

1 Molecular Diversity Among Adult Human Hippocampal and

2 Entorhinal Cells

3

4 **Daniel Franjic¹, Jinmyung Choi¹, Mario Skarica¹, Chuan Xu¹, Qian Li¹, Shaojie Ma¹,**

5 **Andrew T. N. Tebbenkamp¹, Gabriel Santpere^{1,2}, Jon I. Arellano¹, Ivan Gudelj¹, Lucija**

6 **Jankovic-Rapan¹, Andre M. M. Sousa¹, Pasko Rakic^{1,4}, Nenad Sestan^{1,3,4,*}**

7

8

9 ¹ Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.

10 ² Neurogenomics Group, Research Programme on Biomedical Informatics, Hospital del Mar

11 Medical Research Institute, Department of Experimental and Health Sciences, Universitat

12 Pompeu Fabra, Barcelona, Catalonia, Spain

13 ³ Departments of Genetics, Psychiatry, and Comparative Medicine, Program in Cellular

14 Neuroscience, Neurodegeneration and Repair, and Yale Child Study Center, Yale School of

15 Medicine, New Haven, CT, USA.

16 ⁴ Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA.

17

18 *Corresponding author. Email: nenad.sestan@yale.edu

19

20

21

22

23

24 **SUMMARY**

25 The hippocampal-entorhinal system is comprised of functionally distinct subregions
26 collectively critical for cognition, and selectively vulnerable to aging and pathological
27 processes. To gain insights into neuronal and non-neuronal populations within this system, we
28 performed single-nucleus transcriptional profiling from five human hippocampal-entorhinal
29 subregions. We found that transcriptomic diversity of excitatory neurons across these
30 subregions reflected the molecular transition from three-layered archicortex to six-layered
31 neocortex. Additionally, mRNA and protein for DCX, an immature neuron marker, were clearly
32 detected in some cells, but not in dentate granule cells, the cell-type predicted to be generated
33 in adult neurogenesis. We also found that previously functionally uncharacterized METTL7B
34 was enriched in human and non-human primate neuronal subtypes less vulnerable to initial
35 Alzheimer's disease pathology. Proteomic and biochemical assays revealed METTL7B interacts
36 with Alzheimer's disease-related proteins, including APP, and its overexpression reduced
37 amyloid-beta generation. These results reveal cell type-specific molecular properties relevant
38 for hippocampal-entorhinal physiology and dysfunction.

39 **INTRODUCTION**

40 The neural circuits of the hippocampal formation (HIP) and entorhinal cortex (EC) are critical
41 components of a widespread neural network for memory and representation of space and time
42 (Gloor, 1997; Andersen, 2007; Buzsaki and Moser, 2013). Based on cytoarchitectonic, cellular,
43 and circuitry variations, the hippocampal-entorhinal system can be subdivided into functionally
44 distinct subregions that gradually transition from the simple three-layered dentate gyrus (DG)
45 and hippocampus (Cornu Ammonis, CA), and through more complex lamination of the
46 subiculum (collectively referred to as the allocortex) to the six-layered EC (mesocortex)
47 (Freund, 2002; Suzuki and Amaral, 2004; Klausberger and Somogyi, 2008). The molecular
48 basis of the diversity of cell types in these subregions and their homology with bordering
49 neocortical cell types and lamination remains poorly understood (Kriegstein and Connors, 1986;
50 Hoogland and Vermeulen-Vanderzee, 1989; Reiner, 1991; Ishizuka, 2001; Zeisel et al., 2015;
51 Cembrowski et al., 2016b; Mercer and Thomson, 2017; Shepherd and Rowe, 2017).

52 Primate- or human-specific evolutionary innovations may underlie some region-
53 selective aspects of hippocampal cell types, necessitating the study specifically of the human
54 hippocampus. The cytoarchitectonic differentiation of the allocortex and neocortex arose very
55 early during mammalian evolution, with the mammalian allocortex reminiscent of the three-
56 layered reptilian cortex rather than six-layered mammalian cortex. Based on this similarity, as
57 well as histological, physiological and connectional studies, it is hypothesized that allocortex
58 is composed of excitatory projection neurons that resemble those specifically in the deep layers
59 of the mammalian neocortex (Kriegstein and Connors, 1986; Reiner, 1991; Ishizuka, 2001;
60 Luzzati, 2015; Shepherd and Rowe, 2017). However, although the hippocampus is a
61 phylogenetically ancient part of the cerebral cortex, the hippocampal-entorhinal system and its

62 cortico-cortical projections are greatly expanded in humans and non-human primates (Stephan,
63 1975; Demeter et al., 1990; Morrison and Hof, 1997; Suzuki and Amaral, 2004; Patzke et al.,
64 2015). Moreover, the human and non-human primate homologs of this system have undergone
65 extensive evolutionary changes also in gene expression and perhaps cell composition as
66 compared to some commonly studied mammals such as rodents (Bakken et al., 2015; Sousa et
67 al., 2017). As a potential consequence, the normal functions and disease features of cell types
68 in these subregions may be absent or exhibit substantial differences in other species. For
69 example, a distinctive feature of the hippocampal-entorhinal systems of most analyzed
70 mammals (apart from cetaceans) is persistent adult neurogenesis of excitatory granule neurons
71 in the DG (Patzke et al., 2015). However, whether new granule cells are generated in the adult
72 human DG, and whether these neurons express DCX, a marker for immature neurons that is
73 associated with neurogenesis, has not been fully resolved (Eriksson et al., 1998; Rakic, 2002;
74 Spalding et al., 2013; Boldrini et al., 2018; Kempermann et al., 2018; Sorrells et al., 2018;
75 Moreno-Jimenez et al., 2019).

76 Within the human hippocampal-entorhinal system, some cell types and circuits are
77 selectively vulnerable in normal aging and certain pathological processes. For example,
78 excitatory projection (pyramidal) neurons in the hippocampal CA1 field (Sommer's sector), and
79 to a lesser degree those in CA2-4 fields, are more vulnerable to hypoxia-ischemia damage and
80 intractable seizures (mesial temporal sclerosis) than DG granule cells or other major
81 hippocampal neuronal subtypes (Schmidt-Kastner and Freund, 1991; Blumcke et al., 2007).
82 Alzheimer disease's pathology, which is defined by extracellular accumulation of A β peptides
83 and intracellular aggregates of hyperphosphorylated tau protein, also exhibits regional and
84 cellular differences (Fischer, 1907; Glenner and Wong, 1984; Alzheimer et al., 1995; Hardy

85 and Selkoe, 2002; Tanzi and Bertram, 2005; Ballatore et al., 2007; Karran and De Strooper,
86 2016). In mesial temporal regions, pathology first appears in layer 2 of the EC and hippocampal
87 CA1 field (McMenemey, 1940; Wilcock and Esiri, 1982; Morrison and Hof, 1997; Serrano-
88 Pozo et al., 2011; Braak and Del Trecidi, 2015), while DG cells, CA2-4 pyramidal neurons and
89 layer 5B pyramidal neurons in the EC (Davies et al., 1992; Jin et al., 2004; Schonheit et al.,
90 2004; West et al., 2004; Ohm, 2007) are more resilient in the early stages of the disease. Given
91 this selectivity, a more detailed molecular profiling of this system, will aid our understanding
92 of human brain development and neuropsychiatric disease.

93 To gain new insights into cell populations and cell type-specific differences in gene
94 expression, evolution, neurogenic capability, and variable disease susceptibility, we performed
95 high-coverage single-nucleus RNA sequencing (snRNA-seq) on five anatomically defined
96 subregions of the hippocampal-entorhinal system. These efforts, like similar recent efforts to
97 transcriptomically characterize the postmortem adult human brain (Krishnaswami et al., 2016;
98 Lake et al., 2016; Habib et al., 2017; Lake et al., 2018; Li et al., 2018; Hodge et al., 2019;
99 Mathys et al., 2019; Schirmer et al., 2019; Velmeshev et al., 2019) (including pioneering
100 profiling of HIP (Habib et al., 2017), identified a highly diverse set of neuronal and non-
101 neuronal cell types with clear regional distinctions and implications for human brain function,
102 evolution, and disease.

103

104 **RESULTS**

105 **Transcriptomic diversity of hippocampal and entorhinal cells**

106 To survey the transcriptomic diversity and functional specification of the mesial temporal
107 cortex, we used snRNA-seq to profile five subregions of the hippocampal-entorhinal system

108 collected from fresh frozen postmortem brains of clinically unremarkable human donors. These
109 specimens were selected from a larger pool of postmortem human brains based on the quality
110 of isolated nuclei and RNA. Taking into consideration dramatic cytoarchitectonic variations,
111 we microdissected the hippocampal formation (DG, CA2–4, CA1, and subiculum) and EC for
112 a total of five subregions (**Fig. 1A**).

113 Unbiased isolation of nuclei using our previously described protocol (Li et al., 2018;
114 Zhu et al., 2018) followed by snRNA barcoding, cDNA sequencing and quality filtering yielded
115 108,315 high-quality single-nucleus profiles from all five subregions (**Fig. 1A, S1A-D**).
116 Analysis of the expression of genes known to be enriched in major cell subpopulations
117 suggested these included 44,697 neurons, of which 35,768 (80.02%) were glutamatergic
118 excitatory neurons (expressing the gene encoding the vesicular glutamate transporter *SLC17A7*)
119 and 8,929 (19.98%) were GABAergic inhibitory neurons (expressing the gene encoding the
120 GABA synthesis enzyme *GAD1*), reflecting the expected 80:20 ratio of these populations. In
121 addition, we identified 63,618 (58.73% of the total population) non-neuronal cells.

122 We next analyzed the transcriptomes of those nuclei on the Uniform Manifold
123 Approximation and Projection (UMAP) layout representing their similarities at cellular
124 granularity (**Fig. 1B-D**). Iterative clustering defined 69 transcriptomically distinct cell clusters
125 representing presumptive cell types across all individuals (donors). These transcriptomically
126 diverse subpopulations were organized into a dendrogrammatic taxonomy reflecting their gene
127 expression patterns and were subsequently assigned identities commensurate with predicted cell
128 types. This allowed us to identify 26 subtypes of excitatory neurons (**Fig. 1E and S2A-B**), 23
129 inhibitory neuron subtypes (**Fig. 1E and S2C-D**), and 20 non-neuronal cell types and subtypes
130 (**Fig. 1E and S2E-F**). Similar single nucleus approaches applied to human neocortical samples

131 yielded comparable numbers and distributions of cell populations in medial temporal gyrus
132 (MTG) (Hodge et al., 2019) and dorso-lateral prefrontal cortex (dlPFC) (Li et al., 2018) (**Fig.**
133 **S1E-F**).

134 Within excitatory neuron subtypes, we found marked transcriptional diversity that
135 reflects differences in the cytoarchitectonic organization among the subregions of the HIP (DG,
136 CA2-4, CA1, and subiculum) and EC (**Fig. 1E**). For example, in addition to *ADCYAPI*-
137 expressing mossy cells in DG, we found three distinct subclusters of *PROX1*-expressing granule
138 cells. We also identified excitatory neurons in CA1 and CA2-4 that could be deconstructed into
139 additional subtypes, indicating a finer molecular subdivision not readily apparent in the
140 cytoarchitecture. Molecular distinctions were also evident in the subiculum, with two proximal
141 subtypes close to CA1 expressing *ROBO1* and a third, distal subtype expressing *FNI*
142 (Cembrowski et al., 2018). Within the EC, excitatory neurons were broadly characterized by
143 laminar positioning. We identified seven neuron subtypes in layer 2/3 (characterized by high
144 expression of *CUX2* and/or *RELN*) and eight subtypes in deep layers 5 and six with specific
145 expression of deep-layer markers including *TLE4*, *ADRA1A*, and *THEMIS*.

146 In contrast to excitatory neurons, interneurons and non-neuronal cell types exhibited a
147 more uniform spatial distribution (**Fig. 1E**). Transcriptomic diversity and multiple cell subtypes
148 were evident among these populations, but this diversity did not generally segregate by percent
149 region (middle histogram). For example, although the abundance of some interneuron subtypes
150 differed between HIP and EC, all major subtypes of interneurons, including *SST*-, *PVALB*-,
151 *VIP*-, and *LAMP5*-expressing interneurons, were shared across all subregions assayed. Among
152 multiple non-neuronal cell types, we identified two astrocyte subtypes (Astro), two subtypes of
153 oligodendrocyte precursor cells (OPCs), four subtypes of oligodendrocytes (Oligo), two

154 subtypes of microglia (Micro), and multiple vasculature subtypes, each of which was generally
155 shared across all of the five subregions dissected. These data therefore describe previously
156 uncharacterized cell populations in the hippocampal- entorhinal system and extend previous
157 findings concerning the functional specificity of neuronal and non-neuronal populations to this
158 system (Freund, 2002; Suzuki and Amaral, 2004; Klausberger and Somogyi, 2008).

159

160 **Taxonomic relationships across allo-, meso- and neo-cortex**

161 The putative homology between neurons in the hippocampal-entorhinal system and neocortical
162 neurons, and in particular the cytoarchitectonic and evolutionary transition between allo-, meso-,
163 and neo-cortex, offers an opportunity to reveal organizational principles underlying the
164 specialization and function of the mammalian cerebral cortex. Towards elucidating these
165 principles, we compared cell profiles across hippocampal-entorhinal subregions and
166 transcriptomically defined cell types within two human neocortical regions (MTG and dlPFC).

167 Among hippocampal-entorhinal subregions, we observed a clear distinction between
168 excitatory neurons of the hippocampus proper and DG, and the hippocampal formation more
169 generally, as compared to those of EC (**Fig. 2A-B, S2A-B**). Excitatory neurons of the CA fields,
170 subiculum and DG were also clearly distinct from those of MTG and dlPFC (**Fig. 2B**). We did,
171 however, observe transcriptomic similarities between excitatory neurons in all neocortical layers
172 in MTG and dlPFC (**Fig. 3A**). In contrast, we did not identify excitatory neurons in DG, CA fields,
173 subiculum, and EC that corresponded to all neocortical layers in MTG and dlPFC.

174 In particular, we identified three major transcriptomically-defined subtypes of excitatory
175 neurons within subiculum (S), two within CA1, and only one predicted within CA2 and CA3,
176 which is consistent with previous single cell RNA-seq studies in rodents (Zeisel et al., 2015;

177 Cembrowski et al., 2016b) and evidence of the laminar organization of pyramidal (excitatory
178 neurons) within the CA fields (Nielsen et al., 2010; Slomianka et al., 2011; Cipriani et al., 2016).
179 Moreover, we found that deep-layer excitatory neuron subtypes in the neocortex were well-
180 represented in the EC and to a lesser extent in the HIP, but upper-layer neuron subtypes were not
181 well represented (**Fig 3A-B and S3A**). For example, we identified two *RELN*-expressing layer 2
182 subclusters in the EC that, similar to a previous report (Witter et al., 2017), did not correspond
183 closely to any excitatory neuron subtype detected in the neocortex. Consistent with this
184 observation, molecular markers for deep-layer excitatory neurons in the neocortex displayed
185 higher expression in each subtype of HIP as compared to upper-layer molecular markers (**Fig.**
186 **S3B**). Moreover, we observed lower expression of key molecular markers of intratelencephalic
187 (intracerebral) projection neurons in each of the HIP excitatory neuron subtypes as compared to
188 other neocortical neuron populations. **Fig. S3C**), which may be relevant to the previous
189 observation that HIP in rodents CA fields don't have callosally projecting
190 intratelencephalic/intraceberal excitotry neurons (Cenquizca and Swanson, 2007). Several key
191 genes expressed by excitatory neurons, including *FNDCL*, *RTP5*, and *PTGFR*, also exhibited
192 specificity for allo-, meso-, or neo-cortex.

193 In contrast, neither inhibitory interneurons nor non-neuronal cells exhibited an obvious
194 transition between allo-, meso-, and neo-cortex similar to that observed for excitatory neurons,
195 with just one *SST*-expressing interneuron population in the hippocampus (InN *SST ADAMTS12*)
196 lacking a clear counterpart in EC, MTG, and dlPFC (**Fig. 2D and 3C**). Cells in this
197 hippocampal-specific interneuron population were notable for their expression of two EvC
198 Ciliary Complex genes, *EVC* and *EVC2* (Caparros-Martin et al., 2013) (**Fig. 3D**), which may
199 play a role in hippocampal ciliary sonic hedgehog signaling (Breunig et al., 2008; Rhee et al.,

200 2016; Park et al., 2019). Lastly, non-neuronal cell types constituted the most transcriptomically
201 conservative populations across the allo-, meso-, and neo-cortical taxonomy, with a high similarity
202 observed in each subtype across all regions (**Fig. 2E-F and S2E-J**). Taken together, these finding
203 indicate that most prominent differences across allo-, meso-, and neo-cortex occur among
204 excitatory neurons, including the increased prevalence of intratelencephalic projection neurons in
205 the neocortex as compared to allocortex.

206

207 **Transcriptomic insights into adult hippocampal neurogenic capacity**

208 Neurogenesis of granule cells in the adult DG has been extensively studied in rodents and
209 documented in many mammalian species. Many of these studies investigate the presence of
210 cells expressing DCX, a marker of immature neurons, as a reliable indicator of newly generated
211 neurons in DG (Couillard-Despres et al., 2005; Patzke et al., 2015; Kempermann et al., 2018).
212 However, there is no consensus regarding the existence of significant neurogenesis in the adult
213 human DG. Previous studies have provided evidence for the generation of granule cells in the
214 adult and aged human DG through the detection of cell proliferation (Eriksson et al., 1998;
215 Spalding et al., 2013), and a recent study reported a prominent population of DCX-expressing
216 cells in the adult human DG (Moreno-Jimenez et al., 2019). Consistent with these observations,
217 *DCX* gene expression is detected in the adult and aged human HIP, albeit dramatically lower
218 than in the developing human or adult macaque HIP (Sousa et al., 2017; Zhu et al., 2018).
219 Conversely, other studies have directly challenged this conclusion, having failed to identify
220 neural progenitors or DCX-expressing granule cells after childhood in the adult human DG
221 (Dennis et al., 2016; Cipriani et al., 2018; Sorrells et al., 2018). To add insight to these
222 controversial sets of observations, we investigated our snRNA-seq data set to identify cells that

223 may express *DCX* and other key gene markers related to proliferation and early neuronal
224 differentiation that were previously characterized in adult DG neurogenesis.

225 Although we observed moderate expression of *DCX* in some excitatory neurons, and
226 generally greater expression in many interneuron subtypes across the hippocampal-entorhinal
227 system (**Fig. 4A-B, S4A**), we did not identify discrete clusters of *DCX*-expressing cells in HIP.
228 However, we found 125 cells within the cluster of 14,703 DG granule cells with at least one
229 *DCX* mRNA molecule ($UMI \geq 1$) (**Fig. 4C**). To further characterize these *DCX*-expressing cells,
230 we assessed whether they were enriched for markers indicative of intermediate progenitor cells
231 and immature granule cells, the cell types previously shown to express *Dcx* during adult DG
232 neurogenesis (Couillard-Despres et al., 2005; Patzke et al., 2015; Kempermann et al., 2018).
233 Although some of these cells co-expressed migrating or immature neuron markers including
234 *NEUROD2* (61.6%), *FXYD7* (32.8%), and *NCAM1* (97.6%) ($UMI \geq 1$) (Hochgerner et al.,
235 2018) (**Fig. 4E**), we found that these percentages were generally comparable or lower than those
236 from excitatory neurons of EC (51.9%, 61.9%, and 99% for *NEUROD2*, *FXYD7*, and *NCAM1*,
237 respectively) (**Fig. 4D, F**), a region where adult newborn neurons have not been reported to be
238 generated. Moreover, we did not observe enrichment for these markers as compared to *DCX*
239 non-expressing DG granule cells (nominal p-value > 0.05) (**Fig. S4A**). Similarly, putative
240 neural progenitor cells expressing *MKI67*, which precede immature neurons in development,
241 did not constitute an independent cluster in DG (**Fig. S4B**). We also found no evidence that
242 neural stem cells clustered with astrocytes, a transcriptomically similar cell population, as all
243 *NES*-expressing cells in the astrocytic cluster co-expressed *AQP4* (61 of 61 cells), a marker for
244 differentiated cells committed to the astrocytic lineage (**Fig. S4C**). Far fewer of these cells

245 expressed *HOPX* (8 of 61 cells), a reported marker for quiescent progenitors responsible for
246 adult neurogenesis in mouse (Berg et al., 2019).

247 We complemented these snRNA-seq analyses using immunohistochemistry with two
248 different commonly used antibodies against DCX. As recently reported (Sorrells et al., 2019),
249 we detected many DCX-immunopositive neurons in the paralaminar nuclei of the adult human
250 amygdala (**Fig. 4G**). In contrast, although we detected *DCX* transcripts in all brains processed
251 for snRNA-seq, immunohistochemical detection of DCX in the hippocampal-entorhinal system
252 was successful in less than one-third of an independent cohort of postmortem adult human
253 samples (n=11; **Table S1**). This included scarce DCX-immunopositive neurons in the
254 subiculum that were weakly immunopositive for the inhibitory neuron marker GAD1, and the
255 EC, which were not GAD1-immunopositive (**Fig. 4G**). Moreover, we were unable to detect
256 DCX-immunopositive cells in the DG or the adjacent CA4 field, including in one brain also
257 used for snRNA-seq (total of 12 brains), indicating a poor correlation between detection of
258 DCX mRNA and protein in the postmortem adult human samples. Together, these findings are
259 consistent with recent DCX immunohistochemical studies (Dennis et al., 2016; Cipriani et al.,
260 2018; Sorrells et al., 2018) showing that neurogenesis does not continue, or is extremely rare,
261 in the adult human DG.

262

263 **Species, age and excitatory neuron subtype-specific *METTL7B* expression**

264 Tissue and single cell expression profiles, including from multiple subregions of the HIP and EC,
265 allowed us to integrate regional and cell type-specific differences in disease susceptibility with
266 temporal patterns of gene expression. We began by identifying candidate genes enriched in the
267 hippocampus and whose expression changes with age as described in a developmental and multi-

268 regional human brain transcriptome dataset we previously generated (Kang et al., 2011; Li et al.,
269 2018). Genes were ranked based on their region-specific changes in expression over development
270 and aging (**Fig. 5A and Table S2**). Within the hippocampus, of the three genes exhibiting the
271 greatest increased (*KL*, *METTL7B*, *PTGS1*) or decreased expression (*TSHR*, *MSTN*, *WNT8B*)
272 across time, five have been previously functionally characterized to some extent, and the two that
273 exhibited a progressive increase (*KL* and *PTGS1*) have been associated with Alzheimer's disease
274 (Qin et al., 2003; Zeldich et al., 2014).. In contrast, the second-ranked upregulated gene,
275 *METTL7B*, has not been comprehensively studied in the context of the vertebrate brain. *METTL7B*,
276 which is predominantly expressed in liver (Uhlen et al., 2015), encodes a membrane protein
277 associated with endoplasmic reticulum (ER) and lipid droplets, and, by amino acid sequence
278 homology, is predicted to belong to the protein methyltransferase superfamily (Turro et al., 2006;
279 Thomas et al., 2013). We confirmed that at the RNA and protein level, *METTL7B* is enriched in
280 the adult human hippocampus (**Fig. 5B-D**). Analysis of *METTL7B* in the same 16 homologous
281 brain regions in chimpanzee and rhesus macaque (Sousa et al., 2017; Zhu et al., 2018) found that
282 expression in the hippocampus, and the cerebrum more generally, is not distinct to humans.
283 However, *METTL7B* was more broadly expressed throughout the cerebrum in rhesus macaque
284 brain (**Fig. S5A**). The expression of *METTL7B* was also enriched in the human and macaque
285 cerebrum as compared to the cerebrum of mouse, rat, rabbit, and opossum (Cardoso-Moreira et
286 al., 2019) (**Fig. S5B**).

