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Abstract 93 

Background: Huntington’s disease (HD) is a neurodegenerative disorder leading to 94 

debilitating cognitive and motor symptoms. Impaired myelination may contribute to HD 95 

pathogenesis. We assessed baseline differences in apparent white matter (WM) 96 

myelination between HD patients and controls, and tested whether drumming training 97 

stimulates myelin remodelling in HD. We also examined whether microstructural 98 

changes were related to changes in motor and cognitive function. Methods: 99 

Participants undertook two months of drumming exercises. Different aspects of 100 
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working memory and executive function were assessed before and after the training. 101 

For comparability with previous studies, we assessed training-related changes in 102 

diffusion tensor magnetic resonance imaging (DT-MRI)-based metrics of fractional 103 

anisotropy (FA) and radial diffusivity (RD). Moving beyond DT-MRI, we also tested 104 

changes in the restricted diffusion signal fraction (Fr) from the composite hindered and 105 

restricted model of diffusion (CHARMED) and in the macromolecular proton fraction 106 

(MPF) from quantitative magnetization transfer (qMT). We predicted the biggest 107 

training effects in MPF, because of its greater sensitivity to myelin, compared to 108 

diffusion measures. Changes were studied in WM pathways linking the putamen and 109 

the supplementary motor area (SMA-Putamen), and within three segments of the 110 

corpus callosum (CCI, CCII, CCIII). Tracts were reconstructed using deterministic 111 

tractography. Baseline MPF differences between patients and controls were also 112 

assessed with tract-based spatial statistics (TBSS), to inspect HD-associated changes 113 

in apparent myelination. Results: A reduction in baseline MPF was present in the mid 114 

section of the CC in HD group compared to controls. No significant training-associated 115 

changes were detected in FA, RD or Fr. However, after the drumming intervention, we 116 

detected increases in MPF in HD patients relative to healthy controls in the CCII, CCIII, 117 

and the right SMA-putamen. Furthermore patients improved their drumming and their 118 

executive function performance relative to controls increased after training. These 119 

behavioural changes did not correlate with the microstructural changes, suggesting 120 

that these processes follow different time courses. Conclusions: Drumming training 121 

improves motor and executive performance in HD and is associated with increases in 122 

apparent WM myelin. Tailored behavioural stimulation may lead to neural benefits in 123 

early HD that could be exploited for delaying disease progression.  124 
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Background 125 

Huntington’s disease (HD) is a genetic, neurodegenerative disease caused by 126 

an expansion of the CAG repeat within the coding region of the huntingtin gene, 127 

leading to debilitating cognitive and motor symptoms. Although HD pathology is tightly 128 

associated with degeneration of striatal grey matter (GM) (Weaver et al., 2009), WM 129 

changes at the macro- and micro-structural level have recently been suggested to play 130 

an important role in this disease (Bardile et al., 2018; Bartzokis et al., 2007; Beglinger 131 

et al., 2007; Ciarmiello et al., 2006; Gregory et al., 2018; Paulsen et al., 2008; Reading 132 

et al., 2005; Rosas et al., 2018; Wang & Yang, 2019), and can be detected even in 133 

pre-symptomatic individuals, 15 years or more prior to the onset of motor symptoms  134 

(Aylward et al., 2011; Ciarmiello et al., 2006; Tabrizi et al., 2009). 135 

An increasing body of research suggests that WM alterations in HD are due to 136 

changes in myelin-associated biological processes at the cellular and molecular level 137 

(Gómez-Tortosa et al., 2001; Huang et al., 2015; Jin et al., 2015; Myers et al., 1991; 138 

Simmons et al., 2007; Teo et al., 2016). Myelin is a multi-layered membrane sheath 139 

wrapping axons and is produced by oligodendrocytes. Axon myelination is vital during 140 

brain development and critical for healthy brain function, as it plays a fundamental role 141 

in the efficiency and speed of action potential propagation (Martenson, 1992).  142 

The ‘Demyelination Hypothesis’ of HD (Bartzokis et al., 2007) suggests that a 143 

toxic effect of mutant huntingtin leads to myelin breakdown in HD. This could be due 144 

to several factors: dysregulation of the temporal profile of myelination during the 145 

postnatal period (Jin et al., 2015) or dysfunction in oligodendrocytes, leading to 146 

impaired repair of demyelinated axons (Huang et al., 2015);  alternatively, as 147 

oligodendrocytes are the major iron-containing cells of the CNS, homeostatic 148 
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increases in these cells in the attempt to re-myelinate axons might lead to significant 149 

increases in ferritin iron content, leading to toxicity and contributing to impairments in 150 

myelination (Bourbon-Teles et al., 2017).   151 

Currently, no disease-modifying treatment exists for HD. However, 152 

environmental stimulation and behavioural interventions may have the potential to 153 

delay disease onset (van Dellen et al., 2000; Yhnell et al., 2016). Interestingly, myelin 154 

plasticity is thought to support the learning of new motor skills (McKenzie et al., 2014; 155 

Sampaio-Baptista et al., 2013). Accordingly, recent evidence from animal and human 156 

studies suggests that plastic changes in myelination may be implicated in early 157 

adaptation and longer-term consolidation and improvement in motor tasks (Costa, 158 

Cohen, & Nicolelis, 2004; Shmuelof & Krakauer, 2011; Steele, Bailey, Zatorre, & 159 

Penhune, 2013; Yin et al., 2009). 160 

In the present study, we assessed whether two months of drumming training 161 

could trigger WM microstructure changes, and potentially myelin remodelling, in 162 

individuals with HD. Based on reports of greater training-associated changes in 163 

structural MRI metrics in patient populations than in healthy subjects (Caeyenberghs 164 

et al., 2018), we hypothesised that these changes would be present to a higher degree 165 

in patients than in healthy subjects. 166 

The present drumming intervention was designed to exercise cognitive and 167 

motor functions including sequence and reversal learning, response speed and multi-168 

tasking (Metzler-Baddeley et al., 2014), all of which rely on healthy functioning of 169 

cortico-basal ganglia loops and are known to be impaired in HD (Papoutsi et al., 2014). 170 

In brief, the training involves practising drumming patterns in ascending order of 171 
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difficulty over a period of two months and was previously found to induce WM 172 

microstructural changes in HD (Metzler-Baddeley et al. 2014). 173 

Previous studies investigating training-associated WM plasticity in the human 174 

brain (Giacosa, Karpati, Foster, Metzler-Baddeley et al. 2014; Penhune, & Hyde, 2016; 175 

Scholz, Klein, Behrens, & Johansen-Berg, 2009) have predominantly employed 176 

indices from diffusion tensor magnetic resonance imaging (DT-MRI) (Pierpaoli & 177 

Basser, 1996) such as fractional anisotropy (FA) and radial diffusivity (RD). However, 178 

