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Abstract
Despite decades of intensive search for compounds that modulate the activity of particular

targets, there are currently small-molecules available only for a small proportion of the human

proteome. Effective approaches are therefore required to map the massive space of unexplored

compound-target interactions for novel and potent activities. Here, we carried out a

crowdsourced benchmarking of predictive models for kinase inhibitor potencies across multiple

kinase families using unpublished bioactivity data. The top-performing predictions were based

on kernel learning, gradient boosting and deep learning, and their ensemble resulted in

predictive accuracy exceeding that of kinase activity assays. We then made new experiments

based on the model predictions, which further improved the accuracy of experimental mapping

efforts and identified unexpected potencies even for under-studied kinases. The open-source

algorithms together with the novel bioactivities between 95 compounds and 295 kinases provide

a resource for benchmarking new prediction algorithms and for extending the druggable kinome.

Introduction
Only 11% of the human proteome can be currently targeted by small molecules or drugs,

whereas one in 3 proteins remains under-studied.1 Furthermore, despite many years of target-

based drug discovery, chemical agents inhibiting single protein targets are still rare.2  Most

approved drugs have multiple targets, suggesting their therapeutic efficacy as well as adverse

side-effects originate from polypharmacological effects.3 Systematic mapping of the target

binding profiles is therefore critical not only to explore the therapeutic potential of promiscuous

agents, but also to better predict and manage their possible adverse effects prior to further

development and clinical trials (i.e., speeding-up and de-risking the drug development process).

Comprehensive understanding of the pharmacological effects of approved drugs could uncover

novel off-target potencies to extend their therapeutic application area (via off-label use or

repurposing). However, the massive size of the chemical universe makes the complete

experimental mapping of compound-target activities infeasible, even with automated high-

throughput profiling assays.

To accelerate the mapping efforts, we implemented the IDG-DREAM Drug-Kinase Binding

Prediction Challenge, a crowd-sourced competition that evaluated the power of machine

learning (ML) models as a systematic and cost-effective means for predicting novel compound-

target potencies that warrant experimental evaluation (i.e., target prioritization). The Challenge

focused on kinase inhibitors, since kinases are tractable in drug development and play a role in
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a wide range of diseases, such as cardiovascular disorders and cancers. However, protein

kinase domains share structural and sequence similarity, and most kinase inhibitors bind to

conserved ATP-binding pockets, which leads to prevalent target promiscuity and

polypharmacological effects.4–7 Such promiscuity requires effective target deconvolution

approaches, including ML approaches, that can leverage the information extracted from similar

kinases and compounds to predict the activity of so far unexplored interactions.8,9

The Challenge was implemented in a screening-based, pre-competitive drug discovery project in

collaboration with the NIH-supported Illuminating the Druggable Genome (IDG) program

(https://commonfund.nih.gov/idg), with the common aim to establish kinome-wide target profiles

of small-molecule agents, and thereby to extend the druggability of the human kinome space by

providing activity information on under-studied proteins. The specific questions this Challenge

sought to address were: (i) What are the best computational modelling approaches for predicting

quantitative compound-target activity profiles?;  (ii) What are the optimal molecular and chemical

descriptors for maximal prediction accuracy?; and (iii) What are the most predictive bioactivity

assays and publicly available resources? The Challenge attracted 212 active participants, and a

total of 268 predictions were scored, covering a wide range of ML approaches, including linear

regularized regression, deep and kernel learning algorithms and gradient boosting decision

trees. Here, we describe the benchmarking results from the Challenge, and the use of top-

performing prediction models for identifying novel kinase inhibitor activities.

Results

Challenge implementation
To develop their predictive models, the participants had access to a wide variety of bioactivity

data for model training and cross-validation through open databases such as ChEMBL10,

BindingDB11 and IDG Pharos12 (Fig. 1). For training data collection, integration, management

and harmonization, the Challenge made use of an open-data platform, DrugTargetCommons

(DTC).13 DTC is a community platform that facilitates the annotation and curation of bioactivity

data, and provides a comprehensive and standardized interface to retrieve compound-target

profiles and related information to support predictive modelling (Suppl. Fig. 1). The Challenge

infrastructure was built on the Synapse collaborative science platform14, which supported

receiving, validating and scoring of the teams’ predictions as well as long-term management of

the test bioactivity data and submitted Challenge models as a benchmarking resource (Fig. 1).
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Figure 1. Overview of the IDG-DREAM Drug-Kinase Binding prediction Challenge. The
participants had access to publicly available target profiling training data, and the predictions were
then validated in two unpublished and blinded test data sets profiled by the Illuminating the
Druggable Genome (IDG) program. The heatmap on the left is for illustrative purposes only (see
Suppl. Fig. 2 for the actual test data matrices, and Suppl. Fig. 3 for the Challenge timeline).

Challenge test data sets
Evaluation of the model predictions was based on unpublished target binding data generated by

the IDG Kinase Data and Resource Generation Center, conducted over a series of “rounds”

based on availability of validation datasets (Suppl. Fig. 3). Generation of the test data for Round

1 was based on a single-dose kinome scan of a library of multi-targeted compounds.6,15 This

was followed by a dose-response determination of the dissociation constant (Kd) values for 430

compound-kinase pairs between 70 inhibitors and 199 kinases that were not available in the

public domain (see Methods). An additional set of completely new Kd data was generated for

Round 2, consisting of 394 multi-dose assays between 25 inhibitors and 207 kinases with

single-dose inhibition >80%. Together, these 824 Kd assays in the two Rounds spanned a total

of 95 compounds and 295 kinases (Fig. 2a-b), consisting of promiscuous compounds targeting

multiple kinases at low concentrations, compounds with narrow target profiles, as well as

compounds with no potent targets among the tested kinases (Suppl. Fig. 2).