287 We next mapped the cell type expression of *METTL7B*, and found it is virtually exclusive
288 to excitatory neurons, with highest enrichment in the DG, followed by CA2-3 and then subiculum
289 (**Fig. 5E**). RNA *in situ* hybridization and immunolabeling of adjacent sections confirmed that the
290 highest signal intensity was in DG granule neurons and pyramidal neurons in CA2, with lesser

291 expression in CA3-4 subfields and Sub. (**Fig. 5F-H**). Prompted by the cortical cell-type taxonomic
292 similarities we described above, we also analyzed *METTL7B* expression in the neocortex and
293 found high levels in the large pyramidal neurons of layer 5B (**Fig. S5D**), such as Betz and Meynert
294 cells in M1C and V1C, respectively. Interestingly, these subregions/layers and cells are generally
295 among the last to exhibit hallmarks of Alzheimer's disease pathology including the formation of
296 plaques, tangles, and neuronal death (McMenemey, 1940; Wilcock and Esiri, 1982; Hof and
297 Morrison, 1990; Davies et al., 1992; Jin et al., 2004; Schonheit et al., 2004; West et al., 2004;
298 Ohm, 2007; Braak and Del Trecidi, 2015). Immunostaining of adult hippocampal and neocortical
299 tissue sections of rhesus macaque, a widely studied Old World monkey, revealed staining profiles
300 comparable to those of humans, with hippocampal DG, CA2 and subicular pyramidal neurons, as
301 well as neocortical large L5B pyramidal neurons, displaying strong immunolabeling for
302 *METTL7B* (**Fig. S5E-F**). By contrast, we observed very little expression of *METTL7B* in cortico-
303 cortical pyramidal neurons of neocortical and entorhinal L5A and upper layers (L2-4), as well as
304 hippocampal CA1 pyramidal neurons (**Fig. 5G**, **Fig. S5C-E**), which are known to be selectively
305 vulnerable in aging and the initial stages of Alzheimer's disease in humans (McMenemey, 1940;
306 Wilcock and Esiri, 1982; Hof and Morrison, 1990; Davies et al., 1992; Jin et al., 2004; Schonheit
307 et al., 2004; West et al., 2004; Ohm, 2007; Braak and Del Trecidi, 2015). We also found that the
308 homolog of *METTL7B* is not expressed in adult mouse brain (**Fig. S5F-I**), indicating that
309 *METTLB*'s expression and function in the adult brain is species-specific.

310

311 **METTL7B interacts with Alzheimer's disease-related proteins**

312 To identify *METTL7B* interacting proteins, we performed unbiased proteomic analysis using two
313 different affinity-based approaches to find *METTL7B* interacting partners. The first approach

314 utilized HaloTag fusion protein technology (**Fig. S6A**) and has scarce non-specific binding (Hook,
315 2014). We created stable cell lines by transducing a human cortical neural progenitor cell line,
316 which has been previously utilized to model Alzheimer's disease-related molecular processes
317 (Choi et al., 2014), to express either HaloTag or METTL7B-HaloTag fusion protein. Captured
318 proteins, representing proteins putatively interacting with METTL7B-HaloTag, were detected by
319 silver stain (**Fig. S6B**) and analyzed by LC-MS/MS (**Table S3**). We used co-immunofluorescence
320 to observe a high degree of overlap of METTL7B with CALNEXIN and ADFP, markers of the
321 ER and lipid droplets (LD), respectively (Turro et al., 2006) (**Fig. S6C**). Using Significance
322 Analysis of INTeractome (SAINT) (Choi et al., 2011), we identified 275 true METTL7B
323 interactors (**Fig. S6D, Table S4**). Fold-enrichment analysis for major subcellular compartments
324 revealed these true METTL7B interactors showed significant enrichment in ER- and LD-
325 associated proteins (**Fig. S6E**). KEGG pathway enrichment analysis revealed the highest
326 enrichment in the proteasome, protein processing in the ER, oxidative phosphorylation, and three
327 neurodegenerative diseases: Parkinson's disease, AD, and Huntington's disease (**Fig. S6F**).

328 We next pursued an overlapping approach using BioID technology, which utilizes biotin
329 ligase (BirA) activity to biotinylate proteins in the vicinity of a protein of interest and better capture
330 interactions that may be weak or transient (**Fig. S6G-H, Table S3**) (Roux et al., 2012). Here again,
331 METTL7B interactors co-localized with molecular markers for the ER and lipid droplets (**Fig.**
332 **S6I**). We identified 1794 true METTL7B interactors that were enriched in ER and lipid droplets-
333 associated proteins (**Fig. S6J-K, Table S4**). Molecular pathways involving true interactors were
334 related to endocytosis, SNARE interactions in vesicular transport, and protein-protein processing
335 in ER (**Fig. S6L**). Moreover, several putative interacting proteins associated with METTL7B have
336 been previously implicated in Alzheimer's disease in a variety of ways, such as: amyloid precursor

337 protein (APP), inhibition of γ -secretase (RTN3 and RTN4/NOGO), amyloid binding (NAE1,
338 LRP1, APBB1), protein (de)phosphorylation (PPP3CA, UQCRFS1, CDK5, CALM1, EIF2AK3),
339 APP proteolytic cleavage (ADAM17, CASP3), mitochondrial function (COX6B1, CYCS,
340 ATP5B), calcium homeostasis (ITPR1, ITPR2), ER stress monitoring (ATF6), and protein folding
341 (PDIA3). We confirmed that many of these genes were extensively co-expressed with *METTL7B*
342 in several hippocampal populations (**Fig. S7**).

343 Intersecting the lists of putative METTL7B interacting proteins from both strategies, we
344 found 100 high-confidence proteins, with the most enriched gene ontology term being protein
345 processing in ER (**Fig. 6A-B**). To further explore the functional significance of the METTL7B
346 interaction network, we examined the profile of spatial overlap between METTL7B true
347 interactors and all KEGG pathways in protein-protein interaction networks, and evaluated the
348 significance of overlap as a function of network distance (**Fig. 6C-D**). We found that the highest-
349 confidence METTL7B true interactors overlap with several neurodegenerative diseases curated in
350 KEGG pathways in the most proximal network distance from METTL7B, including KEGG
351 Alzheimer's Disease Pathway and Protein Processing in ER (**Fig. 6E**). We subsequently used
352 immunoblots to confirm that candidate proteins RTN4, APP, and LRP1 were specific to
353 METTL7B sample eluates. RTN3 was not detected by immunoblot in any of the samples, possibly
354 due to low pull-down amounts that were below Western blot detectability threshold (**Fig. 6F-G**).
355 We next sought to determine whether these proteins were potential substrates for METTL7B
356 methyltransferase activity. To do so, we incubated purified recombinant proteins in a continuous
357 enzyme-coupled S-adenosylmethionine (SAM) methyltransferase assay, which responds
358 fluorescently to S-adenosylhomocysteine, a byproduct of SAM methyltransferase activity. All four
359 assayed samples in which candidate proteins were incubated with recombinant METTL7B

360 produced a significant increase in signal compared to candidate proteins incubated alone (**Fig. 6H**).
361 These results suggest that METTL7B uses SAM as a methyl donor, and that METTL7B may act
362 enzymatically on proteins specifically related to Alzheimer's disease pathology.

363

364 **METTL7B reduces amyloid beta generation**

365 Given the protein interactions and potential activity of METTL7B on APP, we next sought to
366 determine whether METTL7B has an effect on APP proteolytic processing, which plays an
367 important role in Alzheimer's disease pathology (Hardy and Selkoe, 2002; Tanzi and Bertram,
368 2005; Ballatore et al., 2007). We therefore transduced N2a cells, a mouse neuroblastoma cell line
369 that does not natively express endogenous *Mettl7b* (**Fig. 7A**), to express full length human APP₆₉₅
370 along with METTL7B or EGFP. As determined by an enzyme-linked immunosorbent assay
371 (ELISA), METTL7B expression resulted in a ~31.8% mean reduction in A β ₄₀ and a ~34.9% mean
372 reduction in A β ₄₂ levels, with no significant change in A β ₄₂/A β ₄₀ ratio (**Fig. 7B-C**). However, we
373 found that the availability of METTL7B for putative interactions with Alzheimer's disease-
374 associated proteins may be limited in conditions with high levels of lipids, as supplementing cell
375 culture media with linoleic and oleic acid complexes resulted in the increased formation of lipid
376 droplets along with a commensurate shift of METTL7B from the ER to lipid droplets, but not
377 METTL7B-interacting and Alzheimer's disease-associated proteins (**Fig. 7D-E**).

378

379 **DISCUSSION**

380 Here we present a detailed single cell transcriptomic analysis of cells in the adult human
381 hippocampal-entorhinal system, and through analysis of this resource describe novel biology
382 related to the molecular diversity of these cells. We found region-specific distinctions in gene

383 expression patterns, particularly of excitatory neurons, with clear implications for hippocampal-
384 entorhinal physiology.

385 These data and accompanying analyses refine our understanding of the evolution of allo-
386 , meso-, and neo-cortex. The transcriptomic signatures we developed strongly suggest
387 homology between mammalian allocortex and specifically deep layers of the EC and neocortex.
388 Analyses of the transcriptome also suggest that adult neurogenesis in the DG is, if present,
389 extremely limited, with no clear signatures of newborn or immature excitatory neurons present.
390 Although this is not necessarily in conflict with previous efforts, some of which have detected
391 newborn neurons in some but not all adult human hippocampal specimen (Spalding et al., 2013),
392 our analysis of both DCX RNA and protein suggest further analyses is necessary to discern the
393 neurogenic capacity of the adult human hippocampus.

394 In addition, we implicated METTL7B in aging and disease processes of the human
395 hippocampus. We found strong evidence that METTL7B is enriched in subregions/layers and cell
396 types known to be less vulnerable to initial Alzheimer's disease neuropathology in the HIP, EC
397 and primary neocortical areas. We also found that METTL7B interacts with important Alzheimer's
398 disease-related proteins (e.g., APP, LRP1, RTN3, and RTN4), and that its overexpression reduced
399 A β levels. In addition, our results also suggest that the subregion/cell type enrichment we observed
400 could be Catarrhini (i.e., the Old World monkeys and the apes)-specific, supporting the contention
401 that manifestation of some A β plaque pathology may have distinct manifestation in primates
402 (Rapoport, 1989). Moreover, brain regions and circuits preferentially affected in early stages of
403 Alzheimer's disease are generally expanded in humans, other apes, and Old World monkeys
404 (Stephan, 1975; Demeter et al., 1990; Morrison and Hof, 1997; Suzuki and Amaral, 2004; Braak
405 and Del Trecidi, 2015), and aged macaques and great apes exhibit early signs of Alzheimer's

406 disease-like amyloid and Tau pathology (Perez et al., 2013; Finch and Austad, 2015; Edler et al.,
407 2017; Paspalas et al., 2018).

408 Our investigation of METTL7B may also lend support to evidence suggesting the role of
409 several classes of lipids and lipid droplets in Alzheimer's disease pathogenesis. This evidence
410 stems from knowledge of the APOE4 allele, encoding a cholesterol carrier, that is associated with
411 an increased risk for late onset Alzheimer's disease (Strittmatter et al., 1993). In addition,
412 cholesterol dyshomeostasis can directly influence the activity of A β -related proteases and
413 increase A β production (Di Paolo and Kim, 2011), and strong epidemiological evidence supports
414 mid-life hypercholesterolemia as a risk factor for Alzheimer's disease. Moreover, lipid droplet
415 accumulations have been identified in postmortem Alzheimer's disease brains, from the initial
416 report by Alois Alzheimer to more recent reports including a transgenic mouse model of
417 Alzheimer's disease (3xTg-AD) (Alzheimer et al., 1995; Hamilton et al., 2015). Because
418 METTL7B translocates to lipid droplets after fatty acid loading, its availability in the ER and
419 consequently its ability to interact with target proteins implicated in Alzheimer's disease
420 pathogenesis may be diminished. Taken together, the distinct expression pattern of METTL7B in
421 Catarrhini and the integration of METTL7B into mechanisms underlying specific cellular,
422 regional, age, and species-specific aspects of development and disease suggests protein
423 methylation may have previously unappreciated roles in the neurobiology of aging and disease.

424

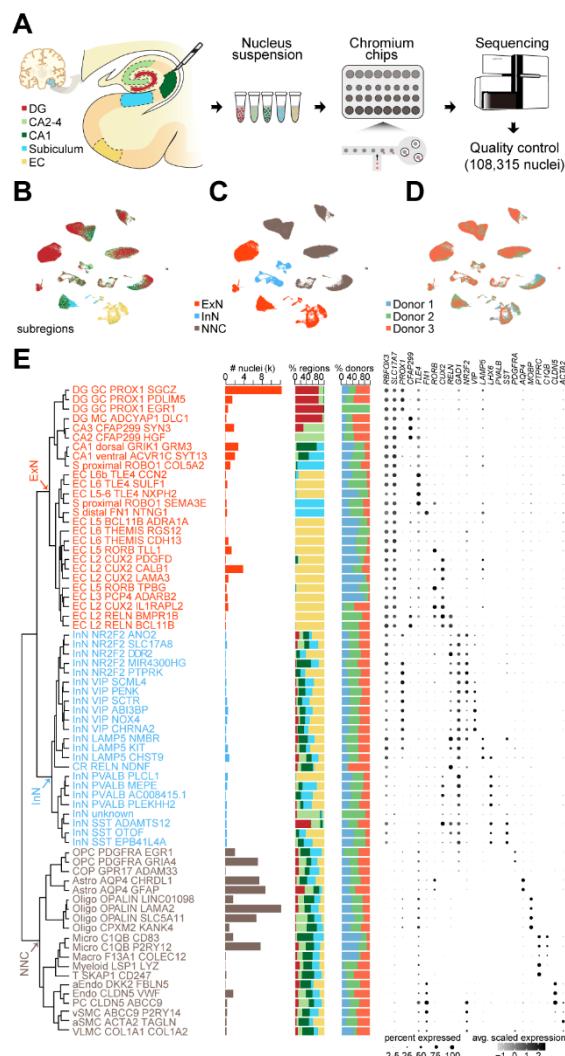
425

426

427

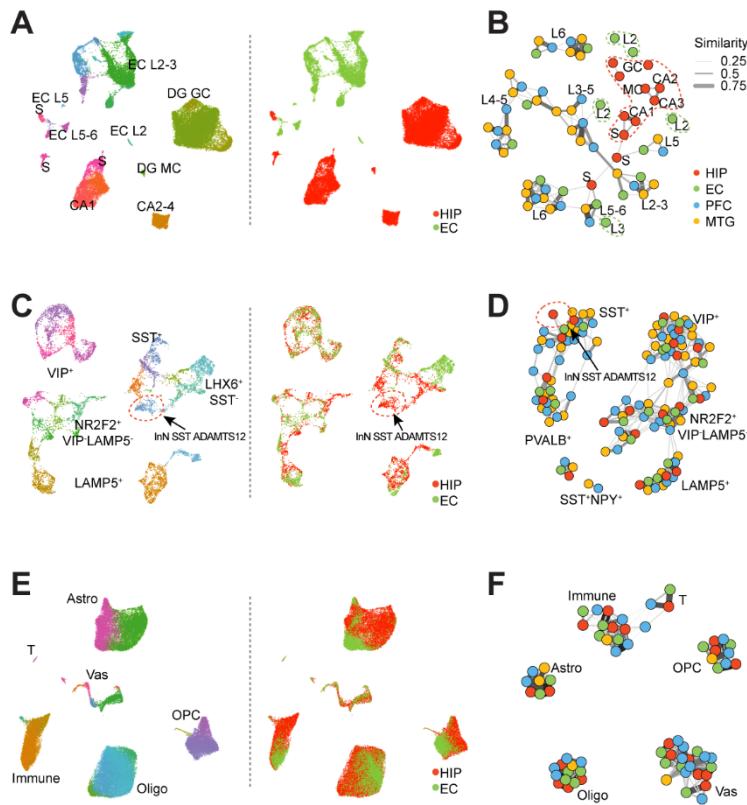
428 **Acknowledgments:** We thank K. Meyer for help with gene expression analysis; A. Rosa Campos
429 and K. Motamedchaboki (SBP Medical Discovery Institute, La Jolla, CA) for help with generating
430 proteomics data; M. Horn, A. Huttner, M. Pletikos, and S. Wilson for assistance with tissue
431 acquisition and processing; and J. DeFelipe and the NIH NeuroBioBank, for providing human
432 tissue. We also thank A. Duque for using equipment from MacBrainResource (NIH/NIMH
433 MH113257). This work was supported by the NIH grants DA023999 (P.R.) and MH103339,
434 MH106934, MH110926 and MH109904 (N.S.). The project that gave rise to these results received
435 the support of a fellowship from “la Caixa” Foundation (ID 100010434). The fellowship code is
436 LCF/BQ/PI19/11690010. Additional support was provided by the Kavli Foundation, and the
437 James S. McDonnell Foundation.

438

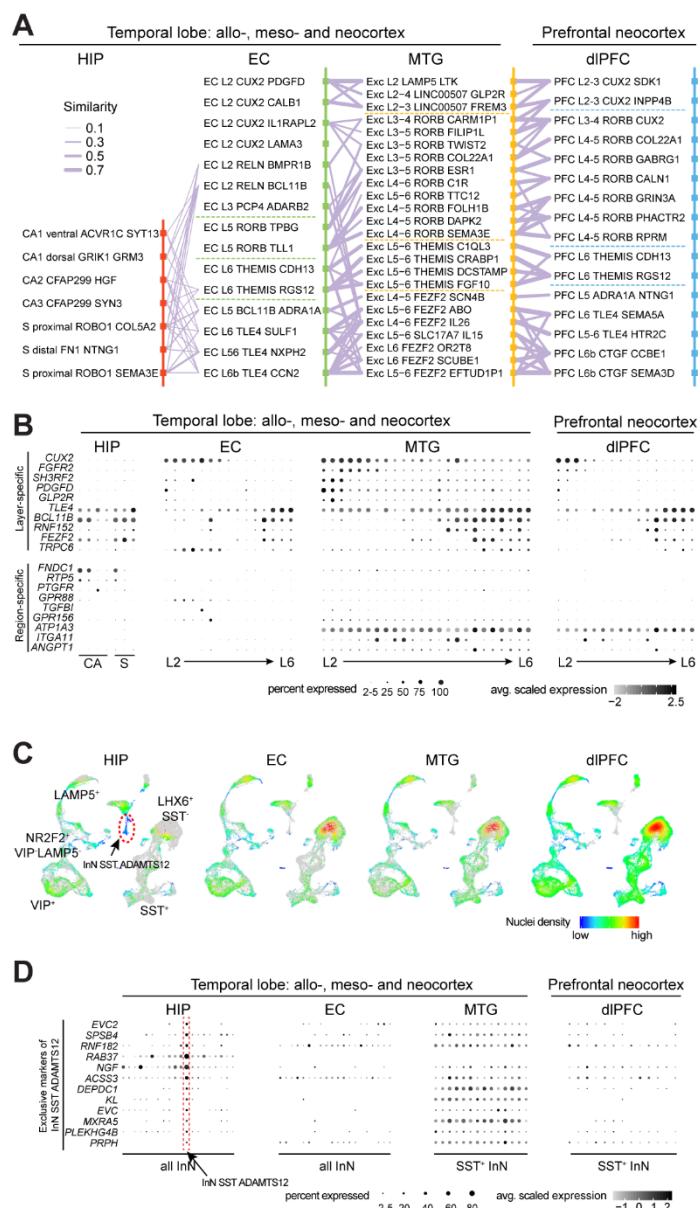

439 **Author contributions:** D.F. and N.S. conceived and designed the study. D.F. designed and
440 performed most of the METTL7B experiments. J.C. analyzed proteomic data. M.S. prepared
441 nuclei for sequencing. C.X., Q.L., S.M., and G.S. analyzed single nuclei sequencing data. A.T.N.T.
442 performed SAM assay, digital droplet PCRs, and western blots. J.I.A., I.G., L.J.R., and A.M.M.S.
443 contributed to additional data collection. D.F. and N.S. wrote the manuscript. All authors edited
444 the manuscript.

445

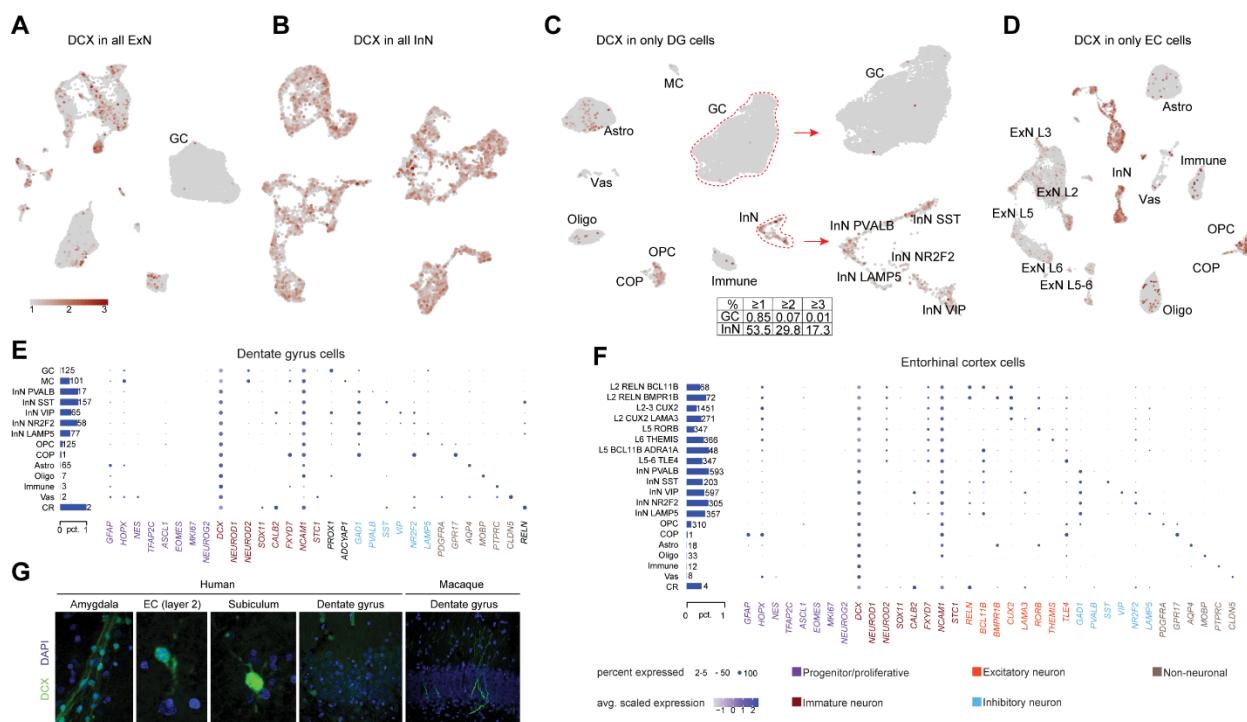
446 **Competing interests:** Authors declare no competing interests.