DT-MRI measures are not specific to WM microstructural properties and can be 179 

modulated by various factors, including, but not limited to, fibre complexity and 180 

organisation, as well as axon morphology and myelination (De Santis et al., 2014; 181 

Wheeler-Kingshott & Cercignani, 2009). It is therefore difficult to interpret changes in 182 

DTI indices in terms of changes in any biological properties of white matter. 183 

Moving beyond DT-MRI, the present study explored changes in the 184 

macromolecular proton fraction (MPF) from quantitative magnetization transfer (qMT) 185 

(Sled, 2018) and the restricted diffusion signal fraction (Fr) from the composite 186 

hindered and restricted model of diffusion (CHARMED) (Assaf & Basser, 2005), as 187 

well as FA and RD from DT-MRI (Pierpaoli & Basser, 1996), for comparability with 188 

previous training studies  (Lövdén et al., 2010; Scholz et al., 2009; Zatorre, Fields, & 189 

Johansen-Berg, 2012). 190 

 MPF identifies the ratio of the number of bound macromolecular protons to the 191 

total water protons, and has been proposed as a proxy MRI marker of myelin (Serres 192 

et al., 2009). Accordingly, this measure has been shown to reflect demyelination in 193 

shiverer animals (Ou, Sun, Liang, Song, & Gochberg, 2009; Samsonov et al., 2012), to 194 

be sensitive to de-myelination processes in multiple sclerosis patients (Levesque et 195 
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al., 2010) and to reflect myelin content of WM in post-mortem studies of multiple 196 

sclerosis brains (Schmierer et al., 2007). Fr, on the other hand, represents the fraction 197 

of signal that is restricted, which is presumed to come predominantly from within 198 

axons, and therefore provides a proxy measure of axonal density (Barazany, Basser, 199 

& Assaf, 2009). 200 

Based on evidence suggesting an effect of motor learning on myelin plasticity 201 

(Lakhani et al., 2016; ), we were especially interested in assessing training-associated 202 

changes in MPF, because of its tight association with WM myelin content (Levesque 203 

et al., 2010; Ou et al., 2009; Schmierer et al., 2007; Serres et al., 2009). Therefore, 204 

we expected changes following training to be more marked in MPF, as compared to 205 

the other non-myelin sensitive metrics assessed in this study.  206 

Additionally, while the plastic regulation of myelination by neural activity and 207 

experience has gained increased recognition and has been demonstrated in recent 208 

studies (Hofstetter, Tavor, Moryosef, & Assaf, 2013; Lakhani et al., 2016; Sampaio-209 

Baptista et al., 2013), the role of myelin remodelling in shaping behavioural changes 210 

remains elusive. Therefore, we also investigated the relationship between training-211 

associated changes in MRI measures and changes in drumming performance and in 212 

different aspects of cognitive/executive function. The latter was assessed with 213 

standard neuropsychological paper and pencil tests before and after the training as 214 

described in Metzler-Baddeley et al. (2014). 215 

Because of the sensitivity of MPF to myelin content in WM, we were also 216 

interested in using this measure to investigate baseline myelin differences between 217 

HD patients and controls across the brain. Previous evidence has shown widespread 218 

decreases in MPF in early-stage HD patients as compared to healthy controls 219 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 24, 2019. ; https://doi.org/10.1101/2019.12.24.887406doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.24.887406
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

11 

(Bourbon-Teles et al., 2019). Therefore, tract-based spatial statistics (TBSS) (Smith 220 

et al., 2006) was used to investigate differences in MPF between HD subjects and 221 

controls before training, across the whole brain, in an unbiased way.  222 

 223 

 224 

 225 

Figure 1. White matter pathway regions of interest. Sagittal views of the 226 

reconstructed WM pathways displayed on a T1-weighted image for one control 227 

participant. (A) Segments I, II, and III of the CC (Hofer and Frahm, 2006), (B) SMA-228 

putamen pathway. Fibre directions are colour coded with green indicating directions 229 

along the coronal, blue along the axial and red along the sagittal plane (Pajevic & 230 

Pierpaoli, 1999). 231 

 232 

 233 

Materials and Methods  234 

Participants  235 

The study was approved by the local National Health Service (NHS) Research Ethics 236 

Committee (Wales REC 1 13/WA/0326) and all participants provided written informed 237 

A B
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consent. All participants were drumming novices and none had taken part in our 238 

previously-reported pilot study (Metzler-Baddeley et al., 2014). Fifteen HD patients, 239 

most of which were at early disease stages (see Table 1), as assessed by their 240 

performance in the United Huntington’s Disease Rating Scale (UHDRS), were 241 

recruited from HD clinics in Cardiff and Bristol. Genetic testing confirmed the presence 242 

of the mutant huntingtin allele.  Table 1 summarizes the patients’ demographic and 243 

some background clinical characteristics, i.e. their CAG repeat length, their UHDRS 244 

Total Motor Score (TMS) and UHDRS Functional Assessment Score (FAS), and 245 

information about their medication. 246 

Thirteen age, sex, and education matched healthy controls were recruited from 247 

the School of Psychology community panel at Cardiff University and from patients’ 248 

spouses, carers or family members. Participants were eligible to take part in the study 249 

if they had no history of head injury, stroke or cerebral haemorrhages. Control 250 

participants were excluded if they had a history of neurological or psychiatric 251 

conditions and patients if they had a history of any other neurological conditions. All 252 

patients had to be on stable medication for a minimum of four weeks prior to the study 253 

and during the study. Participants also had to be eligible for MRI scanning i.e. to not 254 

present contraindications such as pacemakers, metal clips, stents or significant chorea 255 

which would have prevented them from lying still in the scanner. Two patients were 256 

not MRI compatible, four patients withdrew during the study and one patient’s MRI 257 

data had to be excluded due to excessive motion. In total, MRI data could be analysed 258 

for eight of the patients. Out of the thirteen control participants, one participant had to 259 

be excluded due to an incidental MRI finding and two participants dropped out of the 260 

study. One participant turned out not eligible for MRI. Thus, in total MRI data from nine 261 
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controls were available for analyses. Table 2 summarizes information about 262 

demographic variables and performance in the Montreal Cognitive Assessment 263 

(MoCA) (Nasreddine et al., 2005) and in the revised National Adult Reading Test 264 

(NART-R) (Nelson, 1991) for those patients and controls whose MRI data were 265 

included in the analyses. Both groups did not differ significantly in age or the MoCA 266 

score. However, controls were on average slightly older and performed better on the 267 

MoCA. Controls also had a significantly higher NART-IQ than patients. 268 

 269 

 270 

Table 1. Demographics and background clinical information of the patients for which 271 

the MRI data could be analysed. 272 

273 

Abbreviations: CAG = cytosine-adenine-guanine, F = Female, M = Male, TMS = Total 274 

Motor Score out of 124 (the higher the scores the more impaired the performance). 275 

