

1 **Influenza H3 and H1 hemagglutinins have different genetic barriers for**
2 **resistance to broadly neutralizing stem antibodies**

3
4 Nicholas C. Wu^{1,*}, Andrew J. Thompson^{2,*}, Juhye M. Lee^{3,4,5}, Wen Su⁶, Britni M. Arlian², Jia
5 Xie⁷, Richard A. Lerner^{7,8}, Hui-Ling Yen⁶, Jesse D. Bloom^{3,4,9}, Ian A. Wilson^{1,8,§}
6

7 ¹Department of Integrative Structural and Computational Biology, The Scripps Research
8 Institute, La Jolla, CA 92037, USA

9 ²Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA

10 ³Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA

11 ⁴Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA

12 ⁵Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA

13 ⁶School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong
14 Kong SAR, China

15 ⁷Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA

16 ⁸The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA
17 92037, USA

18 ⁹Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA
19 98109, USA

20 * These authors contributed equally to this work

21 § To whom correspondence may be addressed. Email: wilson@scripps.edu (I.A.W.)

22 **ABSTRACT**

23 In the past decade, the discovery and characterization of broadly neutralizing antibodies
24 (bnAbs) to the highly conserved stem region of influenza hemagglutinin (HA) have provided
25 valuable insights for development of a universal influenza vaccine. However, the genetic barrier
26 for resistance to stem bnAbs has not been thoroughly evaluated. Here, we performed a series
27 of deep mutational scanning experiments to probe for resistance mutations. We found that the
28 genetic barrier to resistance to stem bnAbs is generally very low for the H3 subtype but
29 substantially higher for the H1 subtype. Several resistance mutations in H3 cannot be
30 neutralized by stem bnAbs at the highest concentration tested, do not reduce *in vitro* viral fitness
31 and *in vivo* pathogenicity, and are often present in circulating strains as minor variants. Thus,
32 H3 HAs have a higher propensity than H1 HAs to escape major stem bnAbs and creates a
33 potential challenge in the development of a *bona fide* universal influenza vaccine.

34

35 **ONE SENTENCE SUMMARY**

36 Acquisition of resistance by influenza virus to broadly neutralizing hemagglutinin stem
37 antibodies varies tremendously depending on subtype.

38 **Introduction**

39 The major surface antigen of influenza virus, the hemagglutinin (HA), is composed of a highly
40 variable globular head domain that houses the receptor binding site and a conserved stem
41 domain that is responsible for membrane fusion (1). All of the major antigenic sites on HA are
42 located on the HA globular head (2-5), which is immunodominant over the stem (6). However,
43 most antibodies to the globular head domain are strain-specific. In contrast, although harder to
44 elicit during natural infection or vaccination, many HA stem antibodies have impressive cross-
45 reactive breadth (7, 8). The isolation, characterization and structure determination of broadly
46 neutralizing antibodies (bnAbs) to the HA stem over the past decade have provided tremendous
47 insights into antiviral and vaccine development against influenza virus (9), including immunogen
48 design towards a universal influenza vaccine (10-12). Several stem bnAbs are also currently in
49 clinical trials as therapeutics (13). Stem bnAbs have also provided templates for design of small
50 proteins, peptides and small molecules against influenza virus (14-18). Therefore, while
51 influenza virus remains a major global health concern, stem bnAbs open up multiple promising
52 avenues to tackle this challenging problem.

53

54 However, emergence of resistance mutations can be a major obstacle for antiviral and vaccine
55 development. Several studies have reported difficulty in selecting strong resistance mutations to
56 stem bnAbs even after extensive passaging of the viruses (19-21), or through deep mutational
57 scanning (22), which is a comprehensive and unbiased approach (23). Nonetheless, strong
58 resistance mutations have been reported in other studies through virus passaging (20, 24, 25).
59 It is unclear then why some studies were able to identify strong resistance mutations while
60 others could not. Here we systematically compare how readily resistance can emerge to stem
61 bnAbs in H3 and H1 HAs, and find that there are major differences between the subtypes.

62

63 **Deep mutational scanning of the major HA stem epitope**

64 CR9114 (26) and Fl6v3 (27) are two bnAbs that bind the HA stem and have exceptional
65 neutralization breadth. They are in fact two of the known bnAbs with the greatest breadth
66 against influenza viruses. Both Fl6v3 and CR9114 neutralize group 1 and 2 influenza A viruses
67 (26, 27), and CR9114 further cross-reacts with influenza B HA (26). Deep mutational scanning
68 (23), which combines saturation mutagenesis and next-generation sequencing, has previously
69 been applied to study how HA mutations affect influenza viral fitness (28-30), and to identify
70 viral mutants that are resistant to anti-HA antibodies (31). Here, we employed deep mutational
71 scanning of the HA stem on influenza virus to search for resistance mutations to CR9114 and
72 Fl6v3. We focused on eight HA2 residues in the HA stem of H3N2 A/Hong Kong/1/1968
73 (H3/HK68): namely Q42, I45, D46, Q47, I48, N49, L52, and T111 (Fig. 1, A to C). All except
74 T111 are located on HA2 helix A, which is a common target for stem bnAbs. Residues 42, 45,
75 46, 48, 49, 52 interact with CR9114 and Fl6v3, whereas residue 47 only interacts with Fl6v3
76 (Fig. 1, D and E). The completely buried T111 was also selected because its mutation in H5 HA
77 enabled escape from CR6261 (24), which binds a similar epitope to CR9114 (26, 32).

78

79 We quantified the *in vitro* fitness of 147 out of 152 possible single viral mutants and 6,234 out of
80 10,108 possible double viral mutants across the eight residues of interest in H3/HK68 HA2
81 under five different conditions: no antibody, 2 µg/mL CR9114 IgG, 10 µg/mL CR9114 IgG, 0.3
82 µg/mL Fl6v3 IgG, and 2.5 µg/mL Fl6v3 IgG (fig. S1). In the absence of antibody, many viral
83 mutants have a relative fitness [proxy for replication fitness (30)], similar to wild type (WT),
84 which was set as 1 (Fig. 2, A and B), and indicate that the HA stem region can tolerate many
85 mutations.

86

87 We further quantified the relative resistance of each viral mutant by normalizing their relative
88 fitness in the presence and absence of antibody (fig. S2). Many resistance mutations to CR9114
89 and Fl6v3 were observed (Fig. 2, C and D) and most were located at HA2 residues 42 and 45,

90 which form an important component of the binding interface with CR9114 and Fl6v3 (Fig. 1, D
91 and E). In addition, the double mutants also showed high relative resistance if one mutation
92 exhibited high relative resistance even if the other did not (fig. S3). Overall, these results
93 demonstrate the prevalence of H3/HK68 resistance mutations to stem bnAbs and mutations
94 with cross-resistance to both CR9114 and Fl6v3, even though these bnAbs are encoded by
95 different germline genes and have very different angles of approach to the HA (8).

