

1 **Title**

2 Drumming motor sequence training induces myelin remodelling in Huntington's
3 disease: a longitudinal diffusion MRI and quantitative magnetization transfer study

4

5 **Running title**

6 Myelin remodelling in Huntington's disease

7

8 **Key words**

9 Huntington's disease, drumming training, white matter, myelin, diffusion MRI

10

11 **Authors**

12 Chiara Casella^{1*}, Jose Bourbon-Teles^{1*}, Sonya Bells², Elizabeth Coulthard³, Anne
13 Rosser^{4,6}, Derek Jones^{1,5}, Claudia Metzler-Baddeley¹

14 *These authors share first authorship

15

16 **Affiliations**

17 ¹ Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology,
18 Cardiff University, Maindy Road, Cardiff, CF 24 4HQ, UK ² The Hospital for Sick
19 Children, Neurosciences and Mental Health, Toronto, M5G 1X8, Canada; ³ Clinical
20 Neurosciences, University of Bristol, Bristol, BS10 5NB, UK, ⁴ School of Biosciences,

21 Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK. 5

22 Mary MacKillop Institute for Health Research, Australian Catholic University,

23 Melbourne, Victoria 3065, Australia.⁶ Department of Neurology and Psychological

24 Medicine, Hayden Ellis Building, Maindy Rd, CF24 4HQ

25

26 **Corresponding author**

27 Chiara Casella, CUBRIC, Maindy Road, Cardiff CF24 4 HQ, CasellaC@cardiff.ac.uk.

28

29 **Declarations**

30 **Ethics approval and consent to participate**

31 The study was approved by the local National Health Service (NHS) Research Ethics

32 Committee (Wales REC 1 13/WA/0326) and all participants provided written informed

33 consent.

34

35 **Availability of data and materials**

36 The datasets analysed during the current study are available from the corresponding

37 author on reasonable request.

38

39 **Competing interests**

40 The authors declare that they have no competing interests.

41

42 **Authors' contributions**

43 CMB designed the study, obtained the funding which made the study possible; helped
44 with the set-up and completion of the study; contributed to the interpretation of results.
45 JBT was responsible for data collection, helped with MRI data processing, carried out
46 tractography of the tracts investigated, and helped with scoring the drumming
47 assessment. SB helped with MRI data processing. CC processed some of the data,
48 performed statistical analysis on the data, interpreted results and wrote the paper.
49 GDP helped with the processing pipeline of the diffusion data. DKJ helped with the
50 interpretation of results. AR and EC helped with patients' recruitment and undertook
51 UHDRS assessments.

52

53 **Funding & Acknowledgements**

54 The present research was funded by a Wellcome Trust Institutional Strategic Support
55 Fund Award (ref:506408) to CMB, AR, and DKJ and a Wellcome Trust PhD
56 studentship to CC (ref: 204005/Z/16/Z); DKJ is supported by a New Investigator
57 Award from the Wellcome Trust (096646/Z/11/Z).

58

59 We would like to thank Candace Ferman and Louise Gethin for collating the patients'
60 clinical details and Jilu Mole for assistance with data analysis.

61

62

63 **List of abbreviations**

64 MRI: magnetic resonance imaging

65 DTI: diffusion tensor imaging

66 DT MRI: diffusion tensor magnetic resonance imaging

67 FA: fractional anisotropy

68 FR: restricted fraction

69 RD: radial diffusivity

70 MPF: macromolecular proton fraction

71 qMT: quantitative magnetization transfer

72 CHARMED: Composite Hindered and Restricted Model of Diffusion

73 WM: white matter

74 GM: grey matter

75 HD: Huntington's disease

76 CC: corpus callosum

77 SMA: supplementary motor area

78 UHDRS: Unified Huntington's disease rating scale

79 PCA: principal component analysis

80 TMS: total motor score

81 FAS: functional assessment score
82 MT: magnetization transfer
83 EPI: echo planar imaging
84 fODF: fiber orientation density function
85 ROI: region of interest
86 SD: standard deviation
87 ANOVA: analysis of variance
88 CI: confidence intervals
89 FDR: false discovery rate
90 TBSS: tract-based spatial statistics
91 FWE: family-wise error
92

93 **Abstract**

94 **Background:** Huntington's disease (HD) is a neurodegenerative disorder leading to
95 debilitating cognitive and motor symptoms. Impaired myelination may contribute to HD
96 pathogenesis. We assessed baseline differences in apparent white matter (WM)
97 myelination between HD patients and controls, and tested whether drumming training
98 stimulates myelin remodelling in HD. We also examined whether microstructural
99 changes were related to changes in motor and cognitive function. **Methods:**
100 Participants undertook two months of drumming exercises. Different aspects of

101 working memory and executive function were assessed before and after the training.
102 For comparability with previous studies, we assessed training-related changes in
103 diffusion tensor magnetic resonance imaging (DT-MRI)-based metrics of fractional
104 anisotropy (FA) and radial diffusivity (RD). Moving beyond DT-MRI, we also tested
105 changes in the restricted diffusion signal fraction (Fr) from the composite hindered and
106 restricted model of diffusion (CHARMED) and in the macromolecular proton fraction
107 (MPF) from quantitative magnetization transfer (qMT). We predicted the biggest
108 training effects in MPF, because of its greater sensitivity to myelin, compared to
109 diffusion measures. Changes were studied in WM pathways linking the putamen and
110 the supplementary motor area (SMA-Putamen), and within three segments of the
111 corpus callosum (CC1, CCII, CCIII). Tracts were reconstructed using deterministic
112 tractography. Baseline MPF differences between patients and controls were also
113 assessed with tract-based spatial statistics (TBSS), to inspect HD-associated changes
114 in apparent myelination. **Results:** A reduction in baseline MPF was present in the mid
115 section of the CC in HD group compared to controls. No significant training-associated
116 changes were detected in FA, RD or Fr. However, after the drumming intervention, we
117 detected increases in MPF in HD patients relative to healthy controls in the CCII, CCIII,
118 and the right SMA-putamen. Furthermore patients improved their drumming and their
119 executive function performance relative to controls increased after training. These
120 behavioural changes did not correlate with the microstructural changes, suggesting
121 that these processes follow different time courses. **Conclusions:** Drumming training
122 improves motor and executive performance in HD and is associated with increases in
123 apparent WM myelin. Tailored behavioural stimulation may lead to neural benefits in
124 early HD that could be exploited for delaying disease progression.

125 **Background**

126 Huntington's disease (HD) is a genetic, neurodegenerative disease caused by
127 an expansion of the CAG repeat within the coding region of the *huntingtin* gene,
128 leading to debilitating cognitive and motor symptoms. Although HD pathology is tightly
129 associated with degeneration of striatal grey matter (GM) (Weaver et al., 2009), WM
130 changes at the macro- and micro-structural level have recently been suggested to play
131 an important role in this disease (Bardile et al., 2018; Bartzokis et al., 2007; Beglinger
132 et al., 2007; Ciarmiello et al., 2006; Gregory et al., 2018; Paulsen et al., 2008; Reading
133 et al., 2005; Rosas et al., 2018; Wang & Yang, 2019), and can be detected even in
134 pre-symptomatic individuals, 15 years or more prior to the onset of motor symptoms
135 (Aylward et al., 2011; Ciarmiello et al., 2006; Tabrizi et al., 2009).

136 An increasing body of research suggests that WM alterations in HD are due to
137 changes in myelin-associated biological processes at the cellular and molecular level
138 (Gómez-Tortosa et al., 2001; Huang et al., 2015; Jin et al., 2015; Myers et al., 1991;
139 Simmons et al., 2007; Teo et al., 2016). Myelin is a multi-layered membrane sheath
140 wrapping axons and is produced by oligodendrocytes. Axon myelination is vital during
141 brain development and critical for healthy brain function, as it plays a fundamental role
142 in the efficiency and speed of action potential propagation (Martenson, 1992).

143 The 'Demyelination Hypothesis' of HD (Bartzokis et al., 2007) suggests that a
144 toxic effect of mutant huntingtin leads to myelin breakdown in HD. This could be due
145 to several factors: dysregulation of the temporal profile of myelination during the
146 postnatal period (Jin et al., 2015) or dysfunction in oligodendrocytes, leading to
147 impaired repair of demyelinated axons (Huang et al., 2015); alternatively, as
148 oligodendrocytes are the major iron-containing cells of the CNS, homeostatic

149 increases in these cells in the attempt to re-myelinate axons might lead to significant
150 increases in ferritin iron content, leading to toxicity and contributing to impairments in
151 myelination (Bourbon-Teles et al., 2017).

152 Currently, no disease-modifying treatment exists for HD. However,
153 environmental stimulation and behavioural interventions may have the potential to
154 delay disease onset (van Dellen et al., 2000; Yhnell et al., 2016). Interestingly, myelin
155 plasticity is thought to support the learning of new motor skills (McKenzie et al., 2014;
156 Sampaio-Baptista et al., 2013). Accordingly, recent evidence from animal and human
157 studies suggests that plastic changes in myelination may be implicated in early
158 adaptation and longer-term consolidation and improvement in motor tasks (Costa,
159 Cohen, & Nicolelis, 2004; Shmuelof & Krakauer, 2011; Steele, Bailey, Zatorre, &
160 Penhune, 2013; Yin et al., 2009).

161 In the present study, we assessed whether two months of drumming training
162 could trigger WM microstructure changes, and potentially myelin remodelling, in
163 individuals with HD. Based on reports of greater training-associated changes in
164 structural MRI metrics in patient populations than in healthy subjects (Caeyenberghs
165 et al., 2018), we hypothesised that these changes would be present to a higher degree
166 in patients than in healthy subjects.

167 The present drumming intervention was designed to exercise cognitive and
168 motor functions including sequence and reversal learning, response speed and multi-
169 tasking (Metzler-Baddeley et al., 2014), all of which rely on healthy functioning of
170 cortico-basal ganglia loops and are known to be impaired in HD (Papoutsi et al., 2014).
171 In brief, the training involves practising drumming patterns in ascending order of

172 difficulty over a period of two months and was previously found to induce WM
173 microstructural changes in HD (Metzler-Baddeley et al. 2014).

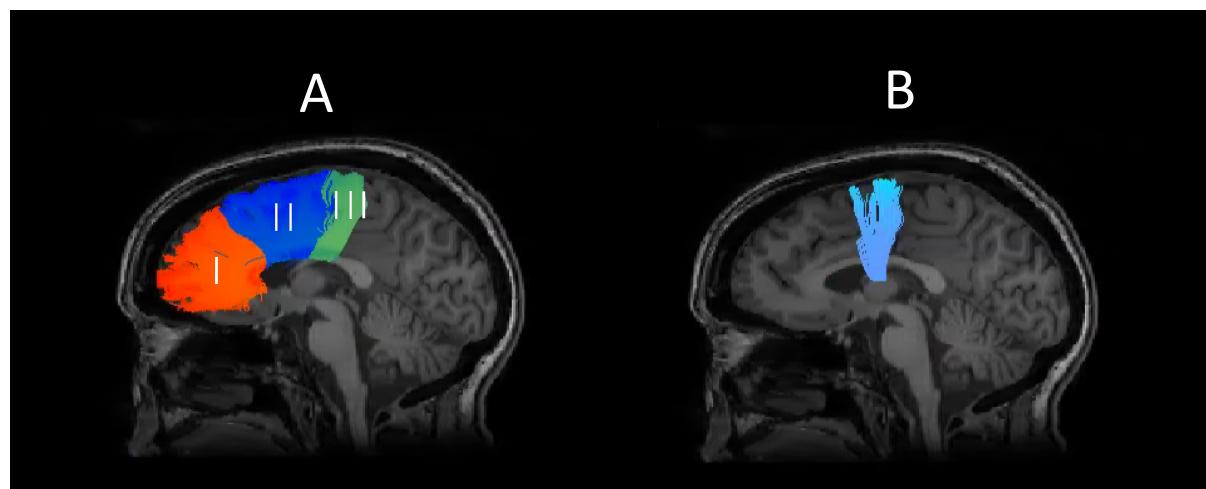
174 Previous studies investigating training-associated WM plasticity in the human
175 brain (Giacosa, Karpati, Foster, Metzler-Baddeley et al. 2014; Penhune, & Hyde, 2016;
176 Scholz, Klein, Behrens, & Johansen-Berg, 2009) have predominantly employed
177 indices from diffusion tensor magnetic resonance imaging (DT-MRI) (Pierpaoli &
178 Basser, 1996) such as fractional anisotropy (FA) and radial diffusivity (RD). However,
179 DT-MRI measures are not specific to WM microstructural properties and can be
180 modulated by various factors, including, but not limited to, fibre complexity and
181 organisation, as well as axon morphology and myelination (De Santis et al., 2014;
182 Wheeler-Kingshott & Cercignani, 2009). It is therefore difficult to interpret changes in
183 DTI indices in terms of changes in any biological properties of white matter.