FAS = Functional Assessment Score out of 25 (the higher the scores the better the 276 

performance). HD = Huntington’s disease, SD = Standard Deviation. 277 

 278 

Patient Age             Sex Length of 
CAG 
repeats

TMS FAS Medications

HD1 22 M 51 17 23 Citalopram 30 mg
HD2 47 M 46 69 18 Sertraline50 mg
HD3 62 F 41 4 25 Novate ointments, 

Naproxen
HD4 50 M 40 0 25 Nil

HD5 68 F 43 40 17 Mirtazapine 30 mg
HD6 58 M 43 0 25 Atorvastatin 20 mg
HD7 30 F 42 0 25 Nil
HD8 51 M 43 20 23 Co-codamol 500 mg, 

Brufen 400 mg

Mean 48.5 43.625 18.75 22.625
SD 15.62 3.46 24.65 3.29
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Table 2. Demographics and general cognitive profile of patients and controls. Both 279 

groups were matched for age, sex and years of education but the patient group 280 

performed less well than the control group in the MoCA. 281 

 282 

Abbreviations: MoCA = Montreal Cognitive Assessment score out of 30; NART-IQ = 283 

verbal IQ estimate based on the National Adult Reading Test. 284 

 285 

Training intervention: Drumming-based rhythm exercises    286 

The same rhythm exercise and drumming training as described in Metzler-287 

Baddeley et al. (2014) was applied. Patients and controls were provided with twenty-288 

two 15 min training sessions on CDs, a pair of bongo drums and a drumming diary 289 

and could practice the drumming exercise at home. Each training session introduced 290 

a drumming pattern, and trainees had to drum along with the instructor and to 291 

reproduce as accurately as possible the timing and temporal speed of each bongo 292 

beat. The complexity and speed of the drumming patterns increased gradually over 293 

the sessions. Participants were asked to train for 15 min per day, 5 times per week, 294 

for 2 months (40 sessions in total), and to record each training session in the diary. 295 

Compliance was also monitored with regular weekly phone calls. Whenever possible, 296 

carers and/or spouses were also involved to support and encourage participants with 297 

the training. Participants were instructed to repeat each session at least twice but 298 

could progress through the training at their own pace and repeat sessions more often 299 

Mean (SD) Patients (n = 8) Controls (n = 9) t-statistic (p-value)
Age 48.5 (15.62) 52.6 (14.56) t(15) = 0.554 (0.59)
NART-IQ 106.3 (13.13) 121.22 (4.32) t(15) = 3.212 (0.006)
MoCa 23 (5.6) 27.67 (1) t(15) = 2.463 (0.26)
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if they felt it necessary. Control participants started with Session 3 since the first two 300 

exercises were designed for patients.  301 

 302 

Drumming assessment 303 

Any progress in drumming ability was assessed by digitally recording 304 

participants’ drumming performance for three patterns of ascending levels of difficulty 305 

(easy, medium and hard), which were not part of the training sessions, at baseline and 306 

after the training. Each recording was judged by an independent rater, blind to group 307 

and time, according to an adopted version of the Trinity College London marking 308 

criteria for percussion (2016) (www.trinitycollege.com). This comprised categories of 309 

rhythm, synchronization with backing track, accuracy, hand control, use of available 310 

percussion, and general confidence and style. Drumming performance was assessed 311 

for each category on a five point rating scale from poor (1) to excellent (5) with a 312 

maximal possible score of 30.  313 

 314 

Cognitive assessments 315 

Different aspects of cognition and executive function were assessed with 316 

standard neuropsychological paper and pencil tests before and after the training as 317 

described in Metzler-Baddeley et al. (2014). Parallel versions of all tests matched for 318 

difficulty were used and counterbalanced across participants and time of 319 

assessments. Multi-tasking was assessed with a dual task requiring simultaneous box 320 

crossing and digit sequences repetition (Baddeley, 1996). Attention switching was 321 

assessed with the trails test (VT) requiring the verbal generation of letter and digit 322 
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sequences in alternate order relative to a baseline condition of generating letter or digit 323 

sequences only (Baddeley, 1996). Distractor suppression was tested with the Stroop 324 

task involving the naming of incongruent ink colours of colour words (Trenerry et al., 325 

1989). Verbal and category fluency were tested using the letter cues “F”, “A”, “S” and 326 

“M”, “C”, “R” as well as the categories of “animals” and “boys’ names” and 327 

“supermarket items” and “girls’ names” respectively (Baldo, Shimamura, Delis, 328 

Kramer, & Kaplan, 2001). In total, we assessed 7 outcome variables, and percentage 329 

change scores in performance were computed for each of these variables (Table 3). 330 

 331 

MRI data acquisition 332 

MRI data were acquired on a 3 Tesla General Electric HDx MRI system (GE Medical 333 

Systems, Milwaukee) using an eight channel receive-only head RF coil at the Cardiff 334 

University Brain Research Imaging Centre (CUBRIC). The MRI protocol comprised 335 

the following images sequences: high-resolution T1-weighted, diffusion-weighted and 336 

quantitative magnetization transfer. The acquisition of the T1-weighted anatomical 337 

image (FSPGR) was based on the following parameters: 256 x 256 acquisition matrix, 338 

TR = 7.8 ms, TE = 2.9 ms, flip angle = 20, 172 slices, 1mm slice thickness, FOV = 339 

23cm. Diffusion data were acquired employing a spin-echo echo- planar sequence 340 

with diffusion encoded along 60 isotropically-distributed orientations according to an 341 

optimized gradient vector scheme (Jones et al., 1999) and six non-diffusion weighted 342 

scans (96 x 96 acquisition matrix, TR/TE = 87ms, b-value = 1200 s/mm2, 60 slices, 343 

2.4 mm slice thickness, spatial resolution 1.8 x 1.8 x 2.4 mm). Diffusion data 344 

acquisition was peripherally gated to the cardiac cycle with a total acquisition time of 345 

~30 min depending on the heart rate.  346 
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Table 3. Cognitive outcome variables assessed in this study. Tests were carried out 347 

before and after the training, and a percentage change score was computed for each 348 

variable. 349 

 350 

In addition, Fr maps were acquired using the CHARMED protocol  (Assaf and 351 

Basser, 2005) (slice thickness: 2.4mm, FE: 126 ms, TR: 17,000 ms; 45 gradient 352 

orientations distributed on 8 shells; maximum b-value: 8700s/mm2; FOV: 230 mm x 353 

230 mm, acquisition matrix: 96 x 96). 354 

To obtain MPF maps, an optimized 3D MT-weighted fast spoiled gradient 355 

recalled-echo (SPGR) sequence (Cercignani and Alexander, 2006) was used with the 356 

following parameters: TR/TE = 25.82/2.18 ms; Gaussian MT pulses, duration t = 14.6 357 

Outcome variable Cognitive Test Brief Description
Number of correct digits recalled 
under single task condition

Dual task requiring simultaneous 
box crossing and digit 
sequences repetition (Baddeley, 
1996)

Correct number of recalled digits 
in a standard digit span test.