Round 1 enabled the teams to carry out initial testing of various model classes and data

resources, whereas Round 2, implemented 6 months later, was used to score the final
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prediction models and to select the top-performing teams. Round 1 test data remained blinded

in Round 2. Round 1 and 2 test data had very similar Kd distributions (Fig. 2c), which provided

comparable binding affinity outcome data to monitor the improvements made by the teams

between the two rounds. Compounds in the test sets were mutually exclusive between rounds

(Fig. 2a), with Round 2 including less selective compounds with broader target profiles (Fig. 2d),

and therefore fewer inactive compound-target pairs (pKd=5). Round 1 and 2 kinase targets were

partly overlapping, and covered all major kinase families and groups (Fig. 2b,e). Taken together,

these two test datasets provided a standardized and sufficiently large quantitative bioactivity

resource to evaluate the accuracy of predicting on- and off-target activities.

Figure 2. Challenge test datasets. (a) The overlap between Round 1 and Round 2 test
compounds and kinases, and their distributions in the kinome tree (b), and across kinase groups
(e). (c) The quantitative dissociation constant (Kd) of compound-kinase activities was measured
in dose-response assays (see Methods), presented in the logarithmic scale as pKd = -log10(Kd).
The higher the pKd value, the higher the inhibitory ability of a compound against a protein kinase
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(Suppl. Fig. 2 lists the compounds and kinases in Round 1 and Round 2). (d) The selectivity index
for compounds was calculated based on the single-dose activity assay (at 1 µM of compound)
across full compound-kinase matrices before the Challenge. The kinome tree figure was created
with KinMap, reproduced courtesy of Cell Signaling Technology, Inc.

Predictive performance of the models
The competition challenged the participants to predict blinded Kd profiles between 95

compounds and 295 kinases. Since a goal of this Challenge was to encourage algorithm

development that would exceed state-of-the-art, we selected as “base-line model” a recently

published and experimentally-validated kernel regression approach for compound-kinase activity

prediction16. The performance of the predictions improved from Round 1 to Round 2

submissions as measured by Spearman correlation (two-sample Wilcoxon test, p<0.005; Fig.

3a) and Root Mean Square Error (RMSE, p<10-6; Fig. 3c). Comparison against the baseline

model indicated that the Round 2 dataset was marginally easier to predict (Suppl. Fig. 4), partly

due to a smaller proportion of inactive pairs in Round 2 (pKd = 5, Fig. 2c). To take into account

this shift, we compared the submissions against a set of random predictions. Using Spearman

correlation, we observed that 48% of the submission were better than random in Round 1,

compared to 61% in Round 2 (Fig 3b). Using RMSE, 71% of the submissions in Round 1 were

better than random, compared to 76% in Round 2 (Fig 3d).

The 20 teams that participated in both rounds improved their Kd predictions (p<0.05 and p<0.001

for Spearman and RMSE, paired Wilcoxon signed-rank test), but when comparing against the

baseline model, the overall improvements became insignificant (p>0.05). However, there were

individual teams (like Zahraa Sobhy) that were able to improve their predictions considerably

between the two rounds. The practical upper bound of the model predictions was defined based

on experimental replicates of Kd measurements (Fig. 3b,d). The predictive accuracy of the top-

performing models in Round 2 was relatively high based on both of the winning metrics,

Spearman correlation for rank predictions and RMSE for activity predictions; these metrics

showed less correlated performance over the less-accurate models in Round 2 (Fig. 3f). The tie

breaking metric, averaged area under the curve (AUC), provided complementary information on

prediction accuracy when compared to RMSE but not to Spearman correlation (Suppl. Fig. 5).

Overall, models based on deep learning algorithms did not perform better than the other leaning

algorithms submitted in Round 2 (Fig. 3f).
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Figure 3. Overall performance of the submissions. (a, c) Performance of the submissions in
terms of the two winning metrics in Round 1 (n = 169 submissions) and Round 2 (n = 99). The
colors mark the baseline model and the top-performing participants in Round 2. The empty circles
mark the submissions that did not differ from random predictions. The baseline model16 remained
the same in both of the rounds. (b, d) Distribution of the random predictions (based on 10,000
permuted pKd values) and replicate distributions (based on 10,000 subsamples with replacement
of overlapping pKd pairs between two large-scale target activity profiling studies4,5) in Round 1 (top
panel) and Round 2 (bottom). The points correspond to the individual submissions. (e, f)
Relationship of the two winning metrics across the submissions in Round 1 and Round 2. The
shape indicates submissions based on deep learning in Round 2 (f). For instance, team DMIS_DK
submitted predictions based both on random forest (RF) and deep learning (DL) algorithms in
Round 2, where the latter showed slightly better accuracy (triangle).

Analysis of the top-performing models
The top-performing models were selected in Round 2 based on 394 pKd predictions between 25

compounds and 207 kinases. Only those participants who submitted their Dockerized models,

method write-ups, and method surveys were qualified to win the two sub-challenges. To select

the top-performers, we conducted a bootstrap analysis of each participant’s best submission,

and then calculated a Bayes factor (K) relative to the bootstrapped overall best submission for

each winning metric (Suppl. Fig. 6). Considering Spearman correlation, the top-performer was

team Q.E.D (K<3; Fig. 4a). For the RMSE metric, the top-performing teams were AI Winter is

Coming (AIWIC) and DMIS_DK (K<3; Suppl. Fig. 6), with AIWIC having a marginally better tie-

breaking metric (average AUC of 0.773; Fig. 4b). Only two non-qualifying participants (Gregory

Koytiger and Olivier Labayle) showed comparable performance. Overall, these five teams

performed the best when considering the 54 teams in Round 2 (Suppl. Fig. 7).