447

448 **Data and materials availability:** All scripts are available to investigators upon request.
449 Supplement contains transcriptome analysis and proteomic data with analysis. Correspondence
450 should be directed to: nenad.sestan@yale.edu


451 **Figure 1. Cell type diversity in the hippocampal-entorhinal system revealed by single-nucleus**
452 **RNA-seq.**

453 **A**, Scheme outlining the snRNA-seq procedure including subregion dissections of hippocampus
454 and entorhinal cortex, nucleus isolation and capture, RNA sequencing and quality control. **B-D**,
455 Uniform Manifold Approximation and Projection (UMAP) visualization representing the
456 transcriptomic arrangement of all nuclei, colored by different subregions (B) major cell types (C),
457 and donors (D). ExN, excitatory neurons; InN, inhibitory neurons; NNC, non-neuronal cells. **E**,
458 Dendrogram depicting the hierarchical taxonomy across all cell subtypes. Bar plots show the
459 number of nuclei, subregional and donor contributions within each subtype, with coloring scheme
460 conforming to panel c. Dot plot demonstrates the expression of specific marker genes along the
461 cell-type taxonomy. The size and color of dots indicate the percent of expressed nuclei and the
462 average gene expression within each subtype, respectively. GC, granule cell; MC, mossy cell;
463 OPC, oligodendrocyte precursor cell; COP, committed oligodendrocyte precursor cell; Astro,
464 astrocyte; Oligo, oligodendrocyte; Micro, microglia; Macro, macrophage; Myeloid, myeloid cell;
465 T, T cell; aEndo, arterial endothelial cell; Endo, endothelial cell; PC, pericyte; vSMC, venous
466 smooth muscle cell; aSMC, arterial smooth muscle cell; VLMC, vascular and leptomeningeal cell.
467 See also Figure S1 and S2.


468 **Figure 2. Transcriptomic distinction and similarity of hippocampal and entorhinal cell types.**
469 **A**, Left: UMAP embedding showing all excitatory neuronal subtypes detected in the hippocampal-
470 entorhinal system, with naming conventions as in Figure 1. Right, as in left panel, but spatially
471 colored according to two major segregated regions. HIP, hippocampus formation including dentate
472 gyrus (DG), CA1-4 and subiculum (S); EC, entorhinal cortex. **B**, Network demonstrating the extent
473 of transcriptome similarities among excitatory neuronal subtypes of HIP, EC, medial temporal
474 gyrus (MTG) and dorso-lateral prefrontal cortex (dlPFC). Dots represent the subtypes within each
475 brain region and the widths of lines represent the strength of similarity. Region, subregion and
476 subtype information is indicated by colors and notes. Distinct subtypes of HIP and EC were
477 outlined in corresponding colors. **C-F**, As in panels **A-B**, for inhibitory neurons (**C, D**) and non-
478 neuronal cells (**E, F**). See also Figure S2.

479
480
481
482
483
484
485
486
487
488
489
490
491

492 **Figure 3. Taxonomic relationships across allo-, meso- and neo-cortex.**

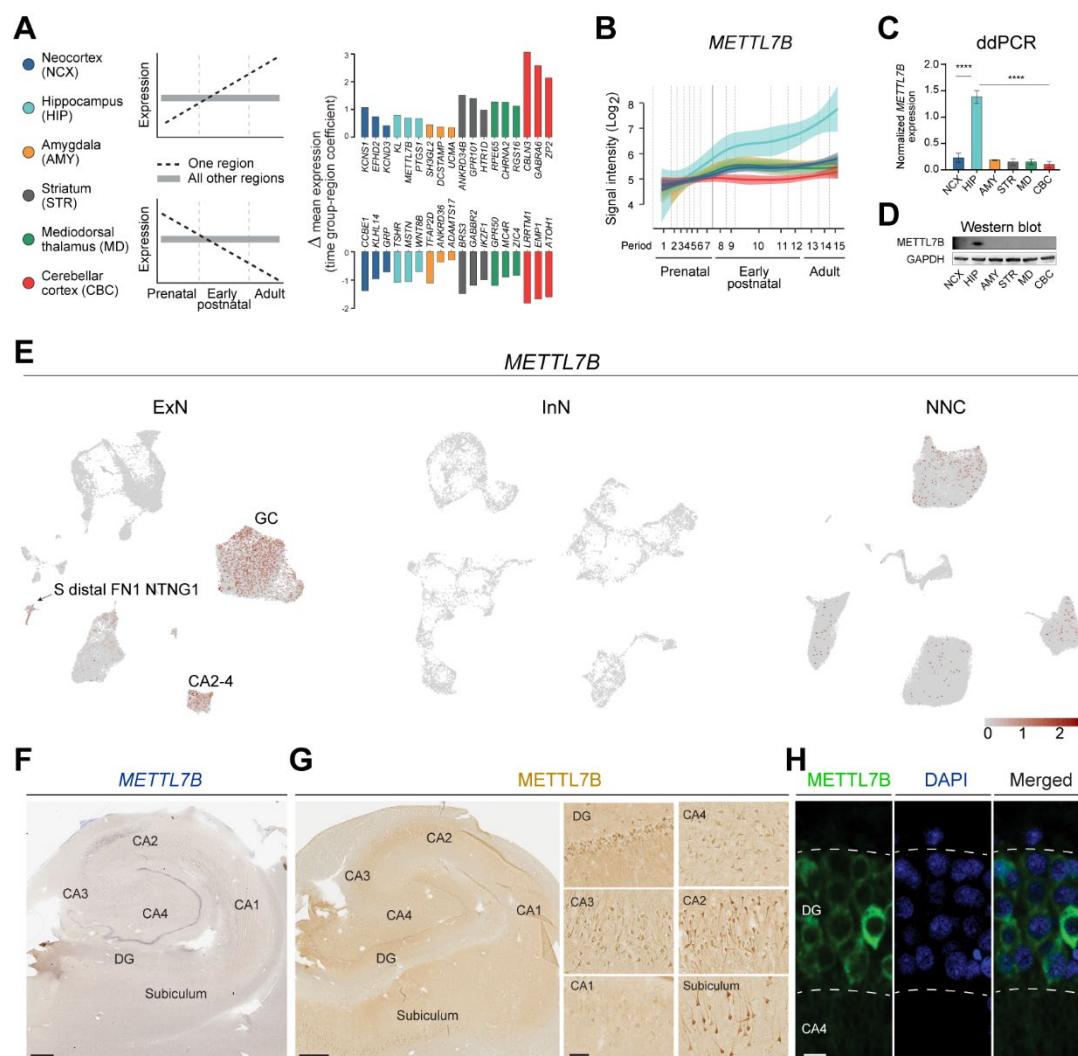

493 **A**, Transcriptomic relations across subtypes of pairwise regions organized according to layer
494 distributions. The widths of lines denote the strength of the similarities. Broad layer distinction
495 was marked by dotted lines. **B**, Expression of neocortical upper-layer (*PDGFD*, *GLP2R*, *SH3RF2*,
496 *FGFR2* and *CUX2*) and deep-layer markers (*TLE4*, *FEZF2*, *BCL11B*, *RNF152* and *TRPC6*) across
497 subtypes of each region, as well as region-specific genes across these regions. The size and color
498 of dots indicate the percent of expressed nuclei and the average gene expression within each
499 subtype, respectively. **C**, UMAP layout exhibiting the relative density distribution of nuclei across
500 regions. Nuclei from each region were labeled in rainbow colors to indicate density while nuclei
501 from other regions were colored in grey. Hippocampus-enriched interneuron cluster ‘InN SST
502 ADAMTS12’ is outlined in the plots. **D**, Expression of the exclusive markers in cluster InN SST
503 ADAMTS12 across all inhibitory neuron subtypes in HIP and EC and all SST⁺ inhibitory neuron
504 subtypes in MTG and dlPFC. See also Figure S3.

Figure 4. DCX expression in hippocampal and entorhinal cell types.

A, Expression of *DCX* in all excitatory neurons visualized in UMAP embedding. Granule cells (GC) with sparse *DCX* expression are noted. **B**, Expression of *DCX* in all inhibitory neurons visualized in UMAP embedding. **C**, *DCX* expression in only dentate gyrus (DG) cells displayed in UMAP embedding. Major cell type classes are labeled. Zoom-in views illustrate the expression of *DCX* specifically in four subtypes of inhibitory neurons and GC. Bottom table denotes the percentages of GC and InN expressing *DCX* over UMI thresholds of 1, 2 and 3. **D**, *DCX* expression in only EC cells displayed in UMAP embedding. Cell types expressing *DCX* (red) are labeled. **E**, Bar plot shows the numbers and percentages of *DCX*+ cells within each cell type of DG. Dot plot shows the expression of markers of neural stem cells (NSC), neural progenitor cells (NPC), migrating and immature neurons (IM), as well as markers labeling different cell types in *DCX*+ cells of DG. The size and color of dots indicate the percent of expressed nuclei and the average gene expression within each type, respectively. **F**, Bar plot shows the numbers and percentages of *DCX*+ cells within each cell type of EC. Dot plot shows the expression of markers of neural stem cells (NSC), neural progenitor cells (NPC), migrating and immature neurons (IM), as well as markers labeling different cell types in *DCX*+ cells of EC. The size and color of dots indicate the percent of expressed nuclei and the average gene expression within each type, respectively. **G**, Images of immunofluorescent cells expressing *DCX* in regions of human and macaque brain. See also Figure S4 and Table S1.

505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530

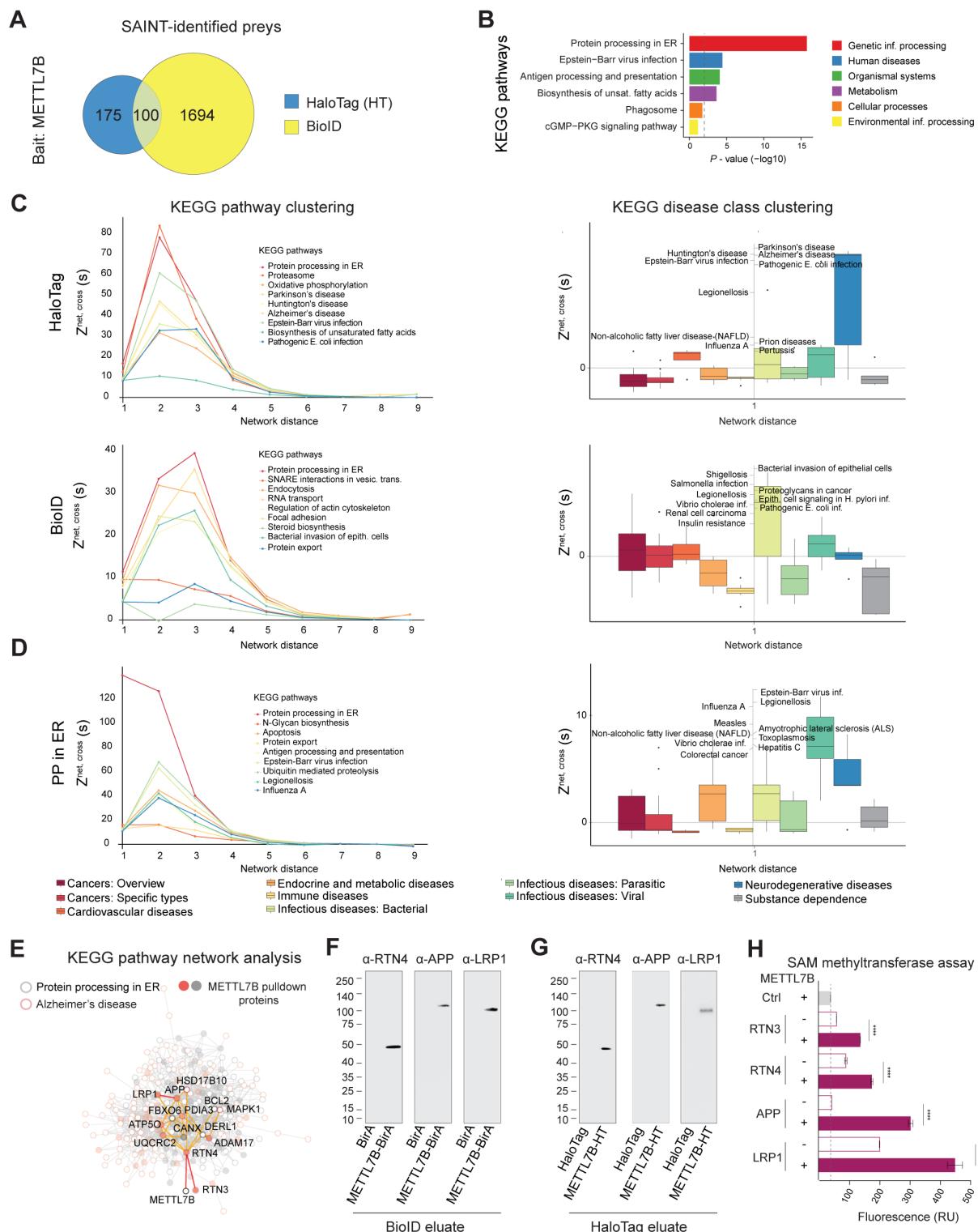
531 **Figure 5. Human METTL7B is enriched in dentate gyrus granule cells.**

532 **A**, Top three up- and down-regulated genes in six brain regions throughout development. **B**,
 533 Expression trajectory of METTL7B showing enrichment in hippocampus and an increasing
 534 expression with age. **C-D**, Digital droplet PCR and immunoblot validation in six regions of adult
 535 brain. One-way ANOVA with post-hoc Dunnett's adjustment (****P<0.0001), N=3 per group. **E**,
 536 METTL7B expression in GCs displayed in UMAP embedding. **F-H**, *In situ* hybridization and
 537 immunostaining of adult hippocampus show prominent labeling of dentate gyrus granule cells, and
 538 subicular and CA2 pyramidal neurons. Scale bars = 1 mm; insets = 100 μ m; immunofluorescence
 539 = 10 μ m. See also Figure S5 and Table S2.

540

541

542


543

544

545

546

547

548 **Figure 6. METTL7B-interacting proteins are enriched in the ER and are associated with**
 549 **AD.**

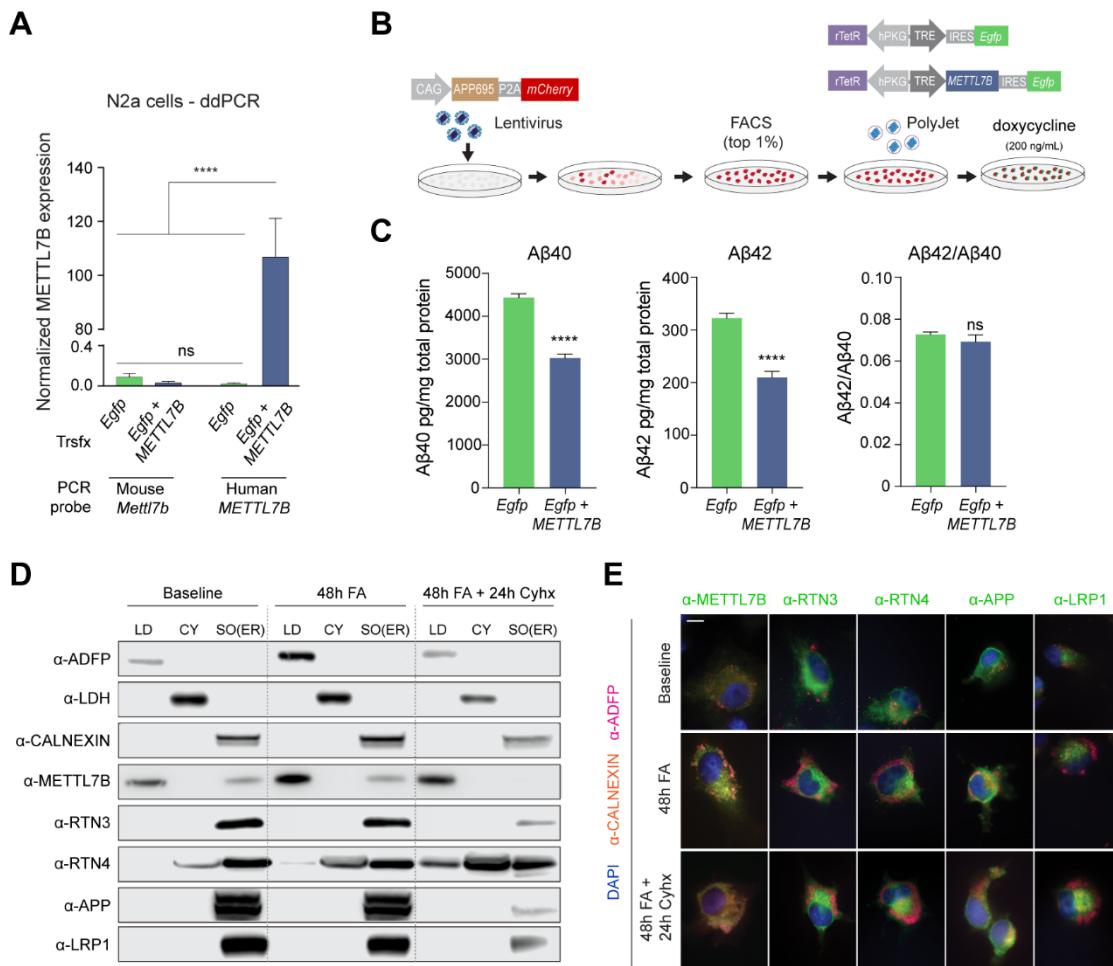
550 **A**, Venn diagram of true METTL7B interacting proteins. **B**, Protein processing in ER (PPER) is
 551 the most significantly enriched KEGG pathway of METTL7B interactors. **C**, Comparing BioID to

552 HaloTag, the significance of $Z^{\text{net, cross}}$ peak shifts toward a closer network distance (left panel). At
553 the closest network distance, the biggest shift in the significance of $Z^{\text{net, cross}}$ occurs for several
554 neurodegenerative diseases: Parkinson's disease, AD, and Huntington's disease (right panel). **D**,
555 Validation of spatial clustering analysis using PPER against all KEGG pathways. As expected,
556 PPER is the strongest overlapping KEGG pathway. **E**, Subset of protein-protein interaction
557 network with all the proteins in the KEGG PPER (grey empty circle) as well as those in
558 Alzheimer's disease pathway (orange empty circle). True METTL7B interactors are shown as
559 filled circles. Top candidate proteins as well as their direct protein-protein interacting partners are
560 highlighted. **F-G**, Immunoblot confirmation of top candidates. **H**, SAM-assay showing an increase
561 in methylation in the presence of METTL7B. *P*-values calculated by unpaired two-tailed Student's
562 *t* test, $N=3$. All data are mean \pm SEM. **** $P < 0.0001$, *** $P < 0.001$. See also Figures S6, S7, and
563 Tables S3 and S4.

564

565

566


567

568

569

570

571

572 **Figure 7. METTL7B reduces A β generation.**

573 **A**, ddPCR of human *METTL7B* misexpression in Neuro-2a cells. One-way ANOVA with post-
 574 hoc Dunnett's adjustment, N=3 per group. **B**, Schematic of experimental design. **C**, ELISA for
 575 A β ₄₀ and A β ₄₂ levels in cells with or without *METTL7B*. *P*-values calculated by unpaired two-
 576 tailed Student's t-test, N=6 per group. All data are mean \pm SEM. **** P <0.0001. **D-E**,
 577 Immunoanalysis of human neural cells. Increased fatty acid load leads to shift of METTL7B from
 578 ER to LDs, while Alzheimer's disease-associated high confidence interactors remain unaffected.
 579 Blocking translation of new proteins with cycloheximide (Cyhx) suggests a complete shift of
 580 METTL7B. Scale bar = 10 μ m. CY = cytosol; SO = sedimentable organelle.

