

1 **Higher cognitive reserve is associated with better**
2 **neural efficiency in the cognitive performance of**
3 **young adults. An event-related potential study**

4

5 Gabriela Gutiérrez-Zamora Velasco¹, Thalía Fernández², Juan Silva-Pereyra^{3*},
6 Vicenta Reynoso Alcántara⁴

7

8 ¹ Doctorado en Investigaciones Cerebrales, Centro de Investigaciones Cerebrales,
9 Universidad Veracruzana, Xalapa, México.

10 ² Laboratorio de Psicofisiología, Instituto de Neurobiología, Universidad Nacional
11 Autónoma de México, Juriquilla, Querétaro, México,

12 ³ Proyecto de Neurociencias, Facultad de Estudios Superiores Iztacala,
13 Universidad Nacional Autónoma de México, Estado de México, México.

14 ⁴ Facultad de Psicología, Universidad Veracruzana, Xalapa, México.
15

16

17 *Corresponding Author

18 E-mail: jsilvapereyra@gmail.com

20

21 **Abstract**

22 To examine the effects of cognitive reserve (CR) and working memory (WM)
23 load on the cognitive performance of young adults, we performed two event-related
24 potential (ERP) experiments. The first experiment aims to show how high CR
25 influences young adult performance as a function of two levels of working memory
26 load (high vs. low) during a Sternberg task. For both positive and negative probes,
27 participants with high and low CR showed larger P300 amplitudes to low WM loads
28 than to high WM loads. Both CR groups showed a longer P300 latency to high WM
29 loads than to low WM loads, but this difference was greater for the low CR group
30 than for the high CR group. The high CR group displayed larger P300 amplitudes
31 for every experimental condition compared to the low CR group. The second
32 experiment analyzed grammatical gender agreement in sentence processing when
33 CR and WM load were manipulated. Sentences varied according to the gender
34 agreement of the noun and adjective, where the gender of the adjective either
35 agreed or disagreed with that of the noun (agreement), and with regard to the
36 number of words between the noun and the adjective in the sentence (WM load).
37 Participants with high CR showed greater modulation of left anterior negativity
38 (LAN) and P600a effects as WM increased than that observed in participants with
39 low CR. The findings together suggest that higher levels of cognitive reserve
40 improve neural efficiency, which may result in better working memory performance
41 and sentence processing.

42

43 Introduction

44 Lifestyle and everyday experiences seem to have a cumulative impact on
45 cognition. An enriched environment during one's life may play a protective role
46 against cognitive deficits associated with aging [1,2], which could be a
47 consequence when optimizing the use of resources through the recruitment of
48 neural networks and/or alternative cognitive strategies [2]. This adaptation
49 mechanism, called the cognitive reserve (CR), can be defined as the capacity,
50 flexibility or efficiency of cognitive processes that are associated with the
51 susceptibility to aging or pathology [3,4]. Although CR cannot be directly
52 measured, it can be assessed by measuring proxy variables such as educational
53 level, intelligence quotient (IQ), occupational complexity and leisure activities that
54 require some intellectual effort [4].

55 A high CR is associated with good performance in cognitive tasks of working
56 memory, attention and reasoning [5–10]. Its effect on cognition is especially
57 noticeable in older adults and in populations with some brain pathology [11–16].
58 Thus, CR is considered to increase the efficiency and flexibility of neural networks
59 [17,18].

60 Although CR can be observed in the performance of older adults, given the
61 accumulation of experiences from an enriched lifestyle, it can be hypothesized that
62 this phenomenon should be observed even in young adults since CR is present
63 through all stages of development. Thus far, we do not know of any study in which
64 the effects of CR in healthy young adults are evaluated. Studies comparing the
65 performance of older adults with that of young people not only show differences in

66 the processing pattern due to development or age [9,19], but also in terms of the
67 accumulation of experiences.

68 Several studies have reported the impact of CR on working memory (WM)
69 [7,9,20–23], since WM represents a measure of fluid intelligence through which CR
70 could act as a protective mechanism of cognitive abilities against cognitive deficits
71 [24,25]. Based on neuroimaging studies, compensation models have been
72 proposed given the brain activation patterns as an effect of CR during the
73 performance of WM tasks. For example, in the Hemispheric Asymmetry Reduction
74 in Older Adults model (HAROLD model; [26]), it is suggested that neurofunctional
75 changes related to age are associated with a significant reduction of hemispheric
76 lateralization in the prefrontal cortex. Thus, an efficient performance in an older
77 adult that shows bilateral activation can be a reflection of compensation. In
78 contrast, in the Posterior-Anterior Shift in Aging model (PASA model; [27]), the
79 compensation is considered to be the changes in the activation pattern from the
80 posterior to anterior regions associated with aging. In the Scaffolding Theory of
81 Aging and Cognition (STAC, [28]), scaffolds involve the participation of
82 supplementary neuronal circuits that provide the additional computational support
83 required by an older brain to preserve cognitive function in the face of localized or
84 global neurofunctional impairment. In neuroimaging studies, scaffolding is
85 observed as a greater activation or an additional recruitment of the prefrontal and
86 parietal brain regions compared to young adults.

87 The effects of CR on cognition in younger populations of patients have not
88 been thoroughly studied because specific compensatory mechanisms for these
89 patients have not been proposed from functional studies of

90 electroencephalography or neuroimaging; however, the same mechanisms
91 described in aging could be applied to explain the superiority of patients with
92 greater CR to recover themselves [29,30].

93 Studies on Event-related potentials (ERPs) recorded during cognitive tasks
94 allow the gathering of information with great temporal resolution. ERPs are the
95 average of the cerebral electrical activity synchronized to some external or internal
96 events and are classified according to their polarity (i.e., positive or negative
97 deflections in the waves), the time in milliseconds from the stimulus presentation,
98 and their distribution over the scalp. Recently, Gu et al. [6], Speer and Soldan [9],
99 and Sundgren, Wahlin, Maurex and Brismar [31] showed that participants with a
100 higher CR level had a higher percentage of correct answers, shorter response
101 times and a different modulation of the P300 amplitude with respect to subjects
102 with lower CR during a working memory (WM) task with different levels of difficulty.
103 The P300 component is a positive deflection of the ERP with a maximum
104 amplitude at 300 milliseconds and is associated with the updating of working
105 memory [32,33]. The P300 component has been related to the cognitive demand of
106 a task [33,34] and the related attentional processes [35]. For instance, Speer and
107 Soldan [9] found that subjects performing a verbal working memory task (the
108 Sternberg task) showed decreasing P300 amplitudes and longer latencies with
109 increasing WM load, but this effect was greater in subjects who had low CR (in
110 both young and older individuals) than subjects with a high CR. This result was
111 interpreted as a greater CR being associated with greater neuronal efficiency in
112 terms of lower neural activity and higher processing speed as the demand for the
113 task increased. Gu et al. [6] reported similar results in healthy adults; they found a

114 negative correlation between changes in the amplitude of the P300 component and
115 the level of CR and suggested that higher CR reduces neural inefficiency.

116 Modulations of the amplitude of P300 have also been associated with a physically
117 active lifestyle [36], educational level [11], and intelligence [37,38].

118 To our knowledge, there are few studies on the impact of CR on language,
119 especially on the processing of sentences, perhaps because certain types of
120 processes that are involved, unlike working memory, are associated with
121 crystallized intelligence [39]. Nevertheless, only one behavioral study [40] has
122 examined how print exposure (i.e., habitual investment in reading and literacy
123 activities) affects sentence processing and memory in older adults. They showed
124 that life-long habits of literacy increase the efficiency of component reading
125 processes, buffer the effects of working memory decline on comprehension and
126 contribute to maintaining skilled reading.

127 Compared with older adults, young people are more cognitively and neurally
128 efficient, but older adults have been shown to be able to compensate, perhaps as
129 mechanisms resulting from CR, although there is no evidence to support this idea.
130 A recent ERP study that analyzed the sentence processing of younger adults with
131 respect to older adults at two levels of WM load by comparing brain electrical
132 activity associated with grammatical gender agreement processing [41] showed a
133 sequence-specific processing pattern in older adults that could reflect the process
134 of compensation. Older adults displayed modulations of the amplitude of the ERPs
135 that denoted an initial failure in the identification of the grammatical violation (i.e.,
136 left anterior negativity (LAN), morphosyntactic analysis; [42,43]) but with a
137 compensation of this process in later stages of the analysis of the sentence (i.e.,

138 P600a, integration of arguments and P600b, mapping of meaning; [43,44]). This
139 atypical processing did not affect the accuracy of their responses, although the
140 response times were longer for older adults than for young people. Older adults
141 also showed a greater modulation of the amplitude in relation to the WM load than
142 young people. Small amplitudes of the P600a and P600b components were
143 observed in the high load condition of the MT, a fact that was not observed in the
144 younger participants. These findings may be consistent with the idea of neural
145 efficiency [9,45] or the idea that older adults may show a less efficient neural
146 response accompanied by compensation.

147 The objective of the present ERP study was to analyze the effect of CR on
148 the performance of young adults. In the same sense as in the studies with older
149 adults, we intend to see the CR effect by dividing the sample of participants into
150 high and low CR groups. We hypothesize that young people with high CR will show
151 better behavioral performance and that their brain electrical response pattern will
152 reflect earlier processing and will be less vulnerable to the complexity of the task
153 compared to the participants with low CR. We think that this beneficial effect of CR
154 would be observed in young people facing two levels of WM load while they are
155 performing tasks involving fluid intelligence (Sternberg WM task) and crystalized
156 intelligence (Reading sentence task).

157

159 **Experiment 1**

160 This experiment aimed to analyze specifically whether high levels of CR and
161 two levels of memory load modulate the P300 amplitude and the behavioral
162 performance of young adults during a Sternberg task. Given the evidence on
163 greater P300 amplitude modulation and poor behavioral performance when
164 participants have low CR [9], we expect to observe a lower percentage of correct
165 answers and longer reaction times during a Sternberg task with two levels of WM
166 load in a group of young people with low CR than in a second group with high CR.
167 This pattern of differences would be more evident for the higher memory load
168 condition. Likewise, the high CR group would show larger P300 amplitudes in both
169 WM load levels than the low CR group. This latter group would also show a greater
170 modulation of the P300 amplitude depending on the WM load; specifically, a
171 smaller P300 amplitude is expected when the WM load increases. In contrast,
172 participants with high CR would not show this pattern of amplitude modulation
173 between WM loads because these conditions would not have a significant
174 processing cost for this group.