Notably, the top-performing models were based on various ML approaches, including deep

learning, graph convolutional networks, gradient boosting decision trees, kernel learning and

regularized regression (Table 1). To study whether combining predictions from multiple ML

approaches could improve prediction accuracy, we constructed an ensemble model by simple

mean aggregation of an increasing number of top-performing models in Round 2. The

combination of the four best performing models resulted in the peak Spearman correlation (Fig.

4c), demonstrating complementary value of these predictions. After adding more models, the

ensemble prediction accuracy decreased rapidly, measured by Spearman correlation and

RMSE (Fig. 4d). However, an ensemble prediction from a total of 21 best teams had a

significantly better correlation than the best single model alone (K>5; Suppl. Fig. 8). This
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suggests that the combination of various ML approaches using an ensemble model leads to

accurate and robust predictions of kinase inhibitor potencies across multiple kinase families.

Figure 4. Top-performing models and their ensemble combination. (a) Spearman correlation
sub-challenge top-performer in Round 2 (Q.E.D). (b) RMSE sub-challenge top-performer in Round
2 (AI Winter is Coming). Points correspond to 394 pairs between 25 compounds and 207 kinases.
(c) Ensemble model that combines the top four models selected based on their Spearman
correlation in Round 2. (d) The mean aggregation ensemble model was constructed by adding an
increasing number of top-performing models based on their Spearman correlation (the solid
curve), until the ensemble correlation dropped below 0.45. The peak performance was reached
after aggregating four teams (marked in the legend; see Suppl. Fig. 8 for names of all the teams).
The right-hand y-axis and the dotted curve shows the RMSE of the ensemble model as a function
of an increasing number of top-performing models.
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Team Algorithm type Algorithm name
Combined
models

Training
strategy

DMIS_DK Deep learning Graph Neural Networks 12 Train test split

AI Winter is
Coming

Gradient boosting
decision trees Xgboost 5 per target

K-fold nested
cross validation,
boosting

Q.E.D Kernel learning CGKronRLS 440 Boosting

Gregory
Koytiger Deep learning Not applicable 6 Fixed hold out

Olivier Labayle Ridge regression Not applicable Not applicable
K-fold cross
validation

Baseline Kernel learning CGKronRLS 1
K-fold nested
cross validation

Team
Training data
sources

 Compound-
protein pairs

Bioactivity
types

Protein
features

Chemical
features

DMIS_DK
DrugTargetCommons,
BindingDB 953521 Kd, Ki, IC50 None

2D molecular
graphs

AI Winter is
Coming

DrugTargetCommons,
ChEMBL 600000 Kd, Ki, IC50, EC50 None

ECFP5, ECFP7,
ECFP9, ECFP11

Q.E.D
DrugTargetCommons,
ChEMBL, Uniprot 60462 Kd, Ki, EC50

Amino acid
sequences ECFP4, ECFP6

Gregory
Koytiger ChEMBL 250000 Kd, Ki, IC50 None None

Olivier Labayle
DrugTargetCommons,
ChEMBL, Uniprot 18200 Kd K-mer counting ECFP

Baseline DrugTargetCommons 44186 Kd

Amino acid
sequences

Path-based
fingerprints

Table 1. Model classes and training data of the Round 2 top-performing teams and the baseline
model16.  Even if the teams chose to combine predictions from multiple models, they had to submit
only one prediction per compound-target pair for scoring against the measured activities.

Comparison against single-dose activity
We next investigated how well the top-performing ML models compare against single-dose

activity assays in terms of reducing the number of false positives and negatives when selecting

most potent compound-target activities for more detailed, multi-dose Kd profiling. For this

classification task, we defined the ground truth activity classes based on the measured Kd

potencies, which provide a more practical prediction outcome, compared to the rank correlation
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analyses that already demonstrated predictive rankings with the top-performing models (Fig. 4).

Using the activity cut-off of measured pKd = 6 and an single-dose inhibition cut-off of 80%,

similar to previous studies,6,15,17 the positive predictive value (PPV) and the false discovery rate

(FDR) of the single-dose assay were PPV = 0.66 and FDR = 0.44 in the Round 2 dataset. When

using the mean aggregation ensemble of the predicted pKd values from the top-performing

models and the same cut-off of pKd > 6 for both the predicted and measured activities, we

observed an improved precision of PPV = 0.76 and FDR = 0.24.

To further repeat the activity classification with multiple cut-off levels, we ranked the Round 2

pairs both using the model-predicted pKd values and the measured single-dose inhibition assay

values, and then compared these rankings against the measured dose-response assay (here,

pKd > 6 indicates positive activity class). The ROC analyses demonstrated an improved activity

classification accuracy using the mean ensemble of the top-performing models (Fig. 5a),

especially when focusing on the most potent compound-target activities with the highest

specificity. This improvement in both sensitivity and specificity was achieved without making any

additional activity measurements, and it became even more pronounced with the precision-recall

analysis, which showed that the precision of the prediction models remained above PPV=75%

level even when the recall (sensitivity) level exceeded 75% (Fig. 5b). As expected, the prediction

accuracy decreased when using a more stringent activity cut-off of pKd > 7 (Suppl. Fig. 9), since

these rare extreme activities are more challenging to predict.

