs are small (~22 bp), evolutionally conserved non-coding RNAs [31,32]
245  derived from large primary microRNAs (pri-miRNA), that are processed to ~70 bp
246  precursors (pre-miRNA) and consequently to their mature form by endonucleases
247 [33,34]. They regulate various fundamental biological processes such as
248 development, differentiation or apoptosis by means of post-transcriptional regulation
249  of target genes via gene silencing [35,36] and are involved in human diseases [37].

250 Due to the unstable nature of primary microRNA, traditional identification approaches
251 relying on RNA-Seq are challenging. Here, we investigate the presence of primary
252  microRNA that lack RNA-Seq evidence across cell lines. We create a consensus TU
253  set(used in section 2.2) for individual cell lines (K562, HepG2 and IMR90) and overlaid
254  them with miRbase annotations [38] to obtain potential primary microRNA TUs. We
255 identified 655 EPIGENE TUs (5% of total EPIGENE TUs common in both replicates)
256 that can be explained by miRbase annotations. We observe that majority of these are
257 supported by RNA-Seq and Polymerase Il evidence (Figure 6A and Figure S4
258  Supplementary file Al). We additionally identify 2 primary microRNA TUs in HepG2
259  cell line, which showed an enrichment for H3K4me3 in promoters, H3K36me3 in gene
260 body and RNA Polymerase Il in TSS and transcribing regions; and lacked RNA-Seq
261 evidence. One of these transcription units overlaps with a microRNA cluster located

262  between RP-11738B7.1 (lincRNA) and NRF1 gene (see Figure 6B).

263 2.6 Discussion

264  In this work, we introduced EPIGENE, a semi-supervised HMM that identifies active
265 TUs using histone modifications. EPIGENE comprises of TU and background sub-

266 models. The TU sub-model was trained in a supervised manner on predefined training

267  sets, while the background was trained in an unsupervised manner. This semi-

11
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268 supervised approach captures (1) the biological topology of active TUs, and (2)
269  probability of occurrence of histone modifications in different parts of a TU.

270  We first showed that majority of the predicted TUs can be explained by existing gene
271 annotations, histone modifications and RNA Polymerase Il. A quantitative comparison
272  with RNA-Seq reveals the presence of TUs with RNA-Polymerase Il enrichment but
273  negligible RNA-Seq evidence. Considering RNA-Polymerase Il as true transcription
274  indicator, we compared the performance of EPIGENE with two RNA-Seq based
275 approaches Cufflinks and StringTie. Based solely on the AUC of PRC and ROC curve
276  as performance measure, EPIGENE achieves a superior performance than RNA-Seq
277 based approaches. We further showed that EPIGENE can be reliably applied across
278 different cell lines without the need for re-training and accomplishes a superior
279  performance than RNA-seq based approaches.

280 We examine other performance scores like precision, sensitivity and specificity values,
281 and observe that the high AUC of EPIGENE is due to RNA Seq mapping artefacts that
282  result in high number of false positive in Cufflinks and StringTie. We further evaluate
283 the presence of differentially identified TUs in K562, HepG2 and IMR90 cell line that
284  lack RNA-Seq evidence. The results suggest the presence of cell line exclusive
285 transcripts that lack RNA-Seq evidence. We additionally identify microRNAs that lack
286 RNA-Seq evidence due to their labile nature. All of the aforementioned TUs show an
287  enrichment of RNA Polymerase Il in TSS and gene body indicating that they have
288  been transcribed.

289 It is important to note that EPIGENE does not differentiate between functional and
290 non-functional units of a TU (exons and introns) as the association between histone
291 modifications and alternative splicing is yet to be elucidated [39]. However, EPIGENE

292 identifies active TUs with greater precision as shown in section 2.4 and in the example

12
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293  regions presented in this work. The accuracy of EPIGENE predictions depends on the
294  sequencing depth of the input histone modifications, therefore, high quality ChlP-seq
295 profiles of histone modifications should be used to obtain confident transcription unit
296  annotation.