96

97 **Validation of resistance mutations**

98 To validate our findings from deep mutational scanning, 24 single and double HA mutants of the
99 H3/HK68 virus that spanned a range of relative resistance were individually constructed and
100 tested against CR9114 and Fl6v3 IgGs (Fig. 3A). The minimum inhibitory concentration (MIC) in
101 a microneutralization assay strongly correlated with the relative resistance from deep mutational
102 scanning (Spearman's rank correlation > 0.8, Fig. 3B) with several viral mutants showing strong
103 cross-resistance to both CR9114 and Fl6v3. For example, the MICs of CR9114 and Fl6v3
104 against mutants I45Y/S/N/F/W were all >100 and $\geq 20 \mu\text{g mL}^{-1}$, respectively, compared to 3.1
105 and $0.2 \mu\text{g mL}^{-1}$ for WT. This validation experiment substantiates our finding that strong
106 resistance mutations are prevalent in H3/HK68.

107

108 **Natural occurrence of resistance mutations**

109 Next, we explored whether these resistance mutations were found in naturally circulating strains
110 While most strong resistance mutations have not yet been observed in naturally circulating
111 strains, it is important to note that a few could be identified at low frequency in natural human
112 H3N2 isolates (33), including I45T, I45M and N49D (Fig. 4A). I45T is also observed in human
113 H3N2 isolates sequenced without any passaging (fig. S4A), implying that its presence was not
114 due to a passaging artifact (34). Moreover, the strong cross-resistance mutation I45F was found
115 in all human H2N2 viruses that circulated from 1957 to 1968 (Fig. 4B, fig. S4B), while almost all

116 avian H2N2 viruses have Ile45 (Fig. 4C), and explains why it is more difficult for human H2N2
117 viruses to be bound or neutralized by some stem bnAbs compared to other subtypes (24, 26,
118 35). Thus, these findings suggest that some resistance mutations to stem bnAbs already occur
119 in circulating strains.

120

121 ***In vivo* pathogenicity and escape of resistance mutations**

122 We further tested the *in vivo* viral pathogenicity of HA2 mutants I45T, I45M, and I45F, which are
123 of relevance to circulating strains (see above). The weight loss profiles in mice after infection by
124 HA2 mutant and WT viruses were comparable (fig. S5), indicating that these resistance
125 mutations do not reduce *in vivo* pathogenicity. We further demonstrated that I45T, I45M, and
126 I45F were able to escape *in vivo* prophylactic protection. While mice infected with WT were
127 completely protected by CR9114 IgG at all tested doses (1, 4, and 10 mg kg⁻¹), mutants I45T,
128 I45M, and I45F were lethal even at the highest dose of CR9114 IgG (Fig. 4, D to G).

129

130 **Resistance mutations decrease affinity to bnAbs**

131 To dissect the resistance mechanism, we tested the binding of H3/HK68 I45T, I45M, and I45F
132 recombinant HAs to CR9114 and FI6v3, and also to another stem bnAb 27F3 (35), which
133 utilizes the same V_H1-69 germline as CR9114 and similarly neutralizes group 1 and 2 influenza
134 A viruses. The binding (K_d) of CR9114 Fab, CR9114 IgG, 27F3 Fab, 27F3 IgG, and FI6v3 IgG
135 was all diminished against the HA mutants compared to WT (Table 1 and fig. S6), and was
136 particularly dramatic with the I45F mutant, where binding was undetectable to CR9114 Fab and
137 IgG, and 27F3 Fab and IgG. In contrast, the binding of these stem Fabs and IgGs to N49T,
138 which did not exhibit any resistance against CR9114 and FI6v3 (Fig. 2C, Fig. 3A), are
139 comparable to the WT (Table 1). As a control, we also tested binding of bnAb S139/1 that
140 targets the receptor-binding site far from the stem epitope (36, 37). S139/1 IgG affinities against

141 those HA mutants (K_d = 1.8 nM to 3.1 nM) were similar to WT (K_d = 2.1 nM). Thus, virus
142 resistance to stem bnAbs correlated with a decrease in binding affinity to the mutant HAs.

143

144 To understand the structural basis of the resistance, we determined crystal structures of HAs
145 with HA2 mutations I45T, I45M, and I45F to 2.1 to 2.5 Å resolutions (table S1 and fig. S7A).
146 Compared to WT (Ile45), the shorter side chain of I45T would create a void when CR9114 is
147 bound (fig. S7B) that would be energetically unfavorable. In contrast, the longer flexible side
148 chain of I45M would likely clash with CR9114 (fig. S7B), but CR9114 is still able to bind the
149 I45M mutant, albeit with much lower affinity than WT (Table 1). The I45F mutant, however,
150 makes a more severe clash with CR9114 and no binding was detected (Table 1, fig. S7B).
151 Similar observations for FI6v3 (fig. S7C) explain the sensitivity of CR9114 and FI6v3 to
152 mutations at HA2 residue 45.

153

154 **Resistance to HA stem bnAbs is subtype specific**

155 We further aimed to examine whether those mutations that conferred strong resistance in
156 H3/HK68 would have the same phenotypes in other H3 strains. Consequently, we examined the
157 phenotype of three resistance mutations of relevance to circulating strains (see below), namely
158 I45T, I45M, and I45F, on an H3N2 A/Wuhan/359/95 (H3/Wuhan95) genetic background. These
159 three viral mutants had WT-like titer after viral rescue and passaging (fig. S8A), showed similar
160 plaque size as WT (fig. S8B), and conferred strong resistance to FI6v3 (fig. S8, C and D).
161 Therefore, these mutants have similar phenotypes in H3/HK68 and H3/Wuhan95 viruses. This
162 result led us to hypothesize that strong resistance mutants to stem bnAbs are readily attainable
163 in a wide range of H3 strains, as well as to explore whether the same phenomenon can be
164 observed in H1 subtype, which is the other currently circulating influenza A subtype in the
165 human population.