184 Moving beyond DT-MRI, the present study explored changes in the
185 macromolecular proton fraction (MPF) from quantitative magnetization transfer (qMT)
186 (Sled, 2018) and the restricted diffusion signal fraction (Fr) from the composite
187 hindered and restricted model of diffusion (CHARMED) (Assaf & Basser, 2005), as
188 well as FA and RD from DT-MRI (Pierpaoli & Basser, 1996), for comparability with
189 previous training studies (Lövdén et al., 2010; Scholz et al., 2009; Zatorre, Fields, &
190 Johansen-Berg, 2012).

191 MPF identifies the ratio of the number of bound macromolecular protons to the
192 total water protons, and has been proposed as a proxy MRI marker of myelin (Serres
193 et al., 2009). Accordingly, this measure has been shown to reflect demyelination in
194 shiverer animals (Ou, Sun, Liang, Song, & Gochberg, 2009; Samsonov et al., 2012), to
195 be sensitive to de-myelination processes in multiple sclerosis patients (Levesque et

196 al., 2010) and to reflect myelin content of WM in post-mortem studies of multiple
197 sclerosis brains (Schmierer et al., 2007). Fr, on the other hand, represents the fraction
198 of signal that is restricted, which is presumed to come predominantly from within
199 axons, and therefore provides a proxy measure of axonal density (Barazany, Basser,
200 & Assaf, 2009).

201 Based on evidence suggesting an effect of motor learning on myelin plasticity
202 (Lakhani et al., 2016;), we were especially interested in assessing training-associated
203 changes in MPF, because of its tight association with WM myelin content (Levesque
204 et al., 2010; Ou et al., 2009; Schmierer et al., 2007; Serres et al., 2009). Therefore,
205 we expected changes following training to be more marked in MPF, as compared to
206 the other non-myelin sensitive metrics assessed in this study.


207 Additionally, while the plastic regulation of myelination by neural activity and
208 experience has gained increased recognition and has been demonstrated in recent
209 studies (Hofstetter, Tavor, Moryosef, & Assaf, 2013; Lakhani et al., 2016; Sampaio-
210 Baptista et al., 2013), the role of myelin remodelling in shaping behavioural changes
211 remains elusive. Therefore, we also investigated the relationship between training-
212 associated changes in MRI measures and changes in drumming performance and in
213 different aspects of cognitive/executive function. The latter was assessed with
214 standard neuropsychological paper and pencil tests before and after the training as
215 described in Metzler-Baddeley et al. (2014).

216 Because of the sensitivity of MPF to myelin content in WM, we were also
217 interested in using this measure to investigate baseline myelin differences between
218 HD patients and controls across the brain. Previous evidence has shown widespread
219 decreases in MPF in early-stage HD patients as compared to healthy controls

220 (Bourbon-Teles et al., 2019). Therefore, tract-based spatial statistics (TBSS) (Smith
221 et al., 2006) was used to investigate differences in MPF between HD subjects and
222 controls before training, across the whole brain, in an unbiased way.

223

224

225

226 **Figure 1. White matter pathway regions of interest.** Sagittal views of the
227 reconstructed WM pathways displayed on a T_1 -weighted image for one control
228 participant. (A) Segments I, II, and III of the CC (Hofer and Frahm, 2006), (B) SMA-
229 putamen pathway. Fibre directions are colour coded with green indicating directions
230 along the coronal, blue along the axial and red along the sagittal plane (Pajevic &
231 Pierpaoli, 1999).

232

233

234 **Materials and Methods**

235 **Participants**

236 The study was approved by the local National Health Service (NHS) Research Ethics
237 Committee (Wales REC 1 13/WA/0326) and all participants provided written informed

238 consent. All participants were drumming novices and none had taken part in our
239 previously-reported pilot study (Metzler-Baddeley et al., 2014). Fifteen HD patients,
240 most of which were at early disease stages (see Table 1), as assessed by their
241 performance in the United Huntington's Disease Rating Scale (UHDRS), were
242 recruited from HD clinics in Cardiff and Bristol. Genetic testing confirmed the presence
243 of the mutant huntingtin allele. Table 1 summarizes the patients' demographic and
244 some background clinical characteristics, i.e. their CAG repeat length, their UHDRS
245 Total Motor Score (TMS) and UHDRS Functional Assessment Score (FAS), and
246 information about their medication.

247 Thirteen age, sex, and education matched healthy controls were recruited from
248 the School of Psychology community panel at Cardiff University and from patients'
249 spouses, carers or family members. Participants were eligible to take part in the study
250 if they had no history of head injury, stroke or cerebral haemorrhages. Control
251 participants were excluded if they had a history of neurological or psychiatric
252 conditions and patients if they had a history of any other neurological conditions. All
253 patients had to be on stable medication for a minimum of four weeks prior to the study
254 and during the study. Participants also had to be eligible for MRI scanning i.e. to not
255 present contraindications such as pacemakers, metal clips, stents or significant chorea
256 which would have prevented them from lying still in the scanner. Two patients were
257 not MRI compatible, four patients withdrew during the study and one patient's MRI
258 data had to be excluded due to excessive motion. In total, MRI data could be analysed
259 for eight of the patients. Out of the thirteen control participants, one participant had to
260 be excluded due to an incidental MRI finding and two participants dropped out of the
261 study. One participant turned out not eligible for MRI. Thus, in total MRI data from nine

262 controls were available for analyses. Table 2 summarizes information about
263 demographic variables and performance in the Montreal Cognitive Assessment
264 (MoCA) (Nasreddine et al., 2005) and in the revised National Adult Reading Test
265 (NART-R) (Nelson, 1991) for those patients and controls whose MRI data were
266 included in the analyses. Both groups did not differ significantly in age or the MoCA
267 score. However, controls were on average slightly older and performed better on the
268 MoCA. Controls also had a significantly higher NART-IQ than patients.

269

270

271 **Table 1.** Demographics and background clinical information of the patients for which
272 the MRI data could be analysed.

Patient	Age	Sex	Length of CAG repeats	TMS	FAS	Medications
HD1	22	M	51	17	23	Citalopram 30 mg
HD2	47	M	46	69	18	Sertraline 50 mg
HD3	62	F	41	4	25	Novate ointments, Naproxen
HD4	50	M	40	0	25	Nil
HD5	68	F	43	40	17	Mirtazapine 30 mg
HD6	58	M	43	0	25	Atorvastatin 20 mg
HD7	30	F	42	0	25	Nil
HD8	51	M	43	20	23	Co-codamol 500 mg, Brufen 400 mg
Mean	48.5		43.625	18.75	22.625	
SD	15.62		3.46	24.65	3.29	

273

274 Abbreviations: CAG = cytosine-adenine-guanine, F = Female, M = Male, TMS = Total
275 Motor Score out of 124 (the higher the scores the more impaired the performance).
276 FAS = Functional Assessment Score out of 25 (the higher the scores the better the
277 performance). HD = Huntington's disease, SD = Standard Deviation.

278

279 **Table 2. Demographics and general cognitive profile of patients and controls. Both**
280 **groups were matched for age, sex and years of education but the patient group**
281 **performed less well than the control group in the MoCA.**

Mean (SD)	Patients (n = 8)	Controls (n = 9)	t-statistic (p-value)
Age	48.5 (15.62)	52.6 (14.56)	t(15) = 0.554 (0.59)
NART-IQ	106.3 (13.13)	121.22 (4.32)	t(15) = 3.212 (0.006)
MoCa	23 (5.6)	27.67 (1)	t(15) = 2.463 (0.26)

282

283 Abbreviations: MoCA = Montreal Cognitive Assessment score out of 30; NART-IQ =
284 verbal IQ estimate based on the National Adult Reading Test.

285

286 **Training intervention: Drumming-based rhythm exercises**

287 The same rhythm exercise and drumming training as described in Metzler-
288 Baddeley et al. (2014) was applied. Patients and controls were provided with twenty-
289 two 15 min training sessions on CDs, a pair of bongo drums and a drumming diary
290 and could practice the drumming exercise at home. Each training session introduced
291 a drumming pattern, and trainees had to drum along with the instructor and to
292 reproduce as accurately as possible the timing and temporal speed of each bongo
293 beat. The complexity and speed of the drumming patterns increased gradually over
294 the sessions. Participants were asked to train for 15 min per day, 5 times per week,
295 for 2 months (40 sessions in total), and to record each training session in the diary.
296 Compliance was also monitored with regular weekly phone calls. Whenever possible,
297 carers and/or spouses were also involved to support and encourage participants with
298 the training. Participants were instructed to repeat each session at least twice but
299 could progress through the training at their own pace and repeat sessions more often

300 if they felt it necessary. Control participants started with Session 3 since the first two
301 exercises were designed for patients.

302

303 ***Drumming assessment***

304 Any progress in drumming ability was assessed by digitally recording
305 participants' drumming performance for three patterns of ascending levels of difficulty
306 (easy, medium and hard), which were not part of the training sessions, at baseline and
307 after the training. Each recording was judged by an independent rater, blind to group
308 and time, according to an adopted version of the Trinity College London marking
309 criteria for percussion (2016) (www.trinitycollege.com). This comprised categories of
310 rhythm, synchronization with backing track, accuracy, hand control, use of available
311 percussion, and general confidence and style. Drumming performance was assessed
312 for each category on a five point rating scale from poor (1) to excellent (5) with a
313 maximal possible score of 30.

314

315 ***Cognitive assessments***

316 Different aspects of cognition and executive function were assessed with
317 standard neuropsychological paper and pencil tests before and after the training as
318 described in Metzler-Baddeley et al. (2014). Parallel versions of all tests matched for
319 difficulty were used and counterbalanced across participants and time of
320 assessments. Multi-tasking was assessed with a dual task requiring simultaneous box
321 crossing and digit sequences repetition (Baddeley, 1996). Attention switching was
322 assessed with the trails test (VT) requiring the verbal generation of letter and digit

323 sequences in alternate order relative to a baseline condition of generating letter or digit
324 sequences only (Baddeley, 1996). Distractor suppression was tested with the Stroop
325 task involving the naming of incongruent ink colours of colour words (Trenerry et al.,
326 1989). Verbal and category fluency were tested using the letter cues “F”, “A”, “S” and
327 “M”, “C”, “R” as well as the categories of “animals” and “boys’ names” and
328 “supermarket items” and “girls’ names” respectively (Baldo, Shimamura, Delis,
329 Kramer, & Kaplan, 2001). In total, we assessed 7 outcome variables, and percentage
330 change scores in performance were computed for each of these variables (Table 3).

331

332 ***MRI data acquisition***

333 MRI data were acquired on a 3 Tesla General Electric HDx MRI system (GE Medical
334 Systems, Milwaukee) using an eight channel receive-only head RF coil at the Cardiff
335 University Brain Research Imaging Centre (CUBRIC). The MRI protocol comprised
336 the following images sequences: high-resolution T_1 -weighted, diffusion-weighted and
337 quantitative magnetization transfer. The acquisition of the T_1 -weighted anatomical
338 image (FSPGR) was based on the following parameters: 256 x 256 acquisition matrix,
339 TR = 7.8 ms, TE = 2.9 ms, flip angle = 20, 172 slices, 1mm slice thickness, FOV =
340 23cm. Diffusion data were acquired employing a spin-echo echo- planar sequence
341 with diffusion encoded along 60 isotropically-distributed orientations according to an
342 optimized gradient vector scheme (Jones et al., 1999) and six non-diffusion weighted
343 scans (96 x 96 acquisition matrix, TR/TE = 87ms, b-value = 1200 s/mm², 60 slices,
344 2.4 mm slice thickness, spatial resolution 1.8 x 1.8 x 2.4 mm). Diffusion data
345 acquisition was peripherally gated to the cardiac cycle with a total acquisition time of
346 ~30 min depending on the heart rate.