297  Altogether, the superior performance within and across cell lines, identification of TUs
298 especially primary microRNAs lacking RNA-Seq evidence as well as interpretability

299 makes EPIGENE a powerful tool for epigenome based gene annotation.

300 3. Conclusion

301  With increasing efforts in the direction of epigenetics, many consortia continue to
302 provide high quality genome-wide maps of histone modifications but determining the
303 genome-wide transcriptomic landscape using this data has remained unexplored so
304 far. Extensive evaluations in this work demonstrated the superior accuracy of
305 EPIGENE over existing transcript annotation methods based on true transcription
306 indicators. EPIGENE framework is user-friendly and can be executed by solely
307  providing binarized enrichments for ChlP-seq experiments, without the need to re-train
308 the model parameters. The resulting transcript annotations are in good agreement with
309 RNA-Polymerase Il evidence and can be used to provide a cell specific, epigenome-

310 based gene annotation.

311 4. Materials and methods

312 4.1 Library preparation of histone modifications ChlP-seq

313 For K562 cell line presented in this study, ChlP against six core histone modifications,
314 H3K27ac, H3K27me3, H3K4mel, H3K4me3, H3K36me3 and H3K9me3, was
315 performed. The sheared chromatin without antibody (input) served as control. 10 x 108

316 K562 cells were cultured as recommended by ATCC. Chromatin immunoprecipitations

13
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317  were preformed using the Diagenode auto histone ChIP seq kit and libraries were
318 made using microplex kits according to manufacturer’s instructions and 10 PCR

319 cycles.

320 4.2 Library preparation of RNA Polymerase Il ChIP-seq

321 K562 cells were cultured in IMDM (#21980Gibco) with 10% FBS and P/S. Cells at a
322  concentration of 1.2mio/ml were fixed with 1% Formalin at 37°C for 8min. Nuclei were
323  isolated with a douncer, chromatin concentration was measured and 750ug chromatin
324  per CHIP was used. Samples were sonicated with Biorupter for 33 cycles (3x 11
325 cycles). Chromatin, antibodies (RNA Pol 1l Ser2P (H5), RNA Pol Il Ser5P (4H8), RNA
326 Pol Il Ser7P (4E12) and Polll (8WG16)) and protein G beads were combined and
327  rotated at 4°C. For elution 250ul elution buffer (1% SDS) was used and after reverse
328  crosslinking DNA was isolated by Phenol Chloroform extraction and elute in 1XTE.
329  Final concentration was measured by Qubit. Bioanalyzer was done to check fragment

330 sizes.

331 4.3 Sequencing and processing of ChIP-seq data

332 Sequencing for RNA-Polymerase Il and histone modifcations was performed on an
333 lllumina Highseq 2500 using a paired end 50-flow cell and version 3 chemistry. The
334  resulting raw sequencing reads were aligned to the genome assembly “hs37d5” with
335 STAR [40] and duplicates were marked using Picard tools [41]. We used
336  plotFingerprint which is a part of deepTools [42] to access the quality metrics of for all

337  ChIP-seq experiments.

338 4.4 Processing of RNA-Seq data

339 The raw reads from RNA-Seq experiments were downloaded from European

340 Nucleotide Archive (SRR315336, SRR315337 for K562), European Genome Archive
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341 (EGADO00001002527 for HepG2) and ENCODE (ENCSROOCTQ for IMR90) and were

342  aligned to the genome assembly “hs37d5” with STAR [40].