175

176 **Materials and Methods**

177 **Participants**

178 The sample consisted of 40 young Mexican adults, 18 women and 22 men.
179 All participants were right-handed, and their ages ranged between 20 and 30 years
180 (mean age = 24.4 years, SD = 3.04). All participants had normal or corrected vision
181 and did not report any history of neurological or psychiatric problems, illegal drug

182 use or frequent consumption of medical drugs and alcohol. In the case of women,
183 the assessment was performed avoiding menstrual days [46].

184 Participants were grouped into two levels of CR (high and low) according to
185 four proxy measures of cognitive reserve: a) **years of formal education** (high: ≥ 12
186 years, low: < 12), b) **occupational level** (high: levels 4 and 5, low: levels 1 and 2)
187 from of the competencies of the National Classification System of Occupations [47]
188 (level 1: jobs that require relatively easy tasks that could involve physical strength
189 and endurance; level 2: occupations that require the use of specialized equipment
190 or vehicles; level 3: jobs that demand more complex activities in which an
191 intermediate level of knowledge in a more specialized field is needed; level 4:
192 occupations involving decision making, problem solving, leadership skills, a
193 specialized degree, an expert level of knowledge and wide experience in the field),
194 c) **the verbal comprehension index** (high: $VCI > 100$, low: $VCI \leq 100$), from the
195 WAIS-IV intelligence scale [48] and d) **the total score of a CR questionnaire**
196 (high: > 90 , low: < 70), which assess everyday activities.

197 Each participant received a score of 1 or 2 if his/her proxy scores fell into the
198 low or high categories, respectively. The total score for each subject was obtained
199 by summing these four proxy measures. Participants who obtained a total score of
200 7 or 8 were included in the high CR group, while those who obtained a total score
201 of 5 or less were included in the low CR group. Subjects with a total score of 6
202 were excluded. Finally, 22 participants were placed in the high CR group and 18 in
203 the low CR group. There were no significant differences regarding gender between

204 the groups (high CR: 40% women, low CR: 50% women, $X^2 = 0.331$, $p = 0.56$).

205 Table 1 summarizes the sociodemographic features of the groups.

206

207

208 **Table 1. Demographic data, WAIS scores and Cognitive Reserve**

209 **questionnaire total score. Means and standard deviations.**

	High CR	Low CR	95%	
	N = 22 (female = 9)	N = 18 (female = 9)	t(38)	Confidence
				Interval
Age (years)	23.18 (2.13)	26.00 (3.33)	-3.11** a	-4.67 : -0.96
Years of Schooling	15.59 (1.71)	10.33 (2.95)	6.70***	3.64 : 6.87
Occupation; mode (range)	1 (3)	1(1)	Z = -1.45 b	U = 148.5
WAIS-Similarities	11.59 (1.33)	8.67 (2.20)	5.20***	1.80 : 4.06
WAIS-Vocabulary	12.27 (2.10)	8.94 (1.76)	5.36***	2.07 : 4.59
WAIS-Information	11.77 (2.49)	6.33 (2.20)	7.25***	3.92 : 6.96
WAIS-VCI	110.68 (9.80)	89.17 (8.47)	7.33***	15.06 : 27.45
Total CR questionnaire score	109.09 (37.97)	123.39 (53.92)	-0.98	-43.76 : 15.17

210 SD: Standard Deviation; CR: Cognitive Reserve; VCI: Verbal Comprehension

211 Index; a: t(27.8); b: $p = 0.15$, Mean Rank: High CR = 22.75, Low CR = 17.75. ** $p <$

212 0.01; *** $p < 0.001$

213

214

215 Informed consent was obtained from all participants. The project was
216 approved by the ethics committee of the Institute of Neurobiology of the
217 Universidad Nacional Autónoma de México (Ethical Application Ref: INEU / SA /
218 CB / 109), according to the Declaration of Helsinki.

219

220 **CR assessment**

221 Similar to questions in the instruments proposed by others [49–51], we
222 elaborated 26 questions with a Likert-type response assessing participant's
223 activities in four periods of their life (1 [18 - 21 years old], 2 [22 - 25 years old], 3
224 [26 - 29 years old] and 4 [30 - 33 years old]). These questions were intended to
225 assess everyday activities (i.e., social, cognitive and physical activities). The
226 response options were framed in terms of the frequencies of these activities: 0)
227 *Never, 1) A few times a year, 2) A few times a month, 3) A few days a week and 4)*
228 *Almost every day or every day.* Each participant give one or more answers to each
229 item depending on their age (number of periods); the older the participant was, the
230 more periods of life they had completed. The total score for each person was
231 obtained by directly adding the scores given from the items across the periods. A
232 higher scores indicates a higher frequency of different activities and a higher
233 cognitive reserve. The possible maximum score per item was 16, and the
234 maximum total score was 416.

235 The reliability and validity of our CR questionnaire was assessed by
236 applying it to 193 Mexican young people (73 women and 120 men) between 20

237 and 30 years old. The internal consistency of the 26 items was acceptable
238 (Cronbach's $\alpha = 0.950$). Pearson correlation analysis showed significant positive
239 correlations between the total score of the questionnaire and the educational level
240 ($r = 0.449$, $p < 0.001$), occupational level ($r = 0.264$, $p < 0.01$), and the VCI ($r =$
241 0.273 , $p < 0.01$) of these participants.

242

243 **Stimuli**

244 One hundred eighty digit-sets divided into two levels of memory load were
245 built. The memory sets were formed by four digits (1 to 9). The low memory load
246 sets consisted of only one digit repeated four times; in contrast, the high memory
247 load sets consisted of four different digits randomly sorted, avoiding strings of
248 consecutive numbers, either in ascending or descending order. The digits were
249 presented in white (Arial, size 12) on a black background. The probe stimulus was
250 a single digit presented at the center of the monitor. Trials were presented
251 randomly during the trial sequence and divided into two blocks with 45 trials each
252 (90 for each level of difficulty).

253

254 **The Sternberg task**

255 The WM task trials were a modified version of the Sternberg verbal working
256 memory paradigm and began with the presentation of an asterisk for 1000 ms at
257 the center of the screen (fixation point); this was followed by an interstimulus
258 interval of 500 ms, as shown in Fig 1. Subsequently, a memory set of four digits
259 was presented for 1000 ms. A retention time of 1000 ms was then initiated where

260 the screen turned black at the end of the presentation of the set. Next, a probe digit
261 was presented for 1000 ms, and the participants were instructed to respond by
262 pressing one button on a response box if the probe digit was included in the
263 memory set previously presented (positive probe) or the other button if the probe
264 digit had not appeared (negative probe). The use of the response buttons was
265 counterbalanced across participants. Memory set trials (high and low WM load)
266 and probe stimuli (positive or negative) were randomly presented in the trial
267 sequence. The participants were instructed to answer as quickly as they could
268 while avoiding making mistakes. Participants were not provided feedback on their
269 performance. The task lasted approximately 20 min.

270

271 **Fig 1. Time flowchart of Sternberg's working memory task.** Examples of high
272 and low WM load condition memory sets and probes that do or do not belong to
273 the set (positive and negative probes). The gray box represents a window time-
274 locked to the continuous EEG.

275

276 The stimuli were delivered by the STIM2 software (NeuroScan,
277 CompuMedics, Charlotte, NC, USA) through a PC using a 17" monitor. Participants
278 sat 70 cm from the screen in a room with the light off.

279

280 **ERP acquisition and analysis**

281 The electroencephalogram (EEG) was recorded using a SynAmps system
282 (NeuroScan, CompuMedics) and collected through 32 silver electrodes embedded

283 in an elastic cap (ElectroCap International, Inc., Eaton, OH, United States)
284 referenced to the right earlobe (A2). The left earlobe was recorded independently.
285 The bandwidth of the amplifiers was set to 0.1-100 Hz, and the signal was digitized
286 at a 500 Hz sampling rate. Impedances were kept below 5 kΩ. Two electrodes
287 placed on the external canthus and superciliary arch of the left eye were used to
288 record the electrooculogram (EOG).

289 The EEG recordings were rereferenced offline using the average of the
290 earlobe signals (A1-A2). The continuous EEG recording was epoched from 200 ms
291 prestimulus to 1000 ms poststimulus. The ERP waveform was baseline corrected,
292 and drift was removed using the linear detrend tool from the NeuroScan 4.5
293 software (CompuMedics). All EEG epochs were visually inspected, and manual
294 rejection of segments was performed. Segments corresponding to incorrect
295 responses were rejected. The artifact-free segments from each participant were
296 averaged for each experimental condition. Approximately 23 segments were used
297 for the average of the ERPs for both groups in all task conditions. No significant
298 differences were observed regarding the number of artifact-free EEG segments
299 across experimental conditions. From the total EEG segments of the high CR
300 group, 58.5% of the high WM load condition segments and 61.5% of the low WM
301 load condition segments were retained. For the low CR group, 56% of the high WM
302 load condition segments and 57% of the low WM load condition segments were
303 retained.

305 **Statistical analysis of the behavioral data**

306 Analysis of the behavioral data was carried out using the commercial
307 software SPSS 20. Two three-way ANOVAs were performed on the percentage of
308 correct answers and the response times. WM load (high and low) and Probe type
309 (Positive and Negative) were used as within-subjects factors and CR level (high
310 and low) was used a between-subjects factor. Honest significant difference (HSD)
311 post hoc pairwise tests were performed for multiple comparisons. The percentage
312 of correct answers for both tasks was transformed using the function
313 $\text{arcsine}[\text{square root}(\text{percentage} / 100)]$ to ensure the normal distribution of the
314 data.

315

316 **Statistical analysis of the ERP data**

317 For the ERP latency data, two three-way ANOVAs were separately
318 performed on the P300 latencies by Probe type (Positive and Negative) with WM
319 load (high and low) and Electrode site (Fz, Cz, Pz) as within-subjects factors, and
320 CR level (high and low) as a between-subjects factor. Honest significant difference
321 (HSD) post hoc pairwise tests were performed for multiple comparisons.

322 For the analysis of ERP amplitude, the nonparametric permutation test was
323 performed. Since there is a multiplicity of comparisons in the analysis of the ERP
324 data, there is a high probability of increasing the type I error, so the use of
325 multivariate nonparametric permutation tests has been recommended [52]. This
326 method is a distribution-free test that builds an empirical probability distribution
327 computing multiple statistical tests. This statistical tool is included in the eLORETA

328 software (exact low-resolution brain electromagnetic tomography; [53]). The
329 statistical analysis was performed using 10,000 permutations. t_{\max} (0.05 p-alpha)
330 and its global p-value were reported. This statistic represents the significance when
331 all the electrodes sites and/or all the points in times are considered. Significant t-
332 marginal values (all $p < 0.05$) corresponding to specific differences at each
333 electrode site were represented in color maps. The false discovery rate (FDR)
334 method was used to correct the global p-alpha for multiple comparisons between
335 experimental conditions using nonparametric analysis with permutations. We used
336 the Benjamini-Hochberg method [54] to identify those p-values associated with t_{\max}
337 global values that remain significant.