Figure 5. Top-performing model predictions compared against single-dose assays. (a)
Receiver operating characteristic (ROC) curves when ranking the 394 compound-kinase pairs
from Round 2 using both the ensemble of the top-performing models (average predicted pKd from

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2019.12.31.891812doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?MrSN0Z
https://doi.org/10.1101/2019.12.31.891812
http://creativecommons.org/licenses/by/4.0/


12

Q.E.D, DMIS_DK and AI Winter is Coming) and the experimental single-dose inhibition assays
(the pairs with higher inhibition% are ranked first). The true positive activity class includes pairs
with measured pKd > 6. The area under the ROC curve values are shown in the parentheses and
the diagonal dotted line shows the random prediction accuracy of AU-ROC=0.50. (b) Precision-
recall (PR) curves for the same activity classification analysis as shown in panel a. The area under
the PR curve values are shown in parentheses and the horizontal dotted line indicates the random
classifier precision of 0.64. Note: Round 2 Kd measurements were pre-selected to include mostly
those pairs with single-dose inhibition>80%, which makes Round 2 pairs optimal for systematic
analysis of false positive predictions, and hence sensitivity (recall) and PPV (precision). However,
these 394 pairs pre-selected for Kd profiling were less optimal for a comprehensive analysis of
false negative predictions, and the evaluation of specificity.

Model-based target predictions
To further analyse both the sensitivity and specificity of the model predictions, we experimentally

profiled 81 additional pairs, which were not part of Round 1 or 2 datasets, selected based on the

pKd predictions from the three top-performing models. These follow-up experiments were carried

out in an unbiased manner, regardless of the compound classes, kinase families, or inhibition

levels, to investigate the accuracy of predictive models to identify potent inhibitors of kinases

with less than 80% single-dose inhibition; this activity cut-off is often used when selecting pairs

for multi-dose Kd testing6,15,17, but it may miss the more challenging compound-kinase pairs with

lower single-dose inhibition. Most of the measured pKd values of these 81 pairs were distributed

as expected, according to the expected single-dose inhibition function (Fig. 6a, black trace).

However, our model-based approach also identified unexpected activities (pKd > 6), that could

not be predicted based on the inhibition assay only; those with pKd > 7 are discussed below.

As an example of a potent activity missed by the single-dose assays, the top-performing models

predicted PYK2 (PTK2B) as a high-affinity target of a PLK inhibitor TPKI-30 (Fig. 6a). The new

multi-dose pKd measurements validated that TPKI-30 indeed has an activity against PYK2 close

to its potency towards PLK2 (Fig. 6b, left panel). Neither PYK2 or FAK would have been

predicted as potent targets based on the single-dose testing alone, which led to multiple false

negatives (Fig. 6b, right panel). In general, the single dose-testing had a relatively low

predictivity of actual TPKI-30 potencies, since kinases other than PLKs with high single-dose

activity were confirmed as non-potent targets based on dose-response Kd testing, resulting in

many false positives. In contrast, the top-performing model predictions turned out to be relatively

accurate, except for a few receptor tyrosine kinases (Fig. 6b, left panel).
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Another unexpected target activity was predicted for GSK1379763 that also showed high

potency against DDR1 based on the subsequent Kd assays, exceeding that of the AURKB (Fig.

6c, left panel). The single-dose testing suggested that this compound would have potency

neither against DDR1 or AURKB (Fig. 6c, right panel), whereas the multi-dose assays confirmed

potency towards DDR1 at a similar level as the Round 2 highest affinity target MEK5 (MAP2K5).

Whereas DDR1 has been studied extensively18, there are only a few activity data points

currently available for the other high-affinity target, PYK2, suggesting that the prediction models

can identify potent inhibitors even for under-studied kinases that would have been missed when

using the single-dose assays alone. In contrast, the third predicted activity between

AKI00000050a and FLT1 could have been identified based on its relatively high single-dose

activity, even if less than 80% (Fig. 6a).

Surprisingly, the single-dose assays and model-based pKd predictions were weakly correlated

(Suppl. Fig. 10, Spearman correlation 0.24), and they showed opposite trends for Kd prediction

accuracy when increasing the inhibition cut-off level (Fig. 6d). To combine these two activity

estimators, we calculated for each compound-kinase pair an average of its measured and

expected inhibition values based on the single-dose assay and the top-performing models,

respectively. This combined predictor showed improved activity classifications beyond that of

the model predictions alone, across various inhibition levels, and identified an extended number

of potent compound-target interactions at lower single-dose activity, compared to the standard

80% cut-off (Fig. 6d, dotted line). The combined model improved both the sensitivity and

specificity of the pKd predictions among all the 475 pairs (Fig. 6e, left panel), and especially the

precision of the top-activity predictions that are prioritized for further validation (Fig. 6e, right

panel).
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Figure 6. Machine learning-based target predictions. (a) Comparison of single-dose inhibition
assay (at 1 µM) against multi-dose Kd assay activities across 475 compound-target pairs (394
Round 2 pairs and 81 additionally profiled pairs). The red points indicate false negatives and blue
points false positives when using cut-offs of pKd = 6 and inhibition=80% among the Round 2 pairs
(including 75 pairs with inhibition>80% but that showed no activity in the dose-response assays,
i.e, pKd = 5). The green points indicate the new experiments carried out solely based on the model
predictions, regardless of inhibition levels. The black trace indicates the expected %inhibition rate
based on measured pKd’s, estimated using the maximum ligand concentration of 1 µM both for
the single-dose and dose-response assays (see Methods). (b) Multi-dose (left) and single-dose
(right) assays for kinases tested with TPKI-30. Green points indicate the new experimental
validations based on model predictions, whereas black points come from Round 2 data. Blue
points indicate false positive predictions based either on predictive models or single-dose testing.
(c) Multi-dose (left) and single-dose (right) assays for kinases tested with GSK1379763. The color-
cording is the same as in panel b. (d) Predictive accuracy of the ensemble of top-performing
models (average predicted pKd) and single-dose assay (at 1 µM), when classifying subsets of the
475 pairs into those with measured pKd less or higher than 6. The y-axis indicates the area under
the receiver operating characteristic curve (AUC) as a function of the single-dose inhibition%
levels, x-axis indicates the pairs with inhibition>x%, and the dotted black curve the percentage of
all pairs that passed that activity threshold. The combined model trace corresponds to the average
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of measured and expected inhibition values, where the latter was calculated based on the mean
ensemble of the top-performing model pKd predictions (Q.E.D., DMIS_DK and AI Winter is
Coming). (e) Receiver operating characteristic (ROC) curves (left) and precision-recall (PR)
curves (right), when ranking all the 475 pairs using the top-performing model-predicted pKd values
and the measured single-dose inhibition assays, or using their combination. The AUC values are
shown in the parentheses. The diagonal dotted line indicates the random prediction accuracy of
AU-ROC=0.50 (left), and the horizontal dotted line indicates the random classifier precision of
0.58 (right).