Number of correct digits recalled 
under dual task conditions

Dual task requiring simultaneous 
box crossing and digit 
sequences repetition (Baddeley, 
1996)

Correct number of recalled digits 
in the dual condition, which 
combines box-crossing and digit 
span.

Total number of boxes identified 
under dual task condition

Dual task requiring simultaneous 
box crossing and digit 
sequences repetition (Baddeley, 
1996)

Number of boxes identified in 
the dual condition, which 
combines box-crossing and digit 
span.

Stroop interference score Stroop test (Trenerry et al., 
1989)

Calculated by subtracting the 
number of errors from the total 
number of items presented in 
the test. 

Trail test switching Trials test (Baddeley, 1996) Performance accuracy: reflects 
the ability of moving flexibly from 
one set of rules to another in 
response to changing task 
requirements.

Verbal fluency Verbal and category fluency test 
(Delis et al., 2001)

Number of generated words 
starting with the following letters: 
“F”, “A”, “S” and “M”, “C”, “R”

Category fluency Verbal and category fluency test 
(Delis et al., 2001)

Number of generated words 
belonging to the following 
categories: “animals” and “boys’ 
names” and “supermarket items” 
and “girls’ names”.
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ms; acquisition matrix = 96x96x60; BW=±244Hz. The following off-resonance 358 

irradiation frequencies (Θ) and their corresponding saturation pulse amplitude (ΔSAT) 359 

for the 11 Magnetization transfer (MT) weighted images were optimized using Cramer-360 

Rao lower bound optimization (Cercignani & Alexander, 2006): D = [1000 Hz, 1000 361 

Hz, 12062 Hz, 47185 Hz, 56363 Hz, 2751 Hz, 1000 Hz, 1000 Hz, 2768 Hz, 2791 Hz, 362 

2887 Hz] and their corresponding qSAT = [332°, 333°, 628°, 628°, 332°, 628°, 628°, 363 

628°, 628°, 628°, 628°]. Longitudinal relaxation rate of the system was estimated using 364 

3D SPGRs (TR = 6.85 ms, TE = 1.2 ms, FOV and resolution is the same as the MT 365 

sequence) with three different flip angles (theta = 1 °, 7 °, 3 °). B0 maps consisted of 366 

two 3D spoiled, gradient recalled acquisitions (SPGR), which were collected with 367 

different echo-times (TE = 9ms and 7ms respectively; TR= 20ms; matrix=128x128; 368 

FOV= 220 mm; slice thickness 3mm) (Jezzard and Balaban, 1995). 369 

 370 

MRI data processing  371 

The diffusion-weighted data were corrected for distortions induced by the 372 

diffusion-weighted gradients, artifacts due to head motion and due to echo planar 373 

imaging (EPI) induced geometrical distortions by registering each image volume to the 374 

T1-weighted anatomical images (Irfanoglu, Walker, Sarlls, Marenco, & Pierpaoli, 375 

2012), with appropriate reorientation of the encoding vectors (Alexander Leemans & 376 

Jones, 2009), all done in ExploreDTI (Version 4.8.3) (Leemans, Jeurissen, Sijbers, & 377 

Jones, 2009). A two-compartment model was then fitted to derive maps of FA and RD 378 

in each voxel (Metzler-Baddeley, O’Sullivan, Bells, Pasternak, & Jones, 2012). 379 

CHARMED data were corrected for motion and distortion artefacts according to the 380 

extrapolation method of Ben-Amitay, Jones, and Assaf (2012). The number of distinct 381 
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fiber populations (1, 2, or 3) in each voxel was obtained using a model selection 382 

approach (De Santis et al., 2014) and Fr was calculated per voxel with an in-house 383 

software (De Santis et al., 2014) coded in MATLAB (The MathWorks, Natick, MA) 384 

MT-weighted SPGR volumes for each participant were co-registered to the MT-385 

volume with the most contrast using an affine (12 degrees of freedom, mutual 386 

information) registration to correct for inter-scan motion using Elastix (Klein, Staring, 387 

Murphy, Viergever, & Pluim, 2010). The 11 MT-weighted SPGR images and T1 map 388 

were modelled by the two pool Ramani’s pulsed MT approximation (Henkelman et al., 389 

1993; Ramani et al., 2002), which included corrections for amplitude of radio-390 

frequency (B0 and B1) field inhomogeneities. This approximation provided MPF maps, 391 

which were nonlinearly warped to the T1-weighted imaging using the MT-volume with 392 

the most contrast as a reference using Elastix (normalized mutual information cost 393 

function) (add REF). 394 

 395 

Deterministic Tractography 396 

Training-related changes in FA, RD, Fr, and MPF were quantified using a 397 

tractography approach to localize measurements to specific WM pathways, i.e. those  398 

interconnecting the putamen and the supplementary motor area bilaterally (SMA-399 

Putamen), and within three segments of the corpus callosum (CCI, CCII and CCIII) 400 

(Hofer & Frahm, 2006) (Figure 1).  401 

The SMA has efferent and afferent projections to the primary motor cortex and 402 

is involved in movement execution, and previous evidence suggests that symptomatic 403 

HD patients present altered DT-MRI metrics in the putamen-motor tracts (Poudel et 404 
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al., 2014).  The anterior and anterior-mid sections of the corpus callosum contain fibres 405 

connecting the motor, premotor and supplementary motor areas in each hemisphere 406 

(Hofer & Frahm, 2006). Previous work has demonstrated a thinning of the corpus 407 

callosum in post-mortem HD brains (Vonsattel & Difiglia, 1998), altered diffusion 408 

tensor metrics in the corpus callosum of both pre-symptomatic and symptomatic HD 409 

patients (Rosas et al., 2010; Phillips et al., 2013), and a correlation between these 410 

metrics and performance on tests assessing motor function (Dumas et al., 2012). 411 

Whole brain tractography was performed for each participant in their native 412 

space using the damped Richardson-Lucy algorithm (Dell’acqua et al., 2010), which 413 

allows the recovery of multiple fiber orientations within each voxel including those 414 

affected by partial volume. The tracking algorithm estimated peaks in the fiber 415 

orientation density function (fODF) by selecting seed points at the vertices of a 2 × 2 416 

× 2 mm grid superimposed over the image and propagated in 0.5-mm steps along 417 

these axes re-estimating the fODF peaks at each new location (Jeurissen, Leemans, 418 

Jones, Tournier, & Sijbers, 2011). Tracks were terminated if the fODF threshold fell 419 

below 0.05 or the direction of pathways changed through an angle greater than 45° 420 

between successive 0.5 mm steps. This procedure was then repeated by tracking in 421 

the opposite direction from the initial seed-points.  422 

Three-dimensional tractograms of the WM tracts of interest were extracted from 423 

the whole-brain tractograms by applying way-point of interest gates (Catani et al., 424 