166

167 Previously, two of the authors here performed deep mutational scanning to search for
168 resistance mutants of H1N1 A/WSN/33 (H1/WSN) virus to FI6v3 (22). In contrast to this study,
169 resistance mutations to FI6v3 were rare in H1/WSN, and had only very small effects. This
170 discrepancy suggested that the prevalence of resistance mutations is markedly different
171 between H3/HK68 and H1/WSN. We therefore performed four additional deep mutational
172 scanning experiments – three with H1N1 strains, namely A/Solomon Islands/3/2006 (H1/SI06)
173 against FI6v3, A/Michigan/45/2015 (H1/Mich15) against FI6v3, H1/WSN against CR9114, and
174 one with H3N2 strain A/Perth/16/2009 (H3/Perth09) against FI6v3. The H1/SI06 and H1/Mich15
175 HA mutant virus libraries contain all possible single amino-acid substitutions at HA2 residues
176 42, 45, 46, 47, 48, 49, 52, and 111, whereas H1/WSN and H3/Perth09 HA mutant virus libraries
177 both contain all possible single substitutions across the entire HA and were constructed in
178 previous studies (38, 39). We also analyzed the previously published dataset on H1/WSN
179 against FI6v3 (22).

180
181 To compare H1/SI06, H1/Mich15, H1/WSN and H3/Perth09 to H3/HK68, we computed the
182 relative resistance of mutations at HA2 residues 42, 45, 46, 47, 48, 49, 52, and 111 (Fig. 5, A to
183 E). Similar to H3/HK68, resistance mutations are highly prevalent in H3/Perth09 (Fig. 5C).
184 Conversely, resistance mutations were rare in H1/SI06 (Fig. 5A), H1/Mich15 (Fig. 5B), and
185 H1/WSN (Fig. 5, D and E). We further calculated the *fraction surviving* (22) for each viral mutant
186 across the entire H1/WSN and H3/Perth09 HA proteins during antibody selection. Fraction
187 surviving is a quantitative measure for the resistance that is normalized across deep mutational
188 scanning experiments (22). The fraction surviving values of H1/WSN mutants against CR9114
189 were all very small, similar to previous observations of H1/WSN against FI6v3 (Fig. 5F, fig.
190 S10). In stark contrast, many mutants of H3/Perth09 were identified with a large fraction
191 surviving value (Fig. 5F). Consistent with the relative resistance profile of H3/HK68 (Fig. 2C), a
192 number of H3/Perth09 mutants with a large fraction surviving value were again at HA2 residues

193 42 and 45 (Fig. 5F and fig. S11A). Moreover, mutations at HA2 residue 53, which were not
194 examined in H3/HK68 (Fig. 2), had high fraction surviving in H3/Perth09 against Fl6v3 (fig. S11,
195 A and B). In H3 HA, mutation of HA2 residue 53 would abolish a hydrogen bond to the
196 complementarity-determining region (CDR) H3 of Fl6v3 (fig. S11B). Together, these results
197 suggest that the prevalence of resistance mutations to stem bnAbs is a general phenomenon for
198 the H3 subtype, but not the H1 subtype.

199

200 **Subtype-specific differences in the HA stem**

201 We next aimed to elucidate the mechanism that underlies the lower genetic barrier to resistance
202 to stem bnAbs in H3 HA as compared to H1 HA. Many mutations at HA2 residue 45 have a high
203 fitness cost in H1/SI06 (fig. S9A), which can increase the genetic barrier to resistance. However,
204 most mutations at HA2 residue 45 have no fitness cost in H1/Mich15. In addition, the mutational
205 fitness profiles of H1/SI06 and H1/Mich15 (fig. S9, A and B) show that many mutations can be
206 tolerated in the HA stem, similar to H3/HK68 (Fig. 2A, fig. S9, C to F). Thus, the difference in
207 genetic barrier to resistance to stem bnAbs between H1 and H3 subtypes cannot be fully
208 explained by their ability to tolerate mutations (i.e. fitness cost of mutations).

209

210 We therefore further compared the structures of CR9114 in complex with H3 HA and in complex
211 with H5 HA (Fig. 5G) (26). Since the structure of CR9114 with H1 HA is not available, CR9114
212 with H5 HA was used instead, as it also belongs to group 1 HAs and is therefore more similar to
213 H1 than to H3 HA (group 2). Structural comparison indicates that CR9114 packs tighter to the
214 helix A of H3 HA than to H5 HA. Specifically, there is ~1 Å difference in the position of the Ca of
215 HA2 Ile45. Subsequently, a bulkier substitution at HA2 Ile45, such as I45M, would create a
216 larger disruption of the CR9114-HA binding interface in the context of H3 subtype. Thus, subtle
217 differences in the binding of bnAbs to different HA subtypes may lead to differences in how
218 antibodies are affected by mutations in or near the epitope.

219

220 Similar observations can be made for Fl6v3. The orientation of Tyr100c on CDR H3 of Fl6v3
221 differs when binding to H1 or H3 HAs (Fig. 5H) (27). The position of HA2 Ile45 also differs
222 between H1 and H3 HAs when Fl6v3 is bound. As a result, Tyr100c of Fl6v3 packs tighter to
223 HA2 Ile45 of H3 than to H1 HA. Thus, a bulkier substitution at HA2 Ile45 will disrupt binding
224 between Fl6v3 and H3 HA to a greater extent than Fl6v3 to H1 HA. Therefore, the low genetic
225 barrier to resistance to stem bnAbs in the H3 subtype can be at least partly attributed to both
226 high mutational tolerance in the HA stem and subtype-specific structural features. While a
227 number of subtype-specific structural features are known in the stem region (40), how these
228 structural differences influence the genetic barriers for resistance to stem bnAbs remains to be
229 addressed in future studies.

230

231 **Ramifications for escape from a universal vaccine or therapeutic stem bnAbs**

232 Prior studies of influenza bnAbs have not considered whether different subtypes might have
233 different abilities to generate resistance mutations against bnAbs. A major finding here is that
234 H3 HA has a much lower genetic barrier to resistance to two of the broadest bnAbs, CR9114
235 and Fl6v3, as compared to H1 HA. This observation is consistent with the literature, where
236 strong resistance to other human HA stem antibodies have been reported in H3 subtype (20,
237 25, 41) versus none (20) to weak resistance (21, 22) in the H1 subtype. Therefore, it may be
238 easier for stem bnAbs to maintain suppression of the H1 subtype than the H3 subtype.

239

240 Since the HA stem is immunosubdominant to the globular head domain, immunological
241 pressure on the HA stem may not have been sufficient to impact the evolution of circulating
242 influenza strains (42). However, several stem bnAbs are currently in clinical trials for therapeutic
243 purposes (13) and a number of recently developed influenza vaccine immunogens have
244 focused on targeting the HA stem (8, 9). If stem bnAbs begin to be distributed on a global scale,

245 the immunological pressure on the HA stem will certainly surge to a level not previously seen.

