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Abstract: We developed Graphical Representation of Ancestral Sequence Pre-
dictions (GRASP) to infer and explore ancestral variants of protein families with
more than 10,000 members. GRASP uses partial order graphs to represent ho-
mology in very large datasets, which are intractable with current inference tools
and may, for example, be used to engineer proteins by identifying ancient vari-
ants of enzymes. We demonstrate that (1) across three distinct enzyme families,
GRASP predicts ancestor sequences, all of which demonstrate enzymatic activity,
(2) within-family insertions and deletions can be used as building blocks to support
the engineering of biologically active ancestors via a new source of ancestral vari-
ation, and (3) generous inclusion of sequence data encompassing great diversity
leads to less variance in ancestor sequence.

GRASP is the central tool in the GRASP-suite, which is freely available at
http://grasp.scmb.uq.edu.au.
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Introduction

Sequencing technology is driving the identification of the extant (modern) portion
of the universe of biological sequences1,2,3. With this increased coverage of natural
diversity we are now better placed than ever before to leverage ancestral sequence
reconstruction (ASR) to recover the ancestral portion and trace the evolutionary
events that determine biological function and structure4. This is useful for protein
engineering, as the evolutionary record reveals essential cues for the discovery of
new enzymes and inference and resurrection of ancestral enzymes enabling their
use as biocatalysts5,6,7.

The ability to perform ASR on large-scale data has been limited by the avail-
able methodology and accompanying technology. A recent review highlighted 12
studies from the past decade which each sought to evaluate sources of ambiguity
in ancestral inferences8. Data set sizes within these studies ranged from 21 to 456
sequences, with an average of 168 sequences. Current methods for performing
ASR have reached practical upper limits on data set size, and these limits are far
below what is available in biological databases. We have developed the tool Graph-
ical Representation of Ancestral Sequence Predictions (GRASP) to take advantage
of the rapidly expanding number of known protein sequences and the information
from biological diversity that can be mined from large protein families.

Processing large amounts of data is not just a quantitative problem, but a qual-
itative one as well. The evolutionary models employed to quantify ancestral states
depend on an accurate representation of homology and remote homologs are likely
to have resulted from numerous evolutionary events that confound current phylo-
genetic analysis techniques. Lee et al.9 demonstrated how a partial order graph
(POG) can be used to represent and support the alignment of widely different se-
quences. The risk of combining sequence fragments with different evolutionary
origins motivated us to use the POG data structure to separate distinct sources of
sequence diversity at evolutionary branch points. POGs enable us to negotiate se-
quence variance and to track evolutionary events across time. The premise of our
study is that this significant increase of the scope of ASR will provide (a) a rich
resource for evolutionary studies, and (b) valuable guidance for protein engineer-
ing given the demonstrated usefulness of ancestral enzymes as robust templates
for directed evolution7. Consequently, our method was designed with a view to
identifying substitutions, insertions, and deletions that may be combined to form
sequence configurations inspired by, but not necessarily present in, either extant or
inferred sequences.

We tested the approach taken by inferring ancestors from different enzyme
families, exemplifying various degrees of sequence number, functional diversity,
and sequence similarity. All of the enzyme families studied are attractive from a
protein engineering perspective, as ASR offers efficient pathways towards industrially-
relevant outcomes such as increased thermal stability or altered substrate speci-
ficity. Resurrected ancestral proteins from the following families were produced
and evaluated in terms of their structure and function.
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1. The glucose-methanol-choline (GMC) oxidoreductases represent a super-
family of enzymes with varying biological functions and industrial appli-
cations; we focused on the glucose dehydrogenase (GDH, EC 1.1.5.9) and
glucose oxidase (GOx, EC 1.1.2.4) families10.

2. Members of cytochrome P450 subfamily 2 (CYP2) play a key role in drug
and xenobiotic metabolism in metazoans11. Here we concentrated on the
CYP2U subfamily (CYP2U) and two closely-related subfamilies, CYP2R,
and CYP2D.

3. The IlvD/ED dehydratase family includes dihydroxy-acid dehydratase (EC
4.2.1.9) and several sugar acid dehydratases all containing iron-sulfur-clusters
and has broad taxonomic scope12. We refer to this family as DHAD. It is
present in bacteria, archaea, fungi, algae, and in some plants.

In addition, we also evaluated a large-scale inference of, but did not resurrect,
the following family.

4. The ketol-acid reductoisomerase (KARI) family includes enzymes in the
branched-chain amino acid biosynthetic pathway (similar to DHAD) present
in bacteria, fungi, and plants. We focused on KARI class I for a large-scale
inference, and class II for a comparison between existing tools, having pre-
viously successfully resurrected ancestors of class II enzymes7.

In brief, in this paper we demonstrate the capacity of an ASR approach based
on POGs and maximum likelihood inference to:

• perform ASR on proteins in a manner consistent with current tools when
restricted to smaller data set sizes;

• perform ASR for very large protein families; specifically, we explore the
impact of quantity, diversity, and taxonomic context of input sequences on
predicted sequences as well as resurrected structures and function; and

• assist in the design of biocatalysts; we evaluate the novel prospect of using
ASR to track and re-purpose insertion and deletion (indel) events to compose
and resurrect hybrid ancestors.

Results

GRASP infers partially ordered ancestor graphs, representing substi-
tutions, insertions, and deletions

Unlike other reconstruction methods, GRASP uses POGs to place sequence char-
acters from insertions, deletions, and recombination events over time and across
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clades to ensure that homologous positions are processed appropriately by an evo-
lutionary model and to defer decisions when there is ambiguity.

GRASP infers ancestor POGs from an input POG that represents a set of
aligned homologous sequences and an input phylogenetic tree describing their evo-
lutionary relationships. It does this in three stages that are designed to deconvolute
sources of sequence variation.

1. The most parsimonious history of composite indel events is determined and
mapped onto the phylogenetic tree. For each position in the alignment a
“character tree” is constructed that only contains phylogenetic branch points
with actual sequence content (Fig. 1a).

2. For each character tree, the most probable character (to explain those ob-
served at the leaves) is assigned to each phylogenetic branch point when
performing a joint reconstruction (Fig. 1b). Alternatively, the probabil-
ity distribution over all possible characters is inferred for each position at
a nominated phylogenetic branch point when performing a marginal recon-
struction (Fig. 1c).

3. For each phylogenetic branch point or ancestor, character trees are selec-
tively linked to form an individual POG with nodes for characters and edges
for all inferred combinations of indels, including a preferred path nominating
a single sequence.

Inference of ancient character states for the analysis of large protein families is
performed using maximum likelihood, leveraging efficient algorithms developed
for probabilistic graphical models, which allows unprecedented volumes of non-
redundant data to be used. Inference of indel histories is done with a variation
of maximum parsimony which we refer to as bi-directional edge parsimony, and
which tracks and scores the edges of a POG (see Methods for a complete descrip-
tion).