338

339 **Results**

340 **Behavioral**

341 The percentage of correct answers and the average response time are
342 shown in Fig 2. A WM load by CR group interaction was found ($F(1, 38) = 7.66, p =$
343 $.009, \eta_p^2 = 1.7$) for the percentage of correct answers. The post hoc tests showed
344 that both groups (high CR: $MD_{HSD} = -0.11, p < 0.001$; low CR: $MD_{HSD} = -0.20, p <$
345 0.001) had a larger percentage of correct answers for the low WM load than for the
346 high WM load, but this difference was greater for participants with a low CR.

347

348 **Fig 2. Means and standard deviations of the percent of correct answers (top)** 349 **and response times (bottom) for high and low working memory (WM) sets.**

350 Note that both groups displayed significantly lower percentages of correct answers

351 for the high WM load than for the low WM load condition. This effect was greater
352 for the group with low CR (represented in gray bars). *** p < 0.001

353

354

355 There were no significant differences between the groups with respect to the
356 response time (main effect of Group: F < 1), the WM load by CR group interaction
357 (F < 1) or the Probe type by CR group interaction (F < 1).

358

359 **ERP time windows**

360 To delimit the time windows where the ERP amplitude differed between
361 probe types (positive and negative) throughout the whole epoch (-200 to 1000 ms)
362 and across all electrodes over the scalp, a nonparametric permutation test was
363 performed. Two independent analyses were separately performed for each CR
364 group, one for each probe type.

365 Fig 3a shows the grand averages of each group for each memory set
366 condition. In both groups and both probe types, significant differences between
367 WM loads were found in the interval from 270 ms to 450 ms (high CR group:
368 positive probes [$t_{\max} (.05) = -5.359$, global p < .0001]; negative probes [$t_{\max} (.05) =$
369 -5.464 , global p < .0001]; low CR group: positive probes [$t_{\max} (.05) = -5.355$, global
370 p < .001]; negative probes [$t_{\max} (.05) = -5.580$, global p < .0001]). Specifically,
371 within this time window, the positive wave had a significantly larger amplitude for
372 the low WM load than for the high WM load condition. Taking into account the
373 latency of occurrence, the polarity, and the correspondence of this component with

374 this cognitive task, this significant effect can be considered as the P300
375 component.

376

377 **ERP latency**

378 There were greater P300 latencies for the high WM load than the low WM
379 load condition for the positive probes ($F(1,38) = 26.9, p < 0.0001, \eta_p^2 = 0.41$) and
380 for the negative probes ($F(1, 38) = 5.75, p = 0.021, \eta_p^2 = 0.13$). The WM load by
381 Electrode site by Group interaction was not significant for the positive probes ($F(2,$
382 $76) = 2.65, p = 0.083, \eta_p^2 = 0.07, \varepsilon_{G-G} = 0.91$), but the interaction was significant
383 for the negative probes ($F(2, 76) = 3.21, p = 0.049, \eta_p^2 = 0.08, \varepsilon_{G-G} = 0.95$).

384 Pairwise multiple comparisons indicated that participants with high CR showed
385 slightly greater P300 latency to high WM than low WM loads at Cz ($MD_{HSD} =$
386 $31.05, p = 0.048$), while participants with low CR displayed a more-significantly
387 greater P300 latency to high WM than low WMs load at Pz ($MD_{HSD} = 49.56, p =$
388 0.001)

389

390 **Fig 3. Event-related potentials to the Sternberg task.** a) Grand averages of the
391 high cognitive reserve (CR) and the low CR groups at the midline electrodes.
392 Negative is plotted up. Gray lines represent the ERPs to high WM loads and black
393 ones to low WM loads. Solid lines represent positive probes, and dotted lines
394 represent negative probes; b) statistical maps of the amplitude change of the P300
395 component by WM load for each group and type of probe. Red represents t-values
396 where the P300 amplitude change was significant (low WM load > high WM load);

397 c) statistical maps of the P300 effect for positive and negative probes for the two
398 WM load conditions (high and low). A significantly greater P300 effect is
399 represented with red dots.

400

401

402 **ERP amplitude**

403 Fig 3b shows statistical maps that represent the comparisons between WM
404 loads using the mean amplitudes at the P300 window for each Group and Probe
405 type. In both groups, there was a larger P300 amplitude for low WM loads than for
406 high WM loads, both for positive and negative probes, over all electrode sites. In
407 the high CR group, a larger P300 amplitude for the low WM load than the high WM
408 load condition was observed for positive probes ($t_{\max} (.01) = 3.57$, global $p = 0.0002$) over all electrode sites (all $p < 0.001$), but mainly over C4, P3, T3 and T5
409 ($p < 0.0001$). In this group, there was also a larger P300 amplitude for low WM
410 loads than for high WM loads for negative probes ($t_{\max} (.01) = 3.39$, global $p = 0.0002$) over all electrode sites (all $p < 0.001$), but mainly over Ft8, T3, T4, Tp7 and
411 Tp8 ($p < 0.0001$). Similarly, these differences were observed in the low CR group
412 for positive probes ($t_{\max} (.01) = 3.64$, global $p = 0.0002$) over all electrode sites (all
413 $p < 0.001$), but mainly over P3 and P4 ($p < 0.0001$), and for negative probes ($t_{\max} (.01) = 3.26$, global $p = 0.0002$) over all electrode sites (all $p < 0.001$), but mainly
414 over C4, P4, Cpz, Cz, and Cp4 ($p < 0.0001$).

415 A comparison between WM loads by Groups was performed for each type of
416 probe ($H_0: A1-A2 = B1-B2$, where A and B are the high and low CR groups,

420 respectively, and 1 and 2 are high and low WM loads, respectively). There were no
421 significant differences for positive probes ($t_{\max} (0.05) = 2.636$, global $p = 0.382$) or
422 for negative probes ($t_{\max} (0.05) = 2.629$, global $p = 0.520$). However, as can be
423 noted in Fig 3b, the distribution of the differences between WM loads seemed to be
424 wider for the low CR group than for the high CR group when negative probes were
425 used. Furthermore, these topographic differences in the P300 amplitude seemed to
426 have a wider distribution in the negative than in the positive probe conditions for
427 the low CR group than for the high CR group.

428 In another series of analyses, four independent samples t-tests were
429 performed. Fig 3c shows the comparison between the two groups (high and low
430 CR) for each of the four experimental conditions. For high WM load and positive
431 probes, the high CR group showed a greater amplitude of the P300 component
432 than the low CR group ($t_{\max} (.05) = 2.679$, global $p = .0064$, FDR_{H-B} $p = .0128$)
433 over the posterior recording sites (all $p < 0.05$). In this same WM load condition, but
434 for negative probes, there were no differences between groups ($t_{\max} (.05) = 2.731$,
435 global $p = .154$, FDR_{H-B} $p = .1540$). In the low WM load condition, there were P300
436 amplitude differences between the groups for both types of probes. For the positive
437 probe, the amplitude of the P300 component was larger in the high CR group than
438 in the low CR group ($t_{\max} (.05) = 2.750$, global $p = .0200$, FDR_{H-B} $p = .0266$) over
439 T5, and for the negative probe, the amplitude of the P300 component was also
440 larger in the high CR group than in the low CR group ($t_{\max} (.05) = 2.732$, global $p =$
441 $.0054$, FDR_{H-B} $p = .0216$), here over T3 and Tp7.

442

443 **Discussion**

444 It was expected that the group of young people with high CR would show
445 greater efficient and faster responses than the group with low CR in a Sternberg-
446 type task. Additionally, it was expected that those with high CR would show smaller
447 changes in their behavioral performance between different levels of WM load than
448 those with low CR. In accordance with our hypotheses, the participants with high
449 CR showed smaller differences as the WM load increased in the percentage of
450 correct answers than those with low CR. This finding supports the idea that a
451 higher CR is associated with efficient neural networks operating to perform a
452 cognitive task and is consistent with previous studies in older [6,9,55–57] and
453 young adults [9].

454 In contrast to previous results in young adults using a Sternberg-like task [6],
455 where significant correlations between CR composite scores and response times
456 were observed, but consistent with Speer & Soldan [9], our groups of young
457 participants did not differ in response times. Our findings can be interpreted as the
458 use of different strategies to solve the task. Persons with high CR could be more
459 precise while sacrificing response time, while those with low CR responded as
460 slowly as the others but more erratically.

461 Considering the idea of neural efficiency [45], we also hypothesized that the
462 effect of CR could be observed in changes in P300 amplitude with respect to WM
463 load. According to Speer & Soldan [9], this idea could be considered a
464 measurement of neural inefficiency. In their study, they correlated the mean
465 change in the amplitude of the P300 component as a function of WM load with the

466 CR composite and with behavioral performance. To calculate the mean amplitude
467 change, they averaged the amplitudes across the P300 time window and across
468 electrodes for each set size. Afterwards, they subtracted amplitude at set size 1
469 from the amplitude at set size 7 Then, similar to Gu et al.'s results [6], they found
470 that individuals with higher CR composite scores showed less change in P300
471 amplitude with increasing task demands. Based on these findings, we expected
472 that the participants with low CR should show greater modulations or changes in
473 the P300 amplitude as the WM load increased (i.e., greater P300 amplitude
474 changes in the low than in the high WM load condition).

475 Both groups of young adults displayed significantly larger amplitudes of
476 P300 for low WM than for high WM loads (WM load-related changes). Although
477 there was no evidence of a significant difference between groups with increasing
478 WM load, the low CR group seemed to display a wider distribution of WM load-
479 related changes than the high CR group to negative probes. Why was the
480 previously reported pattern not observed here? A possible explanation is that the
481 previous studies computed a composite of P300 amplitudes from all electrode
482 sites, from all time points within the P300 time window and for both the positive and
483 negative probe conditions; then, this composite was correlated to the CR
484 composite score. This procedure could hide some topographical differences
485 between the groups by the type of probe. Our results could indicate that
486 participants with low CR, on the one hand, have an inefficient neural network,
487 which was shown by the P300 amplitude changes as the WM load increased for
488 the negative probes, and on the other hand, were as efficient as participants with
489 high CR when positive probes were used, perhaps because the processing of

490 negative probes requires a complete search of the set, implying more cognitive
491 demand. This could be supported by our latency findings and by the results of
492 previous studies [6,9]. The low CR group displayed significantly longer P300 peak
493 latencies to high WM than to low WM loads, and this difference was more marked
494 in this group than in the high CR group for the negative probes.