246 Our findings here indicate that resistance mutations could emerge, at least in H3 subtype.

247

248 Although resistance mutations to stem bnAbs are still rare in currently circulating influenza

249 strains (Fig. 4A), it is important to evaluate the potential impact of such mutations since many

250 vaccine strategies aim to elicit anti-stem antibodies. In fact, we were not able to overcome some

251 key resistance mutations (I45T, I45M, and I45F) by *in vitro* evolution of CR9114 (fig. S12).

252 Nonetheless, the best strategy to prevent or overcome such resistance may involve delivery or

253 elicitation of a combination of antibodies with different resistance profiles. In addition, it remains

254 to be explored whether stem bnAbs exist or can be generated that are difficult to escape from

255 the H3 subtype. The discovery and characterization of bnAbs with different escape profiles will

256 therefore continue to be key to broaden our arsenal against influenza virus. For example,

257 human H2N2 virus, which carries a Phe at HA2 residue 45, often has low reactivity with stem

258 bnAbs (24, 26, 27, 35, 43), although a very few can have high potency against human H2N2

259 (44-46). Future studies on anti-stem responses against human H2N2 and emerging viruses,

260 such as H5N1 and H7N9, may provide further insights into how to overcome potential

261 resistance when immune pressure is transferred to the HA stem.

262 **REFERENCES AND NOTES**

263 1. I. A. Wilson, J. J. Skehel, D. C. Wiley, Structure of the haemagglutinin membrane
264 glycoprotein of influenza virus at 3 Å resolution. *Nature* **289**, 366-373 (1981).

265 2. D. C. Wiley, I. A. Wilson, J. J. Skehel, Structural identification of the antibody-binding
266 sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation.
267 *Nature* **289**, 373-378 (1981).

268 3. J. J. Skehel *et al.*, A carbohydrate side chain on hemagglutinins of Hong Kong influenza
269 viruses inhibits recognition by a monoclonal antibody. *Proc Natl Acad Sci U S A* **81**,
270 1779-1783 (1984).

271 4. A. J. Caton, G. G. Brownlee, J. W. Yewdell, W. Gerhard, The antigenic structure of the
272 influenza virus A/PR/8/34 hemagglutinin (H1 subtype). *Cell* **31**, 417-427 (1982).

273 5. W. Gerhard, J. Yewdell, M. E. Frankel, R. Webster, Antigenic structure of influenza virus
274 haemagglutinin defined by hybridoma antibodies. *Nature* **290**, 713-717 (1981).

275 6. F. Krammer, P. Palese, Advances in the development of influenza virus vaccines. *Nat
276 Rev Drug Discov* **14**, 167-182 (2015).

277 7. P. S. Lee, I. A. Wilson, Structural characterization of viral epitopes recognized by broadly
278 cross-reactive antibodies. *Curr Top Microbiol Immunol* **386**, 323-341 (2015).

279 8. N. C. Wu, I. A. Wilson, A perspective on the structural and functional constraints for
280 immune evasion: insights from influenza virus. *J Mol Biol* **429**, 2694-2709 (2017).

281 9. N. C. Wu, I. A. Wilson, Structural insights into the design of novel anti-influenza
282 therapies. *Nat Struct Mol Biol* **25**, 115-121 (2018).

283 10. A. Impagliazzo *et al.*, A stable trimeric influenza hemagglutinin stem as a broadly
284 protective immunogen. *Science* **349**, 1301-1306 (2015).

285 11. H. M. Yassine *et al.*, Hemagglutinin-stem nanoparticles generate heterosubtypic
286 influenza protection. *Nat Med* **21**, 1065-1070 (2015).

287 12. S. A. Valkenburg *et al.*, Stalking influenza by vaccination with pre-fusion headless HA
288 mini-stem. *Sci Rep* **6**, 22666 (2016).

289 13. E. Sparrow, M. Friede, M. Sheikh, S. Torvaldsen, A. T. Newall, Passive immunization for
290 influenza through antibody therapies, a review of the pipeline, challenges and potential
291 applications. *Vaccine* **34**, 5442-5448 (2016).

292 14. S. J. Fleishman *et al.*, Computational design of proteins targeting the conserved stem
293 region of influenza hemagglutinin. *Science* **332**, 816-821 (2011).

294 15. T. A. Whitehead *et al.*, Optimization of affinity, specificity and function of designed
295 influenza inhibitors using deep sequencing. *Nat Biotechnol* **30**, 543-548 (2012).

296 16. A. Chevalier *et al.*, Massively parallel de novo protein design for targeted therapeutics.
297 *Nature* **550**, 74-79 (2017).

298 17. R. U. Kadam *et al.*, Potent peptidic fusion inhibitors of influenza virus. *Science* **358**, 496-
299 502 (2017).

300 18. M. J. P. van Dongen *et al.*, A small-molecule fusion inhibitor of influenza virus is orally
301 active in mice. *Science* **363**, eaar6221 (2019).

302 19. G. Nakamura *et al.*, An in vivo human-plasmablast enrichment technique allows rapid
303 identification of therapeutic influenza A antibodies. *Cell Host Microbe* **14**, 93-103 (2013).

304 20. N. Chai *et al.*, Two escape mechanisms of influenza A virus to a broadly neutralizing
305 stalk-binding antibody. *PLoS Pathog* **12**, e1005702 (2016).

306 21. C. S. Anderson *et al.*, Natural and directed antigenic drift of the H1 influenza virus
307 hemagglutinin stalk domain. *Sci Rep* **7**, 14614 (2017).

308 22. M. B. Doud, J. M. Lee, J. D. Bloom, How single mutations affect viral escape from broad
309 and narrow antibodies to H1 influenza hemagglutinin. *Nat Commun* **9**, 1386 (2018).

310 23. D. M. Fowler, S. Fields, Deep mutational scanning: a new style of protein science. *Nat
311 Methods* **11**, 801-807 (2014).

312 24. M. Throsby *et al.*, Heterosubtypic neutralizing monoclonal antibodies cross-protective
313 against H5N1 and H1N1 recovered from human IgM⁺ memory B cells. *PLoS One* **3**,
314 e3942 (2008).

315 25. R. H. Friesen *et al.*, A common solution to group 2 influenza virus neutralization. *Proc
316 Natl Acad Sci U S A* **111**, 445-450 (2014).