For GDH and GOx, we used GRASP to identify potential substitution vari-
ants through analysis of inferred distributions via marginal reconstruction. This
methodological approach is an established and frequently performed analysis in
ASR intended to account for uncertainties in reconstructed sequences, suggest an-
cestor variants, and explore properties such as thermal stability or substrate prefer-
ence in inferred variants (Fig. 1c, Supplementary Table 1).
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Figure 1: Phylogenetic tree showing a reconstruction of fungal GDH and GOx sequences
decorated with illustrations of key concepts used in GRASP. a, Two extant POGs (j indi-
cates extant sequence number) mapped to an ancestral POG. Each extant POG has a single
path through strictly ordered sequence positions (i indicates position). Ancestral states are
influenced by all sequences, which explains why i = 608 is inferred as glycine, despite
glycine not appearing in either sequence j = 359 or 360. b, Three ancestor POGs showing
most probable assignments from a joint reconstruction at positions i ∈ {315, ..., 327} for
nodes N7, N8, and N9. GRASP supports the simultaneous viewing of multiple ancestors
from a joint reconstruction, enabling a direct comparison at different time points. c, A sin-
gle ancestor POG showing inferred marginal distributions at positions i ∈ {243, ..., 254}
for node N320. For marginal reconstructions, nodes are coloured according to their poste-
rior probabilities and can be queried to view histograms of these underlying distributions,
as is done for position i = 244. The marginal reconstruction from (c) was used to re-
construct the inferred ancestor (N320) as well as an alternative ancestor in which a single
amino acid (N320 Y244E) was altered based on posterior probabilities from the marginal
distribution and which resulted in increased thermal stability (Supplementary Table 1).

On smaller data sets, GRASP’s predictions are consistent with the pre-
dictions of existing methods

We compared GRASP against two alternative ASR tools, selected due to their
dominant use in the literature: FastML13 and the aaml program from the Phy-
logenetic Analysis by Maximum Likelihood (PAML) package14. We were able to
produce ancestral proteins from reconstructions produced by GRASP, FastML, and
PAML on a CYP2U/CYP2R data set (359 sequences); the ultimate CYP2U ances-
tors had ~95% sequence identity and regardless of the tool used, ancestral proteins

5

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 31, 2019. ; https://doi.org/10.1101/2019.12.30.891457doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.30.891457
http://creativecommons.org/licenses/by-nc-nd/4.0/


expressed at similar levels in Escherichia coli, displayed a P450 spectrum, showed
activity towards luciferin MultiCYP substrate, and had similar thermal stabilities
(Supplementary Fig. 1).

To make statements about the accuracy of ancestral predictions is problematic
as the historically correct and complete evolutionary record is unavailable. To
sidestep this issue, we first applied each tool and configuration to generate multiple
predictions of the same principal ancestor node based on stratified, down-sampled
data sets of a given sequence family. Secondly, we performed two tests asking:
(a) between-tools, how similar is the prediction of one tool to those of others?
(b) within-tool, how similar is the prediction from the down-sampled data to that
predicted from the complete family? We reasoned that a better method would be
one which tended to agree with the majority of others, and one that with less data
tended to agree with a prediction based on more data (assuming that more data help
to improve a prediction).

A large alignment with 1,682 sequences (KARI class II, adapted from Gumulya
et al.7) and the corresponding phylogenetic tree were divided into sub-groups and
used to assess the effect of tool, data set size, and reconstruction parameters on
ancestral inference (see Methods for details). We sought to corroborate any trends
using a second independent data set (cytochrome P450 class 2 with 975 sequences).

Test (a) measured similarity between ancestors at a given set of tool parameters
and group size (Fig. 2a and Supplementary Fig. 3a); specifically, we observed frac-
tional distances D/L (where D is the number of substitutions, of L non-gapped,
homologous positions) between sequences predicted for each condition tested. Test
(b) measured similarity in terms of fractional distances between ancestor predic-
tions of an individual tool (with a set of parameters and group sample size) and a
better-sampled, ultimate ancestor (Fig. 2b and Supplementary Fig. 3b). The ul-
timate ancestor for the comparison in (b) was predicted by GRASP, since a data
set of this size could not be completed by FastML or PAML. A series of statistical
tests were performed; first ANOVA evaluated if choice of tool, data set size and
rate parameter setting were factors in determining how similar a predicted ancestor
sequence (grouped by a specified setting) was relative to those of alternative tools
with the same setting (test a), and relative to those generated from the complete
data set (test b). The t-test was then used to identify the pairs of labels (on groups)
that best explained observed differences (Supplementary Figs. 4 and 5).

While GRASP performs character inference via standard models and algo-
rithms, it does not support variable evolutionary rates at this stage. When com-
paring predictions between-tools (test a) or within-tool (test b), both the choice of
tool and data set size separately and consistently explained the observed differences
in distances, however the rate setting did not.

The choice of tool mattered for both types of comparisons across the two data
sets; in most cases PAML-predicted sequences have a significantly greater mean
fractional distance to those of GRASP and FastML, than any of the alternatives.
GRASP and FastML predictions were broadly indifferent, both relative to a ref-
erence ancestor and relative to PAML’s ancestors. The differences were less pro-
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nounced with larger data sets. Indeed, greater sequence numbers generally reduced
distances between-tools; unsurprisingly, for all tools having greater sequence num-
bers reduced distances between their predictions and the reference ancestor based
on the complete data set.

We calculated the time taken for all tools to complete the reconstructions with
a run time cut-off of 48 hours (Supplementary Fig. 2) and highlighted the time
taken for GRASP and FastML to complete the two larger data set sizes (Fig. 2c).
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Figure 2: Tool comparison on KARI data. a, Average fractional distance between tools,
calculated as pairwise fractional distances for each ancestral prediction for a given tool
against all other ancestral predictions of other tools at 5 groups of 336 or 337 sequences,
10 groups of 168 or 169 sequences, and 20 groups of 84 or 85 sequences. Parameter
combinations are joint and marginal reconstruction and, fixed or variable evolutionary rates
(FastML and PAML only). b, Average fractional distance between an ultimate ancestor
inferred by GRASP using 1682 sequences and each tool / parameter combination at 5,
10, and 20 groups. c, Run times of tools for GRASP and FastML at 5 and 10 groups;
PAML is omitted due to long run times. Run times for all tools at 20 groups are shown in
Supplementary Fig. 2.
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Increasing sequences constrains inferred ancestral sequences

GRASP is able to process very large numbers of sequences (i.e., greater than
10,000), which is a requirement to capture the true diversity of the sequence space.
Intuitively, more data equates to better coverage of the possible biological sequence
spaces, which, if we had perfect knowledge of the true homologous relationships
between residues, would imply that possible ancestral states are more robustly con-
strained towards canonical sequences.

In practice, we must account for obscured homology due to substitutions and
indel events. Indel handling is critical for ASR, yet routinely problematic, and
the accurate management of indel events is essential to decide on which sequence
content to include for any particular ancestor. As data set sizes grow, the number
of columns in a sequence alignment, or positions in a POG, increases substan-
tially and the indel histories become more complicated. Therefore, increasing the
number of sequences does not necessarily lead to data saturation and ancestral in-
ferences that approach a stable, canonical sequence.

To test the effect of increasing data set size on ancestral inference, we assem-
bled sequence data sets for the DHAD and CYP2U protein families via regular
increments of sequence data (see Methods) and compared the ancestral inferences
for each data set size (Fig. 3a-d), ranging from between 1,612 to 9,112 sequences
for DHAD and between 165 and 595 sequences for CYP2U. The DHAD data
sets were increased by adding sequences from across the DHAD taxonomic space,
while the CYP2U data sets were increased by adding sequences from sister groups
CYP2R and CYP2D while retaining the same number of CYP2U sequences at each
point. For the DHAD data set we also performed a sparse reconstruction of 585
sequences, containing primarily reviewed Swiss-Prot sequences.
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Figure 3: a, Phylogenetic trees of the smallest and largest DHAD data sets after producing
14 randomly sampled data sets in 500 sequence increments, added to our base data set of
1612 sequences and reaching a maximum size of 9,112 sequences. b, Distance maps of
the fractional distance between three nominated nodes from DHAD at incremental data set
sizes. c, Phylogenetic trees of the smallest and largest data sets after increasing CYP2U
sequences via addition of homologous subfamilies, starting with 165 CYP2U sequences
then growing to 359 sequences and reaching a maximum of 595 sequences via addition of
sequences from CYP2R and CYP2D, respectively. d, Distance maps of the fractional dis-
tance between two nominated nodes from CYP2U at incremental data set sizes. Ancestors
from the N4/N5 equivalent nodes across the three data set sizes are not shown but had 98%
identity. e, Distance map of the average fractional distance between 50 randomly selected
ancestors in the KARI I data set, ranging from 1,176 to 11,756 sequences.
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With GRASP, we observed that as data set size increased, the predicted an-
cestor sequences approached canonical forms in terms of amino acid composition
at equivalent phylogenetic nodes between different tree sizes. To further illus-
trate these trends, we inferred KARI ancestors in regular increments ranging from
between 1,176 sequences to 11,756 sequences. These ancestors also converged to-
wards canonical forms with the addition of sequences (Fig. 3e). While the number
of positions in the input sequence alignment generally increases with coverage, the
length of the ancestor sequences is not correlated with number of input sequences
(Supplementary Fig. 6).