347 **Table 3.** Cognitive outcome variables assessed in this study. Tests were carried out
348 before and after the training, and a percentage change score was computed for each
349 variable.

Outcome variable	Cognitive Test	Brief Description
Number of correct digits recalled under single task condition	Dual task requiring simultaneous box crossing and digit sequences repetition (Baddeley, 1996)	Correct number of recalled digits in a standard digit span test.
Number of correct digits recalled under dual task conditions	Dual task requiring simultaneous box crossing and digit sequences repetition (Baddeley, 1996)	Correct number of recalled digits in the dual condition, which combines box-crossing and digit span.
Total number of boxes identified under dual task condition	Dual task requiring simultaneous box crossing and digit sequences repetition (Baddeley, 1996)	Number of boxes identified in the dual condition, which combines box-crossing and digit span.
Stroop interference score	Stroop test (Trenerry et al., 1989)	Calculated by subtracting the number of errors from the total number of items presented in the test.
Trail test switching	Trials test (Baddeley, 1996)	Performance accuracy: reflects the ability of moving flexibly from one set of rules to another in response to changing task requirements.
Verbal fluency	Verbal and category fluency test (Delis et al., 2001)	Number of generated words starting with the following letters: "F", "A", "S" and "M", "C", "R"
Category fluency	Verbal and category fluency test (Delis et al., 2001)	Number of generated words belonging to the following categories: "animals" and "boys' names" and "supermarket items" and "girls' names".

350

351 In addition, Fr maps were acquired using the CHARMED protocol (Assaf and
352 Basser, 2005) (slice thickness: 2.4mm, FE: 126 ms, TR: 17,000 ms; 45 gradient
353 orientations distributed on 8 shells; maximum b-value: 8700s/mm²; FOV: 230 mm x
354 230 mm, acquisition matrix: 96 x 96).

355 To obtain MPF maps, an optimized 3D MT-weighted fast spoiled gradient
356 recalled-echo (SPGR) sequence (Cercignani and Alexander, 2006) was used with the
357 following parameters: TR/TE = 25.82/2.18 ms; Gaussian MT pulses, duration t = 14.6

358 ms; acquisition matrix = 96x96x60; BW=±244Hz. The following off-resonance
359 irradiation frequencies (Θ) and their corresponding saturation pulse amplitude (Δ SAT)
360 for the 11 Magnetization transfer (MT) weighted images were optimized using Cramer-
361 Rao lower bound optimization (Cercignani & Alexander, 2006): D = [1000 Hz, 1000
362 Hz, 12062 Hz, 47185 Hz, 56363 Hz, 2751 Hz, 1000 Hz, 1000 Hz, 2768 Hz, 2791 Hz,
363 2887 Hz] and their corresponding qSAT = [332°, 333°, 628°, 628°, 332°, 628°, 628°,
364 628°, 628°, 628°, 628°]. Longitudinal relaxation rate of the system was estimated using
365 3D SPGRs (TR = 6.85 ms, TE = 1.2 ms, FOV and resolution is the same as the MT
366 sequence) with three different flip angles (theta = 1 °, 7 °, 3 °). B_0 maps consisted of
367 two 3D spoiled, gradient recalled acquisitions (SPGR), which were collected with
368 different echo-times (TE = 9ms and 7ms respectively; TR= 20ms; matrix=128x128;
369 FOV= 220 mm; slice thickness 3mm) (Jezzard and Balaban, 1995).

370

371 ***MRI data processing***

372 The diffusion-weighted data were corrected for distortions induced by the
373 diffusion-weighted gradients, artifacts due to head motion and due to echo planar
374 imaging (EPI) induced geometrical distortions by registering each image volume to the
375 T₁-weighted anatomical images (Irfanoglu, Walker, Sarlls, Marenco, & Pierpaoli,
376 2012), with appropriate reorientation of the encoding vectors (Alexander Leemans &
377 Jones, 2009), all done in ExploreDTI (Version 4.8.3) (Leemans, Jeurissen, Sijbers, &
378 Jones, 2009). A two-compartment model was then fitted to derive maps of FA and RD
379 in each voxel (Metzler-Baddeley, O'Sullivan, Bells, Pasternak, & Jones, 2012).
380 CHARMED data were corrected for motion and distortion artefacts according to the
381 extrapolation method of Ben-Amitay, Jones, and Assaf (2012). The number of distinct

382 fiber populations (1, 2, or 3) in each voxel was obtained using a model selection
383 approach (De Santis et al., 2014) and Fr was calculated per voxel with an in-house
384 software (De Santis et al., 2014) coded in MATLAB (The MathWorks, Natick, MA)

385 MT-weighted SPGR volumes for each participant were co-registered to the MT-
386 volume with the most contrast using an affine (12 degrees of freedom, mutual
387 information) registration to correct for inter-scan motion using Elastix (Klein, Staring,
388 Murphy, Viergever, & Pluim, 2010). The 11 MT-weighted SPGR images and T₁ map
389 were modelled by the two pool Ramani's pulsed MT approximation (Henkelman et al.,
390 1993; Ramani et al., 2002), which included corrections for amplitude of radio-
391 frequency (B₀ and B₁) field inhomogeneities. This approximation provided MPF maps,
392 which were nonlinearly warped to the T₁-weighted imaging using the MT-volume with
393 the most contrast as a reference using Elastix (normalized mutual information cost
394 function) (add REF).

395

396 ***Deterministic Tractography***

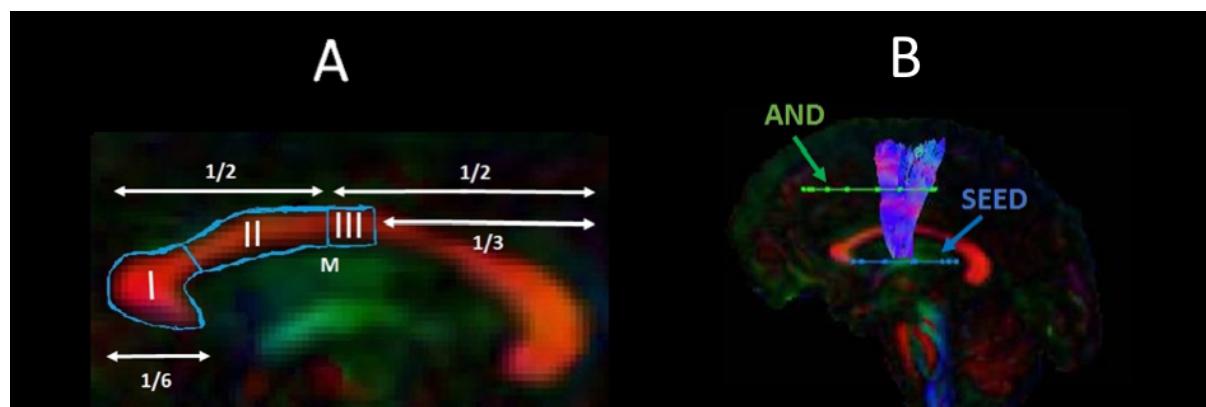
397 Training-related changes in FA, RD, Fr, and MPF were quantified using a
398 tractography approach to localize measurements to specific WM pathways, i.e. those
399 interconnecting the putamen and the supplementary motor area bilaterally (SMA-
400 Putamen), and within three segments of the corpus callosum (CC1, CCII and CCIII)
401 (Hofer & Frahm, 2006) (Figure 1).

402 The SMA has efferent and afferent projections to the primary motor cortex and
403 is involved in movement execution, and previous evidence suggests that symptomatic
404 HD patients present altered DT-MRI metrics in the putamen-motor tracts (Poudel et

405 al., 2014). The anterior and anterior-mid sections of the corpus callosum contain fibres
406 connecting the motor, premotor and supplementary motor areas in each hemisphere
407 (Hofer & Frahm, 2006). Previous work has demonstrated a thinning of the corpus
408 callosum in post-mortem HD brains (Vonsattel & Difiglia, 1998), altered diffusion
409 tensor metrics in the corpus callosum of both pre-symptomatic and symptomatic HD
410 patients (Rosas et al., 2010; Phillips et al., 2013), and a correlation between these
411 metrics and performance on tests assessing motor function (Dumas et al., 2012).

412 Whole brain tractography was performed for each participant in their native
413 space using the damped Richardson-Lucy algorithm (Dell'acqua et al., 2010), which
414 allows the recovery of multiple fiber orientations within each voxel including those
415 affected by partial volume. The tracking algorithm estimated peaks in the fiber
416 orientation density function (fODF) by selecting seed points at the vertices of a 2×2
417 $\times 2$ mm grid superimposed over the image and propagated in 0.5-mm steps along
418 these axes re-estimating the fODF peaks at each new location (Jeurissen, Leemans,
419 Jones, Tournier, & Sijbers, 2011). Tracks were terminated if the fODF threshold fell
420 below 0.05 or the direction of pathways changed through an angle greater than 45°
421 between successive 0.5 mm steps. This procedure was then repeated by tracking in
422 the opposite direction from the initial seed-points.

423 Three-dimensional tractograms of the WM tracts of interest were extracted from
424 the whole-brain tractograms by applying way-point of interest gates (Catani et al.,
425 2002). ROIs were drawn manually by one operator (JBT) blind to the identity of each
426 dataset on color-coded fiber orientation maps in native space guided by the following
427 anatomical landmark protocols (Figure 2).


429 Corpus callosum

430 The reconstructions of the segments of the CC followed the protocol by Hofer
431 and Frahm (Hofer & Frahm, 2006) and are illustrated in Figure 2A. Firstly, the midline
432 of the CC located between the most anterior point of the genu and the most posterior
433 point of the splenium was identified and the CC was divided into an anterior and a
434 posterior half. CCI, the most anterior portion of the CC that maintains prefrontal
435 connections between both hemispheres, was reconstructed by placing a sagittal
436 SEED ROI of about 1/6 of the anterior half of the CC around the genu. CCII, the portion
437 that maintains connections between premotor and supplementary motor areas of both
438 hemispheres, was reconstructed by placing a sagittal way-point of interest gate
439 between the posterior edge of Segment I and the midline of the corpus CC. Segment
440 III, the portion that maintains connections between primary motor cortices of both
441 hemispheres, was reconstructed by placing a sagittal gate immediately after the
442 midline covering about 1/3 of the posterior half of the CC. Segment reconstructions
443 were visually inspected and if necessary gates were placed to exclude any streamlines
444 that were not consistent with the known anatomy of the CC.

445 SMA-putamen pathway

446 One axial way-point gate was placed around the putamen and one axial gate
447 around the supplementary motor cortex (Leh, Ptito, Chakravarty, & Strafella, 2007)
448 (Figure 2B). A way-point gate to exclude brain stem fibers was placed inferior to the
449 putamen.

450

451

452 **Figure 2. Sagittal views of the tractography protocols. (A) Segments I, II and III of**
453 **the corpus callosum (B) SMA - putamen pathway. Boolean logic OR waypoint regions**
454 **of interest gates are illustrated in blue; AND gates in green. M = Midline.**

455

456

457 **Statistical analyses**

458 Statistical analyses were carried out in R Statistical Software (Foundation for
459 Statistical Computing, Vienna, Austria).

460 Assessment of training effects on drumming performance

461 Improvements in drumming performance were analysed with repeated
462 measure analysis of variance (ANOVA) testing for the effects of group (HD, controls),
463 time of assessment (before and after the training) and group by time interaction
464 effects. Significant effects were further explored with *post-hoc* paired and independent
465 t-tests. The reliability of the *post-hoc* analyses was assessed with bootstrap analysis
466 based on 1000 samples and the 95% confidence interval (CI) of the mean difference
467 is provided for each significant comparison.