317 26. C. Dreyfus *et al.*, Highly conserved protective epitopes on influenza B viruses. *Science*
318 **337**, 1343-1348 (2012).

319 27. D. Corti *et al.*, A neutralizing antibody selected from plasma cells that binds to group 1
320 and group 2 influenza A hemagglutinins. *Science* **333**, 850-856 (2011).

321 28. N. C. Wu *et al.*, High-throughput profiling of influenza A virus hemagglutinin gene at
322 single-nucleotide resolution. *Sci Rep* **4**, 4942 (2014).

323 29. B. Thyagarajan, J. D. Bloom, The inherent mutational tolerance and antigenic
324 evolvability of influenza hemagglutinin. *eLife* **3**, e03300 (2014).

325 30. N. C. Wu *et al.*, Diversity of functionally permissive sequences in the receptor-binding
326 site of influenza hemagglutinin. *Cell Host Microbe* **21**, 742-753 (2017).

327 31. M. B. Doud, S. E. Hensley, J. D. Bloom, Complete mapping of viral escape from
328 neutralizing antibodies. *PLoS Pathog* **13**, e1006271 (2017).

329 32. D. C. Ekiert *et al.*, Antibody recognition of a highly conserved influenza virus epitope.
330 *Science* **324**, 246-251 (2009).

331 33. R. B. Squires *et al.*, Influenza research database: an integrated bioinformatics resource
332 for influenza research and surveillance. *Influenza Other Respir Viruses* **6**, 404-416
333 (2012).

334 34. N. C. Wu *et al.*, A structural explanation for the low effectiveness of the seasonal
335 influenza H3N2 vaccine. *PLoS Pathog* **13**, e1006682 (2017).

336 35. S. Lang *et al.*, Antibody 27F3 broadly targets influenza A group 1 and 2 hemagglutinins
337 through a further variation in V_H1-69 antibody orientation on the HA stem. *Cell Rep* **20**,
338 2935-2943 (2017).

339 36. R. Yoshida *et al.*, Cross-protective potential of a novel monoclonal antibody directed
340 against antigenic site B of the hemagglutinin of influenza A viruses. *PLoS Pathog* **5**,
341 e1000350 (2009).

342 37. P. S. Lee *et al.*, Heterosubtypic antibody recognition of the influenza virus hemagglutinin
343 receptor binding site enhanced by avidity. *Proc Natl Acad Sci U S A* **109**, 17040-17045
344 (2012).

345 38. M. B. Doud, J. D. Bloom, Accurate measurement of the effects of all amino-acid
346 mutations on influenza hemagglutinin. *Viruses* **8**, E155 (2016).

347 39. J. M. Lee *et al.*, Deep mutational scanning of hemagglutinin helps predict evolutionary
348 fates of human H3N2 influenza variants. *Proc Natl Acad Sci U S A* **115**, E8276-E8285
349 (2018).

350 40. S. J. Zost, N. C. Wu, S. E. Hensley, I. A. Wilson, Immunodominance and antigenic
351 variation of influenza virus hemagglutinin: implications for design of universal vaccine
352 immunogens. *J Infect Dis* **219**, S38-S45 (2019).

353 41. D. C. Ekiert *et al.*, A highly conserved neutralizing epitope on group 2 influenza A
354 viruses. *Science* **333**, 843-850 (2011).

355 42. E. Kirkpatrick, X. Qiu, P. C. Wilson, J. Bahl, F. Krammer, The influenza virus
356 hemagglutinin head evolves faster than the stalk domain. *Sci Rep* **8**, 10432 (2018).

357 43. M. G. Joyce *et al.*, Vaccine-induced antibodies that neutralize group 1 and group 2
358 influenza A viruses. *Cell* **166**, 609-623 (2016).

359 44. Y. Okuno, Y. Isegawa, F. Sasao, S. Ueda, A common neutralizing epitope conserved
360 between the hemagglutinins of influenza A virus H1 and H2 strains. *J Virol* **67**, 2552-
361 2558 (1993).

362 45. C. Dreyfus, D. C. Ekiert, I. A. Wilson, Structure of a classical broadly neutralizing stem
363 antibody in complex with a pandemic H2 influenza virus hemagglutinin. *J Virol* **87**, 7149-
364 7154 (2013).

365 46. N. L. Kallewaard *et al.*, Structure and function analysis of an antibody recognizing all
366 influenza A subtypes. *Cell* **166**, 596-608 (2016).