581

582

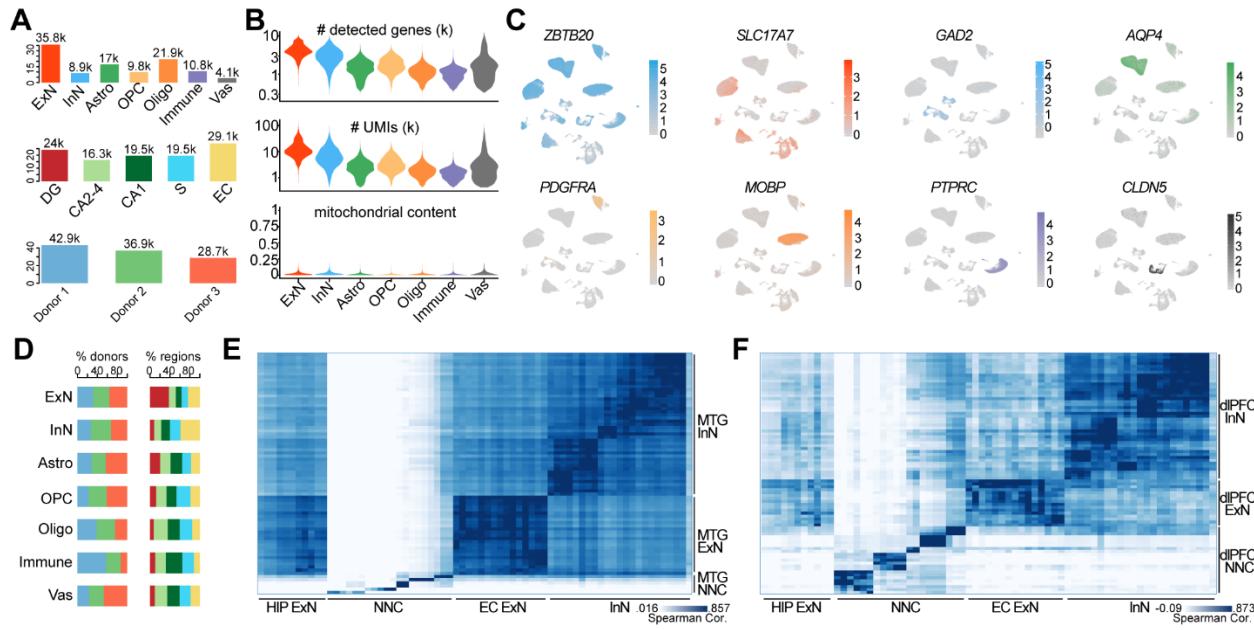
583

584

585

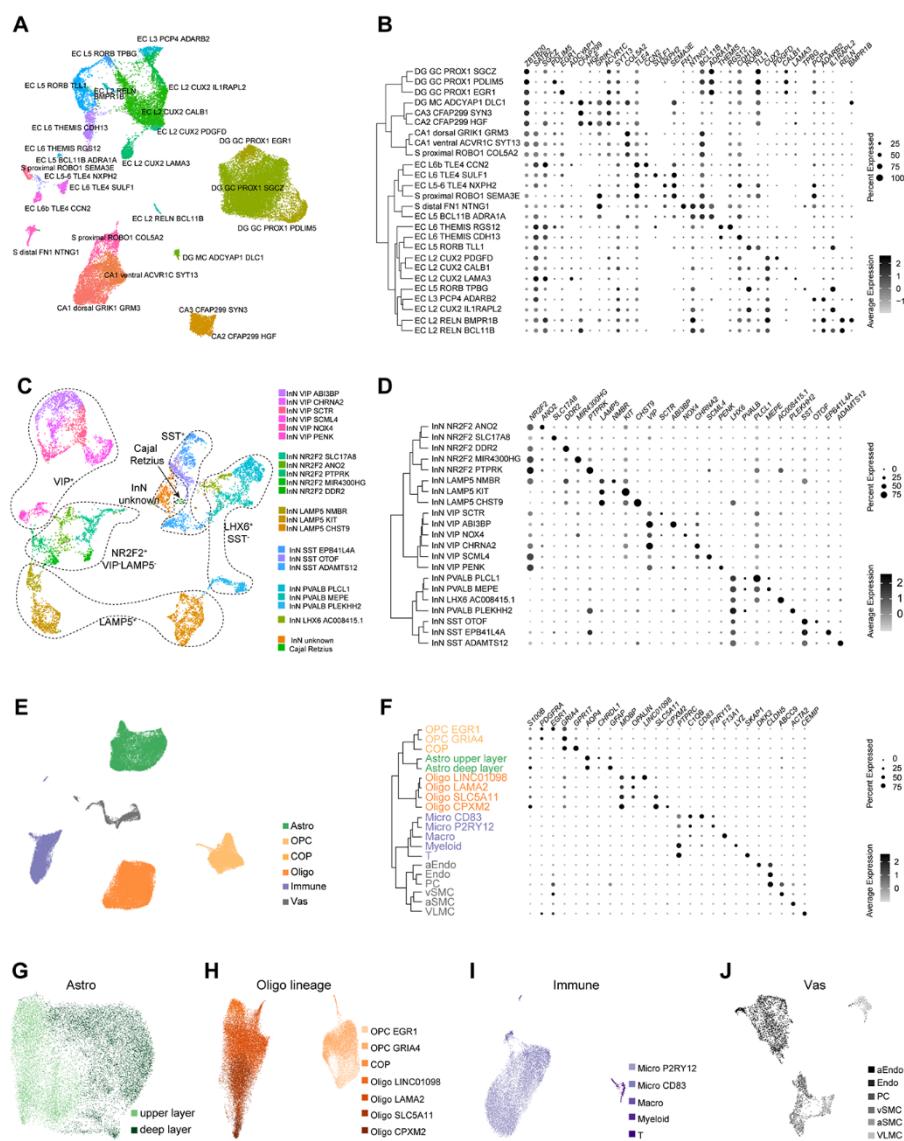
586

587

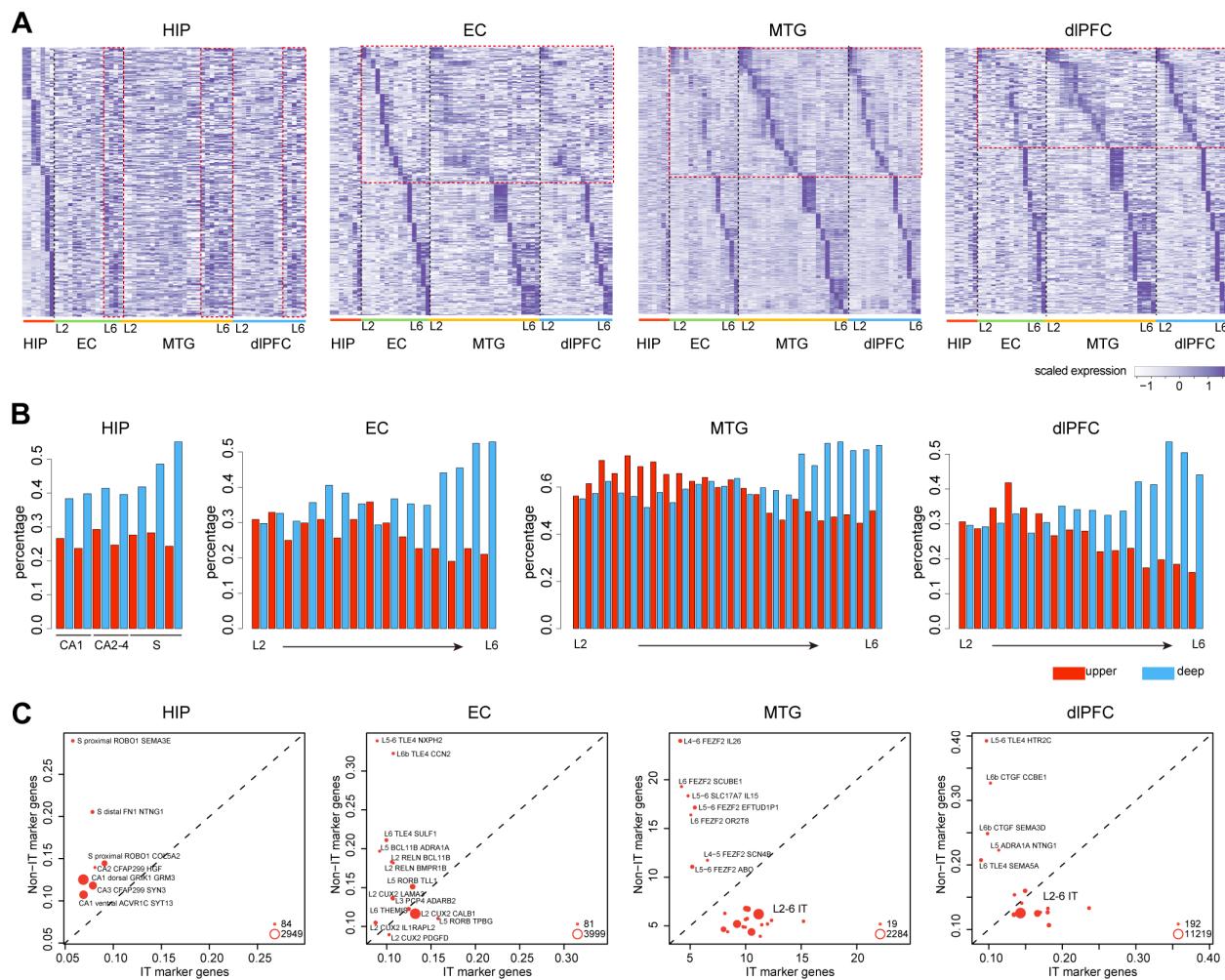

588

589

590


591

592


593 **Figure S1 (related to Figure 1). Overview of snRNA-seq data quality.**
594 **A**, Bar plots depicting numbers of nuclei passing quality control across major cell types (upper),
595 subregions (middle) and donors (bottom). **B**, Violin plots denoting the numbers of detected genes
596 (upper), total UMIs (middle) and mitochondrial contents (lower) across major cell types. Note the
597 first two plots were displayed in the logarithmic scale. **C**, Expression distribution of markers of
598 pan-hippocampus (*ZBTB20*), excitatory neuron (*SLC17A7*), inhibitory neuron (*GAD2*), astrocyte
599 (*AQP4*), OPC (*PDGFRA*), oligodendrocyte (*MOBP*), immune cell (*PTPRC*) and endothelial cell
600 comprising most vasculatures (*CLDN5*) projected onto the UMAP embedding. **D**, Bar plots
601 showing donor and subregional compositions in each major cell type, with coloring scheme
602 conforming to panel **A**. **E-F**, Transcriptome alignments between subtypes of hippocampal-
603 entorhinal system (columns) and human medial temporal gyrus (MTG) (**E**), and human prefrontal
604 cortex (PFC) (**F**) (rows). Cell grids in heat maps denote the Spearman correlation coefficients
605 between each pair of subtypes across data sets.

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621

622 **Figure S2 (related to Figures 1 and 2). Transcriptome diversity of hippocampal and**
623 **entorhinal excitatory neurons.**

624 **A**, UMAP layout showing all excitatory neuronal subtypes detected in the hippocampal-entorhinal
625 system. **B**, Hierarchical tree describing the excitatory neuron subtypes and corresponding marker
626 gene expression in them. The size and color of the dot plot indicate the percent of expressed nuclei
627 and the average expression within each subtype, respectively. **C**, UMAP layout showing all
628 inhibitory neuronal subtypes detected in the hippocampal-entorhinal system. **D**, Hierarchical tree
629 describing the inhibitory neuron subtypes and corresponding marker gene expression in them. The
630 size and color of the dot plot indicate the percent of expressed nuclei and the average expression
631 within each subtype, respectively. **E**, UMAP showing all non-neuronal types detected in the
632 hippocampal-entorhinal system. **F**, Hierarchical tree describing the non-neuronal subtypes and
633 corresponding marker gene expression in them. The size and color of the dot plot indicate the
634 percent of expressed nuclei and the average expression within each subtype, respectively. **G-J**,
635 UMAP showing subtypes of astrocytes (**G**), oligodendrocyte lineage (OPCs, COPs and
636 oligodendrocytes) (**H**), immune cells (**I**) and vasculature cells (**J**).

Figure S3 (related to Figure 3). Transcriptome comparison of excitatory neurons between hippocampus, EC and neocortex.

A, Heat map depicting the expression of marker genes from a certain region (rows) across subtypes of all the four regions: HIP, EC, MTG and PFC (columns). The relative expression enrichment of hippocampal marker genes in deep layers of EC, MTG and PFC, and the upper layer divergence between EC and neocortex are outlined. **B**, Bar plots denoting the percentages of neocortical upper- (red) and deep- (blue) layer marker genes that were expressed in each subtype of HIP, EC, MTG, and PFC. **C**, Scatter plots showing the median expression of intratelencephalic (IT) neuron markers (x axis) versus that of non-IT markers (y axis) in each subtype of HIP, EC, MTG and PFC. Dot size indicates the number of cells within the corresponding subtype.

637

638

639

640

641

642

643

644

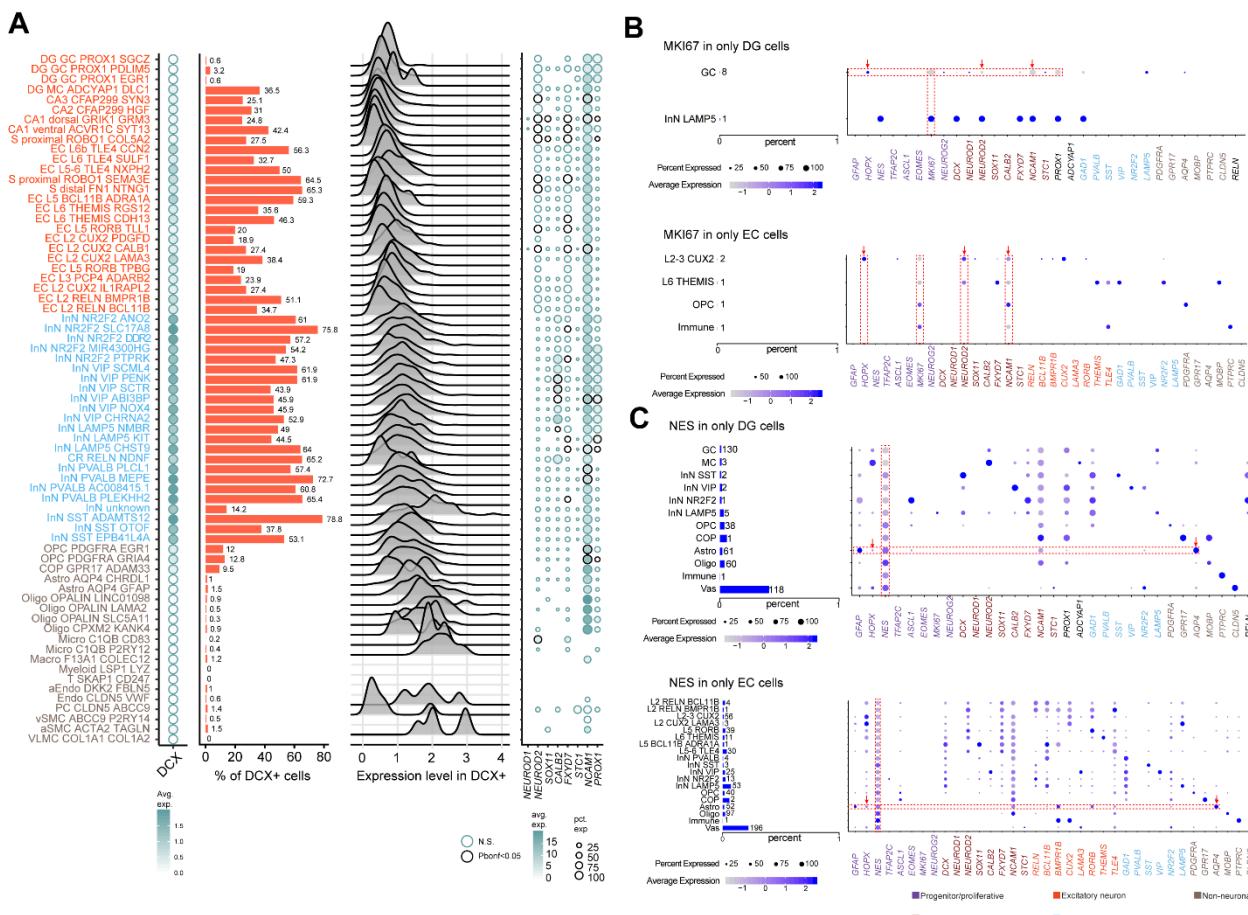
645

646

647

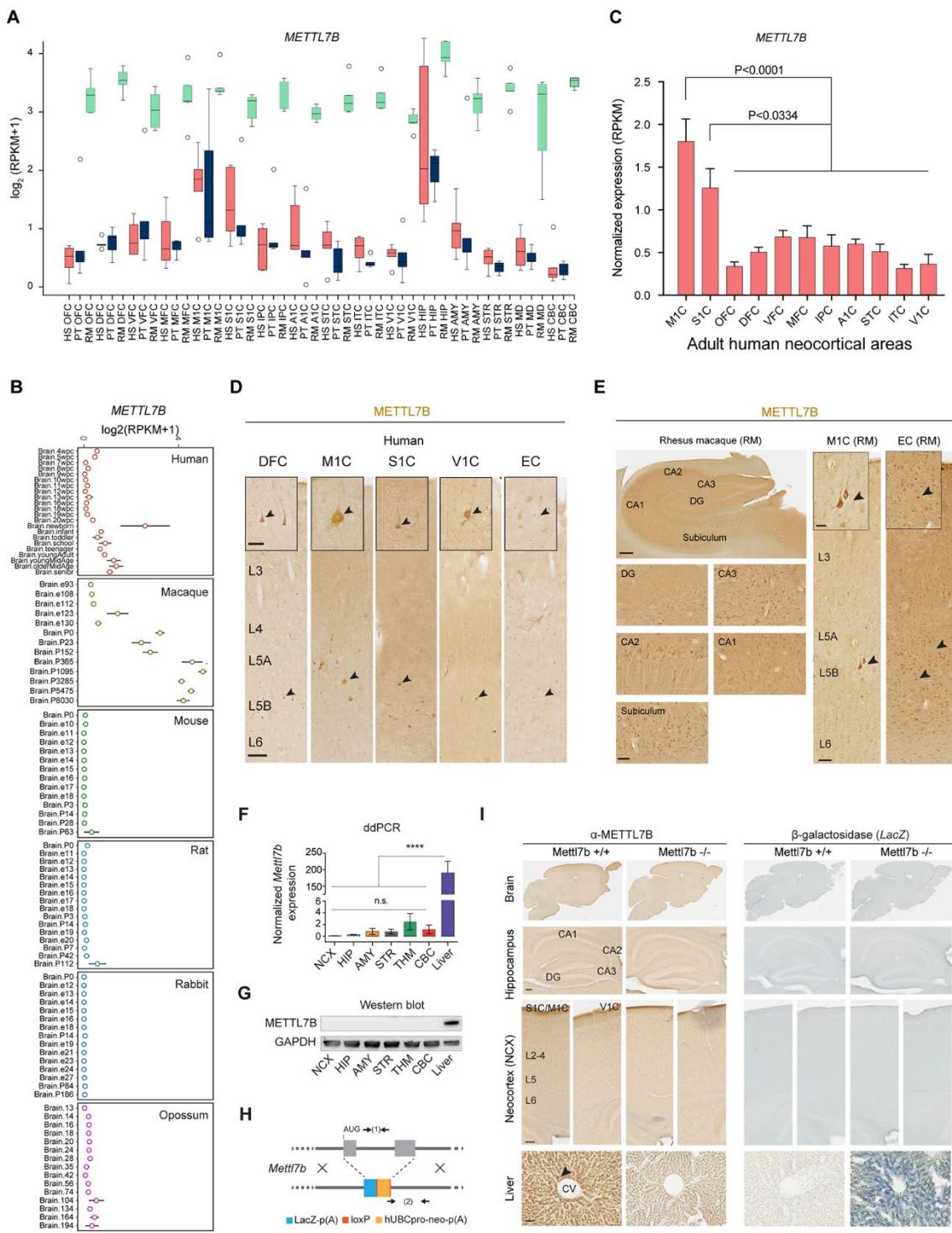
648

649


650

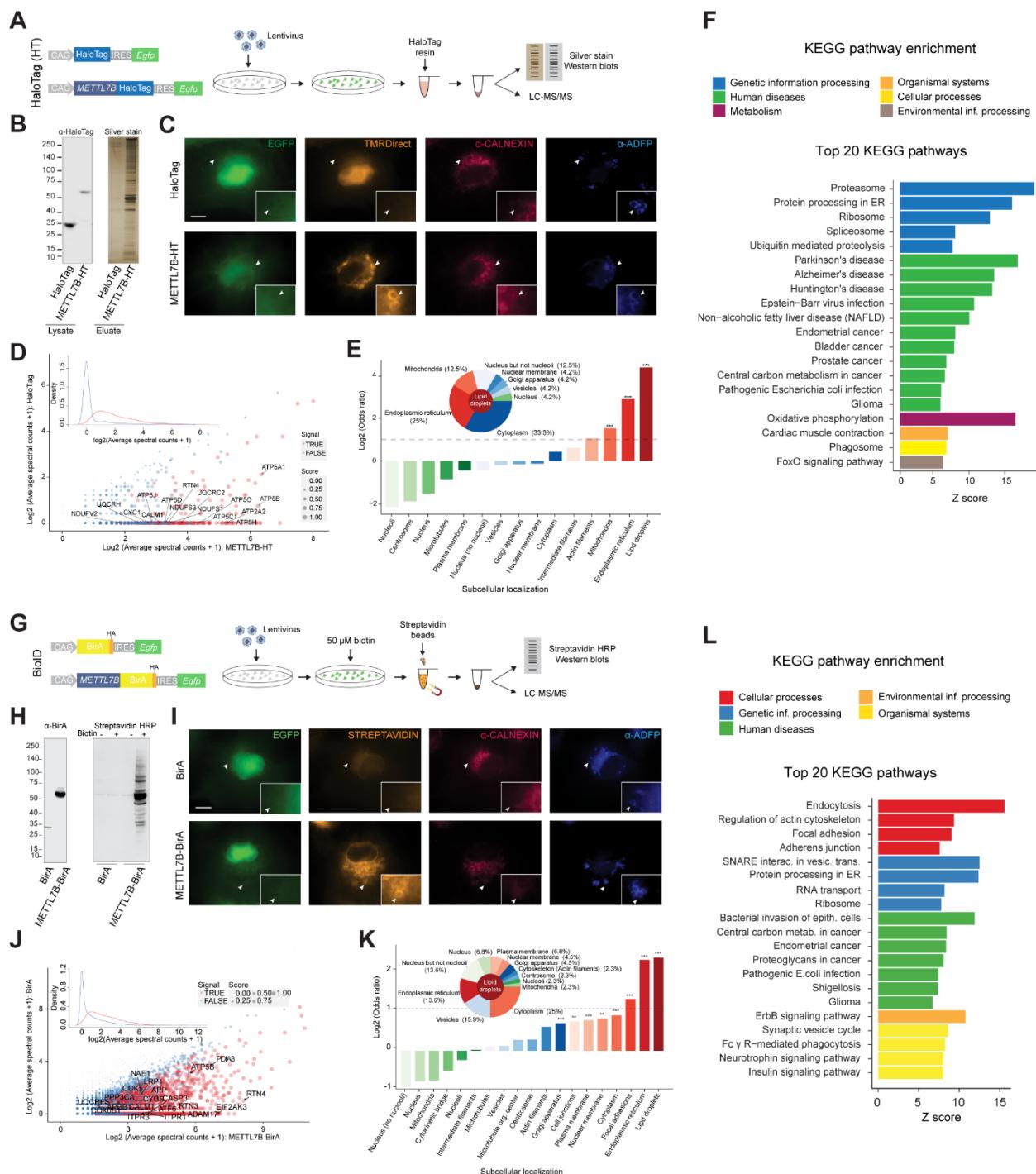
651

652


653

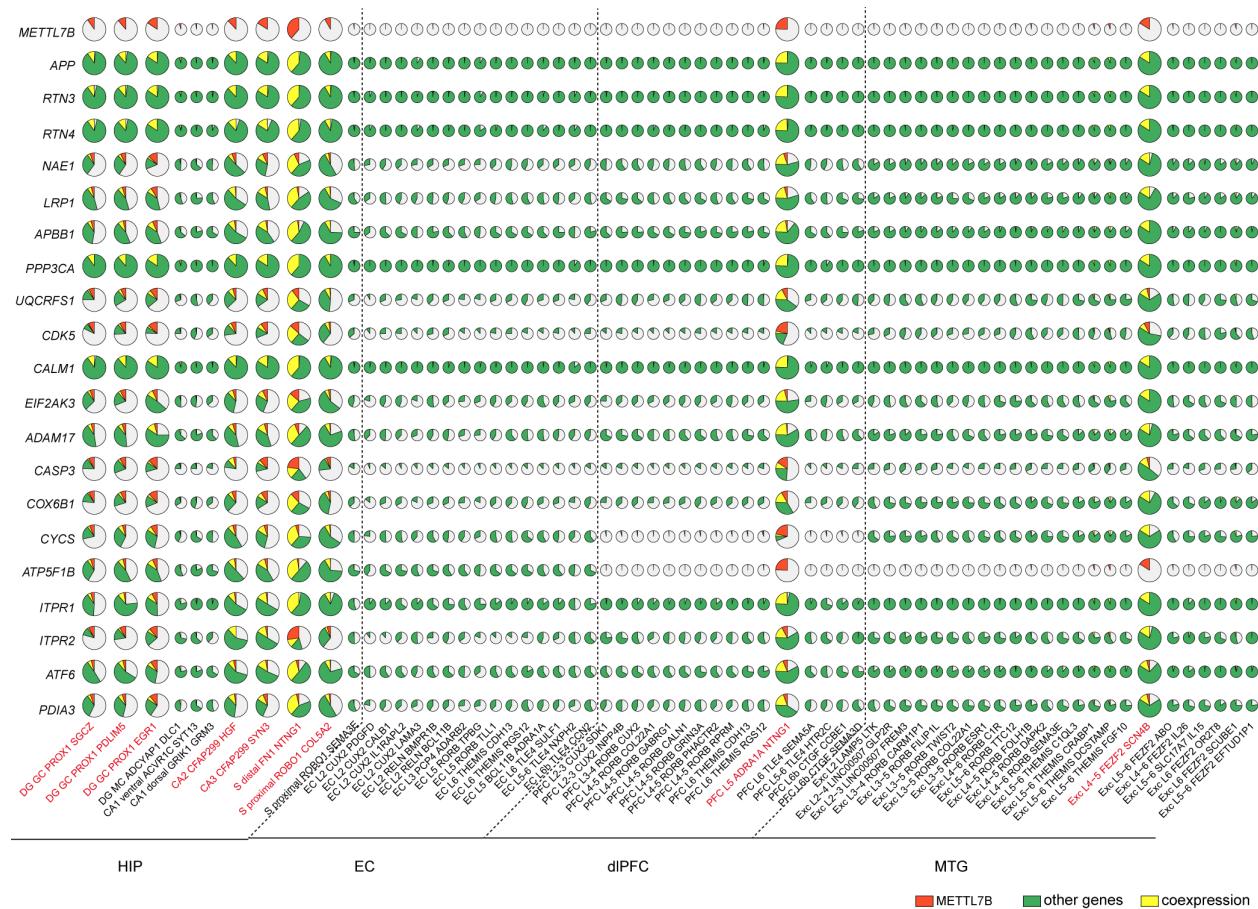
654

Figure S4 (related to Figure 4). Characterization of *DCX*+, *MKI67*+ and *NES*+ cells.