343 4.5 Binarization of enrichment levels

344  EPIGENE requires the enrichment values of IHEC class | histone modifications in a
345 binarized data form or a "class matrix" to learn a transcription state model. This was
346 done by partitioning the mappable regions of the genome of interest into non-
347 overlapping sub-regions of the same size called bins. In the current setup, the
348 transcription states are analysed at 200bp resolution, as it roughly corresponds to the
349  size of a nucleosome and spacer region. Given the ChIP and input alignment files for
350 each of the histone modifications, the class matrix for multivariate HMM is generated

351 using the following approach:

352 1. Obtaining read counts: Read counts for all the bins is performed using
353 bamCount method from R package bamsignals [43], with the following
354 parameter settings: mapqual = 255, filteredFlag = 1024, paired.end = midpoint.
355 2. Enrichment calling and binarization: After having obtained the read counts,
356 enrichment and binarization for each of the histone modification across all bins
357 is computed using enrichR (binFilter = zero) and getClasses (fdr = 0.2) method
358 from normR [28], which uses a negative binomial distribution to perform
359 enrichment and binarization. This step yields the class matrix that serves as an
360 input for the multivariate HMM.

361 4.6 The EPIGENE model

362 EPIGENE uses a multivariate HMM (shown in Figure 1A (ii)) to model the class matrix
363 and identify active transcription units. Class matrix C is a m x n matrix, where, m =
364  total number of 200 bp bins, and, n = number of histone modifications. Each entry Cij

365 in the class matrix C corresponds to the binarized enrichment in i-th bin for the j-th
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histone modification. The model constitutes k number of hidden states (which is an
input parameter of the algorithm), and each row of the class matrix corresponds to a
hidden state. The emission probability vector for each hidden state corresponds to the
probability with which each histone mark is found for that hidden state. The transition
probabilities between the states enables the model to capture the position biases of
gene states relative to each other. The emission probabilities of each state represents
the probability with which each histone mark occurs in a state. Given this model, the
algorithm does the following:
1. Initializes the emission, transition, and initial probabilities.
2. Fits the emission, transition, and initial probabilities using the Baum-Welch
algorithm [44].
3. As we are concerned about the most probable sequence of active transcription
unit, therefore, the sequence of hidden states is inferred using the Viterbi
algorithm [45].

4.7 Training the model parameters

The transition and emission probabilities of the multivariate HMM are trained using
GENCODE annotations with the following approach.
1. Bins overlapping gencode transcripts are identified and termed as gencode
bins.
2. The gencode bins were categorized as TSS, TTS, 1st, internal and last exon
and intron bins, and were subsequently grouped based on transcript IDs.
3. The coverage (in bp) of individual transcription unit component (i.e TSS, 1st
exon, 1st intron etc) for each transcript is computed to generate the coverage
list, where each entry of the coverage list contains the coverage information (in

bp) for individual transcripts.
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4. The transition probability of each "transcription unit state" was computed from
the coverage list, and the missing probabilities from and to the “background
state" are generated in an unsupervised manner.

5. We filtered the gencode transcripts to obtain transcripts that report an
enrichment for RNA Polymerase Il. This was done by clustering the binarized
enrichment values of RNA Polymerase Ilin TSS and TTS bins of the transcripts
and obtaining TSS and TTS bins that reports a high cluster mean for RNA
Polymerase Il. The emission probability of each “transcription unit state” was
computed from class matrix and coverage of these transcripts (coverage
computed from Step 2). The missing emission probabilities for the background

states are trained in an unsupervised manner.

4.8 Performance evaluation

The performance of EPIGENE and RNA-Seq based transcript prediction approaches
is evaluated using RNA Polymerase as performance indicator. This is done by
removing assembly gaps in the genomic regions of interest and partitioning the
remaining contigs into non-overlapping bins of 200 bps. The actual transcription status
of each 200 bp bin was given by the observed binarized RNA Polymerase I
enrichment in the bin and the predicted transcription status of the bin for method m,
PT,,(bin) is given by:

1if o(bin,P,) > 1
0 otherwise

PT,,(bin) = {
where, 0(bin, P,,) is the overlap between the bin and method m predictions P,,.
The predictions of EPIGENE and other RNA-Seq based approaches is evaluated by

computing the area under curve for Precision-Recall (AUC-PRC) and Receiver

Operating Characteristic curve (AUC-ROC) with primary focus on AUC-PRC.
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415 Considering a very high class imbalance i.e. binSgyspotymerase it <K
416  binSgna potymerase ni-» the AUC-PRC and AUC-ROC is computed using random