GRASP is able to complete the reconstruction of the largest data sets in this
study within 7 hours for DHAD (9,112 sequences, 1,381 positions in alignment)
and within 6 hours for KARI (11,756 sequences, 667 positions) (Supplementary
Fig. 7).

Ancestral proteins inferred from the smallest and largest data sets for both
DHAD and CYP2 are active towards expected substrates, despite differences in an-
cestral sequence identity between the two extremes of data set size (DHAD 75%,
CYP2U 80%). All DHAD ancestors displayed enzymatic activity to D-gluconate
and included products of a control DHAD and traces of additional products (Sup-
plementary Fig. 8). We observed that three DHAD ancestral proteins from the
smallest data set recapitulated very similar thermal shift profiles, and in the three
ancestors from the equivalent positions in the largest data set (Supplementary Fig.
8). For two of the three DHAD reference ancestors the melting points are increased
by about 5 ◦C in the ancestors from the larger reconstruction, relative to the smaller
(Supplementary Fig. 8). Likewise, the inclusion of the sister clades for the CYP2U
reconstruction increased the thermal stability of the ultimate CYP2U ancestors; the
ancestors at each point (165, 359, and 595 sequences) were all shown to be active
towards the substrate luciferin MultiCYP (Supplementary Fig. 9).

Indel variation can be used to create hybrid ancestors

A common technique to explore plausible alternative amino acids at particular sites
is to select residues that show a relatively high posterior probability in a marginal
reconstruction7. Mutations can be introduced at these positions to test the robust-
ness of prediction and to create alternative ancestors. GRASP is able to prioritise
mutations that best capture inferred probability distributions by minimising the ex-
pected relative entropy.

We hypothesised that indel events suggest plausible blocks of sequence content
that could be included or excluded in identified ancestors as a novel approach to
creating ancestral variants, orthogonal to substitution. GRASP utilises the history
of indel events to predict modular blocks of content capable of being removed from
ancestors in which they occur or inserted into ancestors that never contained these
modules. In doing this, GRASP fundamentally extends the nature and practical
application of modulating variation within ancestors and is capable of identifying
modular insertions that, in the case of the CYP2U ancestors, alter the protein ther-
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mal stability and substrate selectivity towards two different probe substrates. The
ability to manipulate both of these properties is desirable for protein engineering.

We used GRASP to identify two distinct lineage-specific insertions within the
CYP2U/CYP2R/CYP2D data set, occurring at the nodes N5 and N51 (Fig. 4). We
synthesised the inferred ancestors N5 and N51, as well as a more ancient ancestor,
N2, that did not contain either insertion. We removed the insertion LSEE from
N5 at sequence position 153 (N5 153dLSEE) and removed the insertion LLSPP
from N51 at sequence position 27 (N51 27dLLSPP). We pre-empted their pre-
dicted occurrence by separately inserting them into N2 at the equivalent sequence
positions 152 (N2 152iLSEE) and 27 (N2 27iLLSPP). We also tested two variants
of the N1 CYP2U ancestor. One form contained a CYP2U-specific insertion of 19
amino acids (N1), and the other removed this insertion to resemble the CYP2R and
CYP2D sequences (N1 19dIPP...RR).

All ancestral proteins inferred via this process were heterologously expressed
in E. coli and characterised. They were shown to express at similar levels, fold,
and form intact haem-thiolate linkages as indicated by the characteristic spectral
peak at 450 nm in the Fe(II).CO vs. Fe(II) difference spectrum (Supplementary
Fig. 10). All were catalytically active towards at least one substrate, when tested
with three different P450-GloTM pro-luciferin probe substrates, luciferins Multi-
CYP, ME-EGE, and CEE. Therefore, the presence or absence of these lineage-
specific insertions were not essential for the protein folding, co-factor binding, or
interaction with the cytochrome P450 reductase. However, it was observed that
the lineage-specific insertions did alter the substrate selectivity of the otherwise
identical ancestors.

Both N5 and N51 are active towards luciferins CEE and ME-EGE, while N2
is not. Loss of the insertion LLSPP from N51 significantly reduces its activity
towards luciferin CEE, and the gain of the LLSPP insertion in the N2 ancestor in-
creases its activity towards luciferin CEE. Neither loss of the insertion LSEE from
N5 or gain of the insertion LSEE in N2 has an effect on luciferin CEE activity.
The presence of the LSEE insertion in the N2 and N5 ancestors increased both an-
cestors’ activity towards luciferin ME-EGE. Inclusion of the LLSPP insertion did
not have a consistent effect in activity towards luciferin ME-EGE, whereas inclu-
sion increased activity towards ME-EGE in N2, but not N51. The N1 ancestor was
only active towards luciferin MultiCYP, but N1 19dIPP...RR was slightly active
towards all three pro-luciferin substrates, suggesting this insertion may also alter
the selectivity of the ancestor.

The LLSPP insertion also modulated the thermal stability of the ancestors;
the insertion produced a small but statistically significant increase in the thermal
stability in both the N2 and N51 ancestors, compared to their variants lacking this
insertion (Fig. 4c). This effect was not seen for the LSEE insertion (Fig. 4c),
suggesting that these effects are protein and sequence specific.

12

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 31, 2019. ; https://doi.org/10.1101/2019.12.30.891457doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.30.891457
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4: a, Phylogenetic tree showing positions of ancestors chosen for synthesis and
evaluation. Coloured boxes indicate the content that was removed from correspondingly
coloured ancestral nodes (N51, N5, and N1) and, in the case of the N51 and N5 insertions,
pre-emptively inserted into N2. b, Amino acid sequences surrounding and including the
insertion or deletion of the content at each ancestor. Numbers under sequences indicate the
position numbers of the start and end columns represented in the alignment. c, Thermal
stability assays for each ancestor with and without inserted content. d, Activity assays
for the substrates luciferin CEE and luciferin ME-EGE for each ancestor with and without
inserted content. 13
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Discussion

Increasing the scale at which ASR can be performed means that greater sequence
and functional diversity can be explored, and more complicated phylogenetic rela-
tionships can be assessed. Incorporating more data from sister clades and remote
homologs can allow ancestors to be inferred for more ancient evolutionary times.
These points are substantiated computationally and experimentally by resurrecting
twenty ancestral variants from different time points across three enzyme families
(GDH/GOx, DHAD, and CYP2U), all of which were shown to be catalytically
active.

ASR has been used extensively in recent years and it is important to under-
stand the relative performance of different tools, to draw on past experiences, and
to recognise proven principles that underpin successful methods. We note FastML
is in broad agreement with GRASP, with it having closer evolutionary distances to
GRASP’s predictions than to PAML. This trend holds true even when FastML and
PAML incorporate variable evolutionary rates. We also demonstrated that incorpo-
rating more sequence data resulted in smaller fractional distances between inferred
ancestors, regardless of tool.