A, First panel: Average expression of *DCX* across clusters. Second panel: percentage of *DCX* positive cells in each cluster. Third panel: expression (Seurat-log normalized counts) level of *DCX*⁺ cells. Fourth panel: Average expression (color) and percentage of cells expressing (size) gene markers of migrating and immature granule cells, and *PROX1*. Black circle indicates significant enrichment of *DCX* and each other gene colocalization compared to *DCX*⁻ cells calculated by means of a Fisher's exact test. **B, C**, Bar plot shows the numbers and percentages of *MKI67*⁺ cells (**B**) or *NES*⁺ cells (**C**) within each cell type of DG (upper) and EC (bottom). Dot plot shows the expression of markers of neural stem cells (NSC), neural progenitor cells (NPC), migrating and immature neurons (IM), as well as markers labeling different cell types in *MKI67*⁺ or *NES*⁺ cells. The size and color of dots indicate the percent of expressed nuclei and the average gene expression within each type, respectively.

676 **Figure S5 (related to Figure 5). METTL7B is expressed in primate brain but not mouse**
677 **brain.**

678 **A**, Exon-array expression of *METTL7B* homologs in human (HS), chimpanzee (PT), and rhesus
679 macaque (RM) brain regions. **B**, RNA-seq expression of *METTL7B* in the brain
680 (forebrain/cerebrum) of multiple species at different developmental stages. Expression data was
681 obtained from Cardoso-Moreira et al. 2019. **C**, RNA-seq expression of *METTL7B* in human NCX.


682 One-way ANOVA with post-hoc Dunnett's adjustment, all groups N=6, except MFC N=5. Data
683 are means \pm SEM. **D**, Prominent immunolabeling of layer 5B (L5B) pyramidal neurons
684 (arrowheads), including Betz and Meynert cells in M1C and V1C, respectively. Scale bars = 150
685 μ m; insets = 50 μ m. **E**, METTL7B immunolabeling of hippocampus, Betz cells, and pyramidal
686 neurons in RM brain. Scale bars = 100 μ m; inset = 50 μ m. **F**, Digital droplet PCR of mouse brain
687 regions and liver, and **G**, immunoblot validation of *Mettl7b* expression in the adult mouse brain
688 and liver showing significantly higher expression in liver with no differences between brain
689 regions. One-way ANOVA with post-hoc Dunnett's adjustment (****P<0.0001), N=3 per group.
690 All data are mean \pm SEM. **H**, Generation of *Mettl7b* knock-out ($^/-$) mouse. **I**, Immunostaining
691 reveals Mettl7b protein and lacZ expression in liver. No staining observed in adult mouse brain.
692 Scale bars: brain = 100 μ m; liver = 50 μ m. CV = central vein. A1C, primary auditory cortex; DFC,
693 dorsolateral prefrontal cortex (aka DLPFC); EC, entorhinal cortex; IPC, posterior inferior parietal
694 cortex; ITC, inferior temporal cortex M1C, primary motor cortex; MFC, medial prefrontal cortex;
695 OFC, orbital prefrontal cortex; S1C, primary somatosensory cortex; STC, superior temporal
696 cortex; V1C, primary visual cortex; VFC, ventrolateral prefrontal cortex.
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727

728 **Figure S6 (related to Figure 6). KEGG pathway enrichment of METTL7B interacting**
729 **proteins.**

730 **A**, Schematic of HaloTag (HT) pulldown design. **B**, Immunoblot validation of HT proteins and
731 silver stain of pulldown eluates showing more proteins captured in METTL7B-HT sample. **C**,
732 Immunofluorescence staining showing that METTL7B fusion protein (TMR-Direct) co-localizes
733 with CALNEXIN and ADFP. Scale bars = 10 μm **D**, SAINT analysis distinguishes true METTL7B
734 interactors (red) from false ones (blue) based on MS spectral counts. The figure shows the average

735 spectral counts in 3 test experiments (x axis) and 3 control experiments for all detected proteins.
736 The inset clarifies separation between true METTL7B interactors (red curve) and the false ones
737 (blue curve) in terms of spectral count distribution. **E**, Fold-enrichment test for major subcellular
738 compartments cataloged in Human Protein Atlas database and mammalian cytoplasmic lipid
739 droplet proteomes. The inset shows subcellular composition (%) of LD associated proteins.
740 ***P<0.001. **F**, KEGG pathway enrichment analysis showing molecular pathways involving true
741 interactors are associated with three neurodegenerative diseases: Alzheimer's, Parkinson's, and
742 Huntington's disease. **G**, Schematic of BioID pulldown experimental design. **H**, Immunoblot
743 validation of BioID proteins (α -BirA) and pulldown efficiency (STREPTAVIDIN-HRP) after
744 supplementing cell culture media with 50 μ M biotin for 24 hours. **I**, METTL7B-expressing cells
745 exhibit vast biotinylation of endogenous proteins (STREPTAVIDIN) which co-localize with
746 CALNEXIN and ADFP, ER and LD markers, respectively. Scale bars = 10 μ m **J**, SAINT analysis
747 distinguishes true METTL7B interactors (red) from false ones (blue) based on MS spectral counts.
748 The figure shows the average spectral counts in 3 test experiments (x axis) and 3 control
749 experiments for all detected proteins. The inset clarifies separation between true METTL7B
750 interactors (red curve) and the false ones (blue curve) in terms of spectral count distribution. **K**,
751 Fold-enrichment test for major subcellular compartments cataloged in Human Protein Atlas
752 database and mammalian cytoplasmic lipid droplet proteomes. The inset shows subcellular
753 composition (%) of LD associated proteins. ***P<0.001, **P<0.01. **L**) KEGG pathway
754 enrichment analysis.
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780

781 **Figure S7 (related to Figure 6). Co-expression of *METTL7B* and its interactors in single cells.**
782 Pie charts showing the percent of cells expressing *METTL7B* but not certain *METTL7B* interactor
783 (red), the percent of cells expressing each of the *METTL7B* interactors but not *METTL7B* (green),
784 as well as the percent of cells co-expressing *METTL7B* and certain interactor (yellow) out of all
785 cells within the subtypes of HIP, EC, MTG and PFC. Each row represents a gene and each column
786 denotes a subtype.

787

788

789

790

791

792

793

795 **SUPPLEMENTAL TABLES**

796

797 **Table S1 (related to Figure 4) | Tissue samples used in adult neurogenesis analyses.**

798

799 **Table S2 (related to Figure 5) | Complete list of genes exhibiting brain region-specific up-**
800 **or down-regulated expression.**

801

802 **Table S3 (related to Figure 6) | LC-MS/MS data from BioID and HaloTag experiments.**

803

804 **Table S4 (related to Figure 6) | SAINT analysis of LC-MS/MS data from BioID and**
805 **HaloTag experiments.**

806

807 **Table S5 (related to STAR methods) | Primer and probe sequences.**

808

809 **Methods**

810 **Human, non-human primate tissue**

811 Human samples were obtained from the collections of the Sestan and Rakic laboratories and from
812 Javier DeFelipe's collection in the Instituto Cajal in Madrid (Spain). Non-human primate brain
813 specimens were obtained from the tissue collection of the Sestan laboratory. All clinical histories,
814 tissue specimens, and histological sections were evaluated to assess for signs of disease, injury,
815 and gross anatomical and histological alterations.

816 Frozen archival tissue human specimens were used for snRNA-seq. No obvious signs of
817 neuropathological alterations were observed in any of the specimens considered and analyzed in
818 this study. For all other specimens, regions of interest were sampled from frozen tissue slabs or
819 whole specimens stored at -80 °C. To ensure consistency between specimens, all dissections
820 were performed by the same person. Frozen tissue slabs were kept on a chilled aluminum plate
821 during dissections. EC and four hippocampal subregions (DG, CA 2-4, CA1, and Sub) were
822 microdissected as previously reported (Kang et al., 2011) from fresh frozen post-mortem human
823 brains previously cut into 1-cm thick serial, coronal sections, and snap frozen in isopentane (J. T.
824 Baker).

825 Fresh tissue specimens for histology were fixed with 4% paraformaldehyde/PBS followed
826 by 30% sucrose/PBS. No obvious signs of neuropathological alterations were observed in any of
827 the human, or macaque specimens analyzed in this study. The postmortem interval (PMI) was
828 defined as hours between time of death and time when tissue samples were fresh frozen or started
829 to undergo fixation process.

830 All human (*Homo sapiens*) brain specimens (18 Y female, 23 Y male, 23 Y male, 42 Y
831 male, 42 Y male, 50 Y female, 51 Y male, 63 Y male, 69 Y female, 74 Y male, 78 Y female, 79

832 Y female, 79 Y female, and one case where sex and age are unknown; PMIs up to 24 hours) were
833 de-identified and collected from clinically unremarkable donors and one case that died in status
834 epilepticus. Tissue was collected following the guidelines provided by the Yale Human
835 Investigation Committee (HIC) for the Sestan and Rakic collection or by the European Union for
836 DeFelipe's samples from Spain. Tissue was collected and handled in accordance with ethical
837 guidelines and regulations for the research use of human brain tissue set forth by the NIH
838 (<http://bioethics.od.nih.gov/humantissue.html>) and the WMA Declaration of Helsinki
839 (<http://www.wma.net/en/30publications/10policies/b3/index.html>). Appropriate informed consent
840 was obtained and all available non-identifying information was recorded for each specimen.

841

842 All studies using non-human primates were carried out in accordance with a protocol
843 approved by Yale University's Committee on Animal Research and NIH guidelines. The
844 postmortem interval (PMI) was defined as hours between time of death and time when tissue
845 samples were frozen or started to undergo fixation process. Rhesus macaque (*Macaca mulatta*)
846 brain samples were collected postmortem from 2 adult specimens (4 Y male, 8 Y female; PMIs up
847 to 2 hours). Macaque brains were post-fixed by immersion in 4% paraformaldehyde/PBS for
848 approximately 24 hours, followed by 30% sucrose/PBS, and stored at +4°C.

849

850 **Anatomical definition of sampled subregions of the hippocampal formation and entorhinal**
851 **cortex**

852 **The dentate gyrus (DG)** was sampled from the posterior part of the anterior third of the
853 hippocampal formation. It included the suprapyramidal blade, infrapyramidal blade and crest
854 of as well as all three layers: molecular, granular, and polymorphic. The polymorphic layer

855 contained only the superficial part, while the deeper part of the hilus of the DG was dissected
856 as part of the proximal portion (nearer DG) of the CA2-4 region.

857

858 **Cornu Ammonis (CA) 2-4 region** was sampled after DG was dissected and contained the
859 remaining part of the hippocampal proper anlage until approximately CA1 region, including all
860 three layers: molecular, pyramidal and stratum oriens. The proximal portion, corresponding to
861 CA4, contained most the tissue of the hilus of the DG.

862

863 **CA1 region** (Sommer's sector) was sampled from approximately the border of CA2 to the
864 subiculum, comprising the most distal (further away from the DG) portion of cornu Ammonis.
865 The border between CA1 and CA2 is difficult to reliably identify and thus small pieces of the
866 neighboring CA2 and, vice versa, could have been occasionally present in the sample.

867

868 **The subiculum (S)** forms the most distal part of the hippocampal formation that is adjacent to
869 CA1 region. It was sampled adjacent to the CA1 sample and contained all cortical layers and
870 the superficial region of underlying white matter.

871

872 **The entorhinal cortex (EC)** spreads over both the gyrus ambiens and a considerable part of the
873 parahippocampal gyrus. The EC samples were collected from the middle portion of the
874 parahippocampal gyrus of the same tissue slab used to dissect the subregions of the hippocampal
875 formation, corresponding to the proper entorhinal subregion and Brodmann area 28. The EC
876 was also defined by presence of numerous wart-like elevations (verrucae hippocampi) on the

877 surface of the gyrus. Samples contained all cortical layers and the superficial region of
878 underlying white matter.

879

880 **Brain cell nuclei isolation**

881 The brain cell nuclei were isolated according to our previous protocol (Li et al., 2018; Zhu et al.,
882 2018) with some modifications. Hippocampal regions (DG, CA1, CA2-4, Subiculum) and adjacent
883 entorhinal cortex were dissected from three frozen adult human brains (table S). In order to avoid
884 experimental bias and evenly dissociate the tissue for cell nuclei isolation, whole tissue was finely
885 pulverized to powder in liquid nitrogen with mortar and pestle (Coorstek #60316, #60317). All
886 buffers were ice cold and all reagents used for consequent nuclear isolation were molecular biology
887 grade unless stated otherwise. 5 - 10 mg of pulverized tissue was added into 5 ml of ice-cold lysis
888 buffer consisting of 320 mM sucrose (Sigma #S0389), 5 mM CaCl₂ (Sigma #21115), 3 mM
889 Mg(Ac)₂ (Sigma #63052), 10mM Tris-HCl (pH 8) (AmericanBio #AB14043), protease
890 inhibitors w/o EDTA (Roche #11836170001), 0.1 mM EDTA (AmericanBio #AB00502), RNase
891 inhibitor (80U/ml) (Roche #03335402001), 1mM DTT (Sigma #43186), and 0.1% TX-100 (v/v)
892 (Sigma#T8787). DTT, RNase Protector, protease inhibitors, and TX-100 were added immediately
893 before use. The suspension was transferred to Dounce tissue grinder (15ml volume, Wheaton
894 #357544; autoclaved, RNase free, ice-cold) and homogenized with loose and tight pestles, 30
895 cycles each, with constant pressure and without introduction of air. The homogenate was strained
896 through 40 um tube top cell strainer (Corning #352340) which was pre-wetted with 1ml wash
897 buffer: (250 mM sucrose (Sigma #S0389), 25 mM KCl (Sigma #60142), 5mM MgCl₂ (Sigma
898 #M1028), 20mM Tris-HCl (pH 7.5) (AmericanBio #AB14043; Sigma #T2413), protease
899 inhibitors w/o EDTA (Roche #11836170001), RNase inhibitor (80U/ml) (Roche #03335402001),

900 1mM DTT (Sigma #43186)). Additional 4 ml of wash buffer was added to wash the strainer. Final
901 10 ml of solution was mixed with 10 ml of 50% Optiprep (Axis-Shield# 1114542) solution (50%
902 iodixanol (v/v), 250 mM sucrose (Sigma #S0389), 25 mM KCl (Sigma #60142), 5mM MgCl₂
903 (Sigma #M1028), 20mM Tris-HCl (pH 7.5) (AmericanBio #AB14043; Sigma #T2413), protease
904 inhibitors w/o EDTA (Roche #11836170001), RNase inhibitor (80U/ml) (Roche #03335402001),
905 1mM DTT (Sigma #43186)) by inverting the tube 10x and carefully pipetted into 2 centrifuge
906 tubes (Corning #430791). The tubes were centrifuged at 1000g, for 30 min at 4 °C on centrifuge
907 (Eppendorf #5804R) and rotor (Eppendorf #S-4-72). Upon end of centrifugation, the supernatant
908 was carefully and completely removed and total of 5 ml of resuspension buffer (250 mM sucrose
909 (Sigma #S0389), 25 mM KCl (Sigma #60142), 5mM MgCl₂ (Sigma #M1028), 20mM Tris-HCl
910 (pH 7.5) (AmericanBio #AB14043; Sigma #T2413), protease inhibitors w/o EDTA (Roche
911 #11836170001), RNase inhibitor (80U/ml) (Roche #03335402001), 1mM DTT (Sigma #43186))
912 was added carefully on the pellets in tubes and centrifuged at 1000g, for 10 min at 4 °C on the
913 same centrifuge and rotor. Supernatants were then carefully and completely removed, pellets were
914 gently dissolved by adding 100 ul of resuspension buffer (see above) and pipetting 30x with 1ml
915 pipette tip, pooled and filtered through 35 um tube top cell strainer (Corning #352340). Finally,
916 nuclei were counted on hemocytometer and diluted to 1 million/ml with sample-run buffer: 0.1%
917 BSA (Gemini Bio-Products #700-106P), RNase inhibitor (80U/ml) (Roche#03335402001), 1mM
918 DTT (Sigma #43186) in DPBS (Gibco #14190).

919

920 **Single nucleus microfluidic capture and cDNA synthesis**

921 The nuclei samples were placed on ice and taken to Yale Center for Genome Analysis core facility
922 and processed within 15 minutes for single nucleus RNA sequencing with targeted nuclei recovery

923 of 10000 nuclei, respectively, on microfluidic Chromium System (10x Genomics) by following
924 the manufacturer's protocol (10x Genomics, CG000183_Rev_A), with Chromium Single Cell 3'
925 GEM, Library & Gel Bead Kit v3, (10x Genomics #PN-1000075) and Chromium Single Cell B
926 Chip Kit (10x Genomics #PN-1000074), Chromium i7 Multiplex Kit (10x Genomics #PN-
927 120262) on Chromium Controller (10x Genomics). Due to limitations imposed by source RNA
928 quantity, cDNA from nuclei was amplified for 14 cycles.

929

930 **Single nucleus RNA-seq library preparation**

931 Post cDNA amplification cleanup and construction of sample-indexed libraries and their
932 amplification followed manufacturer's directions (10x Genomics, CG000183_Rev_A), with the
933 amplification step directly dependent on the quantity of input cDNA.

934

935 **Sequencing of libraries**

936 In order to reach sequencing depth of 20000 raw reads per nucleus, single nucleus libraries were
937 run using paired end sequencing with single indexing on the HiSeq 4000 platform (Illumina) by
938 following manufacturer's instructions (Illumina; 10x Genomics, CG000183_Rev_A). To avoid
939 lane bias, multiple uniquely indexed samples were mixed and distributed over several lanes. RNA-
940 seq data is deposited at <http://psychencode.org> and NCBI dbGAP Accession phs000755.v2.p1.

941

942 **Quantification and Statistical Analysis**

943 **Single nuclei expression quantification and quality control**

944 We quantified the expression levels of genes in each potential nucleus represented by a cellular
945 barcode using the 10X Genomics CellRanger pipeline (version 3.0.2). Reads were mapped to

946 human reference genome GRCh38 (Ensembl release 98) and quantified in units of Unique
947 Molecular Identifiers (UMIs) based on the combined exon-intron human annotation. We took
948 advantage of the enhanced cell-calling methodology in CellRanger to distinguish true cells from
949 damaged or empty droplets. Specifically, RNA content distribution of each barcode was compared
950 to the background concentration which was generalized from extremely low RNA-containing
951 barcodes, and was subsequently classified as damaged if comparable profiles were seen. To further
952 rule out low-quality cells, we excluded nuclei with mitochondrial content greater than 10%. This
953 loose criterion was set as we aimed to incorporate certain cell types into analyses such as
954 endothelial cells which were shown to be prone to high mitochondrial content (Velmeshev et al.,
955 2019). Additional filtering procedure was performed after clustering and low-dimensional
956 embedding (see below) to eliminate small cell clusters collectively displaying elevated
957 mitochondrial and ribosomal gene expression and showing no signals of reasonable cell types.

958

959 **Normalization, dimensionality reduction and clustering**

960 We normalized the raw UMI counts into log-transformed Transcripts Per Million (TPM) using the
961 ‘NormalizeData’ function in the R package Seurat (scaling factor equals to 10,000) (version 3.1.0)
962 (Butler et al., 2018). To position all nuclei in a two-dimensional representation reflecting their
963 transcriptomic similarities (**Fig. 1B-1D**), the top 2,000 highly variable genes were obtained by the
964 Seurat function ‘FindVariableFeatures’ with the default variance stabilizing process for each of
965 the three human individuals. We further integrated nuclei from the three humans on the basis of
966 their anchor features summarized from each individual via the function ‘IntegrateData’ and
967 embedded ensuing nuclei in the Uniform Manifold Approximation and Projection (UMAP) plot
968 using the top 30 principal components (PCs) (‘RunPCA’ function in Seurat followed by the

969 function ‘RunUMAP’). To cluster nuclei according to their nearest transcriptomic neighbors, we
970 searched for shared nearest neighbors (SNN) in the PCA space with the neighbor number being
971 20 and optimized the graph modularity using the Seurat function ‘FindClusters’. In general, we
972 performed an iterative removal-clustering approach to remove nuclei with high mitochondrial or
973 ribosomal contents and without clear cluster-related markers followed by re-clustering of the
974 remaining nuclei. Moreover, cells co-expressing multiple cell-type specific marker genes were
975 manually marked as doublets and excluded from the downstream analytical flow. Lastly, we re-
976 embedded cell types of interest (i.e., excitatory neurons, inhibitory neurons and non-neuronal cells)
977 in the UMAP space and re-clustered them using the same procedure as mentioned above, as this
978 would offer finer details into the cell types we sought to probe into.

979

980 **Global across-dataset comparison**

981 We performed global comparisons with the human MTG (Hodge et al., 2019) and dlPFC single
982 nucleus datasets (Li et al., 2018) to investigate the similarities and distinctions among them. We
983 processed the MTG and dlPFC data using the same procedure except that for MTG, the scaling
984 factor during data normalization was set to 1,000,000 to mitigate the bias caused by magnitude
985 differences. For each of the highly variable genes detected in both our data and MTG/dlPFC data,
986 we averaged the TPMs across each subtype within both data and transformed them in the
987 logarithmic space. Spearman correlation coefficients were calculated across these subtypes to
988 further avoid the across-dataset batches and the resulting linkages were exhibited in gradient heat
989 maps (**Fig. S1E, S1F**).

990

991 **Tree construction**

992 To explore the taxonomic relationships among all cell subtypes, we constructed a hierarchical tree
993 by first averaging the gene expression levels across cells of the same subtype. The derived
994 expression was standardized to mean of zero and variance of one within each subtype across the
995 anchor genes selected in the previous integration step. Following this step, we calculated the
996 Euclidean distances between pairwise subtypes, and clustered these subtypes in a structured tree
997 (**Fig. 1E**) by the ‘*hclust*’ function in R with the method set to ‘*ward.D2*’.