495 A higher cognitive demand was also observed globally across experimental
496 conditions, even though there were no robust behavioral differences between the
497 groups. The participants with low CR showed a significantly smaller P300
498 amplitude than those participants with high CR for negative probes at high and low
499 WM loads and for positive probes at low WM loads. These findings are supported
500 by previous P300 ERP studies [33,34] that showed that smaller amplitudes of the
501 P300 component are associated with greater difficulty of processing, while larger
502 amplitudes are related to less difficulty in performing the task while maintaining a
503 constant level of performance.

505 **Experiment 2**

506 In this experiment, we analyzed the effect of CR on the performance of
507 young people, wherein grammatical gender agreement is processed during a
508 grammatical judgment task of sentences. There is scarce evidence to indicate
509 different cognitive performance between subjects with high and low CR in sentence
510 processing during reading. In healthy older adults, in whom cognitive decline is
511 more likely to manifest, there is a more efficient response when CR is greater
512 (habitual reading activities) [40]. It is feasible to think that CR, considering mainly
513 the educational level as a proxy measurement, has a positive effect on the
514 behavioral strategies and on the variety of brain mechanisms that make solving
515 problems effective [58]. Thus, we expected that during the reading of sentences,
516 the processing of gender agreement would lead to a higher processing cost when
517 there is a higher WM load than when there is not. The high CR group would show
518 better behavioral results than the low CR group when processing sentences with a
519 low WM load. We also think that young people with low CR will base their response
520 on a strategy where the analysis of semantic information is preferred to resolve the
521 gender agreement, because this would result in a smaller amplitude of the LAN
522 effect than that of subjects with high CR. Participants with low CR will also show a
523 larger amplitude of the P600a effect because they will be forced to compensate for
524 the poor processing of the previous stage. In the final stage of the agreement
525 processing, during the P600b window, where the generalized mapping of the
526 sentence is made and the semantic and syntactic information converges, there will
527 probably be no differences between the two groups.

528 **Method**

529 **Participants**

530 Participants in Experiment 2 and their classification into the two levels of CR
531 groups were the same as in Experiment 1.

532

533 **Stimuli**

534 The task consisted of 160 experimental sentences with seven words each.
535 Adjective-noun grammatical gender agreement (agree and disagree) and WM load
536 (high and low) were manipulated. Table 2 shows examples of the sentences
537 presented to the participants. Forty sentences correspond to the agree / low WM
538 load condition, where the grammatical gender of the main noun in the sentences
539 agrees with the gender of the adjective. To build 40 disagree sentences (disagree /
540 low WM load condition), the grammatical gender of the qualifying adjective that
541 modifies the main noun of the sentence was manipulated. To build 40 agree
542 sentences with a high WM load condition (agree / high WM load condition), four
543 words were embedded between the noun and the adjective. Forty disagree
544 sentences with a high WM load were also included. Additionally, sixty filler
545 sentences were added. In these sentences, the number agreement between the
546 noun and adjective was manipulated. Fifty percent of the filler sentences were
547 agree sentences, and the remaining were disagree sentences.

549 **Table 2. Examples of sentences for each experimental condition.**

WM Load	Agreement	Example
Low	Agree	La casa _{female} roja _{female} está en la colina The red _{female} house _{female} is on the hill
	Disagree	El edificio _{male} roja _{female} está en la colina The red _{female} building is on the hill
	Agree	La casa _{female} que está allá es roja _{female} The house _{female} over there is red _{female}
	Disagree	El edificio _{male} que está allá es roja _{female} The building _{male} over there is red _{female}
Filler	sentences	Las casas _{plural} amarilla _{singular} están en la colina The yellow _{singular} houses _{plural} are on the hill Las casas _{plural} que están allá son amarilla _{singular} The houses _{plural} over there are yellow _{singular}

550 Note: Nouns and adjectives are typed in bold fonts.

551

552 **Grammatical judgment task (reading sentences)**

553 Each sentence began with the presentation of an asterisk for a duration of
554 300 ms at the center of the monitor, and then the sentence appeared word by word
555 as shown in Fig 4. Each word was presented for 300 ms with an interstimulus
556 interval of 300 ms. At the end of the sentence, two question marks were presented
557 for 500 ms, and participants had 1500 ms to indicate whether the sentence did or
558 did not have correct Spanish grammar using a response box. Pressing one button

559 indicated that the sentence was correct, and the other indicated that it was wrong.
560 The use of buttons was counterbalanced among the participants. The task lasted
561 approximately 40 min, and as in Experiment 1, the stimuli were delivered by STIM2
562 software (Compumedic, NeuroScan).

563

564 **Fig 4. Time flowchart of the sentence presentation (word by word) for the**
565 **grammatical judgment task (reading sentences).** Two example sentences
566 (agree and disagree) in the low WM load condition, where the arrows display the
567 proximity between noun and adjective. Two example sentences in the high WM
568 load condition, where the noun is separated from the adjective by four words. The
569 gray boxes represent the moment where the EEG epoch is taken for the analysis.

570

571

572 **ERP acquisition and analysis**

573 This experiment followed the same procedure as Experiment 1 regarding
574 EEG acquisition and preprocessing of the EEG signal. For this grammatical
575 judgment task, the continuous EEG signals were synchronized to adjective onset (-
576 200 to 1000 ms), and the EEGs were segmented according to the different
577 experimental conditions (agree / low WM load, disagree / low WM load, agree /
578 high WM load, disagree / high WM load). The number of segments used to obtain
579 the ERPs in each experimental condition for both groups was approximately 23.
580 The percentage of artifact-free segments was 59.8% for low WM loads and 59.1%
581 for high WM loads in the high CR group and 53.4% and 51.3%, respectively, in the

582 low CR group.

583

584 **Statistical analysis of the behavioral data.**

585 The analysis of the behavioral data was performed similarly to that in
586 Experiment 1. Two three-way ANOVAs were performed on the transformed
587 percentage of correct answers and the response times. WM load (high and low)
588 and Gender agreement (agree and disagree) were used as within-subjects factors,
589 and CR level (high and low) was used as a between-subjects factor. HSD post hoc
590 tests were performed for multiple comparisons.

591 A multivariate nonparametric permutation test with 10,000 permutations was
592 used to analyze the ERP amplitude data. The FDR method and Benjamini-
593 Hochberg correction were used to correct the global p-alpha for multiple
594 comparisons between experimental conditions.

595 We proceeded first with comparing the agree versus disagree conditions for
596 each level of WM load and the two groups of participants across all electrode sites
597 and points of time (whole time epoch). The significant differences between
598 conditions allowed us to define the time windows for posterior analyses, which
599 would correspond with the ERP components associated with gender agreement
600 processing. Second, ERP difference waves were obtained by subtracting the
601 amplitude values of the whole-epoch ERP to the agree from those to the disagree
602 condition for each participant. Using independent samples t-tests based on the
603 permutation technique, a series of analyses was carried out using the mean
604 amplitude value of the difference wave (i.e., disagree minus agree) for comparing

605 between CR groups for each level of WM load at each time window determined by
606 multivariate permutation analysis. Third, we compared the mean amplitude values
607 at each time window between WM loads for each CR group (high and low).

608

609 **Results**

610 **Behavioral**

611 Fig 5 shows the percentages of correct answers and the average response
612 times for gender agreement processing in the grammatical judgment task. The high
613 CR group had a higher percentage of correct answers in all the conditions of the
614 grammatical judgment task than the low CR group (main effect of Group: $F(1,38) =$
615 13.18 , $p = 0.001$, $\eta_p^2 = 0.258$).

616 Regarding response time, there was a significant main effect of CR group
617 ($F(1, 38) = 14.85$, $p < 0.001$, $\eta_p^2 = 0.281$), which means that young participants
618 with high CR responded faster than those with low CR independent of the
619 experimental condition. There was also a significant Gender agreement by CR
620 Group interaction ($F(1, 38) = 7.88$, $p = 0.008$, $\eta_p^2 = 0.172$) and Gender agreement
621 by WM load by CR Group interaction ($F(1,38) = 7.008$, $p = 0.012$, $\eta_p^2 = 0.156$). The
622 post hoc tests of the last interaction indicated that the participants with high CR
623 responded faster than those with low CR in the low WM load condition for the
624 agree ($MD_{HSD} = -99.72$, $p = 0.002$) and disagree conditions ($MD_{HSD} = -101.24$, $p <$
625 0.001); they also responded faster in the high WM load condition for the agree ($MD_{HSD} = -80.05$, $p = 0.01$) and disagree conditions ($MD_{HSD} = -145.13$, $p < 0.001$), as
626 shown in Fig 5.

628

629

630 **Fig 5. Behavioral results in the grammatical judgment task.** Percentages of
631 correct answers (top) and average response times (bottom). The group of
632 participants with high CR showed a higher percentage of correct answers and
633 faster response times than those with low CR. Note that young adults with low CR
634 show longer response times to disagree than agree sentences at the high WM load
635 condition. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$

636

637

638 **ERP time windows**

639 To determine the time windows where significant differences between agree
640 and disagree conditions were found, a series of nonparametric permutation
641 statistical tests was performed for each CR group and WM load.

642 Fig 6a shows the grand averages of the CR groups for each experimental
643 condition. For each level of WM load, both groups showed significant differences
644 between agreement conditions at three consecutive time windows, which
645 correspond to the occurrence of LAN (330 - 380 ms), P600a (520 - 660 ms) and
646 P600b (700 – 800 ms) effects (high CR low WM load: $t_{max} (.05) = -5.464$, global p
647 = 0.003; high CR WM load: $t_{max} (.05) = -5.538$, global $p = 0.0004$; low CR low WM
648 load: $t_{max} (.05) = -4.919$, global $p = 0.028$; low CR high WM load: $t_{max} (.05) = -$
649 5.47, global $p = 0.0080$).