Based on the analysis of approximately 10,000 sequences from each of KARI
and DHAD we demonstrated that despite an increase in diversity, ancestral se-
quences converge toward canonical forms when using large data sets. Ancestral
sequences generated from smaller data sets exhibit greater variation in ancestral
sequence identity relative to the ancestral sequences from the larger data sets, sup-
porting the notion that greater representation of a family provides a constraint for
the ancestor, a point to consider when making decisions about new data sets for
reconstruction.

At the core of GRASP’s approach is the POG data structure. We developed
bi-directional edge parsimony to pinpoint likely phylogenetic positions for indel
events once homologs are placed in an alignment; it effectively delineates sequence
content at all internal nodes of a given phylogenetic tree, collectively tracing the
evolutionary relationships between all sequences. As a consequence, evolutionary
events are isolated to specific clades and alignment ambiguities that are difficult to
resolve from a single phylogenetic node can be disentangled across evolutionary
time.

In contrast to current approaches based on gapped sequence representations,
POGs enable the identification of all supported indel histories across a recon-
structed family. We designed an interactive interface to present indel events that
are deemed optimal. This interface allows a user to explore indel variant ancestor
POGs or simply trace a preferred path through them (see Methods).

ASR often requires judgements to be made as to whether ancestors contained
an insertion present in only some of the multiple descendent branches of a phylo-
genetic tree. For example, Afriat-Jurnou et al. identified loop remodelling events
in phosphotriesterases15. Hybrid ancestors represent a novel class of variant that
can readily be identified and resurrected through the partitioning of indel events
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onto individual edges within a POG. In GRASP, edges that are parsimonious but
are not chosen to form the preferred ancestral sequence are visualised as alterna-
tive paths through the POG. GRASP provides a framework to delete, reintroduce,
or pre-emptively include indel variation that supports both creating new and ex-
ploring existing function.

The modular identification of indel events as alternative paths defining a given
ancestor can be used to test alternative hypotheses about the true progression of
events. In addition, alternative paths can be sampled in order to engineer novel
sequences by combining or removing blocks of sequence content. Using the anal-
ysed CYP2U dataset, we showed that inclusion of these modular blocks allowed
for increased thermal stability and altered substrate preference. We stress that we
are not attributing the increased stability or interaction with a specific substrate
solely to the identified insertion, but rather that we have identified blocks of con-
tent that are likely to be tolerated and which in turn affect the folding and function
of these ancestral proteins. Due to the complex nature of protein folding, these
blocks will not always behave in predictable ways and effects will depend on the
ancestral sequence and sequence context into which they are being inserted.

Strikingly, given the substantial impact that indel events are likely to have on
any protein sequence, coupled with the divergence between CYP2U ancestral se-
quences chosen, the hybrid ancestors folded to form holoenzymes that are catalyt-
ically active when tested in vitro and are capable of interacting with the native
human reductase.

The identification of modular insertions altered the substrate selectivity. This
study provides a proof-of-concept that indel histories can suggest a form of vari-
ation that protein engineers can use that is orthogonal to varying specific amino
acids. We foresee this as being of practical use for (1) altering function through the
addition and removal of discrete, evolutionarily-defined building blocks to engi-
neer variants with altered catalytic and physical properties (e.g. thermal stability)
and (2) exploring alternative ancestors where there is ambiguity in the true phylo-
genetic position of an indel.

Methods

The three main stages of GRASP are (1) to construct an indel history for every
position in the alignment, (2) to infer character states for all positions not removed
in each ancestor, and (3) to form a POG by linking positions inferred for each
ancestor.

GRASP infers ancestor character states from a set of M input sequences S =
{Sj : j ∈ J} where J = {1, 2, ...,M}; S has N aligned positions, indexed with
i ∈ I, where I = {1, 2, ..., N}. In classical sequence alignments, positions with-
out sequence content are padded, often shown as ‘−’; we use I(j) ⊆ I to index
positions in sequence j with actual sequence content, Sji = x where x ∈ A when
i ∈ I(j). Later, it will be convenient to refer to the transpose of I(j), namely J(i)
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which indexes all sequences with content at position i.
The inference is based on a given phylogenetic tree T with a nominated root,

that has M − 1 branch points (if bifurcating, fewer when multifurcating) indexed
by K = {M + 1,M + 2, ..., 2M − 1}; we designate the index k =M + 1 for the
root of the tree. The superset of extant and ancestor sequences (matched to POGs)
is indexed by Z = J ∪ K. The topology of T defines parent-child relationships,
Z(k) ⊆ Z indexes the ancestral descendants of an ancestor k; conversely, we define
a function κ(k′) = k′′ to indicate that k′′ is the direct ancestor of k′, where k′ ∈
Z(k′′).

Character states are inferred with an evolutionary model (in the form of an
instantaneous rate matrix, indexed by A); and maximum likelihood16, by using a
Bayesian network that shares the topology of the position-specific character tree,
which is determined by parsimony.

Below, we first define key data structures, then we distinguish between (a) the
handling of where homologous positions are placed relative to one another in the
trace of ancestral sequences via POGs; and (b) the principles with which homolo-
gous positions in extant sequences are used to determine ancestral character states
at branch points in the phylogenetic tree. The principles under (b) are unremark-
able in themselves, but key benefits are achieved by using them in the ancestor POG
from (a). For succinctness, we describe this procedure as it applies to a bifurcating
tree, however the same principles seamlessly extend to multifurcating trees.

Representing sequence content as a partial order graph (POG)

A POG is a directed acyclic graph whose elements are ordered relative to other
elements; a strict ordering is enforced within a subset of elements, but not always
between subsets. When an order is imposed amongst elements the relationship
must be reflexive, anti-symmetric, and transitive9. A growing body of work in se-
quence alignment has demonstrated a flexibility that POGs offer for detecting and
representing homologous sequence elements during alignment17,18,19. We take ad-
vantage of the flexibility of POGs when projecting homologous elements back in
time; they represent deletions and insertions by edges that exclude and include al-
ternative character subsets, respectively, allowing for optional histories by offering
multiple paths at ancestral branchpoints.

Formally, a POG is defined by a set of (up to) N nodes that are indexed by
i ∈ I. The indices are determined by performing a topological sort on the in-
put POG (see below); this gives at least one linear and complete ordering (out of
several possible). Nodes are connected by a set of directed edges, which is conve-
niently represented by a matrix E, where E(a, b) is set to 1 if there is an edge from
a to b, else 0. We introduce an extended index-set I∗ for rows and columns in E,
with 0 and N + 1 to start and terminate the POG, so a ∈ I∗ and b ∈ I∗. We define
next(E, a) = {b : E(a, b) > 0} and prev(E, b) = {a : E(a, b) > 0} to refer to
sets of nodes that occur after and before a node with a given index, respectively.
next(E, 0) would thus give all possible start indices, and prev(E, N + 1) all ter-
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minating indices. Moreover, we define path(E) to return all indices in I that can
be accessed from 0, and N + 1, via recursive application of next and prev.

We distinguish between three types of POGs, the first two are determined di-
rectly from S, and the third by inference. All POGs share the node index I, which
allows character states to be mapped across extant sequences and ancestors (illus-
trated in Fig. 1).

• an “extant POG”, is defined by a set of edges E(j) specific to an extant se-
quence Sj , where j ∈ J. path(E(j)) recovers the indices in I(j); it forms a
single path of “character” nodes Xji = Sji where i ∈ I(j).

• an “input POG”, denoted E∗ =
∑

j∈JE
(j) represents the joint set of edges

collected from extant sequences. The presence of an edge between a and b
is indicated by E ∗ (a, b) > 0.