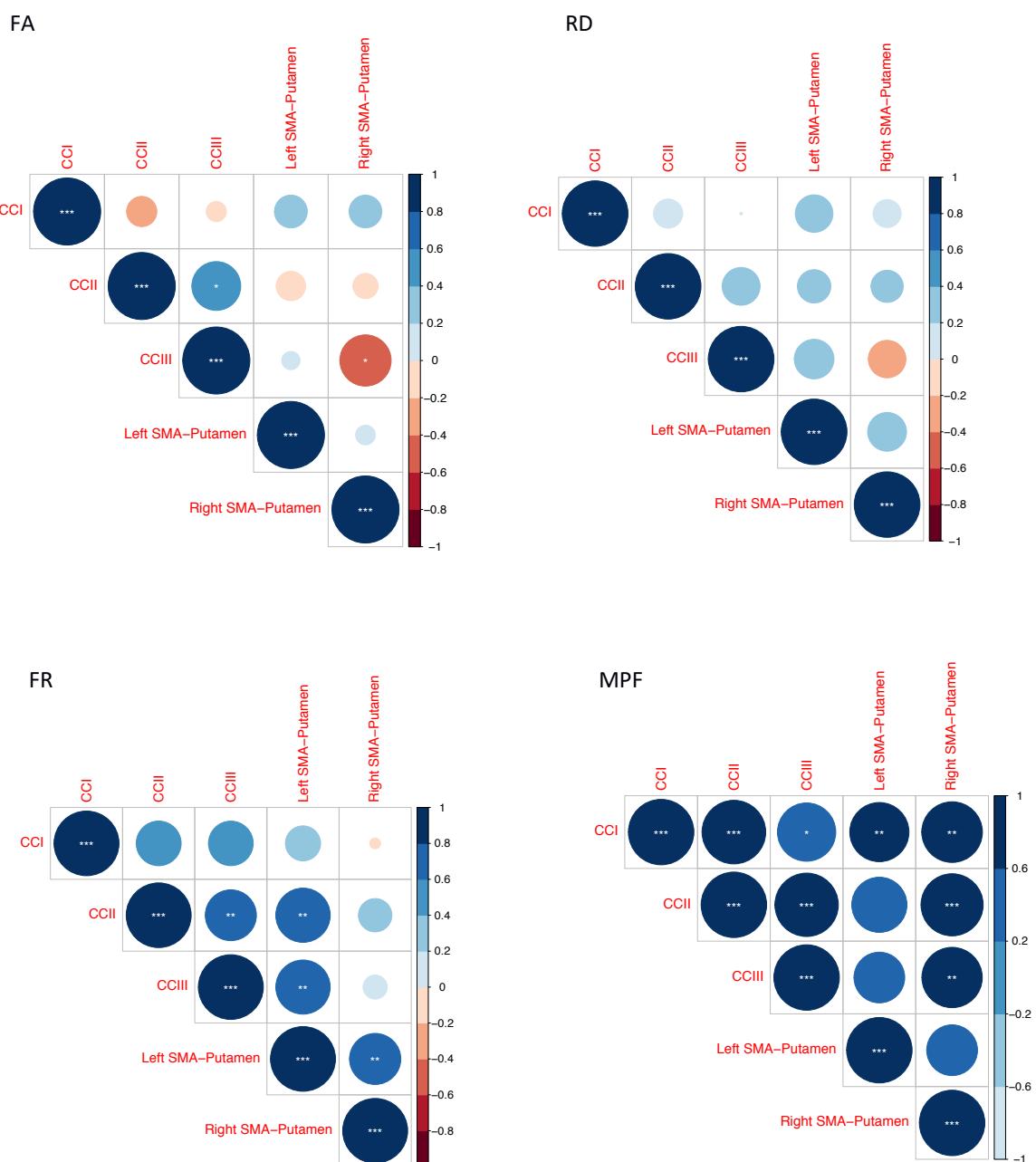
468 Assessment of group differences in the effect of training on cognitive performance

469 Performance measures in executive function tasks have been shown to share
470 underlying cognitive structures (Testa, Bennett, & Ponsford, 2012). Therefore, PCA
471 was employed to reduce the complexity of the cognitive data and hence the problem
472 of multiple comparisons as well as to increase experimental power. PCAs were run
473 on change scores for all participants across both groups. Because of the relatively
474 small sample size, we first confirmed with the Kaiser-Meyer-Olkin (KMO) test that our
475 data was suited for PCA. Subsequently, we followed guidelines to limit the number of
476 extracted components (Preacher & MacCallum, 2002; Winter, Dodou, & Wieringa,
477 2009), as follows: first, we employed the Kaiser criterion of including all components
478 with an eigenvalue greater than 1; second, we inspected the Cattell scree plot (Cattell,
479 1966) to identify the minimal number of components that accounted for most variability
480 in the data; third, we assessed each component's interpretability. A PCA procedure
481 with orthogonal Varimax rotation of the component matrix was used. Loadings that
482 exceeded a value of 0.5 were considered as significant.

483 Next, we assessed group differences in the component scores with permutation
484 analyses, to understand whether the training had differentially affected HD patients as
485 compared to controls. Significant group differences were tested using 5,000
486 permutations. Permutation testing relies only on minimal assumptions and can
487 therefore be applied when the assumptions of a parametric approach are untenable
488 such as in the case of small sample sizes. Multiple comparison correction was based
489 on a 5% false discovery rate (FDR) using the Benjamini-Hochberg procedure
490 (Benjamini & Hochberg, 1995).

491

492 Training effects on WM microstructure


493 Median measures of FA, RD, Fr and MPF were derived for each of the
494 reconstructed tracts in ExploreDTI. A percentage change score in these measures
495 between baseline and post-training was calculated in each tract (CC1, CCII, CCIII, left
496 and right SMA-Putamen).

497 Previous research has shown that variation in the microstructural properties of
498 WM may represent a global effect, rather than being specific to individual tracts, and
499 that WM measures are highly correlated across WM areas (Lövdén et al., 2010; Penke
500 et al., 2010; Wahl et al., 2010). Therefore, we inspected the correlation matrices for
501 each of the measures investigated and found that MPF values were highly correlated
502 across tracts, whereas this was not true for the other metrics (Figure 3).

503 Hence, as for the cognitive data, percentage change scores in MPF across the
504 different tracts were transformed with PCA in order to extract meaningful anatomical
505 properties. Because of the relatively small sample size for PCA, we followed guidelines
506 to limit the number of extracted components (Preacher & MacCallum, 2002; Winter,
507 Dodou, & Wieringa, 2009), as described above for the PCA of cognitive change
508 scores.

509 PC scores for each participant were used as dependent variables in a
510 permutation-based analysis using 5,000 permutations to assess group differences in
511 training associated changes in MPF. Finally, as post-hoc exploration, we tested
512 whether we could detect between-groups differences in MPF changes in the individual
513 tracts using 5000 permutations.

515

516

517

518 **Figure 3. Correlation matrices for the MRI metrics investigated across the**
 519 **different WM pathways.** Colour intensity and the size of the circles are proportional
 520 **to the strength of the correlation. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$. MPF values**
 521 **were highly correlated across tracts, whereas this was not true for the other metrics**

522 Training-associated changes in FA, Fr and RD were investigated with
523 permutation analyses separately for each tract. Significant group differences in these
524 measures were tested using 5,000 permutations. Multiple comparison correction was
525 based on a 5% FDR using the Benjamini-Hochberg procedure (Benjamini & Hochberg,
526 1995).

527 TBSS (Smith et al., 2006) was carried out to investigate baseline differences in
528 MPF voxelwise between HD subjects and healthy controls. First, a mean FA image
529 was created and thinned to generate a mean FA skeleton, thought to represent the
530 centres of all WM tracts common to the sample investigated. Subsequently, all
531 subjects' warped MPF data were merged into a 4D file, and this was projected onto
532 the original mean FA skeleton (using the original FA data to find the projection vectors),
533 resulting in MPF 4D projected data.

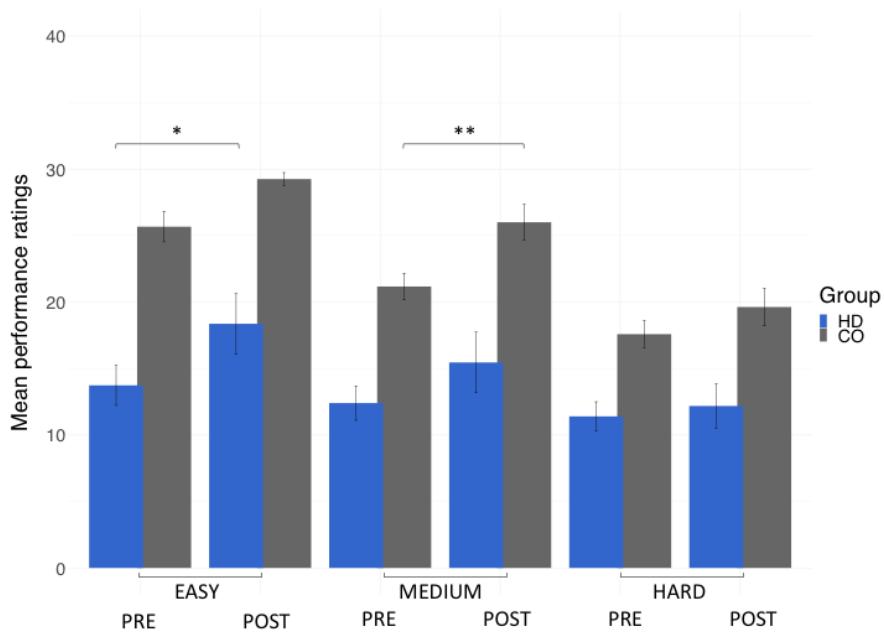
534 To produce significance maps, a voxel-wise analysis was performed on the
535 MPF projected 4D data for all voxels with $FA \geq 0.20$ to exclude peripheral tracts where
536 significant inter-subject variability exists. Inference based on permutations (5,000
537 permutations) and threshold-free-cluster-enhancement were used. The significance
538 level was set at $p < 0.05$ and corrected by multiple comparisons (family-wise error,
539 FWE). Maps of significance were generated to identify differences in areas of MPF
540 between patients with HD and controls.

541 Relationship between changes in MRI measures and changes in drumming and
542 cognitive performance

543 We computed percentage change scores for the drumming performance, in the
544 same way cognitive change scores were calculated. Scores were computed for the

545 easy test pattern in patients and for the medium test pattern in controls, as these were
546 the training patterns that showed a significant improvement.

547 Spearman correlation coefficients were calculated between drumming and
548 cognitive performance, and microstructural components that showed significant group
549 differences, to assess whether microstructural changes were related to any drumming
550 and/or cognitive benefits of the training.


551

552 **Results**

553 ***Training effects on drumming performance***

554 The repeated measure ANOVA of the ratings of drumming performance for the
555 easy and medium test pattern showed significant group [easy: $F(1,17) = 19.6$, $p \leq$
556 0.001; medium: $F(1,17) = 13.1$, $p = 0.002$] and time effects [easy: $F(1,17) = 10.95$, $p \leq$
557 0.004; medium: $F(1,17) = 13.4$, $p = 0.002$] but no interaction effects (easy: $p = 0.8$;
558 medium: $p=0.3$). For the hard test pattern there was only a significant group effect
559 [$F(1,17) = 9.95$, $p = 0.006$] but no time ($p = 0.1$) or interaction effects ($p = 0.4$), Figure
560 4 summarises the average drumming performance per group and time point. Overall
561 patients' drumming performance was poorer than controls. Patients improved their
562 drumming performance significantly for the easy pattern [$t(10) = 2.7$, $p = 0.02$; 95% CI:
563 1.5 – 7.8] and controls for the medium pattern [$t(7) = 3.8$, $p = 0.01$; 95% CI: 2.8 – 8.5].

564

565

566 **Figure 4. Mean ratings for drumming performance** according to the Trinity College
567 London marking criteria for percussion (2016) as a function of group and time point.
568 Patients improved their drumming performance significantly for the easy test pattern
569 and controls for the medium difficult test pattern. * $p < 0.05$, ** $p < 0.01$, bootstrapping
570 based on 1000 sample

571

572

573 **Assessment of group differences in the effect of training on cognitive
574 performance**

575 Three components that accounted for 79% of the variance of performance
576 changes in the cognitive benchmark tests were extracted. The first component loaded
577 highly on performance changes in the dual task (total number of boxes identified under
578 dual task condition), the Stroop task (Stroop interference score), and the trails making
579 task (Trail test switching); because all of these variables measure executive functions
580 including focused attention and distractor suppression, the first component was
581 labelled “executive” component. The second component loaded on variables reflecting

582 the ability to correctly recall digits sequences (i.e. number of correct digits recalled
583 under single task condition, number of correct digits recalled under dual task condition)
584 and was therefore called “working memory capacity” component. Finally, the third
585 extracted component loaded highly on verbal and category fluency, and was therefore
586 named “fluency” component (Table 4).