Discussion
While experimental mapping of target activities is critical for understanding compounds’ mode of

action (MoA), biochemical target activity profiling experiments are both time consuming and

costly. The enormous size of the chemical universe, spanned by up to 1020 molecules with

potential pharmacological properties,19,20 makes the experimental bioactivity mapping of the full

compound and target space quickly infeasible in practice. The IDG-DREAM Drug Kinase

Binding Prediction Challenge was designed to benchmark algorithms capable of predicting and

prioritizing compound-target activities, and therefore to guide data-driven decision making and

reduce the high failure rates. The model-guided approach has the potential to help both

phenotype-based drug discovery (e.g. mapping of the active target space of lead compounds),

and target-based drug discovery (e.g. identification of candidate compounds that selectively

inhibit a particular disease-related target). As an example, the top-performing models led to a

surprising and novel result that the PLK inhibitor TPKI-30 targets also PYK2, currently an

understudied kinase, and with a somewhat lesser potency also its paralog, FAK (PTK2, Fig. 6b).

Although previous work has demonstrated the potential of ML algorithms to help fill in the gaps

in compound-target interaction maps,16 and to accelerate several phases of drug discovery,21 to

date there has been no  systematic and unbiased evaluations applied to comprehensive

datasets. Participants of the Challenge made use of various ML modelling approaches, and

rather surprisingly, no particular method class, training data source or bioactivity type stood out.

Rather, the top-performing teams used relatively different approaches (Table 1). Some of the

top-performing models used protein sequence as target feature, but no structural information.

Furthermore, none of the top-performing models required 3D or other detailed chemical

ginformation, making the ML models rather straightforward to apply for various compound and

target classes. Recently, many advanced deep learning (DL) algorithms have been proposed for

compound-target interaction prediction,22–24 but our results did not find DL outperforming other
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learning approaches. Interestingly, the Spearman correlation sub-challenge top-performer

(Q.E.D) used the same modelling approach as the baseline model,16 yet showed markedly

better performance (Fig. 3f), indicating that careful feature selection, method implementation, or

other domain knowledge could result in marked performance improvement.

To get a more global picture, at the end of the Challenge we asked all the teams to fill in survey

questionnaires to explore whether there would be any broad method classes or chemical or

target features shared among the models. Among the 31 teams that answered the surveys,

none of the method classes had a very strong contribution to the accuracy (Suppl. Fig. 11),

similarly as has been seen also in other DREAM challenges.25–27 A rather surprising observation

from the survey was that the Kd prediction accuracies could be improved by using other types of

multi-dose bioactivity data (e.g. Ki, IC50, EC50), compared to using Kd data alone (Suppl. Fig. 11).

This provides a further opportunity for ML models that often require relatively large training

datasets, as these bioactivity types are among the most common in multi-dose target profiling,

and more common than Kd in DTC database (Suppl. Fig. 11g). Another observation was that the

teams that used DTC alone as training bioactivity data source had decreased predictive

performance, perhaps due to the more heterogeneous bioactivity data stored in DTC, compared

to BindingDB11 or ChEMBL.10 This suggests that further annotation and harmonization of the

various types and sources of bioactivity data will be needed to make the most of these data for

predictive modelling, ideally in the form of a crowdsourced community effort.

Many previous DREAM Challenges have demonstrated that ‘wisdom of the crowds’ may also

improve the predictive power of the individual models through combining models as meta-

predictors or ensemble models.25–27 The ensemble model constructed in this Challenge showed

that the critical point came rather quickly after which adding more models led to rapid decrease

in accuracy (Fig. 4d). The combination of the top-performing ML models improved both the

sensitivity and specificity, compared to single-dose target activity assays, without requiring any

additional experiments (Fig. 5). Notably, none of the top-performing models used single-dose

inhibition data, and we showed how combining the inhibition measurements with ML models led

to even higher prediction accuracy than using either one alone, while identifying an increased

number of potent compound-kinase activities compared to when using the standard 80%

inhibition cut-off (Fig. 6). Furthermore, the best-performing models were not dependent on the

number or type of available bioactivity data, provided the training data had sufficient structural

diversity for the kinase families being predicted. Subsequent experiments carried out based on
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the top-performing model predictions demonstrated that these models can facilitate

experimental mapping efforts, both for well-studied and under-studied kinases (Fig. 6b,c).

To enable the community to apply the predictive models benchmarked in the Challenge to

various drug development applications, we have made available the top-performing models as

containerized source code. The Docker models enable continuous validation of the model

predictions whenever new experimental kinase profiling data will become available, as well as

make it possible to run the best performing models on private data that would otherwise remain

closed and unavailable to the research community.28 This Challenge will, therefore, contribute to

the further development and benchmarking of current and future target activity prediction models

on a larger scale, possibly for other target classes. The systematically validated models can

guide many precision medicine applications, such as prediction of selective inhibitors for new

disease targets, or off-target potency predictions for investigational compounds. All the models,

new bioactivity data, and benchmarking infrastructure are openly available on Synapse platform

(www.doi.org/10.7303/syn15667962) and DTC platform (https://drugtargetcommons.fimm.fi/).

We envision that the IDG-DREAM Challenge will provide a continuously-updated resource for

the chemical biology community to prioritize and experimentally test new target activities toward

accelerating many drug discovery and repurposing applications.