367

368 **ACKNOWLEDGEMENTS**

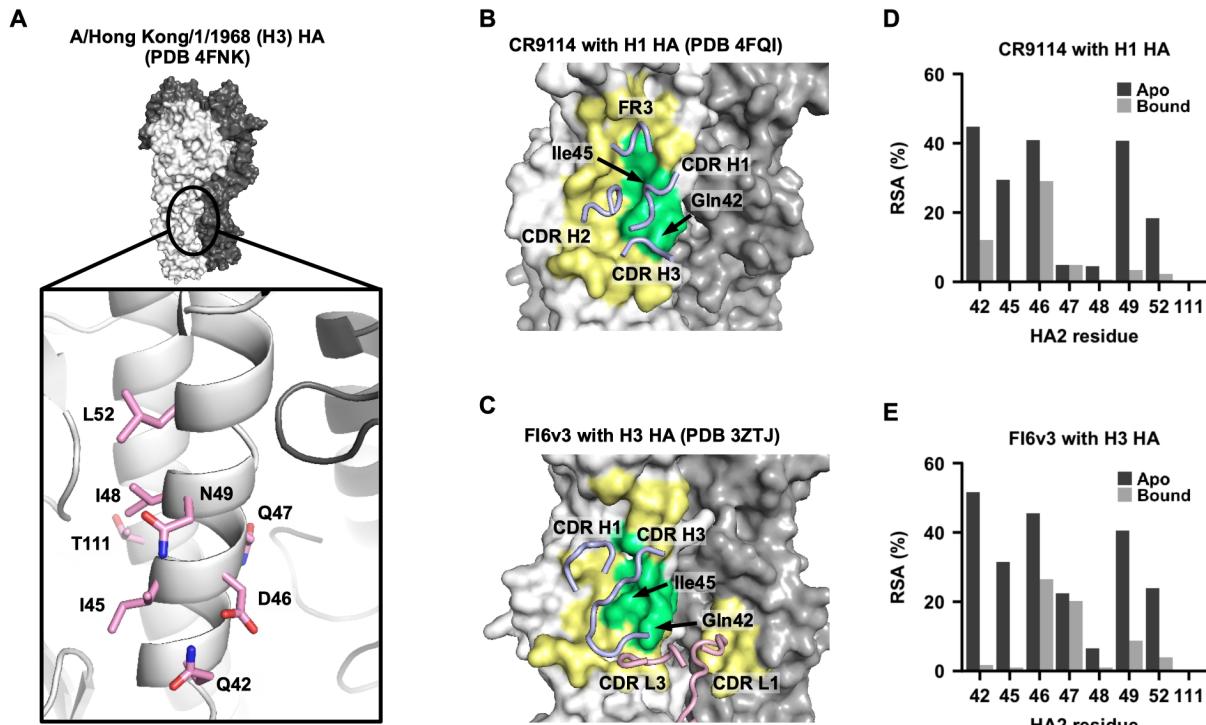
369 We thank Wenli Yu and Geramie Grande for technical support in protein expression, Steven
370 Head, Jessica Ledesma and Padmaja Natarajan at TSRI Next Generation Sequencing Core
371 and Fred Hutch Genomics Core for next-generation sequencing, Matthew Haynes and Brian
372 Seegers of the TSRI Flow Cytometry Core Facility for performing FACS, Alfred Ho, Eva-Maria
373 Strauch, and Barney Graham for insightful discussions, and James Paulson for his continual
374 support. **Funding:** We acknowledge support from the Bill and Melinda Gates Foundation
375 OPP1170236 (to I.A.W.), NIH K99 AI139445 (to N.C.W.), F30 AI136326 (to J.M.L.), R01
376 AI127893 (to J.D.B.), R56 AI127371 (to I.A.W.), and R01 AI114730 (to J.C.P.). J.M.L. was
377 supported in part by the Center for Inference and Dynamics of Infectious Diseases (CIDID),
378 funded by NIH U54 GM111274. J.D.B. is an Investigator of the Howard Hughes Medical
379 Institute. **Author Contributions:** N.C.W., J.M.L., R.A.L., H.L.Y., J.D.B., and I.A.W. conceived
380 and designed the study. N.C.W. and J.M.L. performed the deep mutational scanning
381 experiments. N.C.W., J.M.L., and J.D.B. performed the computational data analysis. N.C.W.
382 performed the structural analysis and yeast display experiment. N.C.W. and W.S. performed
383 functional characterization of the viral mutants. A.J.T. and B.M.A. performed the *in vivo*
384 characterization of the viral mutants. N.C.W. and J.X. produced the CR9114 and 27F3
385 antibodies. J.M.L. produced the FI6v3 antibody. N.C.W. and I.A.W. wrote the paper and all
386 authors reviewed and edited the paper. **Competing interests:** The authors declare no
387 competing interests. **Data and materials availability:** Raw sequencing data will be deposited to
388 the NIH Short Read Archive prior to publication. The X-ray coordinates and structure factors will
389 be deposited to the RCSB Protein Data Bank prior to publication. Links to computer codes and
390 processed data are in supplementary materials. All the other data that support the conclusions
391 of the study are available from the corresponding author upon request.

392

393 **SUPPLEMENTARY MATERIALS**

394 Materials and Methods

395 Figs. S1 to S12

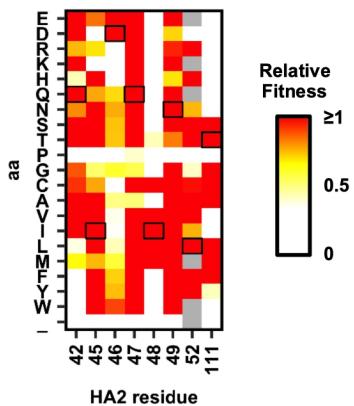

396 Tables S1 to S3

397 References 47-66

398

399 **FIGURES**

Fig. 1


400

401 **Fig. 1. Epitopes of broadly neutralizing antibodies to the HA stem. (A)** The location of
402 residues of interest in this study on the HA structures. All residues of interest are on HA2. One
403 protomer of the trimer is shown in light gray and the other two protomers in dark gray and a
404 detailed view of the location of the residues of interest is shown in the inset. **(B-C)** Epitopes of
405 **(B)** CR9114 Fab in complex with H1 HA (PDB 4FQI) (26) and **(C)** FI6v3 in complex with H3 HA
406 (PDB 3ZTJ) (27) are colored in yellow and green, and residues of interest colored in green. The
407 arrows indicate the positions of HA2 residues 42 and 45, which are in the center of the bnAb
408 epitopes. Antibody paratopes (CDRs and FR regions) are shown in tube representation and
409 labeled accordingly. Blue: heavy chain. Pink: light chain. **(D-E)** The relative solvent accessibility
410 (RSA) of each residue of interest is shown. Black bar: apo form. Gray bar: Fab-bound form.

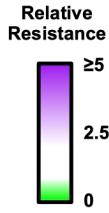
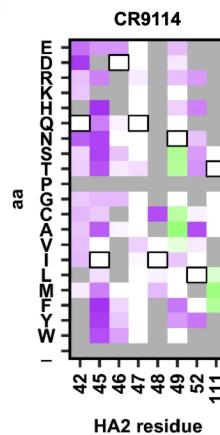
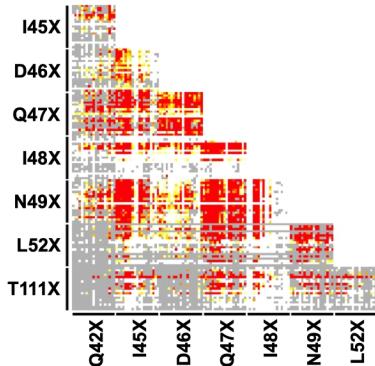
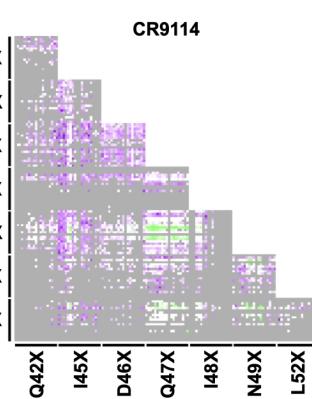