587 We tested whether the two groups differed in change in cognition, by running
588 permutation analyses on the individual scores for the three extracted components. The
589 HD group differed significantly from the healthy control group in the executive
590 component, $t = -1.03$, $p = 0.008$, FDR-corrected $p = 0.024$. The HD group was
591 associated with positive change, whereas the control group was associated with
592 negative change in this component. However, no significant group differences were
593 detected in the other two components [Working Memory capacity: $t = -0.22$, $p = 0.3296$
594 , FDR-corrected $p = 0.3296$; Fluency: $t = -0.39$, $p = 0.242$ FDR corrected $p = 0.3296$.
595
596

597 **Training effects on WM microstructure**

598 Table 4 reports a summary of the permutation analyses of training associated
599 changes in FA, RD, Fr and MPF, across the different tracts.

600 Training-associated group differences in FA

601 Permutation analyses of FA changes across the different tracts revealed no
602 significant differences between HD and control groups [CCl: $t = 1.22$, $p = 0.91$ (FDR-
603 corrected); CCII: $t = 2.65$, $p = 0.91$ (FDR-corrected); CCIII: $t = 0.325$, $p = 0.13$ (FDR-
604 corrected); right SMA-Putamen: $t = -9.54$, $p = 0.10$ (FDR-corrected); left SMA-
605 Putamen: $t = 5.16$, $p = 0.77$ (FDR-corrected).

606 **Table 4. Rotated Component Loadings on Change in the Cognitive Benchmark Tests.**
607 *Significant loadings (>0.5) are highlighted in bold.*

% Change	Executive	Working memory capacity	Fluency
Total box (dual)	0.864	0.022	0.419
Stroop interference score	0.811	-0.270	-0.267
Trail test switching	-0.731	-0.470	0.162
Correct digits under single task condition	0.201	0.904	0.129
Correct digits under dual task condition	-0.193	0.855	-0.018
Category fluency	-0.070	-0.138	0.817
Verbal fluency	-0.026	-0.232	-0.799

608

609

610

611 Training-associated group differences in RD

612 There were no significant differences in RD changes following training
613 between HD patients and controls [CCl: $t = -0.48$, $p = 0.45$ (FDR-corrected); CClI: $t =$
614 -1.29 , $p = 0.45$ (FDM-corrected); CClII: $t = -1.04$, $p = 0.45$ (FDR-corrected); right SMA-
615 Putamen, $t = 4.01$, $p = 0.81$ (FDR-corrected); left SMA-Putamen, $t = -3.68$, $p = 0.39$
616 (FDR-corrected)].

617 Training-associated group differences in Fr

618 Permutation analyses of Fr changes across the different tracts revealed no
619 significant differences between HD and control groups [CCl: $t = 3.39$, $p = 0.82$ (FDR-

620 corrected; CCII: $t = -0.17$, $p = 0.82$ FDR-corrected; CCIII: $t = 3.08$, $p = 0.82$ (FDR-
621 corrected); right SMA-Putamen: $t = -5.24$, $p = 0.82$ (FDR-corrected); left SMA-
622 Putamen: $t = 1.05$, $p = 0.82$ (FDR-corrected)].

623 **Training-associated group differences in MPF**

624 PCA of change scores in MPF revealed one single component explaining
625 70.2% of the variance. This component presented high loadings from all the tracts
626 investigated. A significant group difference was present for the MPF component,
627 indicating that HD patients presented higher changes in MPF in response to training,
628 as compared to controls [$t(14) = -1.743$, $n = 17$, $p = 0.03$].

629 Finally, we found that the mean difference in MPF change scores was
630 significantly different between the two groups for CCII [$t(14) = -20.72$, $p=0.04$], CCIII
631 [$t(14) = -25.87$, $p=0.04$], and the right SMA-putamen pathway [$t(14) = -25.48$, $p=0.04$]
632 after FDR correction, therefore indicating that there was a differential effect of training
633 between the two groups on MPF within these tracts (Figure 5).

634

635 **Investigation of the relationship between training-associated changes in MRI
636 measures and changes in drumming and cognitive performance.**

637 We assessed whether changes in microstructure were associated with
638 changes in drumming performance by assessing the correlation between the 'MPF'
639 component scores and percentage changes in drumming performance. These,
640 however, did not correlate with changes in MPF (PC1: $rs = -0.14$, $p > 0.05$).

641 Furthermore, to ascertain whether changes in microstructure were related to
642 changes in cognitive performance, correlation coefficients were calculated between
643 the 'Executive' and the 'MPF' component scores. No correlation was observed
644 between these component scores ($\rho = .348$, $p = .171$).

645

646 **Investigation of baseline differences in MPF**

647 We found a statistically significant, right-lateralised, reduction in baseline MPF
648 in the HD group when compared to controls, in the midbody of the CC ($t = 3.13$, $p =$
649 .05, FWE corrected). Figure 6 shows the areas that displayed a reduction of MPF in
650 HD patients, in blue.

651

652 **Discussion**

653 Based on evidence that myelin impairment underpins WM damage in HD
654 (Bartzokis et al., 2007), and the suggestion that myelin plasticity underlies the learning
655 of new motor skills (Lakhani et al., 2016; Scholz et al, 2009), the present study
656 explored whether two months of drumming training would result in changes in WM
657 microstructure in early HD patients. Specifically, we expected to detect myelin
658 plasticity, as indicated by changes in MPF. Further, based on evidence from studies
659 reporting greater training-associated changes in structural MRI metrics in brain injured
660 patients than healthy subjects (Caeyenberghs et al., 2018), we hypothesised that
661 these changes would be present to a higher degree in HD patients than in healthy
662 subjects.

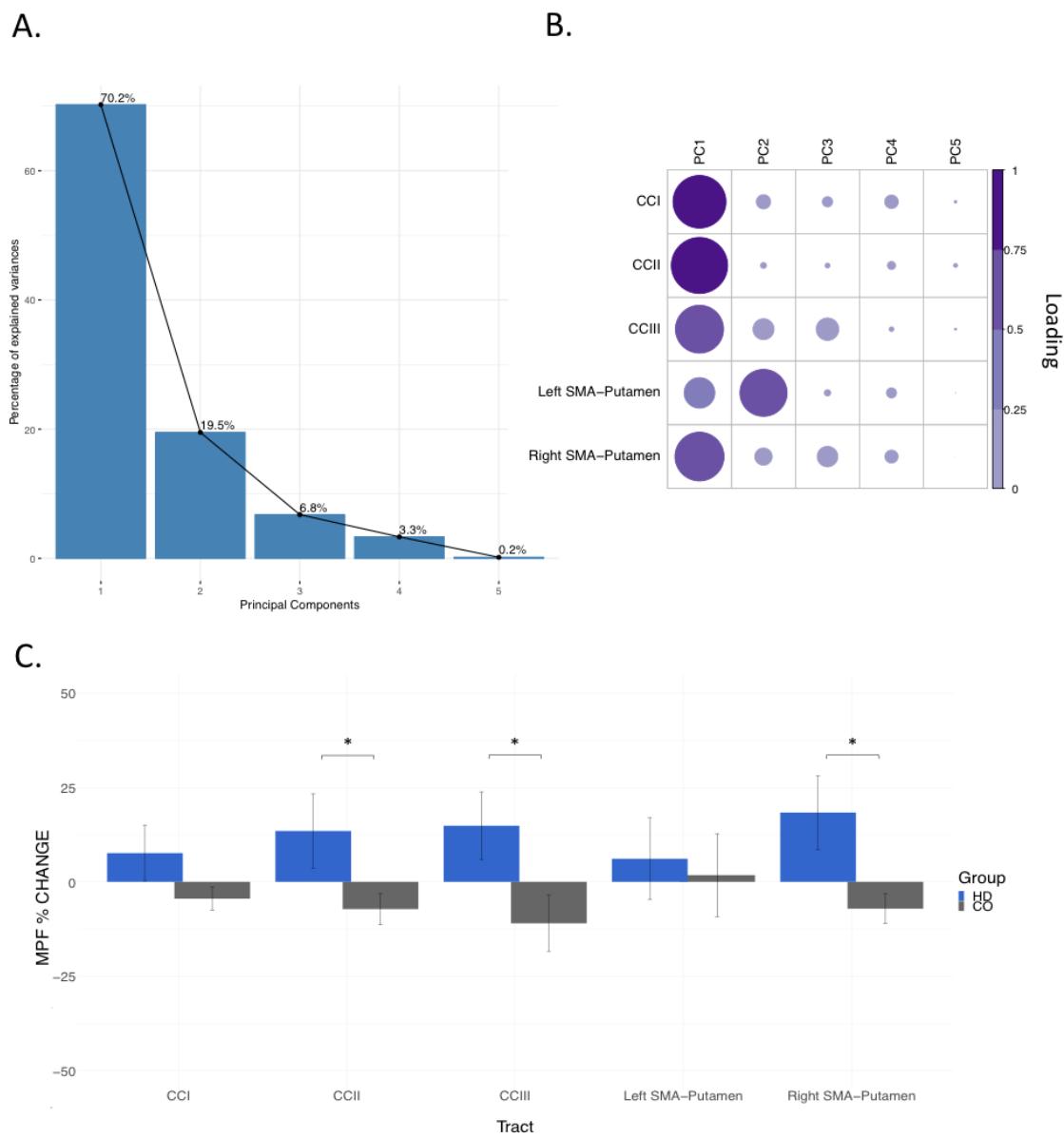
663

664 **Table 4.** Summary statistics for the permutation analysis of training effects on FA, RD,
665 Fr and MPF, across the investigated tracts.

MMPF	p	t	FDR corrected p
CCI	0.080	-12.06	0.10
CCII	0.029	-20.72	0.04
CCIII	0.019	-25.87	0.04
Left SMA-Putamen	0.380	-4.34	0.38
Right SMA-Putamen	0.018	-25.48	0.04

RD	p	t	FDR corrected p
CCI	0.358	-0.48	0.44
CCII	0.215	-1.29	0.44
CCIII	0.302	-1.04	0.44
Left SMA-Putamen	0.079	-3.68	0.39
Right SMA-Putamen	0.802	4.01	0.80

FA	p	t	FDR corrected p
CCI	0.909	1.22	0.91
CCII	0.910	2.65	0.91
CCIII	0.480	-0.13	0.91
Left SMA-Putamen	0.772	5.16	0.91
Right SMA-Putamen	0.023	-9.54	0.11



Fr	p	t	FDR corrected p
CCI	0.810	0.03	0.81
CCII	0.496	-0.001	0.81
CCIII	0.817	0.03	0.81
Left SMA-Putamen	0.582	0.01	0.81
Right SMA-Putamen	0.199	-0.05	0.81

666

667

668

669

670 **Figure 5. MPF changes scores:** PCA scree plot (A); correlation plot summarising
671 how each variable is accounted for in every principal component - colour intensity and
672 the size of the circles are proportional to the loading (B); Bar graph of the percentage
673 change in MPF across the inspected tracts; Error bars represent the standard error;
674 training was associated with a significantly greater change in MPF in CCII, CCIII, and
675 right SMA-Putamen; * ($p < 0.05$), results corrected for multiple comparisons with FDR
676 (C).

677

678

679

680 **Figure 6. TBSS analysis of baseline MPF values (A).** Light blue areas show a
681 significant reduction of MPF in patients with HD compared to controls ($p < 0.05$, FWE
682 corrected). The midbody of the CC was mostly found to be affected, which carries
683 connections to the premotor, supplementary motor and motor areas of the brain.
684 **Tracts showing significantly greater MPF changes in HD patients post-training**
685 **as compared to controls (B).** Areas showing significant MPF reductions at baseline
686 overlap with tracts showing significant changes post-training (i.e. CCII and CCIII).

687

688

689 First, we demonstrated a behavioural effect of the drumming training by
690 showing that patients improved their drumming performance significantly for the easy
691 test pattern and controls for the medium test pattern. This result suggests that the
692 training was successful in improving patients' drumming abilities.