Online Methods
Challenge infrastructure and timeline
The Challenge was organized and run on the collaborative science platform Synapse. All

prediction files were submitted using the Challenge feature of this platform to track which teams

and individuals submitted files, and to track the number of submissions per team. Challenge

infrastructure scripts including code for calculating the scoring metrics are available at

https://github.com/Sage-Bionetworks/IDG-DREAM-Drug-Kinase-Challenge. Teams were

permitted to submit three predictions for Round 1, and two predictions for Round 2 (Suppl. Fig.

3). For Rounds 1 and 2, we used a common workflow language-based challenge infrastructure

to perform the following tasks: (1) validate a prediction file to ensure that it conformed to the

correct file structure and had numeric pKd predictions and return an error email to participants if

invalid, (2) run a python script to calculate the performance metrics for a submitted prediction,

and (3) return the score to the Synapse platform. For Round 1b, in which we permitted 1

submission a day for 60 days, we implemented a modified Ladderboot29 protocol to prevent
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model overfitting. This was done by modifying step (2) above as follows: the scoring

infrastructure receive a submitted prediction, check for a previous submission from the same

team, and run an R script to bootstrap the current and previous submission 10,000 times,

calculate a Bayes factor (K) between the two submissions; the scoring harness would then only

return an updated score if it was substantially better (K > 3) than the previous submission.

New bioactivity data for model testing
To generate unpublished test bioactivity data for scoring of predictions, we sent kinase inhibitors

to DiscoverX (Eurofins Corporation) for the generation of new dose-response dissociation

constant (Kd) values, as a measure of a binding affinity. In order to give a better sense of the

relative compound potencies, Kd is represented in the logarithmic scale, as pKd = -log10(Kd), where

Kd is given in molars [M]. The higher the pKd value, the higher the inhibitory ability of a compound

against a protein kinase. The 95 inhibitors used in the Challenge (70 for Round 1 and 25 for Round

2) were a part of the kinase inhibitor collection at the SGC-UNC for which we already had the

single-dose inhibition screening done at DiscoverX across their large kinase panel. This

scanMaxSM data (also called KINOMEScan) was collected at a screening concentration of 1 µM.

A two-step screening approach was adopted, as in previous studies4–6, using the DiscoverX

KINOMEscan standard protocol (https://www.discoverx.com/services/drug-discovery-

development-services/kinase-profiling/kinomescan). The dose-response Kd values were

generated for a range of compound-kinase pairs that had inhibition>80% in the single-dose assay.

The compounds were supplied as 10 mM stocks in DMSO, and the top screening concentration

was 10 mM.

A total of 25 of the axitinib-kinase pairs generated for Round 2 were already profiled in previous

published studies,6,15 and were therefore excluded from the Round 2 test dataset. The

Spearman correlation between these newly-measured pKd’s and those available from DTC was

0.701 (Suppl. Fig. 12a), providing the experimental consistency of the Kd measurements for

axitinib. We note this 25 pKd’s is a rather limited set for such analysis of consistency, and

therefore we extracted a larger set of 416 Kd measurements that overlapped with the Round 2

kinases from two comprehensive target profiling studies,4,5 including 104 pairs where pKd = 5 in

both of the studies. The Spearman correlation of these replicate pKd measurements was 0.842

(Suppl. Fig. 12b), demonstrating a good reproducibility of the pKd measurements. These

replicate measurements were used when determining a practical upper limit for the predictive

accuracy of the machine learning models in the scoring of their predictions (see below).
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To subsequently test the top-performing model predictions in additional compound-kinase pairs

that were not part of Round 1 or 2 datasets, we selected a set of 88 pairs that showed most

potency based on the average predicted pKd of the top-performing models (Q.E.D., DMIS-DK

and AIWIC), regardless of their single-dose inhibition levels. These 88 pairs were actually

scattered across the whole spectrum of single-dose inhibition levels, ranging from 0% to 78%

(Supplementary Fig. 10; note: pairs with inhibition >80% were Kd-profiled already in Round 2).

One of the compounds (TPKI-35) was not available from IDG, so the predicted 7 kinase targets

for that compound could not be tested experimentally, resulting in a dataset of total of 81

compound-kinase pairs that were shipped to DiscoverX for multi-dose Kd profiling. One of the

compounds (GW819776) was shipped separately in a tube, whereas the other 14 compounds

were supplied as 10 mM stocks in DMSO, and the Kd profiling done was done using the same

KINOMEscan competitive binding assay protocol as for the Round 1 and Round 2 pairs.

Scoring of the model predictions
We used the following six metrics to score the predictions from the participants:

● Root-mean-square error (RMSE): square root of the average squared difference

between the predicted pKd and measured pKd, to score continuous activity predictions.

● Pearson correlation: Pearson correlation coefficient between the predicted and

measured pKd’s, which quantifies the linear relationship between the activity values.

● Spearman correlation: Spearman's rank correlation coefficient between the predicted

and measured pKd’s, which quantifies the ability to rank pairs in correct order.

● Concordance index (CI)30: probability that the predictions for two randomly drawn

compound-kinase pairs with different pKd values are in the correct order.

● F1 score: the harmonic mean of the precision and recall metrics. Interactions were

binarized by their pKd values into positive class (pKd > 7) and negative class (pKd ≤ 7).

● Average AUC: average area under ten receiver operating characteristic (ROC) curves

generated using  ten interaction threshold values from the pKd interval [6, 8] to binarize

pKd's into true class labels.