417  sampling as:

stdDev(Lyyc)
Vn

419 where, n is the sampling size or number of iterations and L,y is the list of AUCs

418 AUC = mean(Lyc) — ( )

420 obtained for sampling size n.
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564
565 Figure legends

566  Figure 1: A. Schematic overview of EPIGENE framework. B. An example of EPIGENE
567  prediction. EPIGENE predictions of METTL4 and NC80 gene, show an enrichment of
568 H3K27ac and H3K4me3 at TSS (tracks shown in light violet), H3K36me3 in gene body
569 (tracks shown in green), enhancer mark H3K4mel few bps upstream or downstream
570 of TSS (tracks shown in pink), RNA Polymerase Il in TSS and gene body (tracks
571  shownin blue). The predictions also show an absence of repression marks H3K27me3
572 and H3K9me3 (tracks shown in black). The corresponding RNA-Seq evidence in this
573 genomic region can be seen in lower most track (track shown in dark pink)

574  Figure 2: Overlap of EPIGENE predictions with existing gene annotations and RNA-
575 Seq based predictions

576  Figure 3: Correctness of EPIGENE predictions. A. EPIGENE estimated parameters
577 for K562 using 17 chromatin states, ranging from 0 (white) to 1 (dark green). B.
578 Distribution of RNA Polymerase enrichment score in EPIGENE predictions,
579 predictions are divided as: high RPKM (RPKM >= upper quartile) and low RPKM
580 (RPKM < upper quartile) based on RNA-Seq evidence in predicted transcripts

581 Figure 4: Performance of EPIGENE compared to existing RNA-Seq based

582 transcription unit annotation methods: Cufflinks and StringTie. A. Contingency matrix
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583  used for method comparison. B. Receiver Operating Characteristic curve C. Precision-
584  Recall curve. D. Area under ROC and PRC curve for varying RNA Polymerase I
585  resolution for EPIGENE, Cufflinks and StringTie

586 Figure 5: A-C. Performance of K562-trained EPIGENE models, Cufflinks and
587  StringTie across cell lines. D. Example of EPIGENE predicted TU that lacks RNA-Seq
588 evidence (tracks shown in dark pink). The TU was predicted to be active in K562 but
589 notin HepG2 and IMR90, and is located between pseudogene CASP3P1 and INcCRNA
590 RP5-952N6.1. The TU shows an enrichment of H3K27ac and H3K4me3 at TSS
591 (tracks shown in light violet), H3K36me3 in gene body (tracks shown in green),
592  enhancer mark H3K4mel few bps upstream of TSS (tracks shown in pink), K562 RNA
593 Polymerase Il in TSS and gene body (tracks shown in blue). The TU also show an
594  absence of repression marks H3K27me3 and H3K9me3 in K562 (tracks shown in
595 black). We additionally observe the enrichment of repression mark in H3K27me3 in
596 HepG2 and IMR90 indicating that the region is repressed in both these cell lines

597  Figure 6: A. Overview of potential primary miRNAs predicted by EPIGENE in HepG2.
598 B. Example of a TU overlapping a microRNA cluster was predicted by EPIGENE in
599 HepG2 cell line. This region is located between lincRNA RP11-738B7.1 and gene
600 NRF1 which was identified as a key player in maintaining cellular homeostasis and
601 organ integrity [46]. The TU shows an enrichment of H3K27ac and H3K4me3 at TSS
602 (tracks shown in light violet), H3K36me3 in gene body (tracks shown in green),
603 enhancer mark H3K4mel few bps upstream and downstream of TSS (tracks shown
604 in pink), RNA Polymerase Il in TSS (tracks shown in blue). The predictions also show
605 an absence of repression marks H3K27me3 and H3K9me3 (tracks shown in black)

606 and RNA-Seq evidence (tracks shown in dark pink).
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