693 With regards to the white matter microstructural measurements, we did not
694 detect any group differences in training-associated changes in the diffusion based
695 indices of FA, RD and Fr. DT-MRI metrics are influenced by the underlying fibre

696 architecture (De Santis et al., 2014). For example, in two voxels with identical axonal
697 density and myelin content, these metrics may diverge, if one of the voxels lies in a
698 region with one predominant fibre orientation, while the other lies in a region
699 presenting several crossing fibres. Though Fr from the CHARMED model enables
700 improved angular resolution as compared to DTI, this does not account for the
701 contribution of water trapped in oligodendrocyte cells or other subcellular structures
702 (Szafer, Zhong, & Gore, 1995). However, a number of human and animal studies have
703 shown oligodendrocyte changes across the lifespan in HD (Ernst et al., 2014; Gómez-
704 Tortosa et al., 2001; Jin et al., 2015; Myers et al., 1991). Therefore, while modelling
705 one (DTI) or two (CHARMED) diffusion compartments might be appropriate when
706 investigating healthy WM or other patient populations, accounting for changes in other
707 compartments of WM microstructure, such as myelin, when assessing HD patients,
708 might enable greater sensitivity to WM microstructural changes. Additionally, a study
709 investigating which metrics account for the largest inter-subject variability and
710 reporting the minimal sample sizes needed to detect an effect in diffusion measures
711 (De Santis et al., 2014), revealed that, amongst the microstructural parameters
712 investigated, FA and Fr required the largest sample size. It is therefore plausible that,
713 in the current study, we did not have enough power to detect a training-associated
714 change in these measures.

715 Through PCA of changes in MPF, we identified a single component explaining
716 most of the variability in the data which had high loadings on all the tracts investigated.
717 Moreover, we observed a significant group difference in training-associated changes
718 in the MPF component. Specifically, HD patients showed significantly increases in
719 MPF relative to controls. Furthermore, through post-hoc investigations, we detected a

720 significant difference in MPF in training-associated changes within the CCII, CCIII and
721 the right SMA-putamen pathway between patients and controls.

722 Interestingly, TBSS analysis of baseline differences in MPF suggested that
723 those areas showing significant MPF reductions at baseline were partly overlapping
724 with the tracts that showed significant changes post-training (i.e. CCII and CCIII).
725 These areas of the CC carry connections to the premotor, supplementary motor and
726 motor areas of the brain.

727 MPF can also be affected by inflammation (Henkelman, Stanisz, & Graham,
728 2001) and in manifest HD it is likely that inflammation goes hand in hand with myelin
729 breakdown (Rocha et al., 2016). However, a recent CSF biomarker study found no
730 evidence of neuro-inflammation in early-manifest HD (Vinther-Jensen et al., 2016).
731 Therefore, though preliminary, our findings suggest that two months of drumming and
732 rhythm exercises may result in myelin remodelling in patients with early HD. This, in
733 turn, suggests that tailored behavioural stimulation might be further investigated as a
734 therapeutic aiming to delay disease progression.

735 In the present study, healthy controls did not show training-associated MPF
736 changes, albeit a trend was present for negative changes. This pattern is opposite to
737 the one observed in the patients' group. In the central nervous system, axon
738 myelination has several goals, including reduction of conduction delays and lowering
739 energy costs. This idea of 'system optimization' (Chomiak & Hu, 2009) encompasses
740 several cellular mechanisms such as de novo myelination, myelin repair, adjustment
741 in conduction velocity, changes in myelin thickness (Kaller et al., 2017). These
742 dynamic changes in myelination identify a process by which an optimal status of the
743 myelinated infrastructure is identified. This, in turn, is linked to the idea of system

744 efficiency, whereby changes in myelin content might be dependent on where the
745 starting point is, compared to an optimal level of myelination (Rushton, 1951).
746 Therefore, ideal network function might not be achieved only by maximising the speed
747 of axon conduction through increased myelination; cellular mechanisms ensuring
748 appropriate conduction delays, as well as conduction velocity, will be equally
749 important. Hence, it is plausible that the observed pattern of training-associated myelin
750 remodelling may be different in healthy subjects as compared to HD patients. This is
751 the case because HD is associated with myelin damage (Bartzokis et al., 2007), as
752 shown by our TBSS results of reduced baseline MPF in HD patients. Furthermore,
753 previous studies have reported that training-associated percentage changes in MRI
754 measures tend to be higher in studies of traumatic brain injury than those shown by
755 studies of healthy subjects (Caeyenberghs et al., 2018).

756 Unfortunately, analyses in the present study cannot truly disentangle the impact
757 of prior WM microstructural differences on microstructural plasticity during learning.
758 Notably, the behavioural effect of drumming training and cognition differed between
759 patients and controls. Patients improved in the easy drumming test pattern, and control
760 improved in the medium test pattern. Furthermore, patients showed increases in the
761 executive function components whilst control participants did not improve their
762 cognition. Therefore, different patterns of microstructural changes might not only be
763 due to WM microstructural differences between patients and controls prior to learning,
764 but also to a different behavioral effect of the task between HD subjects and controls.
765 For instance, control participants performed close to ceiling in the easy test pattern,
766 and as the training was tailored to patients' needs, some of the earlier practice
767 sessions may not have optimally challenged them. A more taxing training for patients
768 than controls may also explain why improvements in executive functions and apparent

769 myelin were only observed for the patients but not for the controls.

770 A critical question relevant to all training studies concerns the functional
771 significance of any observed neural changes. In the present study, we expected
772 microstructural changes to be related to changes in motor and cognitive functions, as
773 assessed by drumming and cognitive tests performance (Metzler-Baddeley et al.,
774 2014). However, we did not detect a significant relationship between changes in MRI
775 measures and changes in drumming proficiency or performance in cognitive tests.

776 Other studies have failed to find a relationship between difference scores in
777 structural MRI metrics and behavioural or clinical changes (Nordvik et al., 2012). We
778 suggest that this might have been due to non-specific training-related neural
779 responses. Specifically, while the training exercise might have triggered changes in
780 brain structure, training-induced changes may not necessarily co-vary with
781 improvements in performance. Alternatively, it might be that our study was not
782 powered enough to detect brain-function correlations. We computed the sample size
783 ($\alpha = 0.05$; 80% power) required to successfully detect a correlation using the GPower
784 3 software and found that minimum of 64 people would have to be examined to reach
785 a medium effect size. Therefore, our results need replication in larger samples. In
786 addition, lack of correlation between structural and functional changes after training
787 has been reported by a number of training studies (including well-powered studies)
788 and may suggest that these processes follow different time courses and may occur in
789 different brain regions (Valkanova, Eguia Rodriguez, & Ebmeier, 2014).

790 It is important to note that our study did not include a non-intervention patient
791 control group. Unfortunately, it was not feasible within the time period of this study to
792 recruit a sufficiently large number of well-matched patient controls. Therefore, we
793 cannot disentangle the effects of the training on WM microstructure from HD-

794 associated pathological changes. However, given that HD is a progressive
795 neurodegenerative disease associated with demyelination (Bartzokis et al., 2007), it is
796 very unlikely that increases in MPF observed in the patient group were due to the
797 disease itself.

798 Finally, while the majority of training studies assess brain structural changes
799 between baseline and post-training (Caeyenberghs et al., 2018), we suggest that
800 acquiring intermittent scans during the training period could have helped to better
801 capture and understand changes in WM microstructure observed in this study.
802 Accordingly, future studies and more advanced statistical analyses, might be able to
803 give greater insights into the complex nonlinear relationships between structural
804 changes and behaviour (Thomas & Baker, 2013).

805 To conclude, we have demonstrated that two months of drumming and rhythm
806 exercises result in an increase in a proxy MRI measure of myelin in patients with early
807 HD relative to healthy controls. Whilst the current results require replication in a larger
808 patient group with an appropriately matched patient control group, they suggest that
809 behavioural stimulation may result in neural benefits in early HD that could be
810 exploited for future therapeutics aiming to delay disease progression.

811

812

813

814

815

816

817

818

819 References

820 Assaf, Y., & Basser, P. J. (2005). Composite hindered and restricted model of
821 diffusion (CHARMED) MR imaging of the human brain. *NeuroImage*, 27(1),
822 48–58. <https://doi.org/10.1016/j.neuroimage.2005.03.042>

823 Aylward, E. H., Nopoulos, P. C., Ross, C. A., Langbehn, D. R., Pierson, R. K., Mills,
824 J. A., ... PREDICT-HD Investigators and Coordinators of Huntington Study
825 Group. (2011). Longitudinal change in regional brain volumes in prodromal
826 Huntington disease. *Journal of Neurology, Neurosurgery, and Psychiatry*,
827 82(4), 405–410. <https://doi.org/10.1136/jnnp.2010.208264>

828 Baddeley, A. (1996). *Exploring the Central Executive*. 24.

829 Baldo, J. V., Shimamura, A. P., Delis, D. C., Kramer, J., & Kaplan, E. (2001). Verbal
830 and design fluency in patients with frontal lobe lesions. *Journal of the
831 International Neuropsychological Society*, 7(5), 586–596.
832 <https://doi.org/10.1017/S1355617701755063>

833 Barazany, D., Basser, P. J., & Assaf, Y. (2009). In vivo measurement of axon
834 diameter distribution in the corpus callosum of rat brain. *Brain*, 132(5), 1210–
835 1220. <https://doi.org/10.1093/brain/awp042>

836 Bardile, C. F., Garcia-Miralles, M., Caron, N., Langley, S., Teo, R. T. Y., Petretto, E.,
837 ... Pouladi, M. A. (2018). A43 Intrinsic mutant HTT-mediated defects in
838 oligodendroglia cells contribute to myelin deficits and behavioural
839 abnormalities in huntington disease. *J Neurol Neurosurg Psychiatry*, 89(Suppl
840 1), A15–A16. <https://doi.org/10.1136/jnnp-2018-EHNDN.41>

841 Bartzokis, G., Lu, P. H., Tishler, T. A., Fong, S. M., Oluwadara, B., Finn, J. P., ...

842 Perlman, S. (2007). Myelin breakdown and iron changes in Huntington's
843 disease: Pathogenesis and treatment implications. *Neurochemical Research*,
844 32(10), 1655–1664. <https://doi.org/10.1007/s11064-007-9352-7>

845 Beglinger, L. J., Langbehn, D. R., Duff, K., Stierman, L., Black, D. W., Nehl, C., ...
846 Huntington Study Group Investigators. (2007). Probability of obsessive and
847 compulsive symptoms in Huntington's disease. *Biological Psychiatry*, 61(3),
848 415–418. <https://doi.org/10.1016/j.biopsych.2006.04.034>

849 Ben-Amitay, S., Jones, D. K., & Assaf, Y. (2012). Motion correction and registration
850 of high b-value diffusion weighted images. *Magnetic Resonance in Medicine*,
851 67(6), 1694–1702. <https://doi.org/10.1002/mrm.23186>

852 Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A
853 Practical and Powerful Approach to Multiple Testing. *Journal of the Royal
854 Statistical Society. Series B (Methodological)*, 57(1), 289–300. Retrieved from
855 JSTOR.

856 Bourbon-Teles, J., Bells, S., Jones, D. K., Coulthard, E., Rosser, A., & Metzler-
857 Baddeley, C. (2017). Myelin breakdown in human Huntington's disease: Multi-
858 modal evidence from diffusion MRI and quantitative magnetization transfer.
859 *Neuroscience*. <https://doi.org/10.1016/j.neuroscience.2017.05.042>

860 Caeyenberghs, K., Clemente, A., Imms, P., Egan, G., Hocking, D. R., Leemans, A.,
861 ... Wilson, P. H. (2018). Evidence for Training-Dependent Structural
862 Neuroplasticity in Brain-Injured Patients: A Critical Review. *Neurorehabilitation
863 and Neural Repair*, 32(2), 99–114. <https://doi.org/10.1177/1545968317753076>

864 Cattell, R. B. (1966). The Scree Test For The Number Of Factors. *Multivariate*
865 *Behavioral Research*, 1(2), 245–276.
866 https://doi.org/10.1207/s15327906mbr0102_10

867 Cercignani, M., & Alexander, D. C. (2006). Optimal acquisition schemes for in vivo
868 quantitative magnetization transfer MRI. *Magnetic Resonance in Medicine*,
869 56(4), 803–810. <https://doi.org/10.1002/mrm.21003>

870 Chomiak, T., & Hu, B. (2009). What Is the Optimal Value of the g-Ratio for
871 Myelinated Fibers in the Rat CNS? A Theoretical Approach. *PLOS ONE*,
872 4(11), e7754. <https://doi.org/10.1371/journal.pone.0007754>

873 Ciarmiello, A., Cannella, M., Lastoria, S., Simonelli, M., Frati, L., Rubinsztein, D. C.,
874 & Squitieri, F. (2006). Brain white-matter volume loss and glucose
875 hypometabolism precede the clinical symptoms of Huntington's disease.
876 *Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine*,
877 47(2), 215–222.