998

999 **Classification of cell subtypes**

1000 We grouped cell clusters with strong signals of *SLC17A7* expression into excitatory neurons.
1001 Furthermore, we categorized them into different subtypes through marker gene expression and
1002 comparisons with published datasets (**Fig. S2A, S2B**). Specifically, granule cells were
1003 characterized by the predominant composition of dentate gyrus nuclei and prominent expression
1004 of *PROX1*. Mossy cells were described by the principal origin from dentate gyrus and exclusive
1005 expression of *ADCYAPI*. We subsequently classified granule cells into three subtypes
1006 characterized by the high expression of *SGCZ*, *PDLIM5* and *EGR1*, respectively. Excitatory
1007 neurons from CA fields were arranged mainly according to subfields: CA3 pyramidal neurons (co-
1008 expression of *CFAP299* and *SYN3*), CA2 pyramidal neurons (co-expression of *CFAP299* and
1009 *HGF*), dorsal CA1 pyramidal neurons (co-expression of *GRIK1* and *GRM3*), and ventral CA1
1010 pyramidal neurons (co-expression of *ACVR1C* and *SYT13*). For the subiculum excitatory neurons,
1011 we categorized them into three subtypes: one distal (away from CA1) (*FNI*+) subtype and two
1012 proximal ones (*ROBO1* +). Of note, the spatial registrations of CA and subiculum cell subtypes
1013 were achieved on the basis of previous transcriptomic studies of hippocampal pyramidal neurons
1014 (Cembrowski et al., 2016a; Cembrowski et al., 2016b; Cembrowski et al., 2018). With regards to

1015 entorhinal excitatory neurons, we classified them by two means. First, we aligned them with
1016 excitatory neurons from single nucleus data of human MTG using the same procedure as described
1017 above. Second, we examined the subtype-specific marker genes in both our excitatory neurons and
1018 related literature reports. Specifically, two layer 2 subtypes were classified as *RELN*⁺ and one as
1019 *CALBI*⁺ (Witter et al., 2017). Other upper-layer subtypes were depicted based on marker gene
1020 expression of *LAMA3*, *PDGFD*, *IL1RAPL2*, and *PCP4* (Ramsden et al., 2015; Tang et al., 2015;
1021 Ohara et al., 2018). The middle-to-deep layer subtypes were delineated by the specific gene
1022 expression of *RORB*, *THEMIS*, *ADRA1A*, and *TLE4*.

1023 Cell clusters showing high GAD1 expression were then assigned as inhibitory neurons.
1024 Inhibitory neuron clusters were first classified to major groups based on the expression of three
1025 canonical function markers (*PVALB*, *SST*, *VIP*) as well as *LAMP5*, a marker mostly representing
1026 a group of neurogliaform inhibitory neurons and recently being adopted as a major inhibitory
1027 neuron marker (Tasic et al., 2018; Hodge et al., 2019). For a cluster expressing two markers
1028 simultaneously (eg. InN LAMP5 NMBR cluster expresses both SST and LAMP5), it was assigned
1029 to the same major group of the neighboring cluster in the hierarchical tree. Additionally, we used
1030 LHX6 (a medial ganglionic eminence marker) and NR2F2 (a caudal ganglionic eminence marker)
1031 to classify the rest of the inhibitory neuron clusters which do not express these markers. We also
1032 identified an inhibitory neuron cluster with no evident markers and showing high mitochondria
1033 counts, indicative of low-quality cells, which accordingly was termed as “InN unknown”. Finally,
1034 each inhibitory neuron cluster was named after the combination of major group marker (eg. SST,
1035 VIP) and one top exclusive cluster marker (eg. ANO2). Apart from these inhibitory neuron
1036 clusters, we also identified a neuron cluster co-clustered with inhibitory neurons showing strong
1037 signals of *RELN*, *NDNF*, highly indicative of Cajal Retzius cells.

1038 The remaining nuclei were collectively referred to as non-neuronal cells. We classified
1039 these nuclei into four big groups based on marker gene expression of *SOX10* (oligodendrocyte
1040 lineage-related cells), *AQP4* (astrocytes), *PTPRC* (immune cells) and *RGS5* (endothelial cells)
1041 (**Fig. S2E, S2F**). The first group was further subdivided by the expression of *PDGFRA*
1042 (oligodendrocyte precursor cells, OPCs), *GPR17* (committed oligodendrocyte precursor cells,
1043 COPs), and *MOBP* (oligodendrocytes), as in **Fig. S2H**. We additionally grouped OPCs and
1044 oligodendrocytes into specific subtypes according to the high expression of specific genes: *EGR1*
1045 and *GRIA4* for OPCs; *CPXM2*, *SLC5A11*, *LINC01098* and *LAMA2* for oligodendrocytes. For
1046 astrocyte subtype specification, we classified them by the laminar distribution: *GFAP*⁺ ones
1047 located in deep layers and *CHRD1*⁺ ones in upper layers (**Fig. S2G**) (Lanjakornsiripan et al.,
1048 2018). Regarding immune cells, we used marker genes *C1QB*, *F13A1*, *LYZ* and *SKAPI* to
1049 deconstruct them into microglia, macrophages, myeloid cells and T cells, respectively (**Fig. S2I**).
1050 Microglia were further subdivided via specific gene expression of *P2RY12* and *CD83*. In terms of
1051 vasculature lineage, we employed combinational expression of genes to sort them into arterial
1052 endothelial cells (*DKK2*⁺), endothelial cells (*CLDN5*⁺ and *VWF*⁺), pericytes (*CLDN5*⁺ and
1053 *ABCC9*⁺), venous smooth muscle cells (*ABCC9*⁺ and *P2RY14*⁺), arterial smooth muscle cells
1054 (*ACTA2*⁺ and *TAGLN*⁺) and vascular and leptomeningeal cells (*COL1A2*⁺ and *COL1A1*⁺) (**Fig.**
1055 **S2J**) (Vanlandewijck et al., 2018).

1056

1057 **Cell subtype comparisons among HIP, EC, MTG and dlPFC**

1058 To explore the transcriptomic divergence across HIP, EC, MTG and dlPFC for all cell subtypes,
1059 we constructed a network demonstrating the relationships among the subtypes in the four brain
1060 regions based on the extent of overlap of their specific marker genes. In detail, in each region we

1061 first determined the marker genes of each subtype using the ‘FindAllMarkers’ function in Seurat.
1062 Subsequently, we generated a similarity matrix representing the overlap between marker genes of
1063 pairwise subtypes across all regions, followed by the visualization of this matrix in the form of a
1064 network via the R package ‘igraph’ through the force-directed graphopt algorithm (**Fig. 2A-F**).
1065 Especially, for excitatory neuron types we displayed their connections in a between-region manner
1066 (HIP and EC, EC and MTG, and MTG and dlPFC). To further examine the cell subtype
1067 connections across different regions, in each brain region we focused on marker genes detected in
1068 at least one subtype and assessed their expression across all subtypes of remaining brain regions
1069 visualized in heat maps (**Fig. S3A**). Additionally, given the upper- and deep-layer marker genes
1070 identified in MTG, we calculated the percentages of genes in each subtype of each region where
1071 expression was greater than the expression constraint of 75% quantile across all expression values.
1072 Furthermore, we evaluated the expression of marker genes from intratelencephalic/intracerebral
1073 (IT) neurons and non-IT neurons of MTG in all subtypes of the four regions through first averaging
1074 the expression of each gene across cells of the same subtype and then displaying the median values
1075 across IT markers/Non-IT markers in scatter plots (**Fig. S3C**).
1076

1077 **Exclusive markers of cluster InN SST ADAMTS12**
1078 To find hippocampus-specific transcriptome features in the cluster InN *SST ADAMTS12*, we first
1079 sought to confirm the enrichment of this cluster in hippocampus by integrating inhibitory neurons
1080 from across the hippocampal-entorhinal system with those from MTG and dlPFC using the
1081 ‘fastMNN’ function from the batchelor R package (**Fig. 3C**) (Haghverdi et al., 2018). Following
1082 this confirmation, we identified a set of markers exclusively expressed in this cluster as compared
1083 to other interneuron clusters in hippocampus and SST-expressing interneuron clusters in MTG or

1084 dlPFC. To do so, we first calculated a specificity score for each gene in each cluster to assess the
1085 specificity of gene expression in each cluster (Li et al., 2018). For cluster InN *SST ADAMTS12*,
1086 we then selected those genes with a specificity score in the 99% quantile and that showed a 1.5
1087 fold or greater difference between this specificity score and the maximum specificity score of that
1088 gene in any other cluster. To further refine this list of genes exhibiting highly selective expression
1089 in In *SST ADAMTS12*, we next removed from this list those genes that were also highly specific
1090 (maximum specificity score in the 99th quantile) for any population of *SST*-expressing neurons in
1091 MTG or dlPFC. The expression of these markers in each cell was then generalized as a single
1092 AUROC score calculated via AUCell package (Aibar et al., 2017).

1093

1094 **Expression of DCX and proliferation markers in HIP and EC**

1095 To check the expression of *DCX* in the cell types of HIP and EC, we interrogated *DCX* expression
1096 in all excitatory or inhibitory neurons and next in all DG or EC cell types, all of which were re-
1097 embedded in the UMAP space (**Fig. 4A-D**). During visualization, the expression threshold (i.e.,
1098 log-transformed TPM) was set to one to highlight the apparent expression of *DCX* in
1099 corresponding cell types. Quantitatively, we evaluated the percentage of DG inhibitory neurons or
1100 GC expressing *DCX* under different thresholds in units of UMIs (1, 2 and 3). We further examined
1101 the cells expressing *NES*, *MKI67* or *DCX*, the three markers labeling neural stem cells (NSC),
1102 neural progenitor cells (NPC), and migrating and immature granule cells (IM) respectively, in DG
1103 and EC. These cells were uncovered in each subtype of DG or EC, and the marker genes over the
1104 granule cell maturation were checked specifically for those cells (**Fig. 4E, 4F and S4C**).

1105 To test whether DCX-expressing cells showed enriched expression of *NEUROD1*,
1106 *NEUROD2*, *SOX11*, *CALB2*, *FXYD7*, *STC1*, *NCAMI* and *PROXI1*, we compared, in each cluster,

1107 the proportion of *DCX*-expressing and *DCX*-negative cells also expressing each of those markers
1108 by means of a Fisher Exact's test (**Fig. S4A**). P-values were adjusted using Bonferroni correction.

1109

1110

1111 **Analysis of bulk tissue transcriptomic datasets**

1112 Gene expression analysis was performed on an exon array (Kang et al., 2011) and PsychENCODE
1113 RNA-seq datasets (Li et al., 2018). Gene expression values from exon array were used to rank
1114 protein-coding genes based on a region-specific upward or downward temporal trajectory. Time
1115 periods 3-15 were collapsed into three time groups: prenatal (periods 3-7), early postnatal (periods
1116 8-12), and adult (periods 13-15). We used limma (Smyth, 2005) to run a regression that included
1117 the time group and brain region, as well as the region-group interactions, as factors. To select genes
1118 with an increase in expression across time groups in a single region, genes were ranked by their
1119 region-group interaction coefficient. We filtered to genes for which the time group coefficient was
1120 above an arbitrary cutoff of -0.05 to remove cases where the high region-group interaction simply
1121 offsets an overall negative decrease in expression across the time groups. We also filtered out
1122 genes where more than one region-group interaction coefficient was above 0.01 to restrict the
1123 ranking to increases in expression that are unique to a single brain region. To identify genes where
1124 expression decreases across time groups in a region-specific manner, similar criteria were used,
1125 reversing the sign of the cutoff values and the direction of the comparisons. Gene expression values
1126 from BrainSpan RNA-seq dataset were used to compare *METTL7B* expression within multiple
1127 neocortical regions during adulthood (time periods 13-15). Statistical analysis was performed
1128 using one-way ANOVA.

1129

1130 **Generation of knockout mice and tissue processing**

1131 All experiments with mice were performed in accordance with a protocol approved by Yale
1132 University's Committee on Animal Research. Targeted embryonic stem (ES) cells
1133 (*Mettl7b*^{tm1(KOMP)Vlcg}) were obtained from Knockout Mouse Project (KOMP) repository. Chimeric
1134 mice were generated by blastocyst injection of ES cells at Yale Genome Editing Center (YGEC).
1135 Mice were bred for germline transmission to generate gene knockout mice. Genotyping was
1136 performed using the TUF/TUR primer set (145 bp) for the wild-type allele and the NeoFwd/SD
1137 primer set (351 bp) for the *Mettl7b* deletion allele.

1138 Both wild type and *Mettl7b* mutant mice were reared in group housing in a 12h light:12h
1139 dark cycle and provided food and water ad libitum with veterinary care provided by Yale Animal
1140 Resource Center. Only mice in good, healthy condition, as approved by Yale Animal Resource
1141 Center, were used for breeding and experimentation. Multiple breeding pairs were maintained and
1142 siblings were never mated to increase genetic diversity, and prevent unintended selection for
1143 features that could affect results. Both sexes were used and randomly assigned for all experiments.
1144 Adult mice were anesthetized and intracardially perfused with ice-cold PBS and 4% PFA. All
1145 mouse brain tissue specimens were fixed by immersion in 4% PFA overnight at 4 °C and sectioned
1146 at 50 µm using a vibratome (Leica).

1147

1148 **In situ hybridization**

1149 Human brain tissue samples were fixed in 4% PFA overnight at 4 °C and sectioned at 30 µm using
1150 a Leica VT1000 S vibratome. The RNA probes complementary to human *METTL7B* cDNA
1151 (NM_152637.2) were labeled with digoxigenin-UTP (Roche). After acetylation, sections were
1152 hybridized with the probes at 63 °C for 16 hours. Following hybridization, the riboprobes were

1153 immunolabeled with anti-digoxigenin-AP conjugate and the signal was developed with NBT/BCIP
1154 overnight in dark.

1155

1156 **Immunolabeling and histology**

1157 For METTL7B immunohistochemistry, tissue sections were processed using ImmPRES Excel
1158 Amplified HRP Polymer Staining Kit (Anti-Rabbit IgG, MP-7601-15, Vector Laboratories) per
1159 manufacturer's protocol. For mouse α - β -galactosidase (*lacZ*) stain, tissue sections were blocked
1160 with blocking solution (5% normal donkey serum, 1% BSA, 0.1% glycine, 0.1% lysine, and 0.3%
1161 Triton X-100 in PBS) for 1 hour and incubated with primary antibodies and biotinylated secondary
1162 antibodies. The signal was amplified with Vectastain ABC-AP kit (AK-5000, Vector Labs) and
1163 developed with Vector Blue AP kit (SL-5300, Vector Labs) per manufacturer's protocol. DCX
1164 and GAD1 immunohistochemistry was performed with anti-DCX antibodies raised in guinea pig
1165 (EMD Millipore AB2253; 1:1000) and anti-GAD1 antibody raised in goat (R&D AF2086; 1:200)
1166 in 3% normal donkey serum, 0.25% Triton X-100 in PBS). Antigen retrieval (20 mins in citrate
1167 buffer pH 6 at 95C) was required for optimal results. Antibody detection was achieved with
1168 biotinylated secondary antibody and Streptavidin conjugated (Jackson Immunoresearch) for DCX
1169 and anti-goat secondary antibodies (Jackson Immunoresearch) for GAD1. DAPI was used for
1170 nuclear staining. All histology samples were imaged on Aperio ScanScope system or imaged on a
1171 Zeiss LSM 510 confocal microscope. Cell culture samples were fixed with ice-cold 4%
1172 paraformaldehyde (PFA) for 10 minutes at room temperature, blocked for 30 minutes at RT with
1173 blocking solution (5% normal donkey serum, 1% BSA, 0.1% glycine, 0.1% lysine, and 0.3%
1174 saponin in PBS), incubated with primary and appropriate Alexa Flour-conjugated secondary
1175 antibodies, and imaged on Zeiss LSM 510 confocal microscope.

1176

1177 Plasmids

1178 For expression of *METTL7B*, full length cDNA (NM_152637.2) was inserted into pCAGIG (a gift
1179 from Connie Cepko, Addgene #11159) (Matsuda and Cepko, 2004). For lentiviral generation,
1180 pFUGW (a gift from David Baltimore, Addgene #14883) (Lois et al., 2002) was digested with
1181 *PacI*, 3' overhangs removed with Klenow (NEB) to form blunt ends, and additionally digested
1182 with *BsrGI* to release hUBC promoter and EGFP. The CAG-IRES-EGFP was removed from
1183 pCAGIG and ligated into pFUGW. For protein pulldown experiments, BirA-HA and HaloTag
1184 constructs were PCR-amplified from pcDNA3.1-MCS-BirA(R118G)-HA (a gift from Kyle Roux,
1185 Addgene #36047) (Roux et al., 2012) and pHTC-CMVneo-HaloTag (G7711, Promega),
1186 respectively, and ligated into pFUGW-CAG. For overexpression of wild type APP, full length
1187 APP (NM_201414.2) and mCherry cDNA were PCR amplified and ligated into pFUGW-CAG in
1188 place of IRES-EGFP. For doxycycline inducible expression of METTL7B, cDNA fragments
1189 [Ampicillin resistance, high-copy-number Origin of replication, SV40 poly(A), and IRES-EGFP
1190 from pCAGIG; rTetR and tight TRE promoter from pCW57.1 (a gift from David Root, Addgene
1191 #41393); hPKG promoter (M60581.1); METTL7B (NM_152637.2); bGH poly(A) from pFUGW]
1192 were PCR amplified, ligated, and circularized (pDTET-METTL7B).

1193

1194 Lentiviral purification and generation of stable cell lines

1195 Ten 15-cm dishes of sub-confluent Lenti-X 293T cells (Clontech) were used for each purification.
1196 pFUGW-CAG specific plasmids (BirA, METTL7B-BirA, HaloTag, METTL7B-HaloTag) along
1197 with pMD2.G, pRSVrev and pMDLg/pRRE (a gift from Didier Trono, Addgene #12259, #12253,
1198 #12251) (Dull et al., 1998) were transfected at 1:1:1:1 molar ratio using PolyJet (SignaGen). Cell

1199 culture media containing lentiviral particles (LVP) was collected at 48- and 60-hours post-
1200 transfection and filtered through 0.2 μ m filter to remove cellular debris. Filtered supernatants were
1201 centrifuged at 100,000g for 2 hours. One milliliter of PBS was laid over LVP pellet and left
1202 overnight at 4 °C. Next day, resuspended pellets were centrifuged through 30% sucrose gradient
1203 to further purify the virus. Lentiviral titers were determined by transducing Lenti-X 293T cells and
1204 calculating titer from FACS data between 1-10% infection rate using formula: Titer (IU/ml) = (#
1205 cells seeded x dilution factor x % GFP-positive cells) / (volume of virus solution added).

1206
1207 For pulldown experiments, 50,000 ReNcell CX (EMD Millipore) cells were plated on a laminin
1208 coated 24-well plate in triplicate wells. Cells were transduced with lentiviral particles at MOI of
1209 10 in a 150 μ L of cell culture media supplemented with 10 μ g/mL of protamine sulfate
1210 (#02194729, MP Biomedicals) and saved as ReN-CAG-BirA, ReN-CAG-METTL7B-BirA, ReN-
1211 CAG-HaloTag, and ReN-CAG-METTL7B-HaloTag stable cell lines.

1212
1213 For *APP* overexpression, N2a cells were transduced at MOI of 40. After propagation, eight million
1214 cells were sorted at Yale Flow Cytometry Facility, Yale University, on a BD SORP FACSaria 2
1215 cell sorter (Special Order Research Product) using the 100- μ m nozzle and a sheath pressure of 20
1216 p.s.i. BD FACSDiva Software was used to acquire and analyze samples. Gates were set to remove
1217 cell doublets and particle debris. Cell selection was based on mCherry signal intensity and top one
1218 percent expressing cells were saved as the N2a-APP cell line.

1219

1220 Affinity capture of proteins

1221 For BioID and HaloTag experiments, two million cells (ReN-CAG-BirA, ReN-CAG-METTL7B-
1222 BirA, ReN-CAG-HaloTag, ReN-CAG-METTL7B-HaloTag) were plated on four laminin coated
1223 10-cm dishes. BioID pulldown was performed per protocol (Roux et al., 2013). At near confluence,
1224 cell culture media was supplemented with 50 μ M biotin (B4639, Sigma-Aldrich). The next day,
1225 cells were rinsed twice with PBS, detached with Accutase (Millipore) for 10 minutes at 37 °C,
1226 centrifuged at 200 g for 3 minutes, rinsed with PBS, and centrifuged again. Bead-protein
1227 conjugates were resuspended in 50 mM ammonium bicarbonate. HaloTag pulldown was
1228 performed per manufacturer's protocol (G6500, Promega). Proteins were eluted by resuspending
1229 HaloTag resin in 50 μ L of 8 M urea prepared in 50 mM ammonium bicarbonate and shaking for
1230 30 minutes at room temperature. Ten percent fractions of BioID and HaloTag eluates were saved
1231 for immunoblot and silver stain analysis.

1232

1233 Mass spectrometry and proteomic data analysis

1234 BioID and HaloTag tryptic digestion was performed using the optimized method from the original
1235 published method(Kim et al., 2014). Proteins were reduced by adding 2 μ l of 0.5M Tris(2-
1236 carboxyethyl)phosphine (TCEP) at 30 °C for 60 min. The reaction was cooled to room temperature
1237 (RT) and proteins were alkylated in the dark for 30 min by adding 4 μ l of 0.5M Iodoacetamide.
1238 Sample volume was adjusted by adding 350 μ l of 50 mM Ammonium Bicarbonate to dilute the
1239 8M urea to 1M before trypsin digestion. Mass spectrometry grade trypsin (Promega) was added
1240 for overnight digestion at 30°C using Eppendorf Thermomixer at 700 rpm. Formic acid was added
1241 to the peptide solution (to 2%), followed by desalting by C18 TopTip (TT10C18.96, PolyLC) and
1242 finally dried on a SpeedVac. Tryptic peptides were resuspended in 100 μ l of 2% Acetonitrile in
1243 0.1% formic acid. Ten microliters of total tryptic peptides were used in triplicate runs for the 1D

1244 LC-MS/MS analysis, consisting of an EASY-nLC 1000 HPLC Acclaim PepMap peptide trap with
1245 a 25 cm- 2 μ m Easy-Spray C18 column, Easy Spray Source, and a Q Exactive Plus mass
1246 spectrometer (all from Thermo Fisher Scientific). A 230-min gradient consisting of 5–16% B
1247 (100% acetonitrile) in 140 min, 16–28% in 70 min, 28–38% in 10 min, 38–85% in 10 min was used
1248 to separate the peptides. The total LC time was 250 min. The Q Exactive Plus was set to scan
1249 precursors at 70,000 resolution followed by data-dependent MS/MS at 17,500 resolution of the top
1250 12 precursors.

1251

1252 *Protein Identification and data analysis:* The LC-MS/MS raw data of two technical replicates was
1253 combined and submitted to Sorcerer Enterprise v.3.5 release (Sage-N Research Inc.) with
1254 SEQUEST algorithm as the search program for peptide/protein identification. SEQUEST was set
1255 up to search the target-decoy UniProt Human Reviewed (v. March 2015) protein fasta database
1256 using trypsin for the enzyme and with the allowance of up to 2 missed cleavages, semi tryptic
1257 search, fixed modification of 57 Da for cysteines to account for carboxyamidomethylation and
1258 precursor mass tolerance of 50 ppm. Differential search included 226 Da on lysine for biotinylation
1259 (BioID samples), 16 Da for methionine oxidation, and 14, 28 and 42 Da on lysine for mono-, di-
1260 and tri- methylayion. The search results were viewed, sorted, filtered, and statically analyzed by
1261 using comprehensive proteomics data analysis software, Peptide/Protein prophet v.4.02 (ISB). The
1262 minimum trans-proteomic pipeline (TPP) probability score for proteins was set to 0.9 to assure
1263 very low error (less than FDR 2%) with good sensitivity. The differential spectral count analysis
1264 was done by QTools, an open source SBP in-house developed tool for automated differential
1265 peptide/protein spectral count analysis(Brill et al., 2009) and the protein prophet peptide report
1266 was utilized to report biotinylated peptides. The LC-MS/MS raw data were also submitted to

1267 Integrated Proteomics Pipelines (IP2) Version IP2 v.3 (Integrated Proteomics Applications, Inc.)
1268 with ProLucid algorithm as the search program (Xu et al., 2006) for peptide/protein identification.
1269 ProLucid search parameters were set up to search the UniProt Human Reviewed (v. March 2015)
1270 protein fasta database including reversed protein sequences using trypsin for enzyme with the
1271 allowance of up to 2 missed cleavages, semi tryptic search, fixed modification of 57 Da for
1272 cysteines to account for carboxyamidomethylation and precursor mass tolerance of 50 ppm.
1273 Differential search included 226 Da on lysine for biotinylation (for BioID samples), 16 Da for
1274 methionine oxidation, and 14, 28 and 42 Da on lysine for mono-, di- and tri- methylayion. The
1275 search results were viewed, sorted, filtered, and statically analyzed by using DTASelect for
1276 proteins to have protein FDR rate of less than 2.5% (Tabb et al., 2002). Differential label-free
1277 proteomics data analysis was done by IP2-Census, Protein Identification STAT COMPARE (Park
1278 et al., 2008) using two technical replicates. This result was a label-free quantification analysis, of
1279 duplicate technical data for each sample; using spectral count analysis with t-test and Gene
1280 Ontology analysis (Robinson et al., 2004).