• an “ancestor POG”, is inferred to have a set of (sometimes optional) edges
E(k) where k ∈ K. It links a series of nodes Yki where i ∈ I(k); each node
either identifies a character state, or defines a probability distribution over
character states; the latter is referred to as a “distribution” node. Once the
POG for ancestor k is inferred, path(E(k)) recovers its valid indices I(k).

Inference of ancestral states, insertions, and deletions

The phylogenetic tree with a nominated root and the collection of extant POGs
serve as input to inference. GRASP supports two types of inference:

• Marginal reconstruction at a specified ancestral branch point in the phylo-
genetic tree; as a result of inference, the nominated ancestor POG will con-
tain distribution nodes that represent the marginal distributions of character
states.

• Joint reconstruction of all ancestral branch points; all ancestor POGs will
contain character nodes that represent the most probable character state.

Inferring insertion and deletion at ancestor branch points

POG E(k) at an ancestor k defines all possible paths that can form a valid sequence
and therefore determines if a character state needs to be inferred at any given posi-
tion. This subsection describes how E(k) is determined, and I(k) by implication.

GRASP considers all edges in E∗ and seeks to jointly identify the most parsi-
monious set of edges across all branches in the tree. To decompose this problem,
GRASP scores edges leaving (δ = OUT) and edges entering (δ = IN) for a single
position at a time; this process starts at the top-most branchpoint in the tree, and by
dynamic programming finds the edges at all descendant ancestors that imply the
smallest cost across the tree.
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Eq. 1 defines a score for each edge (between a and b, with direction δ) at a
given ancestor k. The parsimony score of that edge depends on what edges are
selected at its descendants: staying with the same edge is costless, changing to any
other edge will cost 1. Except for the base case when the descendant is an extant
sequence, the cost from the descendants are propagated recursively, and (all) edge
choices that ultimately lead to the best parsimony score at the top-most branchpoint
are recorded (i′ in Eq. 1, relative to either a or b depending on δ): E(k)(i, i′) = 1
for both δ = OUT and δ = IN, at any position i ∈ I. (Note that δ = OUT references
only one half of the matrix (i < i′) and δ = IN references the other (i > i′).)

σ(k, δ, a, b) =
Z(k)∑
c


min

next(E∗,a)
i′

{
0 if b = i′

1 otherwise
+

{
0 if c ∈ J
σ(c, δ, a, i′) if c ∈ K

if δ = OUT

min
prev(E∗,b)
i′

{
0 if a = i′

1 otherwise
+

{
0 if c ∈ J
σ(c, δ, i′, b) if c ∈ K

if δ = IN

(1)
For an ancestor k, an edge (a, b) is included if E(k)(a, b) + E(k)(b, a) > 0; if

the sum is 2, it is bi-directionally parsimonious, which implies it is preferred when
identifying ancestor sequences. There is no guarantee that there is a complete path
through the POG where all edges are bi-directionally parsimonious, but in practice
this turns out to be mostly the case.

Inferring the character state of ancestor nodes

For GRASP to infer character states and operate efficiently, we make several stan-
dard assumptions. First, each sequence position, i, can be modelled indepen-
dently16. Second, we assume that character substitutions depend only on the cur-
rent state16. Third, we assume that each position mutates at the same rate. Since
modelling variable rates across positions20,21 compromises our ability to efficiently
process large data sets, we presently opt not to do this. Instead, we are able to lever-
age efficient procedures of graphical models for inference22,23.

The topology of the phylogenetic tree maps to a character tree for each position,
subject to the position i ∈ I(k) in an ancestor k can form part of a valid sequence;
for later, we define the transpose of that mapping as k ∈ K(i), i.e. the subset of
ancestors that have character content for a position i.

Each position-specific character tree maps to a directed Bayesian network,
which is parameterised to reflect evolutionary distances (additively) at each branch,
from the provided phylogenetic tree. The network is created with “observable”
variables, instantiated to the characters in extant sequences Xji = x. “Non-
observable” variables in the Bayesian network correspond to the ancestors Yki
where i ∈ I(k); how the character state or distribution for Yki is inferred is de-
scribed below. When applicable, we will drop the index i, since the character state
is inferred independently of position.
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A Bayesian network node is a conditional probabilityP (Xj |Yκ(j), dj) orP (Yk|Yκ(j), dk),
for j ∈ J(i) and k ∈ K(i) and is parameterised by their respective distances (dj or
dk; which refer to their closest ancestor branchpoint, κ(j) or κ(k), respectively).

The matrix of conditional probabilities is eQ(d) where Q is the instantaneous
rate matrix given by the evolutionary model. GRASP supports all popular mod-
els24,25,26,27. Inference of the joint ancestral character state is then defined by:

P ({Yk : k ∈ K(i)}|{Xj : j ∈ J(i)}, T ) ∝∏
i

P (Xj |Yp), T )
∏
j

P (Yk|Yr), T ) (2)

where T is the tree with distances for all branches. The implementation uses an
adaptation of variable elimination28,22, which decomposes the inference into an
efficient series of products given the hierarchical topology of the tree. Ancestral
states are determined by the highest joint probability across all non-observed vari-
ables (all ancestors, all positions). From the above, GRASP is also capable of
inferring the marginal probability distribution for each position in a given ances-
tor, by summing out all other non-observed variables. All inferences are exact (not
approximated).

Identifying a single, preferred ancestor sequence

Not uncommonly, multiple indel histories are equally parsimonious, implying that
several ancestor candidate sequences can be identified by traversing an ancestor
POG; however, in some applications it is necessary to nominate a single sequence.

To determine a “preferred” path through an ancestor POG, we first define a
subset of extant sequences J(k) that are in the subtree under a given ancestor, k. To
express preference between multiple edges, we calculate the proportion of extant
sequences that contain a particular edge (see Eq. 3).

wk(a, b) =

∑
j∈J(k)

{
1 if E(j)(a, b) = 1

0 otherwise

|J(k)|
(3)

Identifying the preferred path

GRASP uses the A* algorithm29 to determine the selection of edges in a POG that
jointly minimise the cost, travelling from the N- to the C-terminus.

The cost assigned to an edge is given by Eq. 4:

γk(a, b) = (1 + (ηk(a, b) · (1− wk(a, b)))) · (b− a) (4)

η is defined in Eq. 5 and imposes an absolute preference for bi-directionally par-
simonious edges; a uni-directional is only chosen in the absence of bi-directional
edges to complete the traversal. The exception is the edge to the first node, and the
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edge from the last node, where bi-directionality is disregarded. The impact of the
weight is normalised by the number of positions skipped by a given edge, b − a.
This ensures that each complete ancestral sequence is scored evenly, regardless of
the number of edges it takes to form.

ηk(a, b) =

{
N if E(k)(a, b) +E(k)(b, a) < 2, a 6= 0 and b 6= N + 1

1 otherwise
(5)

Access to tools and data

GRASP is freely accessible via a web server at http://grasp.scmb.uq.
edu.au. The online service allows users to upload their own data sets and pre-
dict ancestors. The results are presented to allow exploration of ancestral POGs
and their states via an interactive phylogenetic tree. Numerous other functions are
available including annotation of trees with taxonomy and user specified terms,
inspection of probability distributions for the identification of mutations for alter-
native ancestors, and sharing of entire reconstructions. A tutorial, user’s guide, and
several example reconstructions are also available from the web site.

Data sets reported in the manuscript and a suite of tools to assist in the applica-
tion of GRASP are available at https://bodenlab.github.io/GRASP-suite.
In particular, a command-line version of the prediction method without visualisa-
tion features is available.

The implementation in Java and Javascript is available from the same site. The
software is available under the GNU General Public License v3.0.