878 Costa, R. M., Cohen, D., & Nicolelis, M. A. L. (2004). Differential corticostriatal
879 plasticity during fast and slow motor skill learning in mice. *Current Biology: CB*, 14(13), 1124–1134. <https://doi.org/10.1016/j.cub.2004.06.053>

881 De Santis, S., Drakesmith, M., Bells, S., Assaf, Y., & Jones, D. K. (2014). Why
882 diffusion tensor MRI does well only some of the time: Variance and
883 covariance of white matter tissue microstructure attributes in the living human
884 brain. *Neuroimage*, 89(100), 35–44.
885 <https://doi.org/10.1016/j.neuroimage.2013.12.003>

886 Dell'acqua, F., Scifo, P., Rizzo, G., Catani, M., Simmons, A., Scotti, G., & Fazio, F.

887 (2010). A modified damped Richardson-Lucy algorithm to reduce isotropic

888 background effects in spherical deconvolution. *NeuroImage*, 49(2), 1446–

889 1458. <https://doi.org/10.1016/j.neuroimage.2009.09.033>

890 Diana Rosas, H., Lee, S. Y., Bender, A., Zaleta, A. K., Vange, M., Yu, P., ... Hersch,

891 S. M. (2010). Altered White Matter Microstructure in the Corpus Callosum in

892 Huntington's Disease: Implications for cortical "disconnection." *NeuroImage*,

893 49(4), 2995–3004. <https://doi.org/10.1016/j.neuroimage.2009.10.015>

894 Dumas, E. M., van den Bogaard, S. J. A., Ruber, M. E., Reilman, R. R., Stout, J. C.,

895 Craufurd, D., ... Roos, R. A. C. (2012). Early changes in white matter

896 pathways of the sensorimotor cortex in premanifest Huntington's disease.

897 *Human Brain Mapping*, 33(1), 203–212. <https://doi.org/10.1002/hbm.21205>

898 Ernst, A., Alkass, K., Bernard, S., Salehpour, M., Perl, S., Tisdale, J., ... Frisén, J.

899 (2014). Neurogenesis in the Striatum of the Adult Human Brain. *Cell*, 156(5),

900 1072–1083. <https://doi.org/10.1016/j.cell.2014.01.044>

901 Giacosa, C., Karpati, F. J., Foster, N. E. V., Penhune, V. B., & Hyde, K. L. (2016).

902 Dance and music training have different effects on white matter diffusivity in

903 sensorimotor pathways. *NeuroImage*, 135, 273–286.

904 <https://doi.org/10.1016/j.neuroimage.2016.04.048>

905 Gómez-Tortosa, E., MacDonald, M. E., Friend, J. C., Taylor, S. A., Weiler, L. J.,

906 Cupples, L. A., ... Myers, R. H. (2001). Quantitative neuropathological

907 changes in presymptomatic Huntington's disease. *Annals of Neurology*, 49(1),

908 29–34.

909 Gregory, S., Crawford, H., Seunarine, K., Leavitt, B., Durr, A., Roos, R. A. C., ...

910 Orth, M. (2018). Natural biological variation of white matter microstructure is
911 accentuated in Huntington's disease. *Human Brain Mapping*, 39(9), 3516–
912 3527. <https://doi.org/10.1002/hbm.24191>

913 Grydeland, H., Walhovd, K. B., Tamnes, C. K., Westlye, L. T., & Fjell, A. M. (2013).
914 Intracortical myelin links with performance variability across the human
915 lifespan: Results from T1- and T2-weighted MRI myelin mapping and diffusion
916 tensor imaging. *The Journal of Neuroscience: The Official Journal of the
917 Society for Neuroscience*, 33(47), 18618–18630.
918 <https://doi.org/10.1523/JNEUROSCI.2811-13.2013>

919 Henkelman, R. M., Stanisz, G. J., & Graham, S. J. (n.d.). Magnetization transfer in
920 MRI: A review. *NMR in Biomedicine*, 14(2), 57–64.
921 <https://doi.org/10.1002/nbm.683>

922 Hofer, S., & Frahm, J. (2006). Topography of the human corpus callosum revisited—
923 Comprehensive fiber tractography using diffusion tensor magnetic resonance
924 imaging. *NeuroImage*, 32(3), 989–994.
925 <https://doi.org/10.1016/j.neuroimage.2006.05.044>

926 Hofstetter, S., Tavor, I., Moryosef, S. T., & Assaf, Y. (2013). Short-Term Learning
927 Induces White Matter Plasticity in the Fornix. *Journal of Neuroscience*, 33(31),
928 12844–12850. <https://doi.org/10.1523/JNEUROSCI.4520-12.2013>

929 Huang, B., Wei, W., Wang, G., Gaertig, M. A., Feng, Y., Wang, W., ... Li, S. (2015).
930 Mutant huntingtin downregulates myelin regulatory factor-mediated myelin

931 gene expression and affects mature oligodendrocytes. *Neuron*, 85(6), 1212–
932 1226. <https://doi.org/10.1016/j.neuron.2015.02.026>

933 Irfanoglu, M. O., Walker, L., Sarlls, J., Marenco, S., & Pierpaoli, C. (2012). Effects of
934 image distortions originating from susceptibility variations and concomitant
935 fields on diffusion MRI tractography results. *NeuroImage*, 61(1), 275–288.
936 <https://doi.org/10.1016/j.neuroimage.2012.02.054>

937 Jeurissen, B., Leemans, A., Jones, D. K., Tournier, J.-D., & Sijbers, J. (2011).
938 Probabilistic fiber tracking using the residual bootstrap with constrained
939 spherical deconvolution. *Human Brain Mapping*, 32(3), 461–479.
940 <https://doi.org/10.1002/hbm.21032>

941 Jin, J., Peng, Q., Hou, Z., Jiang, M., Wang, X., Langseth, A. J., ... Duan, W. (2015).
942 Early white matter abnormalities, progressive brain pathology and motor
943 deficits in a novel knock-in mouse model of Huntington's disease. *Human*
944 *Molecular Genetics*, 24(9), 2508–2527. <https://doi.org/10.1093/hmg/ddv016>

945 Kaller, M. S., Lazari, A., Blanco-Duque, C., Sampaio-Baptista, C., & Johansen-Berg,
946 H. (2017). Myelin plasticity and behaviour—Connecting the dots. *Current*
947 *Opinion in Neurobiology*, 47, 86–92.
948 <https://doi.org/10.1016/j.conb.2017.09.014>

949 Klein, S., Staring, M., Murphy, K., Viergever, M. A., & Pluim, J. P. W. (2010). elastix:
950 A toolbox for intensity-based medical image registration. *IEEE Transactions*
951 *on Medical Imaging*, 29(1), 196–205.
952 <https://doi.org/10.1109/TMI.2009.2035616>

953 Lakhani, B., Borich, M. R., Jackson, J. N., Wadden, K. P., Peters, S., Villamayor, A.,

954 ... Boyd, L. A. (2016). Motor Skill Acquisition Promotes Human Brain Myelin

955 Plasticity [Research article]. <https://doi.org/10.1155/2016/7526135>

956 Leemans, A., Jeurissen, B., Sijbers, J., & Jones, D. K. (n.d.). *ExploreDTI: a graphical*

957 *toolbox for processing, analyzing, and visualizing diffusion MR data.* 1.

958 Leemans, Alexander, & Jones, D. K. (2009). The B-matrix must be rotated when

959 correcting for subject motion in DTI data. *Magnetic Resonance in Medicine*,

960 61(6), 1336–1349. <https://doi.org/10.1002/mrm.21890>

961 Leh, S. E., Ptito, A., Chakravarty, M. M., & Strafella, A. P. (2007). Fronto-striatal

962 connections in the human brain: A probabilistic diffusion tractography study.

963 *Neuroscience Letters*, 419(2), 113–118.

964 <https://doi.org/10.1016/j.neulet.2007.04.049>

965 Levesque, I. R., Giacomini, P. S., Narayanan, S., Ribeiro, L. T., Sled, J. G., Arnold,

966 D. L., & Pike, G. B. (2010). Quantitative magnetization transfer and myelin

967 water imaging of the evolution of acute multiple sclerosis lesions. *Magnetic*

968 *Resonance in Medicine*, 63(3), 633–640. <https://doi.org/10.1002/mrm.22244>

969 Lövdén, M., Bodammer, N. C., Kühn, S., Kaufmann, J., Schütze, H., Tempelmann,

970 C., ... Lindenberger, U. (2010). Experience-dependent plasticity of white-

971 matter microstructure extends into old age. *Neuropsychologia*, 48(13), 3878–

972 3883. <https://doi.org/10.1016/j.neuropsychologia.2010.08.026>

973 Martenson, R. E. (1992). *Myelin*. CRC Press.

974 McKenzie, I. A., Ohayon, D., Li, H., de Faria, J. P., Emery, B., Tohyama, K., &
975 Richardson, W. D. (2014). Motor skill learning requires active central
976 myelination. *Science (New York, N.Y.)*, 346(6207), 318–322.
977 <https://doi.org/10.1126/science.1254960>

978 Metzler-Baddeley, C., Cantera, J., Coulthard, E., Rosser, A., Jones, D. K., &
979 Baddeley, R. J. (2014). Improved Executive Function and Callosal White
980 Matter Microstructure after Rhythm Exercise in Huntington's Disease. *Journal
981 of Huntington's Disease*, 3(3), 273–283. <https://doi.org/10.3233/JHD-140113>

982 Metzler-Baddeley, C., O'Sullivan, M. J., Bells, S., Pasternak, O., & Jones, D. K.
983 (2012). How and how not to correct for CSF-contamination in diffusion MRI.
984 *NeuroImage*, 59(2), 1394–1403.
985 <https://doi.org/10.1016/j.neuroimage.2011.08.043>

986 Myers, R. H., Vonsattel, J. P., Paskevich, P. A., Kiely, D. K., Stevens, T. J., Cupples,
987 L. A., ... Bird, E. D. (1991). Decreased Neuronal and Increased
988 Oligodendroglial Densities in Huntington's Disease Caudate Nucleus. *Journal
989 of Neuropathology & Experimental Neurology*, 50(6), 729–742.
990 <https://doi.org/10.1097/00005072-199111000-00005>

991 Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V.,
992 Collin, I., ... Chertkow, H. (2005). The Montreal Cognitive Assessment,
993 MoCA: A Brief Screening Tool For Mild Cognitive Impairment. *Journal of the
994 American Geriatrics Society*, 53(4), 695–699. [https://doi.org/10.1111/j.1532-5415.2005.53221.x](https://doi.org/10.1111/j.1532-
995 5415.2005.53221.x)

996 Nelson, H. (n.d.). *National Adult Reading Test (NART) test manual (Part 1)*. Retrieved
997 from
998 https://www.academia.edu/2515150/National_Adult_Reading_Test_NART_te
999 st_manual_Part_1

1000 Nordvik, J. E., Schanke, A.-K., Walhovd, K., Fjell, A., Grydeland, H., & Landrø, N. I.
1001 (2012). Exploring the relationship between white matter microstructure and
1002 working memory functioning following stroke: A single case study of
1003 computerized cognitive training. *Neurocase*, 18(2), 139–151.
1004 <https://doi.org/10.1080/13554794.2011.568501>

1005 Ou, X., Sun, S.-W., Liang, H.-F., Song, S.-K., & Gochberg, D. F. (2009). The MT
1006 pool size ratio and the DTI radial diffusivity may reflect the myelination in
1007 shiverer and control mice. *NMR in Biomedicine*, 22(5), 480–487.
1008 <https://doi.org/10.1002/nbm.1358>

1009 Pajevic, S., & Pierpaoli, C. (1999). Color schemes to represent the orientation of
1010 anisotropic tissues from diffusion tensor data: Application to white matter fiber
1011 tract mapping in the human brain. *Magnetic Resonance in Medicine*, 42(3),
1012 526–540.