The submissions in Round 1 were scored across the six metrics but the teams remained

unranked. The Round 2 consisted of two sub-challenges, the top-performers of which were

determined based on RMSE and Spearman correlation, respectively. Spearman correlation

evaluated the predictions in terms of accuracy at ranking of the compound-kinase pairs
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according to the measured Kd values, whereas RMSE considers the absolute errors in the

quantitative binding affinity predictions. The tie-breaking metric for both Rounds was averaged

area under the curve (AUC) metric in the ROC analyses that evaluated the accuracy of the

models to classify the pKd values into active and inactive classes based on multiple Kd cutoffs.

Statistical evaluation of the predictions
Determination of the top-performers was made by calculation of a Bayes factor relative to the

top-ranked submission in each category. Briefly, we bootstrapped all submissions (10,000

iterations of sampling with replacement), and calculated RMSE and Spearman correlation to the

test dataset to generate a distribution of scores for each submission. A Bayes factor was then

calculated using the challengescoring R package (https://github.com/sage-

bionetworks/challengescoring) for each submission relative to the top submission in each

subchallenge. Submissions with a Bayes factor ≤ 3 relative to the top submission were

considered to be tied as top-performers. Tie breaking for both subchallenges was performed by

identifying submission with the highest absolute average AUC.

To create a distribution of random predictions, we randomly shuffled the 430/394 Kd values

across the set of 430/394 compound-kinase pairs in the Round 1/Round 2 datasets, and

repeated the permutation procedure 10,000 times. Then we compared the actual Round

1/Round 2 prediction scores to Spearman and RMSE calculated from the permuted Kd data. We

defined a prediction as better than random if its score was higher than the maximum of the

10,000 random predictions (empirical P = 0.0, permutation test).

To determine the maximum possible performance practically achievable by any computational

models, we utilized replicate Kd measurements from distinct studies that applied a similar

biochemical assay protocol. We used the DrugTargetCommons to retrieve 863 and 835

replicated Kd values for kinases or compounds that overlapped with the Round 1 and 2 datasets,

respectively. These data originated from two comprehensive screening studies4,5. To better

represent the distribution of pKd values in the test data, we subset the DTC data to contain 35%

(Round 1) and 25% (Round 2) pKd=5 values, approximately matching the proportion of pKd = 5

values in R1 and R2 test sets. For Round 1, we used 317 replicated Kds, including 111 randomly

selected pairs where pKd = 5. For Round 2, we used 416 replicated Kds, including 104 randomly

selected pairs where pKd = 5. We randomly sampled the replicate measurements of these

compound-kinase pairs (with replacement), calculated the Spearman correlation and RMSE
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between the pKd’s of the two studies for each 430 and 394 sub-sampled sets for Round 1 and

2, respectively, and repeated this procedure for a total of 10,000 samplings.

The baseline prediction model
We used a recently-published and experimentally-validated kernel regression framework as a

baseline model for compound-kinase binding affinity prediction16. Our training dataset consisted

of 44,186 pKd values (between 1968 compounds and 423 human kinases) extracted from DTC.

Median was taken if multiple pKd measurements were available for the same compound-kinase

pair. We constructed protein kinase kernel using normalized Smith-Waterman alignment scores

between full amino acid sequences, and four Tanimoto compound kernels based on the following

fingerprints implemented in rcdk R package31: (i) 881-bit fingerprint defined by PubChem

(pubchem), (ii) path-based 1024-bit fingerprint (standard), (iii) 1024-bit fingerprint based on the

shortest paths between atoms taking into account ring systems and charges (shortestpath), and

(iv) extended connectivity 1024-bit fingerprint with a maximum diameter set to 6 (ECFP6; circular).

We used CGKronRLS as a learning algorithm32 (implementation available at

https://github.com/aatapa/RLScore). We conducted a nested cross-validation in order to evaluate

the generalisation performance of CGKronRLS with each pair of kinase and compound kernels

as well as to tune the regularisation hyperparameter of the model. In particular, since the majority

of the compounds from the Challenge test datasets had no bioactivity data available in the public

domain, we implemented a nested leave-compound-out cross-validation to resemble the setting

of the Challenge as closely as possible. The model comprising of protein kernel coupled with

compound kernel built upon path-based fingerprint (standard) achieved the highest predictive

performance on the training dataset (as measured by RMSE), and therefore it was used as a

baseline model for compound-kinase binding affinity prediction in both Challenge Rounds.

Top-performing models
Supplementary write ups provide details of all qualified models submitted to the Challenge

(http://www.doi.org/10.7303/syn21445941.1). The key components of the top-performing models

are listed in Table 1 and summarized below.

Team Q.E.D model

To enable a fine-grained discrimination of binding affinities between similar targets (e.g., kinase

family members), the team Q.E.D explicitly introduced similarity matrices of compounds and

targets as input features into their regression model. The regression model was implemented as
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an ensemble version (uniformly averaged predictor) of 440 CGKronRLS regressors32,33, but with

different choices of regularization strengths [0.1, 0.5, 1.0, 1.5, 2.0], training epochs [400, 410,

…, 500], and similarity matrices: the protein similarity matrix was derived based on the

normalized striped Smith-Waterman alignment scores34 between full protein sequences

(https://github.com/mengyao/Complete-Striped-Smith-Waterman-Library). Eight different

alternatives of compound similarity matrices were computed using both Tanimoto and Dice

similarity metrics for different variants of 1024-bit Morgan fingerprints35(‘radius’ [2, 3] and

‘useChirality’  [True, False], implementation available at https://github.com/rdkit/rdkit). Unlike the

baseline method, which used only the available pKd values from DTC for training, the team

Q.E.D model extracted 16945 pKd, 53894 pKi and 3301 pEC50 values from DTC. After merging

the same compound-kinase pairs from different studies by computing their medians, 60462

affinity values between 13608 compounds and 527 kinases were used as the training data.