650

651 **Fig 6. Statistical results of ERP amplitude analyses for the grammatical**
652 **judgment task.** a) Difference waveforms for the agreement effect (i.e., disagree
653 minus agree condition) in the high and low CR groups. Negative is plotted up. The
654 solid gray line represents the high WM load condition and black lines represent the
655 low WM load condition. Note the left anterior negativity (LAN) effect at the left
656 frontal electrodes (F3, F7), the P600a effect at the vertex electrode (Cz), and the
657 P600b effect at the parietal site (Pz) in the high CR group; b) statistical maps of the
658 agreement effect in the high WM load condition for the LAN and P600a ERP
659 components; colored dots represent significant ($p < 0.05$) t-values in the
660 comparison between groups with different levels of CR; c) statistical maps of
661 significant t-values for the high CR group for LAN and P600a; comparisons
662 between WM loads.

663

664 **ERP amplitude**

665 Difference waves were obtained by subtracting the amplitude values of the
666 whole-epoch ERP for the disagree condition from those for the agree condition for
667 each participant. Using independent samples t-tests based on the permutation
668 technique, a series of analyses was carried out comparing the CR groups using the
669 mean amplitude value of the difference wave (i.e., disagree minus agree) at each
670 time window corresponding to LAN, P600a and P600b.

671 First, for each WM load condition, the difference wave of the high CR group
672 was compared to the difference wave of the low CR group. As shown in Fig 6b, for
673 high WM loads, the participants with high CR had a greater LAN effect ($t_{max} (.05) =$

674 -2.844, global p = 0.0132, FDR H-B p = 0.0395) over F7, Fc4, C3, C4, T3, T5, Cp3,
675 Cp4, Cz, Cpz and Tp7. They also showed a greater amplitude of the P600a effect
676 than those in the low CR group ($t_{\max} (.05) = 2.594$, global p = .0498, FDR H-B p =
677 0.074) over Cp4 and Cpz. The P600b effect was not significantly different between
678 the groups ($t_{\max} (.05) = 2.566$, global p = 0.2193, FDR H-B p = 0.2193). At low WM
679 loads, there were no significant differences between groups in terms of the LAN (t
680 $_{\max} (.05) = 2.673$, global p = 0.689), P600a ($t_{\max} (.05) = 2.710$, global p = 0.2968)
681 or P600b effect ($t_{\max} (.05) = 2.783$, global p = 0.1476).

682 Second, the difference wave corresponding to the high WM load condition
683 was compared to the difference wave to the low WM load condition for each group
684 of participants separately. Fig 6c shows statistical maps representing such
685 comparisons. Maps show that the high CR group showed a greater LAN effect for
686 high WM than for low WM load; $t_{\max} (.05) = 2.859$, global p = 0.0012, FDR H-B p =
687 0.0036) over C3, F7, T3, Fc3, Tp7 and Ft7. This group also showed a smaller
688 amplitude of the P600a effect for high WM than for low WM loads ($t_{\max} (.05) = -$
689 2.869, global p = 0.030, FDR H-B p = 0.0450) over posterior sites. There were no
690 differences between high and low levels of WM load at the P600b time window (t
691 $_{\max} (.05) = -2.791$, global p = 0.064, FDR H-B p = 0.064). In contrast, the low CR
692 group displayed no differences between the levels of WM load for the LAN effect (t
693 $_{\max} (.05) = 2.738$, global p = 0.2278), the P600a effect ($t_{\max} (.05) = -2.700$, global p
694 = 0.2189) or the P600b effect ($t_{\max} (.05) = -2.622$, global p = 0.4349).

696 Discussion

697 Young participants with high CR showed better performance than the group
698 with low CR in terms of the percentage of correct answers and response times
699 across experimental conditions in the grammatical judgment task. Regardless of
700 WM load, but in accordance with our expectations, a higher cognitive reserve
701 allows individuals to have more efficiently process grammatical gender agreement
702 during sentence reading. This finding can be supported by previous studies
703 showing a beneficial effect of CR on the reading abilities of healthy older adult
704 performance [40,57].

705 Regarding the brain response pattern, young people with high CR showed a
706 greater amplitude of the LAN effect than the participants with low CR in the high
707 WM load condition. This finding supports the idea that CR has a positive effect
708 from the first stage of processing of gender agreement, as was suggested in a
709 previous study, where ERP amplitudes of healthy older adults were compared with
710 those of young adults processing gender agreement [41]. Older adults who showed
711 age-related subtle signs of cognitive decline displayed unsuccessful
712 morphosyntactic processing (reflected by the LAN effect). Thus, if a
713 morphosyntactic analysis [43,44,59] that interacts with WM [60] is given at the first
714 stage of the gender agreement process, then increasing the cognitive demand by
715 increasing the WM load [61] results in a higher cost of processing and a decrease
716 in the amplitude of the LAN effect in young people with low CR, which influences
717 the later consecutive stages of processing. In this sense, at the early phase of
718 P600, probably related to a processing stage in which the adjective is integrated

719 into the sentence representation [43,44], young people with low CR must try to
720 compensate and complete the unsuccessful previous stage of processing. The low
721 CR participants in this group probably showed this pattern mainly at high WM loads
722 because they displayed a smaller amplitude of the P600a effect than those with
723 high CR. Although this result does not fully support our hypotheses, it does
724 suggest that during this stage, the cost of processing is much greater and the
725 integration of the arguments is likely inadequate. This pattern of brain response
726 agrees with the results observed when comparing older versus younger adults [41].

727 With regard to neural efficiency, the effect of low CR on gender agreement
728 during sentence processing would be observed as a modulation of the amplitude
729 that depends on WM load [9]. In contrast to this hypothesis, our results showed
730 that the participants with high CR had greater amplitude changes as the WM load
731 increased. This modulation was observed from the first steps of grammatical
732 gender processing. However, even this finding could fit with the idea of neural
733 inefficiency in young people with low CR, especially since such a pattern of brain
734 responses, i.e., no amplitude changes with an increase in WM load, is associated
735 with poor behavioral performance and evidence of much greater processing costs
736 during the reading of sentences. In this sense, given that there were no amplitude
737 differences in the P600b effect in any of the two groups when the two levels of WM
738 load were compared, this finding could probably show that young people with low
739 CR have to reach the last step of gender processing (using syntactic and semantic
740 information) to carry out sentence reanalysis and thus employ more resources,
741 similar to previous results where young and older adults were compared [41].

742 In summary, a low CR, associated with worse behavioral performance and a
743 higher cost of processing in the grammatical gender agreement, can be related to
744 a lower amplitude modulation of the brain response as the WM load increases.
745 Thus, a higher CR can be associated with a more efficient brain response for
746 sentence processing. An important limitation of this study was not having
747 measured the reading ability of the participants. This variable could bias the
748 results.

749

750 **General discussion**

751 In the present study, behavioral performance and brain response were
752 analyzed in two cognitive tasks involving fluid intelligence (working memory) and
753 crystallized processes (grammatical gender agreement) between two groups of
754 young people with different levels of CR. In agreement with our hypothesis, young
755 people with high CR showed better behavioral performance in both tasks than
756 young people with low CR. This improvement effect, probably induced by CR, on
757 persons without any evidence of pathology is consistent with previous studies in
758 healthy older adults [9,55–57] and in a wide variety of studies regarding
759 populations with various pathologies [29,30]. Consequently, differences in the brain
760 response pattern between groups with different cognitive reserve levels in both
761 tasks could be interpreted as a function of brain response efficiency [45]. Thus, we
762 expected that the brain electrical response pattern of young people with high CR
763 would reflect a processing that is less vulnerable to the complexity of the task than
764 that of young people with low CR, previously proposed as neural efficiency [9].

765 Regardless of the type of processing (fluid or crystallized), we think that this
766 positive effect of CR would be observed in the performance of young people for
767 both tasks. There is evidence from neuroimaging studies of greater neural
768 efficiency in cognitively normal adults, such that people with high CR show less
769 task-related activation as a function of increasing task load than people with lower
770 CR [62].

771 Our results for both experiments showed a modulation of ERP amplitude by
772 WM load on the performance of the young participants that was dependent on the
773 CR level. Similar to what was found in ERP studies using Sternberg-type tasks
774 [6,9], the low CR group, which was associated with a less efficient performance in
775 both tasks, tended to show a wider distribution of amplitude changes modulated by
776 WM load than those from the high CR group. The P300 latency modulation pattern
777 found supported both our findings and those from previous studies [9]. In contrast,
778 the results of the grammatical judgment task showed that participants with high CR
779 had greater amplitude modulation as a function of WM load. This apparent
780 contrasting result could be interpreted following the same logic regarding
781 efficiency. A low CR does not modulate the LAN and P600a amplitudes as the WM
782 load increases because both WM loads were equally demanding, generating an
783 equally high cost of processing. That is, the low WM load was as costly as the high
784 WM load for the brain responses of subjects with low CR. Our study could suggest
785 that young participants with higher CR have better performance and show greater
786 modulation in the brain response or greater cerebral flexibility. In this way and in
787 accordance with the CR hypothesis [17,63], the results of this study could suggest
788 that high CR results in the implementation of more-efficient neural networks for the

789 resolution of tasks regardless of the type of processing involved in the execution of
790 the task (fluid or crystallized intelligence).

791 Research on cognitive reserve has mainly focused on the evaluation of older
792 adults and people with cognitive impairment [55,64,65]. The results of this study
793 support the fact that CR is a malleable entity whose level at any stage of life is
794 dependent on the sum of the experiences. This accumulation of experiences gives
795 the possibility of increasing CR and consequently improving cognitive performance.

796 Two questions remain to be investigated regarding cognitive reserve. First,
797 which cognitive reserve factors are most important, and which of their interactions
798 contribute to the dynamic processes underlying cognitive/brain development
799 throughout life? What are the more important proxy measures for cognitive
800 reserve, and what can be learned about their beneficial effects?. One of the most-
801 used proxy measures for evaluating CR has been schooling or years of education.

802 In a systematic review of cognitive reserve and its effects on pathological
803 populations, it was shown that in most studies with positive results, the main
804 variable that contributes to building the cognitive reserve is educational level [30]. It
805 should be noted that the years of education for older adults seems to be
806 crystallized, and it maintains its effect throughout their lives. Although older adults
807 have completed their formal studies many years ago, the cognitive reserve has a
808 protective effect. The late-life relations between education and cognitive
809 performance reflect the persistence of education-cognition relations that have
810 existed since earlier adulthood [58]. Thus, our results could show the effects of
811 cognitive reserve in early adulthood.

812 It has been demonstrated that young and older adults differ in terms of the
813 relationship between brain activity and years of education during a memory task
814 [66]. Increased frontal activity is observed in the less educated young and has
815 been correlated with poor recognition memory. The more educated young adults
816 and those with better memory performance engaged posterior brain regions.
817 Meanwhile, older adults seem to have separate networks related to education and
818 memory performance, with frontal and lateral temporal regions related to more
819 education but not to performance.