2002). ROIs were drawn manually by one operator (JBT) blind to the identity of each 425 

dataset on color-coded fiber orientation maps in native space guided by the following 426 

anatomical landmark protocols (Figure 2).  427 

 428 
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Corpus callosum 429 

The reconstructions of the segments of the CC followed the protocol by Hofer 430 

and Frahm (Hofer & Frahm, 2006) and are illustrated in Figure 2A. Firstly, the midline 431 

of the CC located between the most anterior point of the genu and the most posterior 432 

point of the splenium was identified and the CC was divided into an anterior and a 433 

posterior half. CCI, the most anterior portion of the CC that maintains prefrontal 434 

connections between both hemispheres, was reconstructed by placing a sagittal 435 

SEED ROI of about 1/6 of the anterior half of the CC around the genu. CCII, the portion 436 

that maintains connections between premotor and supplementary motor areas of both 437 

hemispheres, was reconstructed by placing a sagittal way-point of interest gate 438 

between the posterior edge of Segment I and the midline of the corpus CC. Segment 439 

III, the portion that maintains connections between primary motor cortices of both 440 

hemispheres, was reconstructed by placing a sagittal gate immediately after the 441 

midline covering about 1/3 of the posterior half of the CC. Segment reconstructions 442 

were visually inspected and if necessary gates were placed to exclude any streamlines 443 

that were not consistent with the known anatomy of the CC. 444 

SMA-putamen pathway 445 

One axial way-point gate was placed around the putamen and one axial gate 446 

around the supplementary motor cortex (Leh, Ptito, Chakravarty, & Strafella, 2007) 447 

(Figure 2B). A way-point gate to exclude brain stem fibers was placed inferior to the 448 

putamen.  449 

 450 
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 451 

Figure 2. Sagittal views of the tractography protocols. (A) Segments I, II and III of 452 

the corpus callosum (B) SMA - putamen pathway. Booleian logic OR waypoint regions 453 

of interest gates are illustrated in blue; AND gates in green. M = Midline. 454 

 455 

 456 

Statistical analyses 457 

Statistical analyses were carried out in R Statistical Software (Foundation for 458 

Statistical Computing, Vienna, Austria). 459 

Assessment of training effects on drumming performance 460 

Improvements in drumming performance were analysed with repeated 461 

measure analysis of variance (ANOVA) testing for the effects of group (HD, controls), 462 

time of assessment (before and after the training) and group by time interaction 463 

effects. Significant effects were further explored with post-hoc paired and independent 464 

t-tests. The reliability of the post-hoc analyses was assessed with bootstrap analysis 465 

based on 1000 samples and the 95% confidence interval (CI) of the mean difference 466 

is provided for each significant comparison.   467 
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Assessment of group differences in the effect of training on cognitive performance 468 

Performance measures in executive function tasks have been shown to share 469 

underlying cognitive structures (Testa, Bennett, & Ponsford, 2012). Therefore, PCA 470 

was employed to reduce the complexity of the cognitive data and hence the problem 471 

of multiple comparisons as well as to increase experimental power.  PCAs were run 472 

on change scores for all participants across both groups. Because of the relatively 473 

small sample size, we first confirmed with the Kaiser-Meyer-Olkin (KMO) test that our 474 

data was suited for PCA. Subsequently, we followed guidelines to limit the number of 475 

extracted components (Preacher & MacCallum, 2002; Winter, Dodou, & Wieringa, 476 

2009), as follows: first, we employed the Kaiser criterion of including all components 477 

with an eigenvalue greater than 1; second, we inspected the Cattell scree plot (Cattell, 478 

1966) to identify the minimal number of components that accounted for most variability 479 

in the data; third, we assessed each component’s interpretability. A PCA procedure 480 

with orthogonal Varimax rotation of the component matrix was used. Loadings that 481 

exceeded a value of 0.5 were considered as significant.  482 

Next, we assessed group differences in the component scores with permutation 483 

analyses, to understand whether the training had differentially affected HD patients as 484 

compared to controls. Significant group differences were tested using 5,000 485 

permutations. Permutation testing relies only on minimal assumptions and can 486 

therefore be applied when the assumptions of a parametric approach are untenable 487 

such as in the case of small sample sizes. Multiple comparison correction was based 488 

on a 5% false discovery rate (FDR) using the Benjamini-Hochberg procedure 489 

(Benjamini & Hochberg, 1995). 490 

 491 
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Training effects on WM microstructure  492 

Median measures of FA, RD, Fr and MPF were derived for each of the 493 

reconstructed tracts in ExploreDTI. A percentage change score in these measures 494 

between baseline and post-training was calculated in each tract (CCI, CCII, CCIII, left 495 

and right SMA-Putamen).  496 

Previous research has shown that variation in the microstructural properties of 497 

WM may represent a global effect, rather than being specific to individual tracts, and 498 

that WM measures are highly correlated across WM areas (Lövdén et al., 2010; Penke 499 

et al., 2010; Wahl et al., 2010). Therefore, we inspected the correlation matrices for 500 

each of the measures investigated and found that MPF values were highly correlated 501 

across tracts, whereas this was not true for the other metrics (Figure 3). 502 

Hence, as for the cognitive data, percentage change scores in MPF across the 503 

different tracts were transformed with PCA in order to extract meaningful anatomical 504 

properties. Because of the relatively small sample size for PCA, we followed guidelines 505 

to limit the number of extracted components (Preacher & MacCallum, 2002; Winter, 506 

Dodou, & Wieringa, 2009), as described above for the PCA of cognitive change 507 

scores. 508 

PC scores for each participant were used as dependent variables in a 509 

permutation-based analysis using 5,000 permutations to assess group differences in 510 

training associated changes in MPF. Finally, as post-hoc exploration, we tested 511 

whether we could detect between-groups differences in MPF changes in the individual 512 

tracts using 5000 permutations.  513 

 514 
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 515 

 516 

  517 

Figure 3. Correlation matrices for the MRI metrics investigated across the 518 

different WM pathways. Colour intensity and the size of the circles are proportional 519 

to the strength of the correlation. * p < 0.05, ** p < 0.01, *** p < 0.001. MPF values 520 

were highly correlated across tracts, whereas this was not true for the other metrics 521 
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Training-associated changes in FA, Fr and RD were investigated with 522 

permutation analyses separately for each tract. Significant group differences in these 523 

measures were tested using 5,000 permutations. Multiple comparison correction was 524 

based on a 5% FDR using the Benjamini-Hochberg procedure (Benjamini & Hochberg, 525 

1995). 526 

TBSS (Smith et al., 2006) was carried out to investigate baseline differences in 527 