1281
1282 *Identification of true pulldown proteins based on mass spectrometry spectral counting data:* We
1283 discriminated true prey-bait interactions from false interactions in the Halotag and BioID
1284 pulldowns by using Significance Analysis of INTeractome (SAINT) method (Choi et al., 2011;
1285 Teo et al., 2014). Briefly, the SAINT method utilizes MS/MS spectral counting data and models
1286 true and false prey-bait interactions as separate Poisson distributions to obtain the probability of
1287 a *true* protein-protein interaction based on Bayesian statistical inference. The estimated probability
1288 provides a quantitative measure of the confidence of prey-bait interactions such that false
1289 interactions can be filtered out in a statistically-controlled manner. Upon applying the SAINT

1290 method to MS/MS spectral count data available from each pulldown experiment system, we
1291 identified 275 (out of 3 cases and 3 controls) and 1795 (3 cases and 3 controls) proteins as true
1292 METTL7B interactors from HaloTag and BioID pulldowns, respectively, at Bayesian False
1293 Discovery Rate (BFDR) of 5%.

1294

1295 *Subcellular localization analysis:* To characterize subcellular localization of the true METTL7B
1296 interactors, we performed fold-enrichment test for major subcellular compartments cataloged in
1297 the Human Protein Atlas database (Uhlen et al., 2015) and mammalian lipid droplet proteomes
1298 (Hodges and Wu, 2010). Human Protein Atlas provides genome-wide analysis of major subcellular
1299 localization information of human proteins based on immunofluorescent stained cells. It consists
1300 of 20 main subcellular compartments and 10,003 proteins (www.proteinatlas.org). To make the
1301 fold-enrichment test comparable across Human Protein Atlas and the mammalian lipid droplet
1302 proteome datasets, we merged the mammalian lipid droplet protein list to Human Protein Atlas
1303 dataset as a separate subcellular localization category and used the entire Human Protein Atlas
1304 subcellular localization records uniformly as a null (background) set. We found that 73.8%
1305 (203/275) and 77.7% (1384/1795) of true METTL7B interactors from HaloTag and BioID
1306 pulldown experiments had matching HGNC gene symbols in Human Protein Atlas. Of the 152
1307 mammalian cytoplasmic lipid proteins (Hodges and Wu, 2010), 80 proteins had matching HGNC
1308 gene symbols in the Human Protein Atlas. Twenty-three (HaloTag) and 37 (BioID) true
1309 METTL7B interactors were identified to be among 80 lipid droplet proteins in the Human Protein
1310 Atlas database.

1311

1312 *Validation of pulldown experiment using a publicly available protein-protein interaction database*
1313 (*comparison with the BioGRID protein-protein interaction database*): We evaluated the
1314 performance of SAINT method by benchmarking the true METTL7B interactors against non-
1315 redundant physical BioGRID protein-protein interaction network (Stark et al., 2006). We
1316 computed the significance of interactions between proteins from the true METTL7B interactor set
1317 and the rest of the proteins (background set) in the protein-protein interaction (PPI) network by
1318 using binomial proportions test Z-score as follows (Abul-Husn et al., 2009):

1319

1320
$$Z = \frac{p_1/N_1 - p_2/N_2}{\sqrt{p(1-p) \cdot (1/N_1 + 1/N_2)}}$$
 (Eq. 1)

1321 where

1322

1323 p_1 : number of true METTL7B interactors among the adjacent PPI network neighbors of a given
1324 protein,

1325 p_2 : number of all the adjacent PPI network neighbors of a given protein,

1326 N_1 : number of the true METTL7B interactors present in the PPI network,

1327 N_2 : number of the all PPI network proteins, and

1328 $p = (p_1 + p_2)/(N_1 + N_2)$.

1329

1330 The Z-score thus provides an approximate quantitative measure of how significantly a given
1331 protein in the PPI network interacts with the true METTL7B interactors in the immediate
1332 neighborhood of the protein-protein interaction network compared to the background proteins in
1333 the protein-protein interaction network. We found that the true METTL7B interactors tend to
1334 interact much more significantly to each other than to the rest of proteins in the protein-protein

1335 interaction network (Wilcoxon rank sum test p-value < 2e-16, data not shown). This indicates that
1336 the true METTL7B interactors are significantly clustered and proximal to each other in the protein-
1337 protein interaction network as expected.

1338

1339 *KEGG pathway enrichment analysis*: To gain an insight of molecular processes associated with
1340 the true METTL7B interactors, we performed KEGG pathway enrichment analysis using the
1341 binomial proportion test Z-scores as weights of proteins in a given pathway. The rationale for using
1342 such a weight is that the proteins interacting significantly more with true METTL7B interactors
1343 play proportionally important role in specifying the biological context represented by the true
1344 METTL7B interactors. To this end, we assigned biological context specificity scores to all KEGG
1345 pathways in a similar manner used in (Ideker et al., 2002) as follows:

1346

1347 First, we assigned a pathway-level Z score (Z_A) as a sum of all individual KEGG pathway protein
1348 member Z scores divided by the square root of number of member proteins (k)

1349
$$Z_A = \sum_{i=1}^k Z_i / \sqrt{k} \quad (\text{Eq. 2})$$

1350

1351 Second, each pathway-level Z score (Z_A) was calibrated against null expected mean (μ_k) and
1352 standard deviation (σ_k) for a given pathway consisting of k member proteins, which are
1353 empirically estimated from 10,000 randomly selected gene sets of size k from the BioGRID
1354 protein-protein interaction network.

1355
$$S_A = (Z_A - \mu_k) / \sigma_k \quad (\text{Eq. 3})$$

1356

1357 The analysis results are then organized by KEGG BRITE functional classification scheme. This
1358 allows to compare the relative significance of KEGG pathways (Kanehisa and Goto, 2000;
1359 Kanehisa et al., 2016; Kanehisa et al., 2017) within functionally related BRITE categories as well
1360 as between distinct BRITE categories.

1361
1362 *Spatial clustering analysis:* We examined spatial clustering between METTL7B true pulldown
1363 proteins and KEGG pathways in protein-protein interaction network and evaluated the significance
1364 of the spatial clustering between them as a function of network distance. To this end, we extended
1365 existing implementation of spatial statics K^{net} function (Cornish and Markowetz, 2014) to allow
1366 us to examine spatial correlation of two types of points (e.g., a set of proteins in a KEGG pathway
1367 and a set of METTL7B true pulldown proteins) in the protein-protein interaction network. We
1368 define spatial correlation of two groups (e.g., group a and group b) of points as follows,

1369
1370
$$K^{net,cross}(s) = \frac{1}{\bar{p}_a \bar{p}_b} \sum_{j=1}^N \sum_{i=1}^N p_i p_j I(d(i,j) < s) \quad (\text{Eq. 4})$$

1371
1372 Here, p_i and p_j denote group membership for all the vertex of protein-protein interaction network.
1373 (e.g., $p_i = 1$ and $p_j = 1$ if a protein is a member of group a and group b . $p_i = 0$ and $p_j = 0$
1374 otherwise). The $d(i,j)$ denotes network distance between a pair of proteins in two groups, a and
1375 b . $I(d(i,j) < s)$ is an indicator function with value of 1 for a pair of proteins in the two groups
1376 closer than network distance s and 0 otherwise. $1/\bar{p}_a$ and $1/\bar{p}_b$ are normalization constants giving
1377 a weight of each protein in two groups ($\bar{p}_a = \frac{1}{N} \sum_i^N p_i$ and $\bar{p}_b = \frac{1}{N} \sum_j^N p_j$). To estimate the statistical
1378 significance of $K^{net,cross}(s)$ across network distance, we randomly permuted group membership

1379 in the network and obtained the significance as a Z-score: $Z^{net,cross}(s) = \frac{K^{net,cross}(s) - \bar{K}^{net,cross}(s)}{\sigma_{K^{net,cross}}}$

1380 where $\bar{K}^{net,cross}(s)$ and $\sigma_{K^{net,cross}}$ are mean and variance of empirical null expectation obtained
1381 from the random permutations. Thus, $Z^{net,cross}(s)$ provides an insight about a profile of spatial
1382 overlap between the two groups of molecular signatures in protein-protein interaction network.

1383

1384 ELISA

1385 To determine the differences in A β generation, 20 000 N2a-APP cells per well were plated in 96-
1386 well plate. After four hours, cells were transfected with pDTET-EGFP or pDTET-METTL7B-
1387 EGFP using PolyJet reagent (SigmaGen). Four hours post transfection, cells were rinsed twice with
1388 PBS and incubated in fresh media supplemented with 200 nM doxycycline. After 48 hours,
1389 conditioned media was collected and supplemented with protease inhibitor cocktail (P-2714,
1390 Sigma-Aldrich). Cells were lysed in Cell Extraction Buffer (Thermo Fisher Scientific)
1391 supplemented with protease inhibitor cocktail. Cell culture supernatants were analyzed in
1392 duplicates on A β 40 and A β 42 colorimetric ELISAs per manufacturer's protocol (KHB3481 and
1393 KHB3544, Invitrogen). A β concentrations were normalized per total cell protein concentrations,
1394 measured by the Rapid Gold BCA Protein Assay (#A53225, Pierce).

1395

1396

1397 Immunoblotting and silver stain

1398 *Tissue sample preparation:* Tissue was lysed in PBS with 0.01% Tween-20 and protease inhibitor
1399 cocktail (P-2714, Sigma-Aldrich), and sonicated in two sessions (30 pulses at an output level of 3
1400 using a Microson Ultrasonic Cell Disruptor [Misonix]) with 1-minute rest on ice between sessions.

1401 Samples were centrifuged at 14 000 g for 10 minutes at 4 °C. Total protein concentrations were
1402 measured by the Bradford assay (#23246, Pierce).

1403

1404 *Immunoblotting*: Samples were mixed with NuPAGE LDS Loading Buffer (NP0007)
1405 supplemented with 50 mM DTT, incubated at 72 °C for 10 minutes, and loaded on 4-12% Bis-Tris
1406 gel (NP0321, Thermo Fisher Scientific). Proteins were transferred to a 0.2 µm PVDF membrane
1407 (#162-0218, Bio-Rad), blocked with 5% non-fat milk or BSA in 1% TBST buffer, and blotted with
1408 appropriate primary and secondary HRP-conjugated antibodies. The signal was developed with
1409 SuperSignal West Pico Plus Chemiluminescent Substrate (#34577, Pierce) and visualized on
1410 G:BOX Chemi XRQ (Syngene) system.

1411

1412 *Silver stain*: 5% of HaloTag eluates were prepared as above and electrophoresed on 4-12% Bis-
1413 Tris gel. Gel was processed using Silver Stain for Mass Spectrometry kit per manufacturer's
1414 instructions (#24600, Pierce).

1415

1416 SAM assay

1417 Custom made recombinant METTL7B was expressed in *E. Coli* ArcticExpress and purified from
1418 inclusion bodies by GenScript. Recombinant RTN3, RTN4, LRP1, and APP peptide were
1419 purchased directly from vendors. SAMfluoro Methyltransferase Assay (786-431, G-Biosciences)
1420 was performed per manufacturer's instructions using ~2 µg of METTL7B and ~1 µg of substrate
1421 protein. Recombinant proteins were incubated with or without METTL7B in triplicate wells.
1422 Assay was performed at 37 °C and resorufin fluorescence was measured on GloMax Multi

1423 Detection System (Promega) plate reader with an excitation wavelength of 530-540 nm and an
1424 emission wavelength of 585-595 nm.

1425

1426 RNA isolation and digital droplet PCR

1427 Total RNA was extracted from human and mouse brain tissue samples, or cultured cells, using
1428 RNAeasy Plus Mini Kit (#74134, Qiagen) per manufacturer's protocol. RNA concentrations and
1429 quality were determined using R6K ScreenTape (#5067-5576, Agilent) and TapeStation analyzer
1430 (Agilent). cDNA was synthesized from 1 µg of total RNA using SuperScript III First-Strand
1431 Synthesis kit (#18080051, Invitrogen) and random primers. Digital droplet PCR was performed
1432 using QX200 Droplet Digital PCR (Bio-Rad) and data was normalized to *TBP* expression. PCR
1433 amplification was performed using primer sets and probes listed in Table S4.

1434

1435

1436 **References**

1437 Abul-Husn, N.S., Bushlin, I., Moron, J.A., Jenkins, S.L., Dolios, G., Wang, R., Iyengar, R.,
1438 Ma'ayan, A., and Devi, L.A. (2009). Systems approach to explore components and interactions in
1439 the presynapse. *Proteomics* 9, 3303-3315.

1440 Aibar, S., Gonzalez-Blas, C.B., Moerman, T., Huynh-Thu, V.A., Imrichova, H., Hulselmans, G.,
1441 Rambow, F., Marine, J.C., Geurts, P., Aerts, J., *et al.* (2017). SCENIC: single-cell regulatory
1442 network inference and clustering. *Nat Methods* 14, 1083-1086.

1443 Alzheimer, A., Stelzmann, R.A., Schnitzlein, H.N., and Murtagh, F.R. (1995). An English
1444 translation of Alzheimer's 1907 paper, "Uber eine eigenartige Erkankung der Hirnrinde". *Clin Anat*
1445 8, 429-431.

1446 Andersen, P. (2007). The hippocampus book (Oxford ; New York: Oxford University Press).

1447 Bakken, T.E., Miller, J.A., Luo, R., Bernard, A., Bennett, J.L., Lee, C.K., Bertagnolli, D.,
1448 Parikshak, N.N., Smith, K.A., Sunkin, S.M., *et al.* (2015). Spatiotemporal dynamics of the
1449 postnatal developing primate brain transcriptome. *Hum Mol Genet* 24, 4327-4339.

1450 Ballatore, C., Lee, V.M., and Trojanowski, J.Q. (2007). Tau-mediated neurodegeneration in
1451 Alzheimer's disease and related disorders. *Nat Rev Neurosci* 8, 663-672.

1452 Berg, D.A., Su, Y., Jimenez-Cyrus, D., Patel, A., Huang, N., Morizet, D., Lee, S., Shah, R.,
1453 Ringeling, F.R., Jain, R., *et al.* (2019). A Common Embryonic Origin of Stem Cells Drives
1454 Developmental and Adult Neurogenesis. *Cell* 177, 654-668 e615.

1455 Blumcke, I., Pauli, E., Clusmann, H., Schramm, J., Becker, A., Elger, C., Merschhemke, M.,
1456 Meencke, H.J., Lehmann, T., von Deimling, A., *et al.* (2007). A new clinico-pathological
1457 classification system for mesial temporal sclerosis. *Acta Neuropathol* 113, 235-244.

1458 Boldrini, M., Fulmore, C.A., Tartt, A.N., Simeon, L.R., Pavlova, I., Poposka, V., Rosoklija, G.B.,
1459 Stankov, A., Arango, V., Dwork, A.J., *et al.* (2018). Human Hippocampal Neurogenesis Persists
1460 throughout Aging. *Cell Stem Cell* 22, 589-599 e585.

1461 Braak, H., and Del Trecidi, K. (2015). Neuroanatomy and pathology of sporadic Alzheimer's
1462 disease. *Adv Anat Embryol Cell Biol* 215, 1-162.

1463 Breunig, J.J., Sarkisian, M.R., Arellano, J.I., Morozov, Y.M., Ayoub, A.E., Sojitra, S., Wang, B.,
1464 Flavell, R.A., Rakic, P., and Town, T. (2008). Primary cilia regulate hippocampal neurogenesis by
1465 mediating sonic hedgehog signaling. *Proc Natl Acad Sci U S A* 105, 13127-13132.

1466 Brill, L.M., Motamedchaboki, K., Wu, S., and Wolf, D.A. (2009). Comprehensive proteomic
1467 analysis of *Schizosaccharomyces pombe* by two-dimensional HPLC-tandem mass spectrometry.
1468 *Methods* 48, 311-319.

1469 Butler, A., Hoffman, P., Smibert, P., Papalexi, E., and Satija, R. (2018). Integrating single-cell
1470 transcriptomic data across different conditions, technologies, and species. *Nat Biotechnol* 36, 411-
1471 420.

1472 Buzsaki, G., and Moser, E.I. (2013). Memory, navigation and theta rhythm in the hippocampal-
1473 entorhinal system. *Nat Neurosci* 16, 130-138.

1474 Caparros-Martin, J.A., Valencia, M., Reytor, E., Pacheco, M., Fernandez, M., Perez-Aytes, A.,
1475 Gean, E., Lapunzina, P., Peters, H., Goodship, J.A., *et al.* (2013). The ciliary Evc/Evc2 complex
1476 interacts with Smo and controls Hedgehog pathway activity in chondrocytes by regulating
1477 Sufu/Gli3 dissociation and Gli3 trafficking in primary cilia. *Hum Mol Genet* 22, 124-139.

1478 Cardoso-Moreira, M., Halbert, J., Valloton, D., Velten, B., Chen, C., Shao, Y., Liechti, A.,
1479 Ascencao, K., Rummel, C., Ovchinnikova, S., *et al.* (2019). Gene expression across mammalian
1480 organ development. *Nature* 571, 505-509.

1481 Cembrowski, M.S., Bachman, J.L., Wang, L., Sugino, K., Shields, B.C., and Spruston, N. (2016a).
1482 Spatial Gene-Expression Gradients Underlie Prominent Heterogeneity of CA1 Pyramidal
1483 Neurons. *Neuron* 89, 351-368.

1484 Cembrowski, M.S., Phillips, M.G., DiLisio, S.F., Shields, B.C., Winnubst, J., Chandrashekhar, J.,
1485 Bas, E., and Spruston, N. (2018). Dissociable Structural and Functional Hippocampal Outputs via
1486 Distinct Subiculum Cell Classes. *Cell* 173, 1280-1292 e1218.

1487 Cembrowski, M.S., Wang, L., Sugino, K., Shields, B.C., and Spruston, N. (2016b). Hipposeq: a
1488 comprehensive RNA-seq database of gene expression in hippocampal principal neurons. *Elife* 5,
1489 e14997.

1490 Cenquizca, L.A., and Swanson, L.W. (2007). Spatial organization of direct hippocampal field CA1
1491 axonal projections to the rest of the cerebral cortex. *Brain Res Rev* 56, 1-26.

1492 Choi, H., Larsen, B., Lin, Z.Y., Breitkreutz, A., Mellacheruvu, D., Fermin, D., Qin, Z.S., Tyers,
1493 M., Gingras, A.C., and Nesvizhskii, A.I. (2011). SAINT: probabilistic scoring of affinity
1494 purification-mass spectrometry data. *Nat Methods* 8, 70-73.

1495 Choi, S.H., Kim, Y.H., Hebisch, M., Sliwinski, C., Lee, S., D'Avanzo, C., Chen, H., Hooli, B.,
1496 Asselin, C., Muffat, J., *et al.* (2014). A three-dimensional human neural cell culture model of
1497 Alzheimer's disease. *Nature* 515, 274-278.

1498 Cipriani, S., Ferrer, I., Aronica, E., Kovacs, G.G., Verney, C., Nardelli, J., Khung, S., Delezoide,
1499 A.L., Milenkovic, I., Rasika, S., *et al.* (2018). Hippocampal Radial Glial Subtypes and Their
1500 Neurogenic Potential in Human Fetuses and Healthy and Alzheimer's Disease Adults. *Cereb
1501 Cortex* 28, 2458-2478.

1502 Cipriani, S., Nardelli, J., Verney, C., Delezoide, A.L., Guimiot, F., Gressens, P., and Adle-
1503 Biassette, H. (2016). Dynamic Expression Patterns of Progenitor and Pyramidal Neuron Layer
1504 Markers in the Developing Human Hippocampus. *Cereb Cortex* 26, 1255-1271.

1505 Cornish, A.J., and Markowetz, F. (2014). SANTA: quantifying the functional content of molecular
1506 networks. *PLoS Comput Biol* *10*, e1003808.

1507 Couillard-Despres, S., Winner, B., Schaubeck, S., Aigner, R., Vroemen, M., Weidner, N.,
1508 Bogdahn, U., Winkler, J., Kuhn, H.G., and Aigner, L. (2005). Doublecortin expression levels in
1509 adult brain reflect neurogenesis. *Eur J Neurosci* *21*, 1-14.

1510 Davies, D.C., Horwood, N., Isaacs, S.L., and Mann, D.M. (1992). The effect of age and
1511 Alzheimer's disease on pyramidal neuron density in the individual fields of the hippocampal
1512 formation. *Acta Neuropathol* *83*, 510-517.

1513 Demeter, S., Rosene, D.L., and Van Hoesen, G.W. (1990). Fields of origin and pathways of the
1514 interhemispheric commissures in the temporal lobe of macaques. *J Comp Neurol* *302*, 29-53.

1515 Dennis, C.V., Suh, L.S., Rodriguez, M.L., Kril, J.J., and Sutherland, G.T. (2016). Human adult
1516 neurogenesis across the ages: An immunohistochemical study. *Neuropathol Appl Neurobiol* *42*,
1517 621-638.

1518 Di Paolo, G., and Kim, T.W. (2011). Linking lipids to Alzheimer's disease: cholesterol and beyond.
1519 *Nat Rev Neurosci* *12*, 284-296.

1520 Dull, T., Zufferey, R., Kelly, M., Mandel, R.J., Nguyen, M., Trono, D., and Naldini, L. (1998). A
1521 third-generation lentivirus vector with a conditional packaging system. *J Virol* *72*, 8463-8471.

1522 Edler, M.K., Sherwood, C.C., Meindl, R.S., Hopkins, W.D., Ely, J.J., Erwin, J.M., Mufson, E.J.,
1523 Hof, P.R., and Raghanti, M.A. (2017). Aged chimpanzees exhibit pathologic hallmarks of
1524 Alzheimer's disease. *Neurobiol Aging* *59*, 107-120.

1525 Eriksson, P.S., Perfilieva, E., Bjork-Eriksson, T., Alborn, A.M., Nordborg, C., Peterson, D.A., and
1526 Gage, F.H. (1998). Neurogenesis in the adult human hippocampus. *Nat Med* *4*, 1313-1317.

1527 Finch, C.E., and Austad, S.N. (2015). Commentary: is Alzheimer's disease uniquely human?
1528 *Neurobiol Aging* *36*, 553-555.

1529 Fischer, O. (1907). Miliare Nekrosen mit drusigen Wucherungen der Neurofibrillen, eine
1530 regelmässige Veränderung der Hirnrinde bei seniler Demenz. *Monatsschr Psychiatr Neurol* *22*,
1531 361-372.