820

821 **Conclusion**

822 This work provides evidence that cognitive reserve has an effect on other
823 stages of human development in addition to older age. Cognitive reserve can play
824 a modulating role in the performance of cognitive tasks of both fluid and crystallized
825 intelligence processes.

827

828 **References**

- 829 1. Satz P. Brain Reserve Capacity on Symptom Onset After Brain Injury: A
830 Formulation and Review of Evidence for Threshold Theory.
831 *Neuropsychology*. 1993;7(3):273–95. doi: 10.1037/0894-4105.7.3.273.
- 832 2. Stern Y. What is cognitive reserve? Theory and research application of the
833 reserve concept. *J Int Neuropsychol Soc*. 2002;8(3):448–60. doi:
834 10.1017.S1355617701020240
- 835 3. Pettigrew C, Soldan A. Defining Cognitive Reserve and Implications for
836 Cognitive Aging. *Curr Neurol Neurosci Rep*. 2019;19(1):1–12. doi:
837 10.1007/s11910-019-0917-z.
- 838 4. Stern Y, Arenaza-Urquijo EM, Bartrés-Faz D, Belleville S, Cantillon M,
839 Chetelat G, et al. Whitepaper: Defining and investigating cognitive reserve,
840 brain reserve, and brain maintenance. *Alzheimer's Dement*.
841 2018;(September):1–7. doi: 10.1016/j.jalz.2018.07.219.
- 842 5. Gajewski PD, Wild-Wall N, Schapkin SA, Erdmann U, Freude G, Falkenstein
843 M. Effects of aging and job demands on cognitive flexibility assessed by task
844 switching. *Biol Psychol*. 2010;85(2):187–99. doi:
845 10.1016/j.biopsych.2010.06.009.
- 846 6. Gu L, Chen J, Gao L, Shu H, Wang Z, Liu D, et al. Cognitive reserve
847 modulates attention processes in healthy elderly and amnestic mild cognitive
848 impairment: An event-related potential study. *Clin Neurophysiol*.
849 2018;129(1):198–207. doi: 10.1016/j.clinph.2017.10.030.

850 7. Ruiz-Contreras AE, Soria-Rodríguez G, Almeida-Rosas GA, García-Vaca
851 PA, Delgado-Herrera M, Méndez-Díaz M, et al. Low diversity and low
852 frequency of participation in leisure activities compromise working memory
853 efficiency in young adults. *Acta Psychol (Amst)*. 2012 Jan;139(1):91–6. doi:
854 10.1016/j.actpsy.2011.10.011.

855 8. Scarmeas N, Levy G, Tang MX, Manly J, Stern Y. Influence of leisure activity
856 on the incidence of Alzheimer's Disease. *Neurology*. 2001;57(12):2236–42.
857 doi: 10.1212/wnl.57.12.2236.

858 9. Speer ME, Soldan A. Cognitive reserve modulates ERPs associated with
859 verbal working memory in healthy younger and older adults. *Neurobiol Aging*.
860 2015 Mar;36(3):1424–34. doi: 10.1016/j.neurobiolaging.2014.12.025.

861 10. Wilson RS, Barnes LL, Bennett DA. Assessment of Lifetime Participation in
862 Cognitively Stimulating Activities. *J Clin Exp Neuropsychol*. 2003;25(5):634–
863 42. doi: 10.1076/jcen.25.5.634.14572.

864 11. Angel L, Fay S, Bouazzaoui B, Isingrini M. Individual differences in executive
865 functioning modulate age effects on the ERP correlates of retrieval success.
866 *Neuropsychologia*. 2010; 48(12): 3540–53. doi:
867 10.1016/j.neuropsychologia.2010.08.003.

868 12. Caffò AO, Lopez A, Spano G, Saracino G, Stasolla F, Ciriello G, et al. The
869 role of pre-morbid intelligence and cognitive reserve in predicting cognitive
870 efficiency in a sample of Italian elderly. *Aging Clin Exp Res*.
871 2016;28(6):1203–10. doi: 10.1007/s40520-016-0580-z.

872 13. Fritsch T, McClendon MJ, Smyth K a, Lerner AJ, Friedland RP, Larsen JD.
873 Cognitive functioning in healthy aging: the role of reserve and lifestyle factors

early in life. *Gerontologist*. 2007;47(3):307–22. doi: 10.1093/geront/47.3.307.

14. Le carret N, Lafont S, Mayo W, Fabrigoule C. The effect of education on cognitive performance and its implication for the constitution of the cognitive reserve. *Dev Neuropsychol*. 2003;23(3):317–337. doi: 10.1207/S15326942DN2303_1.

15. Luerding R, Gebel S, Gebel E-M, Schwab-Malek S, Weissert R. Influence of Formal Education on Cognitive Reserve in Patients with Multiple Sclerosis. *Front Neurol*. 2016;7(March):1–9. doi: 10.3389/fneur.2016.00046

16. Sumowski JF, Wylie GR, Chiaravalloti N, Deluca J. Intellectual enrichment lessens the effect of brain atrophy on learning and memory in multiple sclerosis. *Neurology*. 2010;74(24):1942–5. doi: 10.1212/WNL.0b013e3181e396be

17. Stern Y. An approach to studying the neural correlates of reserve. *Brain Imaging Behav*. 2016;11(2):410–6. doi: 10.1007/s11682-016-9566-x

18. Vasile C. Cognitive Reserve and Cortical Plasticity. *Procedia-Soc Behav Sci* [Internet]. 2013;78:601–4. doi: 10.1016/j.sbspro.2013.04.359.

19. Zihl J, Fink T, Pargeter F, Ziegler M, Bühner M. Cognitive reserve in young and old healthy subjects: differences and similarities in a testing-the-limits paradigm with DSST. *PLoS One*. 2014 Jan;9(1):e84590. doi: 10.1371/journal.pone.0084590.

20. Cabeza R, Daselaar SM, Dolcos F, Prince E, Budde M, Nyberg L. Task-independent and Task-specific Age Effects on Brain Activity during Working Memory , Visual Attention and Episodic Retrieval. 2004;(April):364–75. doi: 10.1093/cercor/bhg133.

898 21. Scarmeas N, Zarahn E, Anderson KE, Hilton J, Flynn J, Van Heertum RL, et
899 al. Cognitive reserve modulates functional brain responses during memory
900 tasks: a PET study in healthy young and elderly subjects. *Neuroimage*. 2003
901 Jul;19(3):1215–27. doi: 10.1016/s1053-8119(03)00074-0.

902 22. Stern Y, Habeck C, Moeller J, Scarmeas N, Anderson KE, Hilton HJ, et al.
903 Brain networks associated with cognitive reserve in healthy young and old
904 adults. *Cereb Cortex*. 2005 Apr;15(4):394–402. doi: [10.1093/cercor/bhh142](https://doi.org/10.1093/cercor/bhh142).

905 23. Stern Y, Zarahn E, Habeck C, Holtzer R, Rakitin BC, Kumar A, et al. A
906 common neural network for cognitive reserve in verbal and object working
907 memory in young but not old. *Cereb Cortex*. 2008 Apr;18(4):959–67. doi:
908 [10.1093/cercor/bhm134](https://doi.org/10.1093/cercor/bhm134).

909 24. Chillemi G, Scalera C, Terranova C, Calamuneri A, Buccafusca M, Dattola V,
910 et al. Cognitive processes and cognitive reserve in multiple sclerosis. *Arch
911 Ital Biol*. 2015;153:19–24. doi: 10.4449/aib.v153i1.3696.

912 25. Sandry J, Sumowski JF. Working Memory Mediates the Relationship
913 between Intellectual Enrichment and Long-Term Memory in Multiple
914 Sclerosis: An Exploratory Analysis of Cognitive Reserve. *J Int Neuropsychol
915 Soc*. 2014 Jul 14;20(8):1–5. doi: 10.1017/S1355617714000630.

916 26. Cabeza R. Hemispheric Asymmetry Reduction in Older Adults: The
917 HAROLD Model. *Psychol Aging*. 2002;17(1):85–100. doi: [10.1037/0882-7974.17.1.85](https://doi.org/10.1037/0882-7974.17.1.85).

918 27. Davis SW, Dennis NA, Daselaar SM, Fleck MS, Cabeza R. Qué PASA? the
919 posterior-anterior shift in aging. *Cereb Cortex*. 2008;18(5):1201–9. doi:
920 [10.1093/cercor/bhm155](https://doi.org/10.1093/cercor/bhm155).

922 28. Park DC, Reuter-Lorenz P. The Adaptive Brain: Aging and Neurocognitive
923 Scaffolding. *Annu Rev Psychol.* 2009;60:173–96. doi:
924 [10.1146/annurev.psych.59.103006.093656](https://doi.org/10.1146/annurev.psych.59.103006.093656).

925 29. Baxendale S, Heaney D, Rugg-Gunn F, Friedland D. Neuropsychological
926 outcomes following traumatic brain injury. *Pract Neurol.* 2019;0:1–7. doi:
927 [10.1136/practneurol-2018-002113](https://doi.org/10.1136/practneurol-2018-002113).

928 30. Reynoso-Alcántara V, Silva-Pereyra J, Fernández-Harmony T, Mondragón-
929 Maya A. Principales efectos de la reserva cognitiva sobre diversas
930 enfermedades: una revisión sistemática. *Psiquiatr Biológica.* 2018;(October).
931 doi: [10.1016/j.psiq.2018.02.005](https://doi.org/10.1016/j.psiq.2018.02.005)

932 31. Sundgren M, Wahlin Å, Maurex L, Brismar T. Event related potential and
933 response time give evidence for a physiological reserve in cognitive
934 functioning in relapsing-remitting multiple sclerosis. *J Neurol Sci.*
935 2015;356(1–2):107–12. doi: [10.1016/j.jns.2015.06.025](https://doi.org/10.1016/j.jns.2015.06.025)

936 32. Donchin E. Surprise!...Surprise? *Psychophysiology.* 1981;18(5): 493–513.
937 doi: [10.1111/j.1469-8986.1981.tb01815.x](https://doi.org/10.1111/j.1469-8986.1981.tb01815.x).

938 33. Polich J. Updating P300: An integrative theory of P3a and P3b. *Clin
939 Neurophysiol.* 2007;118(10):2128–48. doi: [10.1016/j.clinph.2007.04.019](https://doi.org/10.1016/j.clinph.2007.04.019).