GDH-GOx experimental methods

GDH-GOx ancestral inference

Starting from an aligned data set and phylogenetic tree previously established by
Sützl et al.10 for the GDH-GOx cluster, only the four major clades (GOx, GDH
I, GDH II, and GDH III) were selected together with the second small GDH III
clade. All sequences with >800 amino acids as well as manually selected se-
quences showing large insertions were removed from the selection, resulting in 399
sequences. This sequence selection was aligned by MAFFT v7.271 G-INS-i30, the
alignment trimmed for positions with >99% gaps by trimAl v1.231, and pruned
using Gblocks 0.91b32 with a less stringent block selection. The phylogenetic tree
was inferred by PhyML33 with default settings with SPR moves to optimise tree
topology, Smart Model Selection (SMS), and aLRT SH-like branch support. The
tree was rooted on the midpoint. Marginal reconstruction of ancestral nodes was
performed with the LG evolutionary rate model27 after N- and C-termini of the
alignment had been trimmed.
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GDH-GOx synthesis and cloning

The N- and C-terminal sequences not present in the ancestral sequences were re-
placed by the equivalent amino acid sequences of GOx from Aspergillus niger,
‘MQTLLVSSLVVSLAAALPHYIRSNGIEASLLTDPKDVSGRT’ and ‘ASMQ’, re-
spectively. Resulting ancestral genes were ordered at BioCat GmbH, cloned into
the expression vector pPICZ A together with an added polyhistidine tag (6 x His),
and codon-optimised for Komagataella phaffi (formerly Pichia pastoris) expres-
sion. Constructs were linearized with PvuII and transformed into K. phaffii via
electroporation.

GDH-GOx expression

Ancestral and extant GOx and GDH genes were expressed in K. phaffii under the
AOX1 promoter with methanol induction. Routine cultivations and selection of the
transformed cells were done in liquid YPD medium supplemented with zeocin (100
mg/L) at 30 ◦C and 130 rpm. Expression was done in shake flasks at 30 ◦C and
130 rpm on modified BMMY medium (20 g/L peptone from casein, 10 g/L yeast
extract, 100 mM potassium phosphate buffer pH 6.0, 10 g/L (NH4)2SO4, 3.4 g/L
yeast nitrogen base (without amino acids and (NH4)2SO4), and 0.4 mg/L biotin)
together with 12 g/L sorbitol and 2% methanol. After centrifugation at 6000xg
and 4 ◦C for 30 minutes, supernatants were loaded onto an equilibrated 5-mL His-
Trap column (GE Healthcare) and washed with binding buffer (50 mM potassium
phosphate buffer pH 6.5, 500 mM NaCl, and 20 mM imidazole). Proteins were
eluted using a linear gradient of 50 mM potassium phosphate buffer pH 6.5 con-
taining 500 mM NaCl and 500 mM imidazole. Manually collected fractions were
concentrated and desalted (50 mM phosphate buffer pH 6.5) in Vivaspin 20 tubes
(Sartorius) with 30,000 Da molecular mass cut-off.

GDH-GOx activity assays

Both GDH and GOx activity were measured spectrophotometrically at 30 ◦C on a
UV/Vis spectrophotometer (Lambda 35, Perkin Elmer), using appropriately diluted
enzyme solution, 20 mM D-glucose, and the respective electron acceptor in 50
mM potassium phosphate buffer pH 6.5. The electron acceptors 1,4-benzoquinone
(BQ) and ferrocenium-hexafluorophosphate (FcPF6) were used at 0.5 and 0.2 mM,
and their reduction was followed at 290 and 300 nm, respectively. Reduction of
the electron acceptor oxygen was measured using the peroxidase-coupled ABTS
assay34, following the reduction of 0.1 mM 2,2’-azino-bis(3-ethylbenzothiazoline-
6-sulphonic acid) (ABTS) at 420 nm.

GDH-GOx thermal stability assays

Thermal stability of GDH-GOx enzymes was assessed by differential scanning
calorimetry conducted on a PEAQ-DSC automated instrument (Malvern Panalyti-
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cal). All enzyme samples were diluted to 5 µM (~0.33 mg/ml) in 50 mM potassium
phosphate buffer pH 6.5, and scanned from 20–90 ◦C with a scan rate of 60 ◦C/h
and feedback set to high. Instrument blanks were recorded using buffer only and
rescans were measured for all samples. Data analysis was performed by using the
MicroCal PEAQ-DSC software V.1.22. The background signal was subtracted us-
ing rescans whenever applicable or buffer blanks otherwise, the baseline was fitted
using the spline method, and peaks were fitted with a non-two-state model.

DHAD experimental methods

DHAD ancestral inference

A minimal 585-sequence set was composed consisting of members annotated with
family ”Ilvd/Edd” in UniProt, and excluding sequence fragments (as defined by
UniProt). Most sequences were from Swiss-Prot, with several TrEMBL entries
added due to function and structural data being available. A baseline data set of
1612 sequences was created from the minimal data set, ensuring that 19 nominated
enzymes with experimental data (functional and/or structural) were included, as
well as members of their UniRef90 clusters. A background data set of 8221 se-
quences included annotated members from the broadest assortment of species, only
filtered to be non-redundant at 90% identity (using UniRef90). All three data sets
were checked for the aligned location of two motifs (CDK and PCN/PGH/SAH
with provision for a substitution) that are associated with the active site35; se-
quences that did not exhibit these motifs were removed.

The background data set was then repeatedly and independently sampled to
extend the baseline data set to up to 9112 sequences. At each size increment of
500 sequences an alignment was created using Clustal Omega36, and a phyloge-
netic tree was inferred using FastTree37 and rooted using phosphogluconate dehy-
dratase as an outgroup. Despite differences in alignments and phylogenetic trees
at each data size increment, we were able to map any ancestor in a smaller tree
to an ancestor in a larger tree by maximising shared inclusions and exclusions of
member proteins of the subtrees the two ancestors defined. Joint reconstruction
was performed with the JTT evolutionary model25.

DHAD synthesis and cloning

The inferred DHAD ancestral genes N1, N423, and N560 from the 585 data set,
and the equivalent nodes N9, N1442, and N1443 from the 9112 data set were opti-
mised for E. coli expression and synthesised by Twist Bioscience and ATG:biosynthetics
GmbH, respectively. After amplification, the purified DNA fragments were di-
gested with SapI, followed by ligation into a modified pET26 vector (p7XNH3)38.
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DHAD expression

Expression of the inferred DHAD and the PiDHAD genes was performed in shak-
ing flasks. E. coli BL21 (DE3) cells transformed with the p7XNH3 plasmid and
the appropriate inserted gene fragment were grown as an overnight pre-culture
in Lysogeny Broth supplemented with kanamycin (100 µg/ml), and then 1:50 in-
oculated into auto-induction ZP-5052 medium39 supplemented with kanamycin
(100 µg/ml). These cultures were incubated at 90 rpm and 37 ◦C for 3 hours and
then overnight at 18 ◦C in a horizontal orbital shaking incubator. Cells were dis-
rupted by sonication in binding buffer (50 mM potassium phosphate buffer, 500
mM NaCl, 10% glycerol, and 20 mM imidazole) at pH 8.0. Cell debris was pel-
leted by centrifugation. Proteins were purified using an ÄKTA Purifier FPLC sys-
tem and a HisTrap HP Nickel column (GE Healthcare). Filtered samples were
loaded onto the column and washed with binding buffer. The His-tagged proteins
were then eluted with elution buffer (50 mM potassium phosphate buffer, 500 mM
NaCl, 10% glycerol, and 500 mM imidazole) at pH 8.0. Desalting of the enzymes
was carried out using HEPES buffer pH 7.0.