411

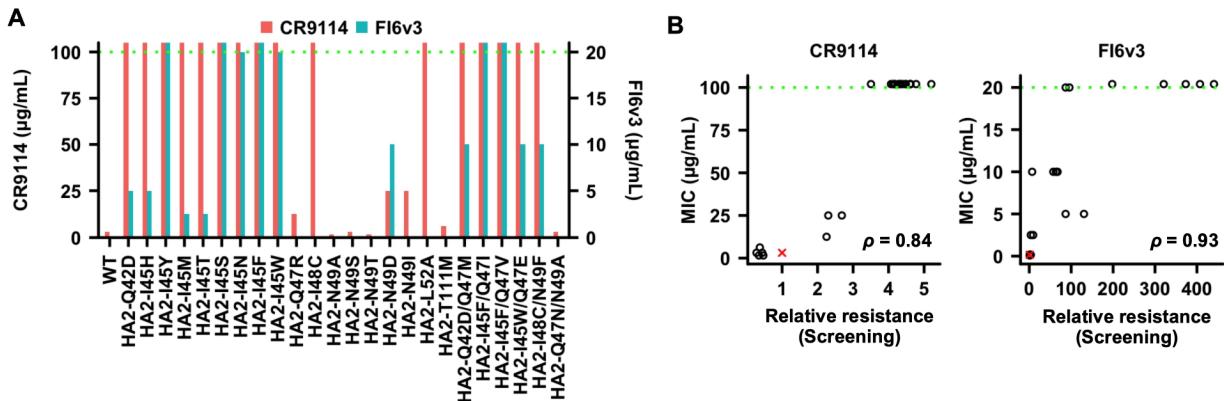
Fig. 2


A


C

B

D

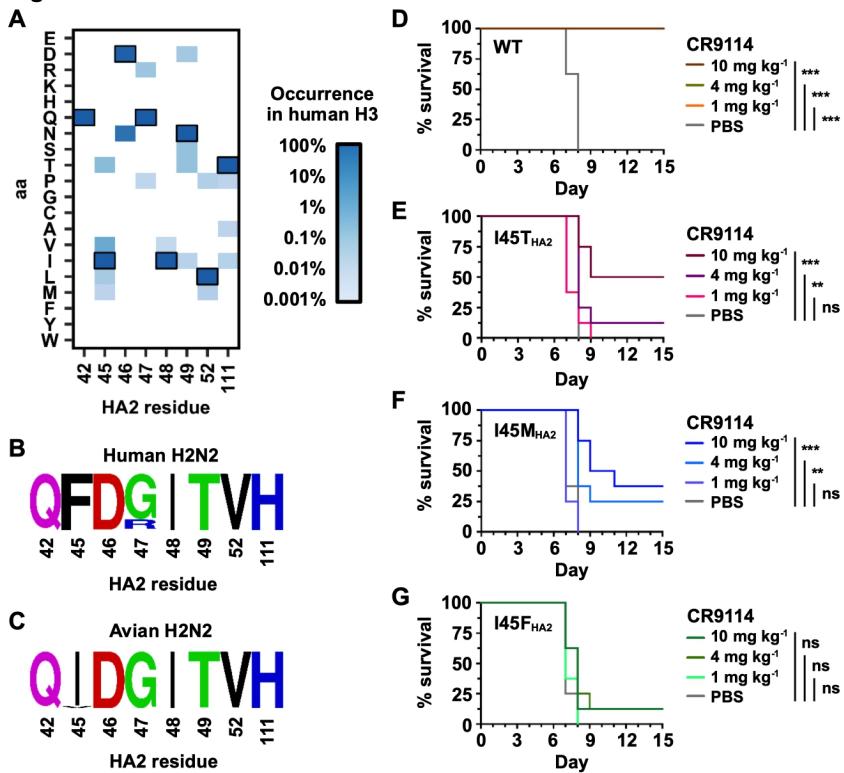

412

413 **Fig. 2. Fitness and resistance profile of H3/HK68 HA2 single and double viral mutants. (A-**

414 **B)** Based on the deep mutational scanning experiment, the relative fitness of **(A)** single and **(B)** double mutants are shown with wild type (WT) set as 1. In **(A)** and **(B)**, mutants with a next-
415 generation sequencing read count of less than 20 from the plasmid mutant library are excluded
416 and shown as grey. **(C-D)** Relative resistance for **(C)** each single and **(D)** each double mutant
417 against 10 µg/mL CR9114 antibody or 2.5 µg/mL FI6v3 antibody is shown. Relative resistance
418 for WT is set as 1. In **(C)** and **(D)**, mutants with a relative fitness of less than 0.5 are shown as
419 grey. Residues correspond to WT sequence are boxed. In **(B)** and **(D)**, each color point in the
420 heatmap represents a double mutant. Of note, some mutants with an increased sensitivity to
421 antibody are shown in green on the relative resistance color scale.
422