940 34. Kok A. On the utility of P300 amplitude as a measure of processing capacity.
941 *Psychophysiology.* 2001;38:557–577. doi: [10.1017/S0048577201990559](https://doi.org/10.1017/S0048577201990559)

942 35. Polich J, Corey-Bloom J. Alzheimers Disease and P300: Review and
943 Evaluation of Task and Modality. *Curr Alzheimer Res.* 2005;2(5):515–25. doi:
944 [10.2174/156720505774932214](https://doi.org/10.2174/156720505774932214)

945 36. Chang Y-K, Huang C-J, Chen K-F, Hung T-M. Physical activity and working

946 memory in healthy older adults: An ERP study. *Psychophysiology*.
947 2013;50(11):1174–82. doi: 10.1111/psyp.12089

948 37. Buchmann J, Gierow W, Reis O, Haessler F. Intelligence moderates
949 impulsivity and attention in ADHD children: An ERP study using a go/nogo
950 paradigm. *World J Biol Psychiatry*. 2011;12(SUPPL. 1):35–9. doi:
951 10.3109/15622975.2011.600354.

952 38. Wronka E, Kaiser J, Coenen AML. Psychometric intelligence and P3 of the
953 event-related potentials studied with a 3-stimulus auditory oddball task.
954 *Neurosci Lett*. 2013;535(1):110–5. doi: 10.1016/j.neulet.2012.12.012

955 39. Stine-Morrow EA, Soederberg-Miller LM, Gagne DD, Hertzog C. Self-
956 Regulated Reading in Adulthood. *Psychol Aging*. 2008;23(1):131–53. doi:
957 10.1037/0882-7974.23.1.131.

958 40. Payne BR, Gao X, Noh SR, Anderson CJ, Stine-Morrow EA. The effects of
959 print exposure on sentence processing and memory in older adults:
960 Evidence for efficiency and reserve. *Neuropsychol Dev Cogn B Aging*
961 *Neuropsychol Cogn*. 2012;19(1–2):122–49. doi:
962 10.1080/13825585.2011.628376.

963 41. Alatorre-Cruz GC, Silva-Pereyra J, Fernández T, Rodríguez-Camacho MA,
964 Castro-Chavira SA, Sanchez-López J. Effects of Age and Working Memory
965 Load on Syntactic Processing : An Event-Related Potential Study. *Front Hum*
966 *Neurosci*. 2018;12(May):1–11. doi: 10.3389/fnhum.2018.00185.

967 42. Friederici AD. Towards a neural basis of auditory sentence processing.
968 *Trend Cogn Sci*. 2002;6(2):78–84. doi: [10.1016/s1364-6613\(00\)01839-8](https://doi.org/10.1016/s1364-6613(00)01839-8).

969 43. Molinaro N, Barber HA, Carreiras M. Grammatical agreement processing in

970 reading: ERP findings and future directions. *Cortex*. 2011;47(8):908–30. doi:
971 [10.1016/j.cortex.2011.02.019](https://doi.org/10.1016/j.cortex.2011.02.019)

972 44. Barber H, Carreiras M. Grammatical Gender and Number Agreement in
973 Spanish: An ERP Comparison. *J Cogn Neurosci*. 2005;17(1):137–53. doi:
974 [10.1162/0898929052880101](https://doi.org/10.1162/0898929052880101)

975 45. Barulli D, Stern Y. Efficiency, capacity, compensation, maintenance,
976 plasticity: emerging concepts in cognitive reserve. *Trends Cogn Sci*.
977 2013;17(10):502–9. doi: [10.1016/j.tics.2013.08.012](https://doi.org/10.1016/j.tics.2013.08.012).

978 46. Farage MA, Osborn TW, MacLean AB. Cognitive, sensory, and emotional
979 changes associated with the menstrual cycle: A review. *Arch Gynecol
980 Obstet*. 2008;278(4):299–307. doi: [10.1007/s00404-008-0708-2](https://doi.org/10.1007/s00404-008-0708-2).

981 47. Instituto Nacional de Estadística y Geografía. INEGI. Sistema nacional de
982 clasificación de ocupaciones SINCO. 2011. 180 p.

983 48. Wechsler D. Escala de Inteligencia para Adultos-IV (WAIS-IV). México: El
984 Manual Moderno; 2014.

985 49. Dotson VM, Schinka JA, Brown LM, Mortimer JA, Borenstein AR.
986 Characteristics of the Florida Cognitive Activities Scale in Older African
987 Americans. *Assessment*. 2009;15(1):72–7. doi: [10.1177/1073191107307509](https://doi.org/10.1177/1073191107307509).

988 50. Nucci M, Mapelli D, Mondini S. Cognitive Reserve Index questionnaire
989 (CRIq): a new instrument for measuring cognitive reserve. *Aging Clin Exp
990 Res*. 2012;24(3):218–26. doi: [10.3275/7800](https://doi.org/10.3275/7800)

991 51. Valenzuela M, Sachdev P. Assessment of complex mental activity across the
992 lifespan: development of the Lifetime of Experiences Questionnaire (LEQ).
993 *Psychol Med*. 2007;37(7):1015–25. doi: [10.1017/S003329170600938X](https://doi.org/10.1017/S003329170600938X).

994 52. Luck SJ. An Introduction to the Event-Related Potentials Technique. Second
995 edit. United States: MIT Press; 2014.

996 53. Pascual-Marqui RD, Lehmann D, Koukkou M, Kochi K, Anderer P, Saletu B,
997 et al. Assessing interactions in the brain with exact low-resolution
998 electromagnetic tomography Assessing interactions in the brain with exact
999 low-resolution electromagnetic tomography. *Philos Trans A Math Phys Eng*
1000 *Sci.* 2011;369(1952):3768–84. doi: 10.1098/rsta.2011.0081.

1001 54. Benjamini Y, Hochberg Y. Benjamini Y, Hochberg Y. Controlling the false
1002 discovery rate: a practical and powerful approach to multiple testing. *J R Stat*
1003 *Soc B.* 1995;57(1):289–300. doi: 10.2307/2346101.

1004 55. Opdebeeck C, Martyr A, Clare L. Cognitive reserve and cognitive function in
1005 healthy older people: A meta-analysis. *Neuropsychol Dev Cogn B Aging*
1006 *Neuropsychol Cogn* 2016;23(1):40–60. doi:
1007 10.1080/13825585.2015.1041450.

1008 56. Roldán-Tapia L, García J, Cánovas R, León I. Cognitive reserve, age, and
1009 their relation to attentional and executive functions. *Appl Neuropsychol Adult.*
1010 2012 Jan;19(1):2–8. doi: 10.1080/09084282.2011.595458.

1011 57. Soto-Añari M, Flores-Valdivia G, Fernández-Guinea S. Nivel de lectura como
1012 medida de reserva cognitiva en adultos mayores. *Rev Neurol.*
1013 2013;2(56):79–85. doi: 10.33588/rn.5602.2012402.

1014 58. Tucker-Drob EM, Johnson KE, Jones RN. The Cognitive Reserve
1015 Hypothesis: A Longitudinal Examination of Age-Associated Declines in
1016 Reasoning and Processing Speed. *Dev Psychol.* 2009;45(2):431–46.
1017 doi:10.1037/a0014012.

1018 59. Friederici AD. The time course of syntactic activation during language
1019 processing: A model based on neuropsychological and neurophysiological
1020 data. *Brain Lan.* 1995; 50(3):259–81 doi: 10.1006/brln.1995.1048.

1021 60. Kolk HHJ, Chwilla DJ, Herten M Van, Oor PJW. Structure and limited
1022 capacity in verbal working memory: A study with event-related potentials.
1023 2003;85(1):1–36 doi: 10.1016/s0093-934x(02)00548-5.

1024 61. Kluender R, Kutas M. Bridging the Gap: Evidence from ERPs on the
1025 Processing of Unbounded Dependencies. *J Cogn Neurosci.* 1993;5(2):196–
1026 214. doi: 10.1162/jocn.1993.5.2.196.

1027 62. Habeck C, Hilton HJ, Zarahn E, Flynn J, Moeller J, Stern Y. Relation of
1028 cognitive reserve and task performance to expression of regional covariance
1029 networks in an event-related fMRI study of nonverbal memory. *Neuroimage.*
1030 2003 Nov;20(3):1723–33. doi: [10.1016/j.neuroimage.2003.07.032](https://doi.org/10.1016/j.neuroimage.2003.07.032).

1031 63. Stern Y. Cognitive reserve. *Neuropsychologia.* 2009;47(10):2015–28. doi:
1032 [10.1016/j.neuropsychologia.2009.03.004](https://doi.org/10.1016/j.neuropsychologia.2009.03.004).

1033 64. Hindle JV., Martyr A, Clare L. Cognitive reserve in Parkinson's disease: A
1034 systematic review and meta-analysis. *Parkinsonism Relat Disord.*
1035 2014;20(1):1–7. doi: 10.1016/j.parkreldis.2013.08.010.

1036 65. Stern Y, Gurland B, Tatemichi TK, Tang MX, Wilder D, Mayeux R. Influence
1037 of education and occupation on the incidence of Alzheimer's disease. *JAMA.*
1038 1994;271(13):1004–10. doi: 10.1001/jama.1994.03510370056032.