Team DMIS_DK model

Team DMIS_DK built a multi-task Graph Convolutional Network (GCN) model based on 953521

bioactivity values between 474875 compounds and 1474 proteins extracted from DTC and

BindingDB. Three types of bioactivities were considered, that is, pKd, pKi, and pIC50. Median

was computed if multiple bioactivities were present for the same compound-protein pair. Multi-

task GCN model was designed to take compound SMILES strings as an input, which were then

converted to molecular graphs using RDKit python library (http://www.rdkit.org). Each node (i.e.

atom) in a molecular graph was represented by a 78-dimensional feature vector, including the

information of atom symbol, implicit valence, aromaticity, number of bonded neighbors in the

graph, and hydrogen count. No protein descriptors were utilized. The final model was an

ensemble of four multi-task GCN architectures described in the Supplementary writeups

(http://www.doi.org/10.7303/syn21445941.1). For the Challenge submission, the binding affinity

predictions from the last K epochs were averaged, and then the average was taken over the 12

multi-task GCN models (four different architectures with three different weight initializations).

Hyper-parameters of the multi-task GCN models were selected based on the performance on a

hold-out set extracted from the training data. The GCN models were implemented using

PyTorch Geometric (PyG) library36.

Team AI Winter is Coming model

Team AI Winter is Coming built their prediction model using Gradient Boosted Decision Trees

(GBDT) implemented in XGBoost algorithm37. Training dataset included 600000 pKd, pKi, pIC50,
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and pEC50 values extracted from DTC and ChEMBL (version 25), considering only compound-

protein pairs with ChEMBL confidence score of 6 or greater for ‘binding’ or ‘functional’ human

kinase protein assays. For a given protein target, replicate compounds with different bioactivities

in a given assay (differences larger than one unit on a log scale) were excluded. For similar

replicate measurements, a single representative assay value was selected for inclusion in the

training dataset. Each compound was characterized by a 16000-dimensional feature vector

being a concatenation of four ECFP fingerprints (as implemented in RDKit) with a length set to

of 5, 7, 9, and 11. No protein descriptors were used in the XGBoost algorithm37. A separate

model for each protein target was trained using nested cross-validation (CV), where inner loops

were used to perform hyperparameter optimisation and recursive feature elimination. The final

binding affinity prediction was calculated as an average of the predictions from the cross-

validated models based on five outer CV loops.

Mean ensemble model construction
Ensemble models were generated by combining the best-scoring Round 2 predictions from each

team. We iteratively combined models starting from the highest scoring Round 2 prediction (e.g.

ensemble #1 - highest scoring prediction, ensemble #2 - 2 highest scoring, ensemble #3 - 3

highest scoring, and so on) for all 54 Round 2 submissions. Three types of ensembles were

created using arithmetic mean, median, and rank-weighted summarization approaches. The

rank-weighted ensemble was calculated by multiplying each set of predictions by the total

number of submissions plus 1 minus the rank of the prediction file, summing these weighted

predictions, and then dividing by the sum of the multiplication factors. The 54 ensemble

predictions for each of the 3 summary metrics were bootstrapped and Bayes factors were

calculated as previously described to determine which models were substantially different than

the top ranked submission.

Estimating the expected inhibition levels
The KINOMEscan assay protocol utilized for both the single-dose and dose-response assays is

based on competitive binding assays, where the maximum compound concentration tested was

1 µM in both of the assays. For a given compound-kinase pair, the Kd values calculated from the

dose-response assay were then used to estimate the expected single-dose %inhibition level (at 1

µM of compound) using the conventional ligand occupancy formula:

Ligand occupancy(%) =
Maximum ligand concentration (M)

Maximum ligand concentration (M)+  Measured ௗܭ (M)
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Here, the maximum ligand concentration is 10-6 M in the kinase assay. Therefore, a measured pKd

= 3 (i.e. Kd =10-3 M) results in the expected inhibition of 0%, pKd = 4 and 5 in 1% and 10% expected

inhibitions, respectively, and pKd = 9 (i.e. Kd =10-9 M) results in expected inhibition of 100%.

Activity classification analyses
The standard confusion matrix was constructed using the measured pKd values to define the true

positive and true negative classes for the 394 pairs in Round2, using either pKd > 6 and pKd > 7

for indicating true positive activity. The predicted positive and negative classes for the pairs were

defined based on either the single-dose activity measurement, using inhibition cut-off of 80%,6,15,17

or the model-predicted pKd values, using the same activity thresholds as with the measured pKd

values (i.e., either pKd = 6 or pKd = 7). Positive predictive value (PPV) and false discovery rate

(FDR) were calculated as the classification performance scores. The lower threshold of measured

pKd = 6 was used in the classification evaluations to have more balanced true positive and

negative classes. To carry out a more systematic analysis of the model prediction accuracies, the

394 pairs in Round 2 were ranked both using the model-predicted pKd values and the measured

single-dose %inhibition values, and then these rankings were compared against the ground-truth

activity classification based on the dose-response measurements (using again either pKd > 6 and

pKd > 7 for indicating the true positive activity). The results were visualized using both receiver

operating characteristic (ROC) and precision-recall (PR) curves, implemented in the pROC and

pRROC R-packages, respectively38,39. The area under the ROC and PR curves was calculated as

summary classification performance.

Data and code availability
The Challenge test data will be made available in DTC (https://drugtargetcommons.fimm.fi/). The

Docker containers of the best-performing teams are available on Synapse project

(www.doi.org/10.7303/syn15667962). The codes for reproducing the results and figures are

available at GitHub (https://github.com/Sage-Bionetworks/IDG-DREAM-Challenge-Analysis/).

Key R-packages used beyond those mentioned elsewhere in Methods include tidyverse40 and the

Synapse Python Client (https://github.com/Sage-Bionetworks/synapsePythonClient); all the

packages used in the work and their versions can be found in the renv lockfile in the above GitHub

repository.
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