423

Fig. 3

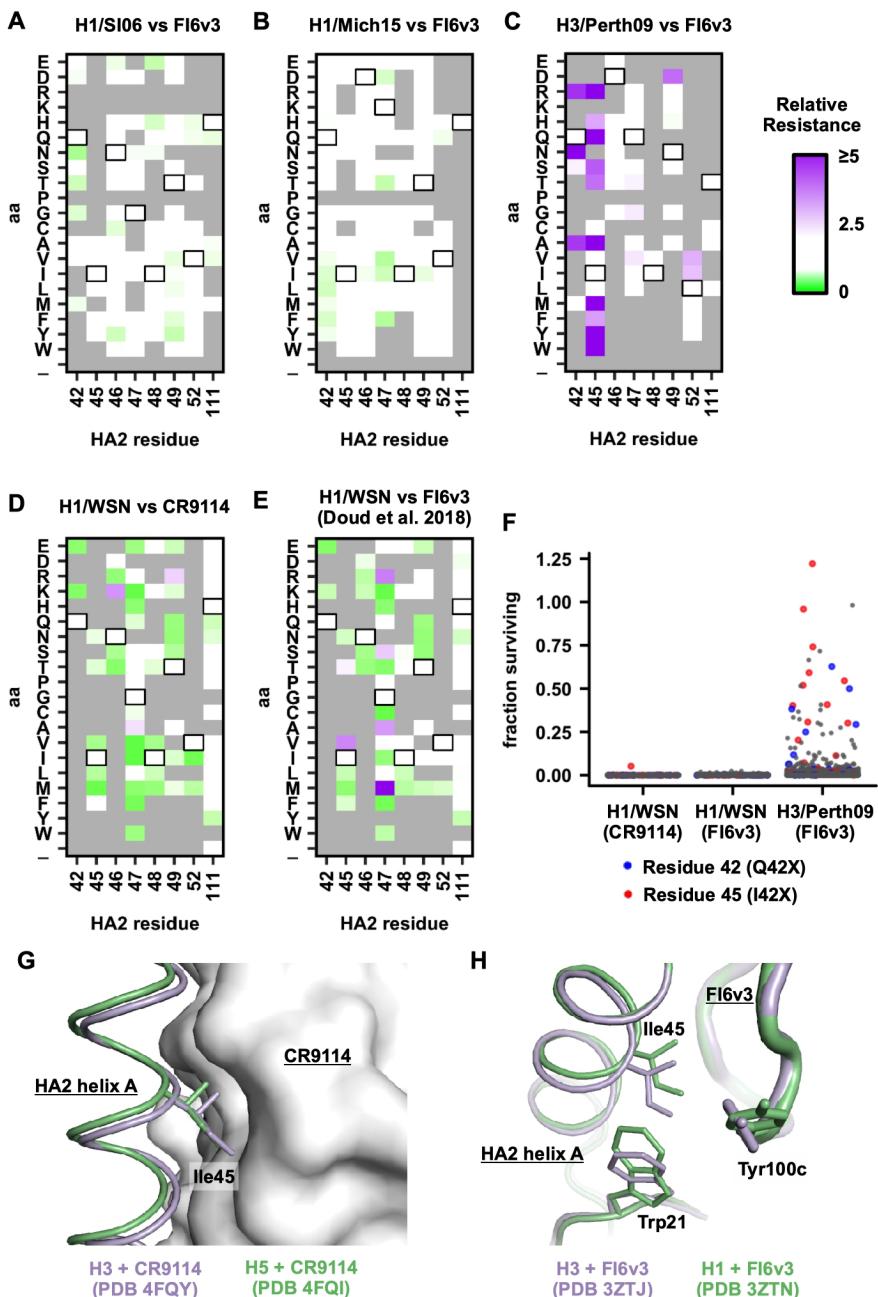


424

425 **Fig. 3. Characterization of antibody-resistant mutants. (A)** The minimum inhibitory
426 concentration (MIC) of CR9114 and FI6v3 to individual viral mutants are shown. The MIC of
427 CR9114 is in red and represented by the y-axis on the left. The MIC of FI6v3 is in blue and
428 represented by the y-axis on the right. **(B)** The Spearman's rank correlations (ρ) between the
429 MIC measured from individual mutants and the relative resistance (against 10 µg/mL CR9114
430 antibody or 2.5 µg/mL FI6v3 antibody) computed from the profiling experiment (screening) are
431 shown. The green dashed line represents the upper detection limit in **A** and **B**. Wild type is
432 represented by the red "X".

433

Fig. 4



434

435 **Fig. 4. *In vivo* characterization and natural occurrence of antibody-resistant mutants. (A)**
436 The natural occurrence frequencies of different amino-acid variants at the residues of interest in
437 human H3 HAs are shown as a heatmap. (B-C) The natural occurrence frequencies of different
438 amino-acid variants at the residues of interest in (B) human H2N2 HA or (C) avian H2N2 HA are
439 shown as sequence logos. (D-G) Prophylactic protection experiments were performed with
440 different doses of CR9114 against (D) WT, (E) HA2 I45T mutant, (F) HA2 I45M mutant, and (G)
441 HA2 I45F mutant. Recombinant H3/HK68 (7:1 on H1/PR8 backbone) viruses were used. Lethal
442 doses (25 mLD₅₀) of WT or mutant viruses were used. Kaplan-Meier survival curves are shown.
443 Paired analysis of each treatment group, relative to control, was conducted using Log-rank
444 (Mantel-Cox) tests. *** indicates p-value ≤ 0.001; ** indicates p-value ≤ 0.01; * indicates p-value
445 ≤ 0.05; ns (not significant) indicates p-value > 0.05.

446

Fig. 5

447

448 **Fig. 5. Relative resistance profile of single mutants in multiple strains of influenza virus.**

449 **(A-E)** Relative resistance is measured for each single viral mutant at HA2 residues 42, 45, 46,
 450 47, 48, 49, 52, and 111 of **(A)** H1/SI06 against 300 ng/mL FI6v3 antibody, **(B)** H1/Mich15
 451 against 300 ng/mL FI6v3 antibody, **(C)** H1/WSN against 100 ng/mL CR9114 antibody, **(D)**
 452 H1/WSN against 200 ng/mL FI6v3 antibody (data are from (22)), and **(E)** H3/Perth09 against 15

453 μ g/mL FI6v3 antibody. Relative resistance for WT is set as 1. Mutants with a relative fitness of
454 less than 0.5 are excluded and shown as grey. Residues correspond to WT sequence are
455 boxed. **(F)** Fraction surviving for all single mutants across the HA protein are shown. Each data
456 point represents one mutant. Fraction surviving was computed as previously described (22).
457 Assuming no antibody-mediated enhancement of virus replication, the theoretical upper limit for
458 the fraction surviving is 1, which indicates that the replication fitness is the same with and
459 without antibody selection (in practice, fraction surviving values slightly > 1 can sometimes be
460 obtained due to the experimental error in qPCR and next-generation sequencing). Data for
461 H1/WSN against FI6v3 were from a previous study (22). Data points that represent mutations at
462 residues 42 and 45 are colored in blue and red, respectively, and mutations at other residues
463 are in grey. **(G)** The crystal structures of H3 HA in complex with CR9114 (PDB 4FQY) (26) and
464 H5 HA in complex with CR9114 (PDB 4FQI) (26) were compared by aligning their CR9114
465 heavy chain variable domains. **(H)** Similarly, H3 HA in complex with FI6v3 (PDB 3ZTJ) (27) and
466 H1 HA in complex with FI6v3 (PDB 3ZTN) (27) were compared by aligning their heavy chain
467 variable domains.

468

469 **Table 1. Binding affinity of IgGs and Fabs against HAs of WT and different H3/HK68 HA2
470 mutants.**

K_d in nM	WT	HA2-I45T	HA2-I45M	HA2-I45F	HA2-N49T
CR9114 Fab	43.2 ± 0.4	779.6 ± 50.0	319.1 ± 12.1	n.b.	11.3 ± 0.4
27F3 Fab	122.6 ± 3.0	n.b.	n.b.	n.b.	105.0 ± 1.0
CR9114 IgG	< 0.1	164.8 ± 2.3	75.0 ± 1.0	n.b.	< 0.1
27F3 IgG	1.7 ± 0.1	n.b.	n.b.	n.b.	1.9 ± 0.9
Fl6v3 IgG	< 0.1	7.8 ± 0.2	6.7 ± 0.1	62.0 ± 0.2	< 0.1
S139/1 IgG	2.1 ± 0.1	3.1 ± 0.3	1.9 ± 0.1	1.8 ± 0.1	2.8 ± 0.1

471 n.b.: no binding