DHAD activity assays

DHAD activity was analysed by HPLC of an assay mixture containing the respec-
tive DHAD, 25 mM HEPES buffer pH 7.0, 5 mM MgSO4, and 25 mM of sodium
D-gluconate, and incubated at 30 ◦C. Samples were taken every few hours for 3
days. The enzyme was removed by ultrafiltration (PES 10 kDa MWCO, VWR) and
the samples were stored at -20 ◦C until analysed by HPLC. HPLC measurements
were performed on an Ultimate-3000 HPLC system (Dionex), equipped with an
auto-sampler and diode-array detector. D-gluconate and products were separated
by using a Metrosep A supp10-250/40 column (250 mm, particle size 4.6 µm,
Metrohm) at 65 ◦C by isocratic elution with 12 mM ammonium bicarbonate at pH
10.02, followed by a washing step with 30 mM sodium carbonate at pH 10.4 and
a flow rate of 0.2 ml/min. Each sample injection volume was 10 µl. System peak
calibration was performed using external standards of the known compounds.

CYP2U experimental methods

CYP2U ancestral inference

Five candidate CYP2U proteins were chosen, one each from Andrias davidianus,
Python bivittatus, Marmota marmota, Poecilia reticulata, and Amazona aestiva. A
pBLAST search of each of the candidates was conducted and hits from plants (tax-
onomic id:3193) or fungi (taxonomic id:4751) were excluded (E-Value = 0.00001).
Sequences from the pBLAST search were retained if they had at least 55% se-
quence identity to the original candidate sequence. This procedure was also re-
peated retaining sequences with at least 50% sequence identity, however, the ad-
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ditional sequences from this lower bound were all removed at later stages of cu-
ration, indicating that 55% was an appropriate level of identity. Sequences from
the pBLAST searches were collated and identical sequences were removed. Se-
quences were excluded if they were below 400 amino acids in length or if they
contained unidentified amino acids in their sequences. Sequences were aligned
using MAFFT (L-INS-i) with default parameters30. Removal of sequences with
indel events over 20 amino acids (suggestive of incorrect annotation of splice sites)
was completed in an iterative manner by first identifying which sequence had the
longest indel over 20 amino acids, removing it and realigning the remaining se-
quences, and then continuing until no sequence had an indel over 20 amino acids.
Sequences were manually inspected and any sequences with apparent frameshift
mutations were removed. Sequences were mapped back to their exon structure
and removed if they had more than two exons difference to the accepted number
of five exons for CYP2U sequences. Sequences missing the conserved cysteine
residue characteristic of cytochrome P450 enzymes were removed. Similar pro-
cedures were used to generate the CYP2R and CYP2D families. Phylogenetic
trees were inferred using RAxML40. A CYP2R Latimeria chalumnae sequence
(XP 005989762.1) was manually shifted on the phylogenetic tree to better repre-
sent the known phylogeny41, while retaining each sequence’s overall evolutionary
distance to the root. Joint reconstruction was performed with the JTT evolutionary
rate model25.

CYP2U synthesis and cloning

The amino acid sequences of CYP2U ancestors were inferred starting from the
conserved PPGP motif, which signifies the end of the transmembrane domain. For
expression of the resurrected ancestors in bacteria, this region was replaced with
an N-terminal sequence (MAKKTSSKGKL) that is known to improve expression
yields of microsomal P450s in bacteria42 and had been used to express human
CYP2U1 in E. coli43. To enable purification, a flexible ST linker followed by a
polyhistidine tag (6 x His) was added to the C-terminus of the sequences. All an-
cestor sequences were codon-optimised for E. coli expression, and the N-termini
were optimised initially using mRNA optimiser44 and subsequently manually until
the free energy was less than -15 kJ/mol. The genes were synthesised as Gen-
eStrings (GeneArt, Invitrogen) designed with 60 bp 5’ and 3’ end extensions com-
plementary to the pCW vector, cloned by Gibson assembly, and then sequence-
verified by dideoxy sequencing (Australian Genome Research Facility). Correct
inserts were subcloned into a bicistronic pCW vector upstream of the open reading
frame for the human cytochrome P450 reductase (hCPR) using the NdeI and XbaI
sites.
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CYP2U expression

DH5a F’ IQ E. coli cells carrying the pGro7 plasmid were transformed with pCW
vectors containing the relevant P450 and CPR genes or the empty vector (“pCW
controls”), and selected using chloramphenicol (20 µg/ml) and ampicillin (100
µg/ml). Single colonies were used to inoculate overnight cultures in Lysogeny
Broth with antibiotics. Batch cultures were grown at 25 ◦C, 180 rpm in 500-ml
flasks containing 50 ml Terrific Broth supplemented with trace elements, 1 mM
thiamine, and antibiotics. Cultures were induced after 5 hours with 1 mM IPTG
and 4 mg/ml L-arabinose, and supplemented with 500 mM delta-aminolaevulinic
acid. Cultures were grown for a further 43 hours before harvesting by centrifu-
gation at 6000xg for 10 minutes. E. coli pellets were weighed and resuspended
in 2 ml/g (wet weight) sonication buffer (100 mM potassium phosphate buffer pH
7.4, 20% (w/v) glycerol, 6 mM magnesium acetate, 1 mM PMSF, and protease
inhibitor cocktail (Sigma-Aldrich)). Cells were lysed using a Constant Systems
OneShot cell disruptor followed by centrifugation at 10 000xg for 20 minutes. The
supernatant was centrifuged at 180 000xg for 1 hour and the pellet was resuspended
in TES (100 mM Tris acetate, 500 mM sucrose, and 0.5 mM EDTA pH 7.6) or the
relevant solubilisation buffer using a Potter-Elvehjem homogeniser. The P450 con-
centration was determined in intact cells and membranes using Fe(II).CO vs. Fe(II)
difference spectroscopy45.

CYP2U activity assays

P450 (0.02 µM), added in membranes prepared from bacteria coexpressing hCPR,
was premixed with 50 µM luciferin CEE or luciferin ME-EGE (Promega) in 100
mM potassium phosphate pH 7.4, and incubated at 37 ◦C for 10 minutes. Reac-
tions were initiated by addition of the NADPH-regenerating system (NGS; 0.25
mM NADP+, 10 mM glucose-6-phosphate, and 0.5 U/ml glucose-6-phosphate de-
hydrogenase), and incubated with shaking at 37 ◦C for 30 minutes. An equal vol-
ume of the luciferin detection reagent was added, and reactions were incubated for
a further 20 minutes at room temperature. Luminescence was measured using a
CLARIOstar multimodal plate reader (BMG Labtech).

CYP2U thermal stability assays

Ancestors were expressed in E. coli as described above and cell pellets were resus-
pended in whole cell spectral assay buffer (WCAB; 100 mM potassium phosphate,
20 mM D-glucose, and 6 mM magnesium acetate pH 7.4) to one eighth of the orig-
inal culture volume. The resuspended cultures, distributed into tubes in 200 µL
volumes, were incubated at a range of temperatures (25-80 ◦C, in 5 ◦C increments)
for 60 minutes, followed by a 5 minute recovery at 4 ◦C and equilibration at 25
◦C. The remaining P450 content was measured in intact cells using the method of
Johnston et al.45. The proportion of total P450 content compared to the unheated
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control (25 ◦C) was plotted against temperature and the 60T50 value was calcu-
lated by fitting the data to a variable slope (4-parameter) dose response curve in
GraphPad Prism 8.0.