MPF voxelwise between HD subjects and healthy controls. First, a mean FA image 528 

was created and thinned to generate a mean FA skeleton, thought to represent the 529 

centres of all WM tracts common to the sample investigated. Subsequently, all 530 

subjects' warped MPF data were merged into a 4D file, and this was projected onto 531 

the original mean FA skeleton (using the original FA data to find the projection vectors), 532 

resulting in MPF 4D projected data.  533 

To produce significance maps, a voxel-wise analysis was performed on the 534 

MPF projected 4D data for all voxels with FA ≥ 0.20 to exclude peripheral tracts where 535 

significant inter-subject variability exists. Inference based on permutations (5,000 536 

permutations) and threshold-free-cluster-enhancement were used. The significance 537 

level was set at p < 0.05 and corrected by multiple comparisons (family-wise error, 538 

FWE). Maps of significance were generated to identify differences in areas of MPF 539 

between patients with HD and controls. 540 

Relationship between changes in MRI measures and changes in drumming and 541 

cognitive  performance 542 

We computed percentage change scores for the drumming performance, in the 543 

same way cognitive change scores were calculated. Scores were computed for the 544 
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easy test pattern in patients and for the medium test pattern in controls, as these were 545 

the training patterns that showed a significant improvement.  546 

Spearman correlation coefficients were calculated between drumming and 547 

cognitive performance, and microstructural components that showed significant group 548 

differences, to assess whether microstructural changes were related to any drumming 549 

and/or cognitive benefits of the training. 550 

 551 

Results  552 

Training effects on drumming performance  553 

The repeated measure ANOVA of the ratings of drumming performance for the 554 

easy and medium test pattern showed significant group [easy: F(1,17) = 19.6, p ≤ 555 

0.001; medium: F(1,17) = 13.1, p = 0.002] and time effects [easy: F(1,17) = 10.95, p ≤ 556 

0.004; medium: F(1,17) = 13.4, p = 0.002] but no interaction effects (easy: p = 0.8; 557 

medium: p=0.3). For the hard test pattern there was only a significant group effect 558 

[F(1,17) = 9.95, p = 0.006] but no time (p = 0.1) or interaction effects (p = 0.4), Figure 559 

4 summarises the average drumming performance per group and time point. Overall 560 

patients’ drumming performance was poorer than controls. Patients improved their 561 

drumming performance significantly for the easy pattern [t(10) = 2.7, p = 0.02; 95% CI: 562 

1.5 – 7.8] and controls for the medium pattern [t(7) = 3.8, p = 0.01; 95% CI: 2.8 – 8.5]. 563 

 564 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 24, 2019. ; https://doi.org/10.1101/2019.12.24.887406doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.24.887406
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

28 

 565 

Figure 4. Mean ratings for drumming performance according to the Trinity College 566 

London marking criteria for percussion (2016) as a function of group and time point. 567 

Patients improved their drumming performance significantly for the easy test pattern 568 

and controls for the medium difficult test pattern. * p < 0.05, ** p < 0.01, bootstrapping 569 

based on 1000 sample 570 

 571 

 572 

Assessment of group differences in the effect of training on cognitive 573 

performance 574 

Three components that accounted for 79% of the variance of performance 575 

changes in the cognitive benchmark tests were extracted. The first component loaded 576 

highly on performance changes in the dual task (total number of boxes identified under 577 

dual task condition), the Stroop task (Stroop interference score), and the trails making 578 

task (Trail test switching); because all of these variables measure executive functions 579 

including focused attention and distractor suppression, the first component was 580 

labelled “executive” component. The second component loaded on variables reflecting 581 
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the ability to correctly recall digits sequences (i.e. number of correct digits recalled 582 

under single task condition, number of correct digits recalled under dual task condition) 583 

and was therefore called “working memory capacity” component. Finally, the third 584 

extracted component loaded highly on verbal and category fluency, and was therefore 585 

named “fluency” component (Table 4). 586 

We tested whether the two groups differed in change in cognition, by running 587 

permutation analyses on the individual scores for the three extracted components. The 588 

HD group differed significantly from the healthy control group in the executive 589 

component, t = -1.03, p = 0.008 , FDR-corrected p = 0.024. The HD group was 590 

associated with positive change, whereas the control group was associated with 591 

negative change in this component. However, no significant group differences were 592 

detected in the other two components [Working Memory capacity: t = -0.22, p = 0.3296 593 

, FDR-corrected p = 0.3296; Fluency: t = -0.39, p = 0.242  FDR corrected p = 0.3296.  594 

 595 

 596 

Training effects on WM microstructure  597 

Table 4 reports a summary of the permutation analyses of training associated 598 

changes in FA, RD, Fr and MPF, across the different tracts. 599 

Training-associated group differences in FA 600 

 Permutation analyses of FA changes across the different tracts revealed no 601 

significant differences between HD and control groups [CCI: t = 1.22, p = 0.91 (FDR-602 

corrected); CCII: t = 2.65, p = 0.91 (FDR-corrected); CCIII: t = 0.325, p = 0.13 (FDR-603 

corrected); right SMA-Putamen: t = -9.54, p = 0.10 (FDR-corrected); left SMA-604 

Putamen: t = 5.16, p = 0.77 (FDR-corrected). 605 
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Table 4. Rotated Component Loadings on Change in the Cognitive Benchmark Tests. 606 

Significant loadings (>0.5) are highlighted in bold. 607 

 608 

 609 

 610 

Training-associated group differences in RD 611 

 There were no significant differences in RD changes following training 612 

between HD patients and controls [CCI: t = -0.48, p = 0.45 (FDR-corrected); CCII: t = 613 

-1.29, p = 0.45 (FDM-corrected); CCIII: t = -1.04, p = 0.45 (FDR-corrected); right SMA-614 

Putamen, t = 4.01 , p = 0.81 (FDR-corrected); left SMA-Putamen, t = -3.68, p = 0.39 615 

(FDR-corrected). 616 

Training-associated group differences in Fr 617 

 Permutation analyses of Fr changes across the different tracts revealed no 618 

significant differences between HD and control groups [CCI: t = 3.39, p = 0.82 (FDR-619 

% Change Executive Working memory 
capacity

Fluency

Total box (dual) 0.864 0.022 0.419

Stroop interference 
score

0.811 -0.270 -0.267

Trail test switching -0.731 -0.470 0.162

Correct digits under 
single task condition

0.201 0.904 0.129

Correct digits under 
dual task condition

-0.193 0.855 -0.018

Category fluency -0.070 -0.138 0.817

Verbal fluency -0.026 -0.232 -0.799
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corrected; CCII: t = -0.17, p = 0.82 FDR-corrected; CCIII: t = 3.08, p = 0.82 (FDR-620 

corrected); right SMA-Putamen: t = -5.24, p = 0.82 (FDR-corrected); left SMA-621 

Putamen: t = 1.05, p = 0.82 (FDR-corrected)]. 622 

Training-associated group differences in MPF 623 

PCA of change scores in MPF revealed one single component explaining 624 

70.2% of the variance. This component presented high loadings from all the tracts 625 

investigated. A significant group difference was present for the MPF component, 626 

indicating that HD patients presented higher changes in MPF in response to training, 627 

as compared to controls [ t(14) = -1.743, n = 17, p = 0.03].  628 

Finally, we found that the mean difference in MPF change scores was 629 

significantly different between the two groups for CCII [ t(14) = -20.72, p=0.04], CCIII 630 