1532 Freund, T.F. (2002). Changes in the views of neuronal connectivity and communication after
1533 Cajal: examples from the hippocampus. *Prog Brain Res* *136*, 203-213.

1534 Glenner, G.G., and Wong, C.W. (1984). Alzheimer's disease: initial report of the purification and
1535 characterization of a novel cerebrovascular amyloid protein. *Biochem Biophys Res Commun* *120*,
1536 885-890.

1537 Gloor, P. (1997). *The temporal lobe and limbic system* (New York: Oxford University Press).

1538 Habib, N., Avraham-David, I., Basu, A., Burks, T., Shekhar, K., Hofree, M., Choudhury, S.R.,
1539 Aguet, F., Gelfand, E., Ardlie, K., *et al.* (2017). Massively parallel single-nucleus RNA-seq with
1540 DroNc-seq. *Nat Methods* *14*, 955-958.

1541 Haghverdi, L., Lun, A.T.L., Morgan, M.D., and Marioni, J.C. (2018). Batch effects in single-cell
1542 RNA-sequencing data are corrected by matching mutual nearest neighbors. *Nat Biotechnol* *36*,
1543 421-427.

1544 Hamilton, L.K., Dufresne, M., Joppe, S.E., Petryszyn, S., Aumont, A., Calon, F., Barnabe-Heider,
1545 Furtos, A., Parent, M., Chaurand, P., *et al.* (2015). Aberrant Lipid Metabolism in the Forebrain
1546 Niche Suppresses Adult Neural Stem Cell Proliferation in an Animal Model of Alzheimer's
1547 Disease. *Cell Stem Cell* *17*, 397-411.

1548 Hardy, J., and Selkoe, D.J. (2002). The amyloid hypothesis of Alzheimer's disease: progress and
1549 problems on the road to therapeutics. *Science* *297*, 353-356.

1550 Hochgerner, H., Zeisel, A., Lonnerberg, P., and Linnarsson, S. (2018). Conserved properties of
1551 dentate gyrus neurogenesis across postnatal development revealed by single-cell RNA sequencing.
1552 *Nat Neurosci* *21*, 290-299.

1553 Hodge, R.D., Bakken, T.E., Miller, J.A., Smith, K.A., Barkan, E.R., Graybuck, L.T., Close, J.L.,
1554 Long, B., Johansen, N., Penn, O., *et al.* (2019). Conserved cell types with divergent features in
1555 human versus mouse cortex. *Nature* *573*, 61-68.

1556 Hodges, B.D., and Wu, C.C. (2010). Proteomic insights into an expanded cellular role for
1557 cytoplasmic lipid droplets. *J Lipid Res* *51*, 262-273.

1558 Hof, P.R., and Morrison, J.H. (1990). Quantitative analysis of a vulnerable subset of pyramidal
1559 neurons in Alzheimer's disease: II. Primary and secondary visual cortex. *J Comp Neurol* *301*, 55-
1560 64.

1561 Hoogland, P.V., and Vermeulen-Vanderzee, E. (1989). Efferent connections of the dorsal cortex
1562 of the lizard *Gekko gecko* studied with *Phaseolus vulgaris*-leucoagglutinin. *J Comp Neurol* *285*,
1563 289-303.

1564 Hook, B. (2014). Cleaner Protein with HaloTag Purification Resins (Promega Corporation Web
1565 site.: Promega).

1566 Ideker, T., Ozier, O., Schwikowski, B., and Siegel, A.F. (2002). Discovering regulatory and
1567 signalling circuits in molecular interaction networks. *Bioinformatics* *18 Suppl 1*, S233-240.

1568 Ishizuka, N. (2001). Laminar organization of the pyramidal cell layer of the subiculum in the rat.
1569 *J Comp Neurol* *435*, 89-110.

1570 Jin, K., Peel, A.L., Mao, X.O., Xie, L., Cottrell, B.A., Henshall, D.C., and Greenberg, D.A. (2004).
1571 Increased hippocampal neurogenesis in Alzheimer's disease. *Proc Natl Acad Sci U S A* *101*, 343-
1572 347.

1573 Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., and Morishima, K. (2017). KEGG: new
1574 perspectives on genomes, pathways, diseases and drugs. *Nucleic Acids Res* **45**, D353-D361.

1575 Kanehisa, M., and Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. *Nucleic
1576 Acids Res* **28**, 27-30.

1577 Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., and Tanabe, M. (2016). KEGG as a
1578 reference resource for gene and protein annotation. *Nucleic Acids Res* **44**, D457-462.

1579 Kang, H.J., Kawasawa, Y.I., Cheng, F., Zhu, Y., Xu, X., Li, M., Sousa, A.M., Pletikos, M., Meyer,
1580 K.A., Sedmak, G., *et al.* (2011). Spatio-temporal transcriptome of the human brain. *Nature* **478**,
1581 483-489.

1582 Karra, E., and De Strooper, B. (2016). The amyloid cascade hypothesis: are we poised for success
1583 or failure? *J Neurochem* **139 Suppl 2**, 237-252.

1584 Kempermann, G., Gage, F.H., Aigner, L., Song, H., Curtis, M.A., Thuret, S., Kuhn, H.G.,
1585 Jessberger, S., Frankland, P.W., Cameron, H.A., *et al.* (2018). Human Adult Neurogenesis:
1586 Evidence and Remaining Questions. *Cell Stem Cell* **23**, 25-30.

1587 Kim, D.I., Kc, B., Zhu, W., Motamedchaboki, K., Doye, V., and Roux, K.J. (2014). Probing
1588 nuclear pore complex architecture with proximity-dependent biotinylation. *Proceedings of the
1589 National Academy of Sciences* **111**, E2453 LP-E2461.

1590 Klausberger, T., and Somogyi, P. (2008). Neuronal diversity and temporal dynamics: the unity of
1591 hippocampal circuit operations. *Science* **321**, 53-57.

1592 Kriegstein, A.R., and Connors, B.W. (1986). Cellular physiology of the turtle visual cortex:
1593 synaptic properties and intrinsic circuitry. *J Neurosci* **6**, 178-191.

1594 Krishnaswami, S.R., Grindberg, R.V., Novotny, M., Venepally, P., Lacar, B., Bhutani, K., Linker,
1595 S.B., Pham, S., Erwin, J.A., Miller, J.A., *et al.* (2016). Using single nuclei for RNA-seq to capture
1596 the transcriptome of postmortem neurons. *Nat Protoc* **11**, 499-524.

1597 Lake, B.B., Ai, R., Kaeser, G.E., Salathia, N.S., Yung, Y.C., Liu, R., Wildberg, A., Gao, D., Fung,
1598 H.L., Chen, S., *et al.* (2016). Neuronal subtypes and diversity revealed by single-nucleus RNA
1599 sequencing of the human brain. *Science* **352**, 1586-1590.

1600 Lake, B.B., Chen, S., Sos, B.C., Fan, J., Kaeser, G.E., Yung, Y.C., Duong, T.E., Gao, D., Chun,
1601 J., Kharchenko, P.V., *et al.* (2018). Integrative single-cell analysis of transcriptional and epigenetic
1602 states in the human adult brain. *Nat Biotechnol* **36**, 70-80.

1603 Lanjakornsiripan, D., Pior, B.J., Kawaguchi, D., Furutachi, S., Tahara, T., Katsuyama, Y., Suzuki,
1604 Y., Fukazawa, Y., and Gotoh, Y. (2018). Layer-specific morphological and molecular differences
1605 in neocortical astrocytes and their dependence on neuronal layers. *Nat Commun* **9**, 1623.

1606 Li, M., Santpere, G., Imamura Kawasawa, Y., Evgrafov, O.V., Gulden, F.O., Pochareddy, S.,
1607 Sunkin, S.M., Li, Z., Shin, Y., Zhu, Y., *et al.* (2018). Integrative functional genomic analysis of
1608 human brain development and neuropsychiatric risks. *Science* *362*.

1609 Lois, C., Hong, E.J., Pease, S., Brown, E.J., and Baltimore, D. (2002). Germline transmission and
1610 tissue-specific expression of transgenes delivered by lentiviral vectors. *Science* *295*, 868-872.

1611 Luzzati, F. (2015). A hypothesis for the evolution of the upper layers of the neocortex through co-
1612 option of the olfactory cortex developmental program. *Front Neurosci* *9*, 162.

1613 Mathys, H., Davila-Velderrain, J., Peng, Z., Gao, F., Mohammadi, S., Young, J.Z., Menon, M.,
1614 He, L., Abdurrob, F., Jiang, X., *et al.* (2019). Single-cell transcriptomic analysis of Alzheimer's
1615 disease. *Nature* *570*, 332-337.

1616 Matsuda, T., and Cepko, C.L. (2004). Electroporation and RNA interference in the rodent retina
1617 in vivo and in vitro. *Proc Natl Acad Sci U S A* *101*, 16-22.

1618 McMenemey, W.H. (1940). Alzheimer's Disease: A Report of Six Cases. *J Neurol Psychiatry* *3*,
1619 211-240.

1620 Mercer, A., and Thomson, A.M. (2017). Cornu Ammonis Regions-Antecedents of Cortical
1621 Layers? *Front Neuroanat* *11*, 83.

1622 Moreno-Jimenez, E.P., Flor-Garcia, M., Terreros-Roncal, J., Rabano, A., Cafini, F., Pallas-
1623 Bazarra, N., Avila, J., and Llorens-Martin, M. (2019). Adult hippocampal neurogenesis is
1624 abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer's disease.
1625 *Nat Med* *25*, 554-560.

1626 Morrison, J.H., and Hof, P.R. (1997). Life and death of neurons in the aging brain. *Science* *278*,
1627 412-419.

1628 Nielsen, J.V., Blom, J.B., Noraberg, J., and Jensen, N.A. (2010). Zbtb20-induced CA1 pyramidal
1629 neuron development and area enlargement in the cerebral midline cortex of mice. *Cereb Cortex*
1630 *20*, 1904-1914.

1631 Ohara, S., Onodera, M., Simonsen, O.W., Yoshino, R., Hioki, H., Iijima, T., Tsutsui, K.I., and
1632 Witter, M.P. (2018). Intrinsic Projections of Layer Vb Neurons to Layers Va, III, and II in the
1633 Lateral and Medial Entorhinal Cortex of the Rat. *Cell Rep* *24*, 107-116.

1634 Ohm, T.G. (2007). The dentate gyrus in Alzheimer's disease. *Prog Brain Res* *163*, 723-740.

1635 Park, S.K., Venable, J.D., Xu, T., and Yates, J.R., 3rd (2008). A quantitative analysis software tool
1636 for mass spectrometry-based proteomics. *Nat Methods* *5*, 319-322.

1637 Park, S.M., Jang, H.J., and Lee, J.H. (2019). Roles of Primary Cilia in the Developing Brain. *Front
1638 Cell Neurosci* *13*, 218.

1639 Paspalas, C.D., Carlyle, B.C., Leslie, S., Preuss, T.M., Crimins, J.L., Huttner, A.J., van Dyck,
1640 C.H., Rosene, D.L., Nairn, A.C., and Arnsten, A.F.T. (2018). The aged rhesus macaque manifests
1641 Braak stage III/IV Alzheimer's-like pathology. *Alzheimers Dement* 14, 680-691.

1642 Patzke, N., Spoerl, M.A., Karlsson, K.A.E., Bertelsen, M.F., Haagensen, M., Chawana, R.,
1643 Streicher, S., Kaswera, C., Gilissen, E., Alagaili, A.N., *et al.* (2015). In contrast to many other
1644 mammals, cetaceans have relatively small hippocampi that appear to lack adult neurogenesis.
1645 *Brain Struct Funct* 220, 361-383.

1646 Perez, S.E., Raghanti, M.A., Hof, P.R., Kramer, L., Ikonomovic, M.D., Lacor, P.N., Erwin, J.M.,
1647 Sherwood, C.C., and Mufson, E.J. (2013). Alzheimer's disease pathology in the neocortex and
1648 hippocampus of the western lowland gorilla (*Gorilla gorilla gorilla*). *J Comp Neurol* 521, 4318-
1649 4338.

1650 Qin, W., Ho, L., Pompl, P.N., Peng, Y., Zhao, Z., Xiang, Z., Robakis, N.K., Shioi, J., Suh, J., and
1651 Pasinetti, G.M. (2003). Cyclooxygenase (COX)-2 and COX-1 potentiate beta-amyloid peptide
1652 generation through mechanisms that involve gamma-secretase activity. *J Biol Chem* 278, 50970-
1653 50977.

1654 Rakic, P. (2002). Neurogenesis in adult primates. *Prog Brain Res* 138, 3-14.

1655 Ramsden, H.L., Surmeli, G., McDonagh, S.G., and Nolan, M.F. (2015). Laminar and dorsoventral
1656 molecular organization of the medial entorhinal cortex revealed by large-scale anatomical analysis
1657 of gene expression. *PLoS Comput Biol* 11, e1004032.

1658 Rapoport, S.I. (1989). Hypothesis: Alzheimer's disease is a phylogenetic disease. *Med Hypotheses*
1659 29, 147-150.

1660 Reiner, A. (1991). A comparison of neurotransmitter-specific and neuropeptide-specific neuronal
1661 cell types present in the dorsal cortex in turtles with those present in the isocortex in mammals:
1662 implications for the evolution of isocortex. *Brain Behav Evol* 38, 53-91.

1663 Rhee, S., Kirschen, G.W., Gu, Y., and Ge, S. (2016). Depletion of primary cilia from mature
1664 dentate granule cells impairs hippocampus-dependent contextual memory. *Sci Rep* 6, 34370.

1665 Robinson, P.N., Wollstein, A., Bohme, U., and Beattie, B. (2004). Ontologizing gene-expression
1666 microarray data: characterizing clusters with Gene Ontology. *Bioinformatics* 20, 979-981.

1667 Roux, K.J., Kim, D.I., and Burke, B. (2013). BioID: a screen for protein-protein interactions. *Curr*
1668 *Protoc Protein Sci* 74, 19 23 11-19 23 14.

1669 Roux, K.J., Kim, D.I., Raida, M., and Burke, B. (2012). A promiscuous biotin ligase fusion protein
1670 identifies proximal and interacting proteins in mammalian cells. *J Cell Biol* 196, 801-810.

1671 Schirmer, L., Velmeshov, D., Holmqvist, S., Kaufmann, M., Werneburg, S., Jung, D., Vistnes, S.,
1672 Stockley, J.H., Young, A., Steindel, M., *et al.* (2019). Neuronal vulnerability and multilineage
1673 diversity in multiple sclerosis. *Nature* 573, 75-82.

1674 Schmidt-Kastner, R., and Freund, T.F. (1991). Selective vulnerability of the hippocampus in brain
1675 ischemia. *Neuroscience* *40*, 599-636.

1676 Schonheit, B., Zarski, R., and Ohm, T.G. (2004). Spatial and temporal relationships between
1677 plaques and tangles in Alzheimer-pathology. *Neurobiol Aging* *25*, 697-711.

1678 Serrano-Pozo, A., Frosch, M.P., Masliah, E., and Hyman, B.T. (2011). Neuropathological
1679 alterations in Alzheimer disease. *Cold Spring Harb Perspect Med* *1*, a006189.

1680 Shepherd, G.M., and Rowe, T.B. (2017). Neocortical Lamination: Insights from Neuron Types
1681 and Evolutionary Precursors. *Front Neuroanat* *11*, 100.

1682 Slomianka, L., Amrein, I., Knuesel, I., Sorensen, J.C., and Wolfer, D.P. (2011). Hippocampal
1683 pyramidal cells: the reemergence of cortical lamination. *Brain Struct Funct* *216*, 301-317.

1684 Smyth, G.K. (2005). Limma: linear models for microarray data BT - Bioinformatics and
1685 Computational Biology Solutions Using R and Bioconductor. *Bioinformatics and Computational*
1686 *Biology Solutions Using R and Bioconductor*, 397-420.

1687 Sorrells, S.F., Paredes, M.F., Cebrian-Silla, A., Sandoval, K., Qi, D., Kelley, K.W., James, D.,
1688 Mayer, S., Chang, J., Auguste, K.I., *et al.* (2018). Human hippocampal neurogenesis drops sharply
1689 in children to undetectable levels in adults. *Nature* *555*, 377-381.

1690 Sorrells, S.F., Paredes, M.F., Velmeshev, D., Herranz-Perez, V., Sandoval, K., Mayer, S., Chang,
1691 E.F., Insausti, R., Kriegstein, A.R., Rubenstein, J.L., *et al.* (2019). Immature excitatory neurons
1692 develop during adolescence in the human amygdala. *Nat Commun* *10*, 2748.

1693 Sousa, A.M.M., Zhu, Y., Raghanti, M.A., Kitchen, R.R., Onorati, M., Tebbenkamp, A.T.N., Stutz,
1694 B., Meyer, K.A., Li, M., Kawasawa, Y.I., *et al.* (2017). Molecular and cellular reorganization of
1695 neural circuits in the human lineage. *Science* *358*, 1027-1032.

1696 Spalding, K.L., Bergmann, O., Alkass, K., Bernard, S., Salehpour, M., Huttner, H.B., Bostrom, E.,
1697 Westerlund, I., Vial, C., Buchholz, B.A., *et al.* (2013). Dynamics of hippocampal neurogenesis in
1698 adult humans. *Cell* *153*, 1219-1227.

1699 Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A., and Tyers, M. (2006).
1700 BioGRID: a general repository for interaction datasets. *Nucleic Acids Res* *34*, D535-539.

1701 Stephan, H. (1975). *Allocortex* (Springer).

1702 Strittmatter, W.J., Saunders, A.M., Schmechel, D., Pericak-Vance, M., Enghild, J., Salvesen, G.S.,
1703 and Roses, A.D. (1993). Apolipoprotein E: high-avidity binding to beta-amyloid and increased
1704 frequency of type 4 allele in late-onset familial Alzheimer disease. *Proc Natl Acad Sci U S A* *90*,
1705 1977-1981.

1706 Suzuki, W.A., and Amaral, D.G. (2004). Functional neuroanatomy of the medial temporal lobe
1707 memory system. *Cortex* *40*, 220-222.

1708 Tabb, D.L., McDonald, W.H., and Yates, J.R., 3rd (2002). DTASelect and Contrast: tools for
1709 assembling and comparing protein identifications from shotgun proteomics. *J Proteome Res* *1*, 21-
1710 26.

1711 Tang, Q., Ebbesen, C.L., Sanguinetti-Scheck, J.I., Preston-Ferrer, P., Gundlfinger, A., Winterer,
1712 J., Beed, P., Ray, S., Naumann, R., Schmitz, D., *et al.* (2015). Anatomical Organization and
1713 Spatiotemporal Firing Patterns of Layer 3 Neurons in the Rat Medial Entorhinal Cortex. *J Neurosci*
1714 *35*, 12346-12354.

1715 Tanzi, R.E., and Bertram, L. (2005). Twenty years of the Alzheimer's disease amyloid hypothesis:
1716 a genetic perspective. *Cell* *120*, 545-555.

1717 Tasic, B., Yao, Z., Graybuck, L.T., Smith, K.A., Nguyen, T.N., Bertagnolli, D., Goldy, J., Garren,
1718 E., Economo, M.N., Viswanathan, S., *et al.* (2018). Shared and distinct transcriptomic cell types
1719 across neocortical areas. *Nature* *563*, 72-78.

1720 Teo, G., Liu, G., Zhang, J., Nesvizhskii, A.I., Gingras, A.C., and Choi, H. (2014). SAINTexpress:
1721 improvements and additional features in Significance Analysis of INTERactome software. *J
1722 Proteomics* *100*, 37-43.

1723 Thomas, A., Klein, M.S., Stevens, A.P., Reinders, Y., Hellerbrand, C., Dettmer, K., Gronwald,
1724 W., Oefner, P.J., and Reinders, J. (2013). Changes in the hepatic mitochondrial and membrane
1725 proteome in mice fed a non-alcoholic steatohepatitis inducing diet. *J Proteomics* *80*, 107-122.

1726 Turro, S., Ingelmo-Torres, M., Estanyol, J.M., Tebar, F., Fernandez, M.A., Albor, C.V., Gaus, K.,
1727 Grewal, T., Enrich, C., and Pol, A. (2006). Identification and characterization of associated with
1728 lipid droplet protein 1: A novel membrane-associated protein that resides on hepatic lipid droplets.
1729 *Traffic* *7*, 1254-1269.

1730 Uhlen, M., Fagerberg, L., Hallstrom, B.M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson,
1731 A., Kampf, C., Sjostedt, E., Asplund, A., *et al.* (2015). Proteomics. Tissue-based map of the human
1732 proteome. *Science* *347*, 1260419.

1733 Vanlandewijck, M., He, L., Mae, M.A., Andrae, J., Ando, K., Del Gaudio, F., Nahar, K.,
1734 Lebouvier, T., Lavina, B., Gouveia, L., *et al.* (2018). A molecular atlas of cell types and zonation
1735 in the brain vasculature. *Nature* *554*, 475-480.

1736 Velmeshev, D., Schirmer, L., Jung, D., Haeussler, M., Perez, Y., Mayer, S., Bhaduri, A., Goyal,
1737 N., Rowitch, D.H., and Kriegstein, A.R. (2019). Single-cell genomics identifies cell type-specific
1738 molecular changes in autism. *Science* *364*, 685-689.

1739 West, M.J., Kawas, C.H., Stewart, W.F., Rudow, G.L., and Troncoso, J.C. (2004). Hippocampal
1740 neurons in pre-clinical Alzheimer's disease. *Neurobiol Aging* *25*, 1205-1212.

1741 Wilcock, G.K., and Esiri, M.M. (1982). Plaques, tangles and dementia. A quantitative study. *J
1742 Neurol Sci* *56*, 343-356.

1743 Witter, M.P., Doan, T.P., Jacobsen, B., Nilssen, E.S., and Ohara, S. (2017). Architecture of the
1744 Entorhinal Cortex A Review of Entorhinal Anatomy in Rodents with Some Comparative Notes.
1745 *Front Syst Neurosci* 11, 46.

1746 Xu, T., Venable, J.D., Park, S.K., Cociorva, D., Lu, B., Liao, L., Wohlschlegel, J., Hewel, J., and
1747 Yates, J.R. (2006). ProLuCID, a fast and sensitive tandem mass spectra-based protein
1748 identification program. *Molecular & cellular proteomics* 5.

1749 Zeisel, A., Munoz-Manchado, A.B., Codeluppi, S., Lonnerberg, P., La Manno, G., Jureus, A.,
1750 Marques, S., Munguba, H., He, L., Betsholtz, C., *et al.* (2015). Brain structure. Cell types in the
1751 mouse cortex and hippocampus revealed by single-cell RNA-seq. *Science* 347, 1138-1142.

1752 Zeldich, E., Chen, C.D., Colvin, T.A., Bove-Fenderson, E.A., Liang, J., Tucker Zhou, T.B., Harris,
1753 D.A., and Abraham, C.R. (2014). The neuroprotective effect of Klotho is mediated via regulation
1754 of members of the redox system. *J Biol Chem* 289, 24700-24715.

1755 Zhu, Y., Sousa, A.M.M., Gao, T., Skarica, M., Li, M., Santpere, G., Esteller-Cucala, P., Juan, D.,
1756 Ferrandez-Peral, L., Gulden, F.O., *et al.* (2018). Spatiotemporal transcriptomic divergence across
1757 human and macaque brain development. *Science* 362.

1758