KARI experimental methods

KARI ancestral inference

We created two separate data sets representing KARI class I and class II, respec-
tively. The sequence alignment for class II was taken directly from Gumulya et
al.7 and used to compare tools. Class I sequences were compiled by searching
for both reviewed and unreviewed proteins in UniProt, designated as bacterial and
belonging to the family (26,485 sequences). We removed all fragments and se-
quences above the length of 400 to exclude obvious cases of class II enzymes. The
sequence set was redundancy-reduced with CD-HIT at 99%46, resulting in 11,920
sequences, from which 57 sequences were manually removed by observing a C-
terminal knotted domain, indicative of class II. After aligning all sequences with
Clustal Omega36, the Shannon entropy of gap vs. character content was determined
for all columns and sequences with high entropy over consecutive columns were
removed, resulting in a final set of 11,756 sequences. Phylogenetic tree inference
was carried out using FastTree37.

In contrast to the DHAD data sets, the KARI class I data sets were created by
decreasing their size from 11,756 via 10 regular decrements reaching a minimum
representation of 1,176 sequences. For each subset, the alignment was recalculated
independently. For each alignment, a new tree was calculated, and rooted by using
KARI sequences in Aquificae and Thermotogae as an outgroup. For each subset,
we computed reconstructions for 50 randomly chosen ancestor nodes (mapped be-
tween each subset as described for the DHAD data sets). Joint reconstruction was
performed with the JTT evolutionary model25.

GRASP, FastML, and PAML comparison method

The following procedure was used to evaluate each of the tools: (1) the input mul-
tiple sequence alignment was randomly divided into G groups of alignments with
approximately equal numbers of sequences, where G ∈ {5, 10, 20}; (2) for each
sub-alignment, the input phylogenetic tree constructed from the full alignment was
pruned to remove sequences not in the sub-alignment. To represent the same prin-
cipal ancestor across all groups, as well as to maintain a valid tree, branches in
the original phylogenetic tree with removed sequences were collapsed and branch
distances added together; (3) sub-alignments and corresponding pruned trees were
therefore pared-down representatives of the same family and used as input to each
of the ASR tools; (4) the process was repeated until 20 ancestral sequences had
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been generated for each configuration, e.g., when G = 5 the process is repeated
four times.

The JTT evolutionary rate model25 was used for all inferences and variable
rates were calculated from a discrete gamma distribution with eight categories.
To remove confounding effects of different strategies for dealing with gaps, we
removed any column that contained a deletion, leaving 455 and 242 columns in the
KARI and CYP2 multiple sequence alignments, respectively.
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Supplementary Material

Thermal transitions [°C]
Tm1 Tm2

AnGOx 58.2 63.1
N320 67.4 70.0
N320 Y244E 71.0 73.9

Table 1: Comparison of thermal transitions from differential scanning calorimetry
of an extant glucose oxidase from Aspergillus niger, the ancestor inferred at node
N320, and the ancestor inferred at node N320 with a single amino acid change
based on marginal distributions.
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Figure 1: Comparison between ancestors generated using GRASP, FastML, and PAML.
a, Expression level of CYP2U ancestors in E. coli cultures quantified using Fe(II) vs.
Fe(II).CO difference spectroscopy. Data are means +/- SEM, N = 3. b, Fe(II) vs.
Fe(II).CO difference spectra for ancestors generated using GRASP, FastML, and PAML
in E. coli membranes. c, Turnover of luciferin MultiCYP by CYP2U ancestors in E. coli
membranes, also containing human CPR, after 30 minutes at 37 ◦C. Data are means +/-
SEM, N = 3. d, Comparison of T50 values after a 60 minute incubation at a range of
temperatures (25-80 ◦C) for ancestors generated using GRASP, FastML, and PAML. Data
are means +/- SEM, N = 2.
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Figure 2: Running time of GRASP, FastML, and PAML at different parameter combina-
tions and group sizes on the KARI data set. Parameter combinations are joint and marginal
reconstruction methods and, in the case of FastML and PAML, fixed or variable evolution-
ary rates.
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Figure 3: Tool comparison on CYP2 data. a, Average fractional distance between tools,
calculated as pairwise fractional distances for each ancestral prediction for a given tool
against all other ancestral predictions of the other tools at a particular group size of 5
groups of 195 sequences, 10 groups of 97 or 98 sequences, and 20 groups of 48 or 49
sequences. Parameter combinations are joint and marginal reconstruction methods and,
in the case of FastML and PAML, fixed or variable evolutionary rates. b, Average frac-
tional distance between an ultimate ancestor inferred by GRASP using 975 sequences and
each tool / parameter combination at 5 groups of 195 sequences, 10 groups of 97 or 98
sequences, and 20 groups of 48 or 49 sequences. Parameter combinations are joint and
marginal reconstruction methods and, in the case of FastML and PAML, fixed or variable
evolutionary rates.
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a) Fractional distance between tools (KARI) b) Fractional distance within tools (KARI)

c) Fractional distance within tools (KARI) d) Fractional distance within tools (KARI)

Figure 4: Statistical evaluation of determinants of ancestor prediction performance (defined
by a between-tool and a within-tool comparison) using 1682 KARI sequences, grouped
according to tool within data set size (panel a and b), data set size within tool (panel c) and
rate setting within data set size (panel d). PAML was excluded for the largest data set size;
variable rates were not used for the largest data set size. Only significant comparisons are
shown (* means p < 0.05, ** means p < 0.01, *** means p < 0.001, **** means at
limits of precision of test). All parameter settings are from Fig. 2.
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a) Fractional distance between tools (CYP2) b) Fractional distance within tools (CYP2)

c) Fractional distance within tools (CYP2) d) Fractional distance within tools (CYP2)

Figure 5: Statistical evaluation of determinants of ancestor prediction performance (defined
by a between-tool and a within-tool comparison) using 975 CYP2 sequences, grouped
according to tool within data set size (panel a and b), data set size within tool (panel c)
and rate setting within data set size (panel d). Only significant comparisons are shown (*
means p < 0.05, ** means p < 0.01, *** means p < 0.001, **** means at limits of
precision of test). All parameter settings are from Supplementary Fig. 3.
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Figure 6: Predicted ancestor sequence lengths are unaffected by size of reconstruction.
Mean and standard deviation of the lengths of 50 ancestor sequences mapped are plotted
for different reconstructions and data set sizes for DHAD and KARI.
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Figure 7: Runtimes for the DHAD and KARI enzyme families as data set size increases.
Reconstructions were performed using GRASP running on 64 GB RAM, 5 threads on 2x
2.6 GHz 14C Xeon VM.
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Figure 8: a, Chromatogram assays of an extant DHAD showing a typical profile peak when
incubated with D-gluconate, and the same peak appearing in assays of ancestral DHAD
proteins N9, N1442, and N1443 as inferred in the 9112 DHAD data set. b, Thermal shift
assays showing increase in temperature between equivalent ancestral nodes N423 (585 data
set size) and N1442 (9112 data set size), and equivalent ancestral nodes N560 (585 data
set size) and N1443 (9112 data set size).
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Figure 9: Thermal stability and activity for the CYP2U, CYP2U/CYP2R, and
CYP2U/CYP2R/CYP2D ancestors with luciferin MultiCYP. a, Comparison of T50 val-
ues after a 60 minute incubation at a range of temperatures (25-80 ◦C). Data are means +/-
SEM, N = 2. b, Turnover of luciferin MultiCYP by CYP2U ancestors in E. coli mem-
branes, also containing human CPR, after 30 minutes at 37 ◦C. Data are means +/- SEM,
N = 3.
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Figure 10: Expression of CYP2U hybrid ancestors. a, Fe(II) vs. Fe(II).CO difference spec-
tra for CYP2U ancestors in E. coli membranes. b, Expression level of CYP2U ancestors
in E. coli cultures quantified using Fe(II) vs. Fe(II).CO difference spectroscopy. Data are
means +/- SEM, N = 3.
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