[t(14) = -25.87, p=0.04], and the right SMA-putamen pathway [ t(14) = -25.48, p=0.04] 631 

after FDR correction, therefore indicating that there was a differential effect of training 632 

between the two groups on MPF within these tracts (Figure 5).  633 

 634 

Investigation of the relationship between training-associated changes in MRI 635 

measures and changes in drumming and cognitive performance. 636 

 We assessed whether changes in microstructure were associated with 637 

changes in drumming performance by assessing the correlation between the ‘MPF’ 638 

component scores and percentage changes in drumming performance. These, 639 

however, did not correlate with changes in MPF (PC1: rs = -0.14, p > 0.05). 640 
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Furthermore, to ascertain whether changes in microstructure were related to 641 

changes in cognitive performance, correlation coefficients were calculated between 642 

the ‘Executive’ and the ‘MPF’ component scores. No correlation was observed 643 

between these component scores (rho = .348, p = .171). 644 

 645 

Investigation of baseline differences in MPF 646 

We found a statistically significant, right-lateralised, reduction in baseline MPF 647 

in the HD group when compared to controls, in the midbody of the CC (t = 3.13, p = 648 

.05, FWE corrected). Figure 6 shows the areas that displayed a reduction of MPF in 649 

HD patients, in blue. 650 

 651 

Discussion 652 

Based on evidence that myelin impairment underpins WM damage in HD 653 

(Bartzokis et al., 2007), and the suggestion that myelin plasticity underlies the learning 654 

of new motor skills (Lakhani et al., 2016; Scholz et al, 2009), the present study 655 

explored whether two months of drumming training would result in changes in WM 656 

microstructure in early HD patients. Specifically, we expected to detect myelin 657 

plasticity, as indicated by changes in MPF. Further, based on evidence from studies 658 

reporting greater training-associated changes in structural MRI metrics in brain injured 659 

patients than healthy subjects (Caeyenberghs et al., 2018), we hypothesised that 660 

these changes would be present to a higher degree in HD patients than in healthy 661 

subjects. 662 

 663 
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Table 4. Summary statistics for the permutation analysis of training effects on FA, RD, 664 

Fr and MPF, across the investigated tracts. 665 

 666 

 667 

 668 

MMPF p t FDR corrected p
CCI 0.080 -12.06 0.10
CCII 0.029 -20.72 0.04
CCIII 0.019 -25.87 0.04
Left SMA-Putamen 0.380 -4.34 0.38
Right SMA-Putamen 0.018 -25.48 0.04

RD p t FDR corrected p
CCI 0.358 -0.48 0.44
CCII 0.215 -1.29 0.44
CCIII 0.302 -1.04 0.44
Left SMA-Putamen 0.079 -3.68 0.39
Right SMA-Putamen 0.802 4.01 0.80

FA p t FDR corrected p
CCI 0.909 1.22 0.91
CCII 0.910 2.65 0.91
CCIII 0.480 -0.13 0.91
Left SMA-Putamen 0.772 5.16 0.91
Right SMA-Putamen 0.023 -9.54 0.11

Fr p t FDR corrected p
CCI 0.810 0.03 0.81
CCII 0.496 -0.001 0.81
CCIII 0.817 0.03 0.81
Left SMA-Putamen 0.582 0.01 0.81
Right SMA-Putamen 0.199 -0.05 0.81
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 669 

Figure 5. MPF changes scores: PCA scree plot (A); correlation plot summarising 670 

how each variable is accounted for in every principal component - colour intensity and 671 

the size of the circles are proportional to the loading (B); Bar graph of the percentage 672 

change in MPF across the inspected tracts; Error bars represent the standard error; 673 

training was associated with a significantly greater change in MPF in CCII, CCIII, and 674 

right SMA-Putamen; * (p<0.05), results corrected for multiple comparisons with FDR 675 

(C). 676 

 677 
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 678 

 679 

Figure 6. TBSS analysis of baseline MPF values (A). Light blue areas show a 680 

significant reduction of MPF in patients with HD compared to controls (p < 0.05, FWE 681 

corrected). The midbody of the CC was mostly found to be affected, which carries 682 

connections to the premotor, supplementary motor and motor areas of the brain. 683 

Tracts showing significantly greater MPF changes in HD patients post-training 684 

as compared to controls (B). Areas showing significant MPF reductions at baseline 685 

overlap with tracts showing significant changes post-training (i.e. CCII and CCIII). 686 

 687 

 688 

First, we demonstrated a behavioural effect of the drumming training by 689 

showing that patients improved their drumming performance significantly for the easy 690 

test pattern and controls for the medium test pattern. This result suggests that the 691 

training was successful in improving patients’ drumming abilities.  692 

With regards to the white matter microstructural measurements, we did not 693 

detect any group differences in training-associated changes in the diffusion based 694 

indices of FA, RD and Fr. DT-MRI metrics are influenced by the underlying fibre 695 
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architecture (De Santis et al., 2014). For example, in two voxels with identical axonal 696 

density and myelin content, these metrics may diverge, if one of the voxels lies in a 697 

region with one predominant fibre orientation, while the other lies in a region 698 

presenting several crossing fibres. Though Fr from the CHARMED model enables 699 

improved angular resolution as compared to DTI, this does not account for the 700 

contribution of water trapped in oligodendrocyte cells or other subcellular structures 701 

(Szafer, Zhong, & Gore, 1995). However, a number of human and animal studies have 702 

shown oligodendrocyte changes across the lifespan in HD (Ernst et al., 2014; Gómez-703 

Tortosa et al., 2001; Jin et al., 2015; Myers et al., 1991). Therefore, while modelling 704 

one (DTI) or two (CHARMED) diffusion compartments might be appropriate when 705 

investigating healthy WM or other patient populations, accounting for changes in other 706 

compartments of WM microstructure, such as myelin, when assessing HD patients, 707 

might enable greater sensitivity to WM microstructural changes. Additionally, a study 708 

investigating which metrics account for the largest inter-subject variability  and 709 

reporting the minimal sample sizes needed to detect an effect in diffusion measures 710 