1013 Paulsen, J. S., Langbehn, D. R., Stout, J. C., Aylward, E., Ross, C. A., Nance, M., ...
1014 Predict-HD Investigators and Coordinators of the Huntington Study Group.
1015 (2008). Detection of Huntington's disease decades before diagnosis: The
1016 Predict-HD study. *Journal of Neurology, Neurosurgery, and Psychiatry*, 79(8),
1017 874–880. <https://doi.org/10.1136/jnnp.2007.128728>

1018 Penke, L., Maniega, S. M., Murray, C., Gow, A. J., Hernández, M. C. V., Clayden, J.
1019 D., ... Deary, I. J. (2010). A General Factor of Brain White Matter Integrity
1020 Predicts Information Processing Speed in Healthy Older People. *Journal of
1021 Neuroscience*, 30(22), 7569–7574. <https://doi.org/10.1523/JNEUROSCI.1553-10.2010>

1023 Phillips, O., Sanchez-Castaneda, C., Elifani, F., Maglione, V., Pardo, A. D.,
1024 Caltagirone, C., ... Paola, M. D. (2013). Tractography of the Corpus Callosum
1025 in Huntington's Disease. *PLOS ONE*, 8(9), e73280.
1026 <https://doi.org/10.1371/journal.pone.0073280>

1027 Pierpaoli, C., & Basser, P. J. (1996). Toward a quantitative assessment of diffusion
1028 anisotropy. *Magnetic Resonance in Medicine*, 36(6), 893–906.

1029 Poudel, G. R., Stout, J. C., Domínguez D, J. F., Salmon, L., Churchyard, A., Chua,
1030 P., ... Egan, G. F. (2014). White matter connectivity reflects clinical and
1031 cognitive status in Huntington's disease. *Neurobiology of Disease*, 65, 180–
1032 187. <https://doi.org/10.1016/j.nbd.2014.01.013>

1033 Preacher, K. J., & MacCallum, R. C. (2002). Exploratory Factor Analysis in Behavior
1034 Genetics Research: Factor Recovery with Small Sample Sizes. *Behavior
1035 Genetics*, 32(2), 153–161. <https://doi.org/10.1023/A:1015210025234>

1036 Reading, S. A. J., Yassa, M. A., Bakker, A., Dziorny, A. C., Gourley, L. M.,
1037 Yallapragada, V., ... Ross, C. A. (2005). Regional white matter change in pre-
1038 symptomatic Huntington's disease: A diffusion tensor imaging study.
1039 *Psychiatry Research*, 140(1), 55–62.
1040 <https://doi.org/10.1016/j.psychresns.2005.05.011>

1041 Rocha, N. P., Ribeiro, F. M., Furr-Stimming, E., & Teixeira, A. L. (2016).

1042 Neuroimmunology of Huntington's Disease: Revisiting Evidence from Human
1043 Studies. *Mediators of Inflammation*, 2016.

1044 <https://doi.org/10.1155/2016/8653132>

1045 Rosas, H. D., Wilkens, P., Salat, D. H., Mercaldo, N. D., Vangel, M., Yendiki, A. Y., &
1046 Hersch, S. M. (2018). Complex spatial and temporally defined myelin and
1047 axonal degeneration in Huntington disease. *NeuroImage: Clinical*, 20, 236–
1048 242. <https://doi.org/10.1016/j.nicl.2018.01.029>

1049 Rushton, W. A. H. (1951). A theory of the effects of fibre size in medullated nerve.
1050 *The Journal of Physiology*, 115(1), 101–122.

1051 Sampaio-Baptista, C., Khrapitchev, A. A., Foxley, S., Schlagheck, T., Scholz, J.,
1052 Jbabdi, S., ... Johansen-Berg, H. (2013). Motor Skill Learning Induces
1053 Changes in White Matter Microstructure and Myelination. *The Journal of
1054 Neuroscience*, 33(50), 19499–19503.
1055 <https://doi.org/10.1523/JNEUROSCI.3048-13.2013>

1056 Schmierer, K., Tozer, D. J., Scaravilli, F., Altmann, D. R., Barker, G. J., Tofts, P. S.,
1057 & Miller, D. H. (2007). Quantitative Magnetization Transfer Imaging in
1058 Postmortem Multiple Sclerosis Brain. *Journal of Magnetic Resonance
1059 Imaging : JMRI*, 26(1), 41–51. <https://doi.org/10.1002/jmri.20984>

1060 Scholz, J., Klein, M. C., Behrens, T. E. J., & Johansen-Berg, H. (2009). Training
1061 induces changes in white matter architecture. *Nature Neuroscience*, 12(11),
1062 1370–1371. <https://doi.org/10.1038/nn.2412>

1063 Serres, S., Anthony, D. C., Jiang, Y., Campbell, S. J., Broom, K. A., Khrapitchev, A.,
1064 & Sibson, N. R. (2009). Comparison of MRI signatures in pattern I and II
1065 multiple sclerosis models. *NMR in Biomedicine*, 22(10), 1014–1024.
1066 <https://doi.org/10.1002/nbm.1404>

1067 Shmuelof, L., & Krakauer, J. W. (2011). Are we ready for a natural history of motor
1068 learning? *Neuron*, 72(3), 469–476.
1069 <https://doi.org/10.1016/j.neuron.2011.10.017>

1070 Simmons, D. A., Casale, M., Alcon, B., Pham, N., Narayan, N., & Lynch, G. (n.d.).
1071 Ferritin accumulation in dystrophic microglia is an early event in the
1072 development of Huntington's disease. *Glia*, 55(10), 1074–1084.
1073 <https://doi.org/10.1002/glia.20526>

1074 Sled, J. G. (2018). Modelling and interpretation of magnetization transfer imaging in
1075 the brain. *NeuroImage*, 182, 128–135.
1076 <https://doi.org/10.1016/j.neuroimage.2017.11.065>

1077 Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E.,
1078 Mackay, C. E., ... Behrens, T. E. J. (2006). Tract-based spatial statistics:
1079 Voxelwise analysis of multi-subject diffusion data. *NeuroImage*, 31(4), 1487–
1080 1505. <https://doi.org/10.1016/j.neuroimage.2006.02.024>

1081 Steele, C. J., Bailey, J. A., Zatorre, R. J., & Penhune, V. B. (2013). Early musical
1082 training and white-matter plasticity in the corpus callosum: Evidence for a
1083 sensitive period. *The Journal of Neuroscience: The Official Journal of the
1084 Society for Neuroscience*, 33(3), 1282–1290.
1085 <https://doi.org/10.1523/JNEUROSCI.3578-12.2013>

1086 Szafer, A., Zhong, J., & Gore, J. C. (1995). Theoretical Model for Water Diffusion in
1087 Tissues. *Magnetic Resonance in Medicine*, 33(5), 697–712.
1088 <https://doi.org/10.1002/mrm.1910330516>

1089 Tabrizi, S. J., Langbehn, D. R., Leavitt, B. R., Roos, R. A., Durr, A., Craufurd, D., ...
1090 TRACK-HD investigators. (2009). Biological and clinical manifestations of
1091 Huntington's disease in the longitudinal TRACK-HD study: Cross-sectional
1092 analysis of baseline data. *The Lancet. Neurology*, 8(9), 791–801.
1093 [https://doi.org/10.1016/S1474-4422\(09\)70170-X](https://doi.org/10.1016/S1474-4422(09)70170-X)

1094 Teo, R. T. Y., Hong, X., Yu-Taeger, L., Huang, Y., Tan, L. J., Xie, Y., ... Pouladi, M.
1095 A. (2016). Structural and molecular myelination deficits occur prior to neuronal
1096 loss in the YAC128 and BACHD models of Huntington disease. *Human*
1097 *Molecular Genetics*, 25(13), 2621–2632. <https://doi.org/10.1093/hmg/ddw122>

1098 Testa, R., Bennett, P., & Ponsford, J. (2012). Factor analysis of nineteen executive
1099 function tests in a healthy adult population. *Archives of Clinical*
1100 *Neuropsychology: The Official Journal of the National Academy of*
1101 *Neuropsychologists*, 27(2), 213–224. <https://doi.org/10.1093/arclin/acr112>

1102 Thomas, C., & Baker, C. I. (2013). Teaching an adult brain new tricks: A critical
1103 review of evidence for training-dependent structural plasticity in humans.
1104 *NeuroImage*, 73, 225–236. <https://doi.org/10.1016/j.neuroimage.2012.03.069>

1105 Trenergy M. R., Crosson B., DeBoe J., Leber W. R., Stroop Neuropsychological
1106 Screening Test , 1989Odessa, FLPsychological Assessment Resources

1107 Valkanova, V., Eguia Rodriguez, R., & Ebmeier, K. P. (2014). Mind over matter—
1108 What do we know about neuroplasticity in adults? *International*

1109 *Psychogeriatrics*, 26(6), 891–909.
1110 <https://doi.org/10.1017/S1041610213002482>

1111 van Dellen, A., Blakemore, C., Deacon, R., York, D., & Hannan, A. J. (2000).
1112 Delaying the onset of Huntington's in mice. *Nature*, 404(6779), 721–722.
1113 <https://doi.org/10.1038/35008142>

1114 Vinther-Jensen, T., Simonsen, A. H., Budtz-Jørgensen, E., Hjermind, L. E., &
1115 Nielsen, J. E. (n.d.). Ubiquitin: A potential cerebrospinal fluid progression
1116 marker in Huntington's disease. *European Journal of Neurology*, 22(10),
1117 1378–1384. <https://doi.org/10.1111/ene.12750>

1118 Vonsattel, J. P. G., & Difiglia, M. (1998). Huntington Disease. *Journal of*
1119 *Neuropathology & Experimental Neurology*, 57(5), 369–384.
1120 <https://doi.org/10.1097/00005072-199805000-00001>

1121 Wahl, M., Li, Y.-O., Ng, J., Lahue, S. C., Cooper, S. R., Sherr, E. H., & Mukherjee, P.
1122 (2010). Microstructural correlations of white matter tracts in the human brain.
1123 *NeuroImage*, 51(2), 531–541.
1124 <https://doi.org/10.1016/j.neuroimage.2010.02.072>

1125 Wang, N., & Yang, X. W. (2019). Huntington Disease's Glial Progenitor Cells Hit the
1126 Pause Button in the Mouse Brain. *Cell Stem Cell*, 24(1), 3–4.
1127 <https://doi.org/10.1016/j.stem.2018.12.004>

1128 Weaver, K. E., Richards, T. L., Liang, O., Laurino, M. Y., Samii, A., & Aylward, E. H.
1129 (2009). Longitudinal diffusion tensor imaging in Huntington's Disease.
1130 *Experimental Neurology*, 216(2), 525–529.
1131 <https://doi.org/10.1016/j.expneurol.2008.12.026>

1132 Wheeler-Kingshott, C. A. M., & Cercignani, M. (2009). About “axial” and “radial”
1133 diffusivities. *Magnetic Resonance in Medicine*, 61(5), 1255–1260.
1134 <https://doi.org/10.1002/mrm.21965>

1135 Winter*, J. C. F. de, Dodou*, D., & Wieringa, P. A. (2009). Exploratory Factor
1136 Analysis With Small Sample Sizes. *Multivariate Behavioral Research*, 44(2),
1137 147–181. <https://doi.org/10.1080/00273170902794206>

1138 Yhnell, E., Lelos, M. J., Dunnett, S. B., & Brooks, S. P. (2016). Cognitive training
1139 modifies disease symptoms in a mouse model of Huntington’s disease.
1140 *Experimental Neurology*, 282, 19–26.
1141 <https://doi.org/10.1016/j.expneurol.2016.05.008>

1142 Yin, H. H., Mulcare, S. P., Hilário, M. R. F., Clouse, E., Holloway, T., Davis, M. I., ...
1143 Costa, R. M. (2009). Dynamic reorganization of striatal circuits during the
1144 acquisition and consolidation of a skill. *Nature Neuroscience*, 12(3), 333–341.
1145 <https://doi.org/10.1038/nn.2261>

1146 Zatorre, R. J., Fields, R. D., & Johansen-Berg, H. (2012). Plasticity in gray and white:
1147 Neuroimaging changes in brain structure during learning. *Nature
1148 Neuroscience*, 15(4), 528–536. <https://doi.org/10.1038/nn.3045>

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167