(De Santis et al., 2014), revealed that, amongst the microstructural parameters 711 

investigated, FA and Fr required the largest sample size. It is therefore plausible that, 712 

in the current study, we did not have enough power to detect a training-associated 713 

change in these measures.  714 

Through PCA of changes in MPF, we identified a single component explaining 715 

most of the variability in the data which had high loadings on all the tracts investigated. 716 

Moreover, we observed a significant group difference in training-associated changes 717 

in the MPF component. Specifically, HD patients showed significantly increases in 718 

MPF relative to controls. Furthermore, through post-hoc investigations, we detected a 719 
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significant difference in MPF in training-associated changes within the CCII, CCIII and 720 

the right SMA-putamen pathway between patients and controls. 721 

 Interestingly, TBSS analysis of baseline differences in MPF suggested that 722 

those areas showing significant MPF reductions at baseline were partly overlapping 723 

with the tracts that showed significant changes post-training (i.e. CCII and CCIII). 724 

These areas of the CC carry connections to the premotor, supplementary motor and 725 

motor areas of the brain.  726 

MPF can also be affected by inflammation (Henkelman, Stanisz, & Graham, 727 

2001) and in manifest HD it is likely that inflammation goes hand in hand with myelin 728 

breakdown (Rocha et al., 2016). However, a recent CSF biomarker study found no 729 

evidence of neuro-inflammation in early-manifest HD (Vinther-Jensen et al., 2016). 730 

Therefore, though preliminary, our findings suggest that two months of drumming and 731 

rhythm exercises may result in myelin remodelling in patients with early HD. This, in 732 

turn, suggests that tailored behavioural stimulation might be further investigated as a 733 

therapeutic aiming to delay disease progression.  734 

In the present study, healthy controls did not show training-associated MPF 735 

changes, albeit a trend was present for negative changes. This pattern is opposite to 736 

the one observed in the patients’ group. In the central nervous system, axon 737 

myelination has several goals, including reduction of conduction delays and lowering 738 

energy costs. This idea of ‘system optimization’ (Chomiak & Hu, 2009) encompasses 739 

several cellular mechanisms such as de novo myelination, myelin repair, adjustment 740 

in conduction velocity, changes in myelin thickness (Kaller et al., 2017). These 741 

dynamic changes in myelination identify a process by which an optimal status of the 742 

myelinated infrastructure is identified. This, in turn, is linked to the idea of system 743 
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efficiency, whereby changes in myelin content might be dependent on where the 744 

starting point is, compared to an optimal level of myelination (Rushton, 1951). 745 

Therefore, ideal network function might not be achieved only by maximising the speed 746 

of axon conduction through increased myelination; cellular mechanisms ensuring 747 

appropriate conduction delays, as well as conduction velocity, will be equally 748 

important. Hence, it is plausible that the observed pattern of training-associated myelin 749 

remodelling may be different in healthy subjects as compared to HD patients. This is 750 

the case because HD is associated with myelin damage (Bartzokis et al., 2007), as 751 

shown by our TBSS results of reduced baseline MPF in HD patients. Furthermore, 752 

previous studies have reported that training-associated percentage changes in MRI 753 

measures tend to be higher in studies of traumatic brain injury than those shown by 754 

studies of healthy subjects (Caeyenberghs et al., 2018).  755 

Unfortunately, analyses in the present study cannot truly disentangle the impact 756 

of prior WM microstructural differences on microstructural plasticity during learning. 757 

Notably, the behavioural effect of drumming training and cognition differed between 758 

patients and controls. Patients improved in the easy drumming test pattern, and control 759 

improved in the medium test pattern. Furthermore, patients showed increases in the 760 

executive function components whilst control participants did not improve their 761 

cognition. Therefore, different patterns of microstructural changes might not only be 762 

due to WM microstructural differences between patients and controls prior to learning, 763 

but also to a different behavioral effect of the task between HD subjects and controls. 764 

For instance, control participants performed close to ceiling in the easy test pattern, 765 

and as the training was tailored to patients’ needs, some of the earlier practice 766 

sessions may not have optimally challenged them. A more taxing training for patients 767 

than controls may also explain why improvements in executive functions and apparent 768 
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myelin were only observed for the patients but not for the controls.  769 

A critical question relevant to all training studies concerns the functional 770 

significance of any observed neural changes. In the present study, we expected 771 

microstructural changes to be related to changes in motor and cognitive functions, as 772 

assessed by drumming and cognitive tests performance (Metzler-Baddeley et al., 773 

2014). However, we did not detect a significant relationship between changes in MRI 774 

measures and changes in drumming proficiency or performance in cognitive tests.  775 

Other studies have failed to find a relationship between difference scores in 776 

structural MRI metrics and behavioural or clinical changes (Nordvik et al., 2012). We 777 

suggest that this might have been due to non-specific training-related neural 778 

responses. Specifically, while the training exercise might have triggered changes in 779 

brain structure, training-induced changes may not necessarily co-vary with 780 

improvements in performance. Alternatively, it might be that our study was not 781 

powered enough to detect brain-function correlations . We computed the sample size 782 

(α = 0.05; 80% power) required to successfully detect a correlation using the GPower 783 

3 software and found that minimum of 64 people would have to be examined to reach 784 

a medium effect size. Therefore, our results need replication in larger samples. In 785 

addition, lack of correlation between structural and functional changes after training 786 

has been reported by a number of training studies (including well-powered studies) 787 

and may suggest that these processes follow different time courses and may occur in 788 

different brain regions (Valkanova, Eguia Rodriguez, & Ebmeier, 2014).  789 

It is important to note that our study did not include a non-intervention patient 790 

control group. Unfortunately, it was not feasible within the time period of this study to 791 

recruit a sufficiently large number of well-matched patient controls. Therefore, we 792 

cannot disentangle the effects of the training on WM microstructure from HD-793 
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associated pathological changes. However, given that HD is a progressive 794 

neurodegenerative disease associated with demyelination (Bartzokis et al., 2007), it is 795 

very unlikely that increases in MPF observed in the patient group were due to the 796 

disease itself.  797 

Finally, while the majority of training studies assess brain structural changes 798 

between baseline and post-training (Caeyenberghs et al., 2018), we suggest that 799 

acquiring intermittent scans during the training period could have helped to better 800 

capture and understand changes in WM microstructure observed in this study. 801 

Accordingly, future studies and more advanced statistical analyses, might be able to 802 

give greater insights into the complex nonlinear relationships between structural 803 

changes and behaviour (Thomas & Baker, 2013). 804 

To conclude, we have demonstrated that two months of drumming and rhythm 805 

exercises result in an increase in a proxy MRI measure of myelin in patients with early 806 

HD relative to healthy controls. Whilst the current results require replication in a larger 807 

patient group with an appropriately matched patient control group, they suggest that 808 

behavioural stimulation may result in neural benefits in early HD that could be 809 

exploited for future therapeutics aiming to delay disease progression.  810 

 811 

 812 

 813 

 814 

 815 

 816 

 817 

 818 
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