1039 66. Springer MV, McIntosh AR, Winocur G, Grady CL. The relation between
1040 brain activity during memory tasks and years of education in young and older
1041 adults. *Neuropsychology.* 2005;19(2):181–92. doi: [10.1037/0894-](https://doi.org/10.1037/0894-)

1042 [4105.19.2.181.](https://doi.org/10.1101/2019.12.30.890830)

1043

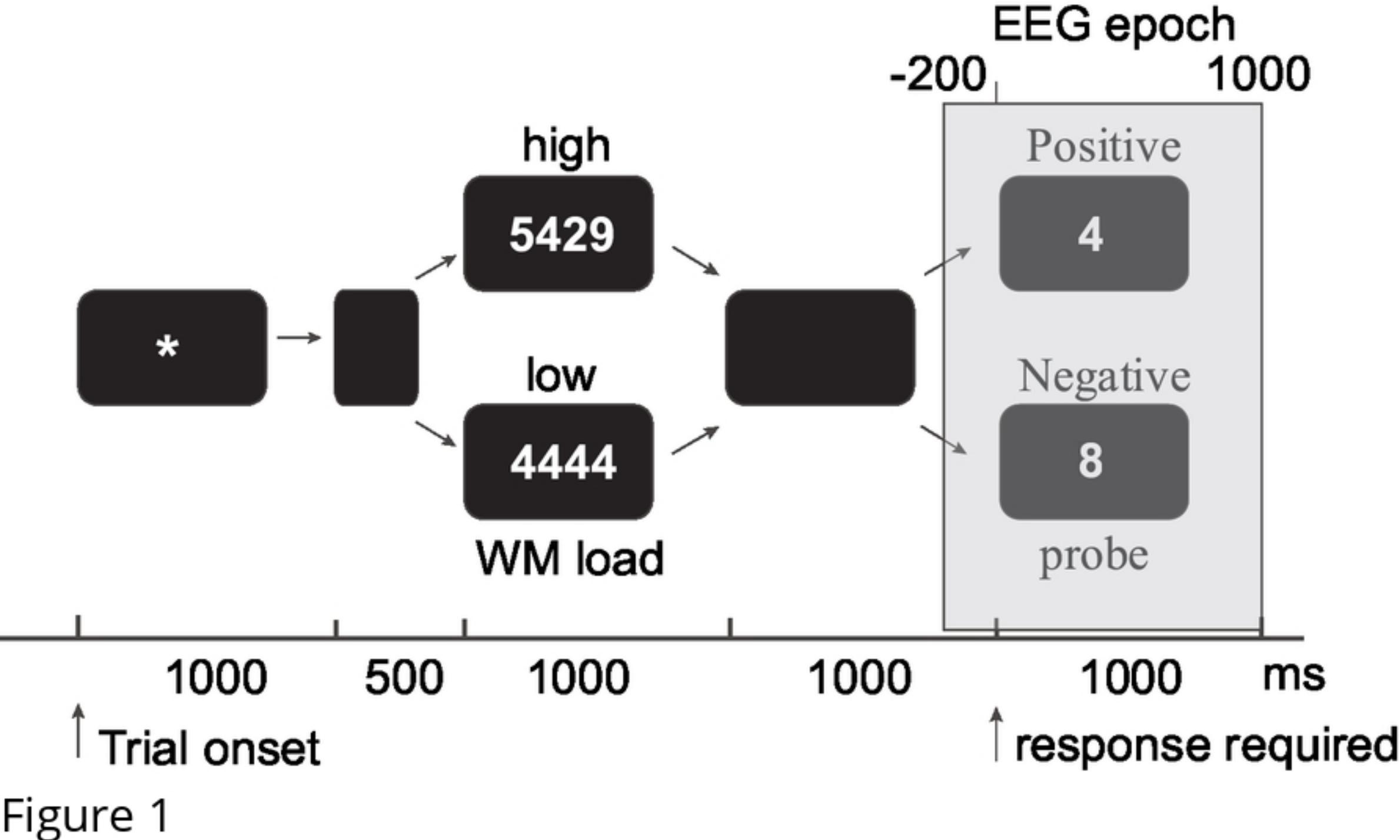


Figure 1

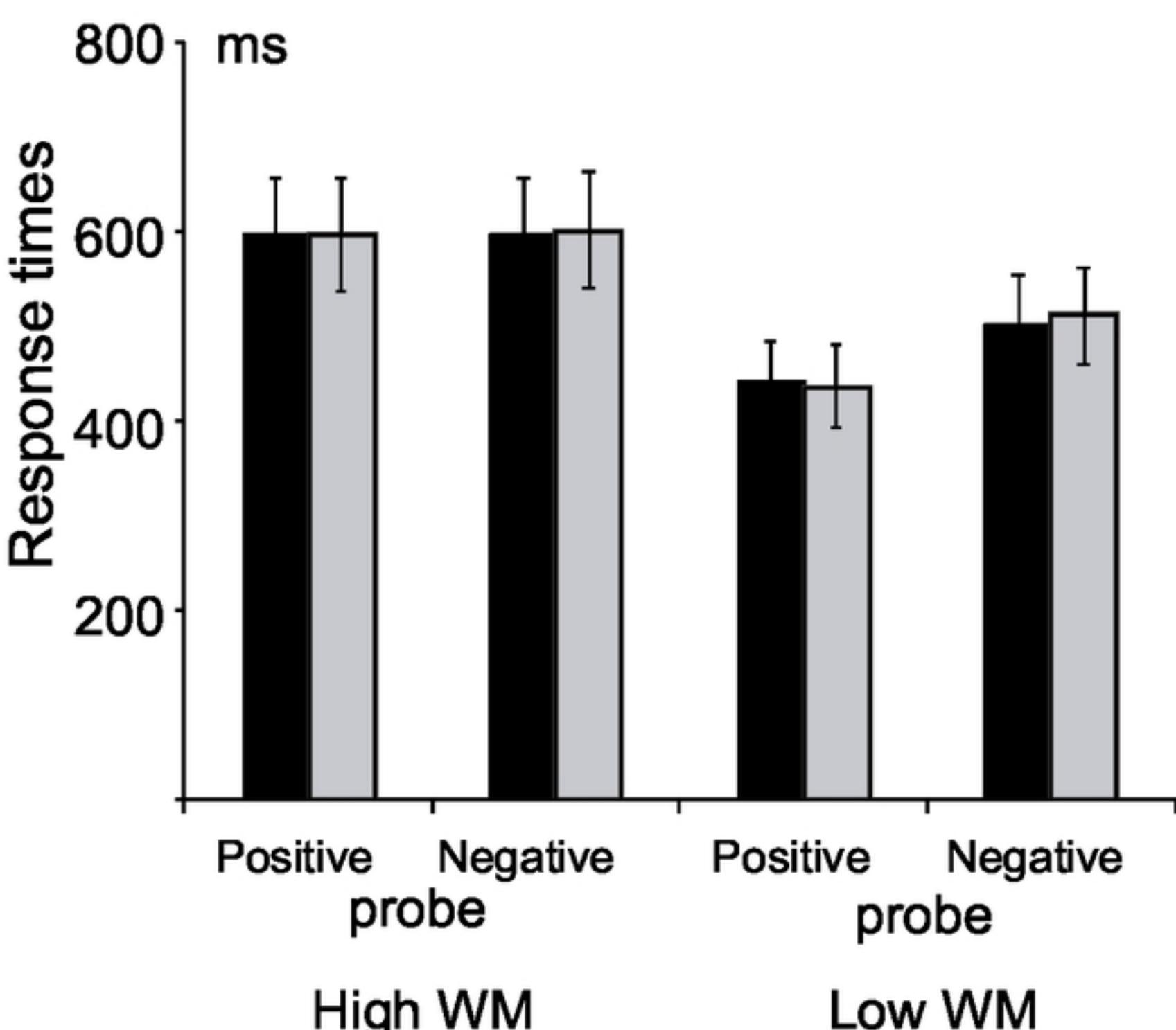
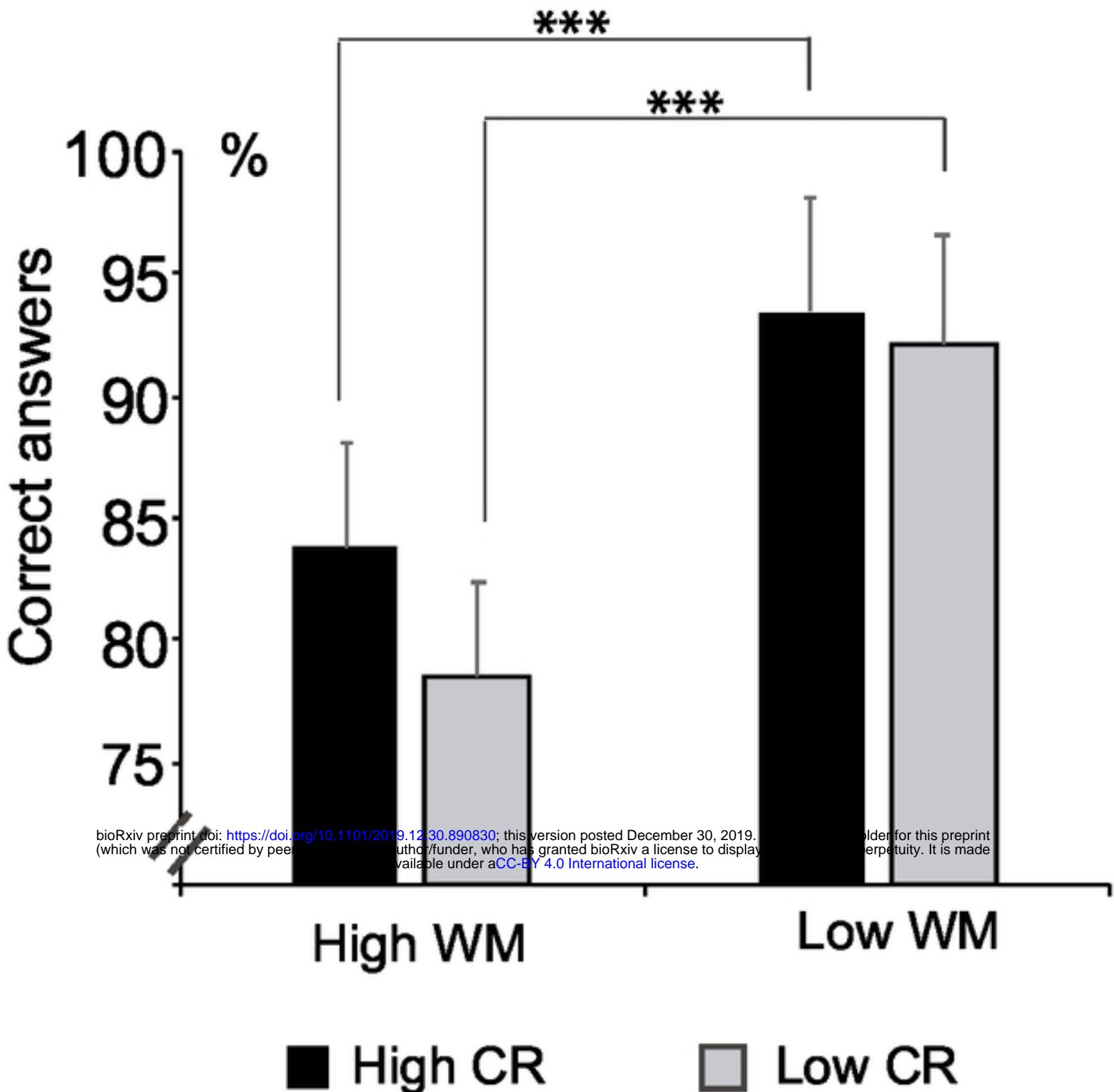



Figure 2

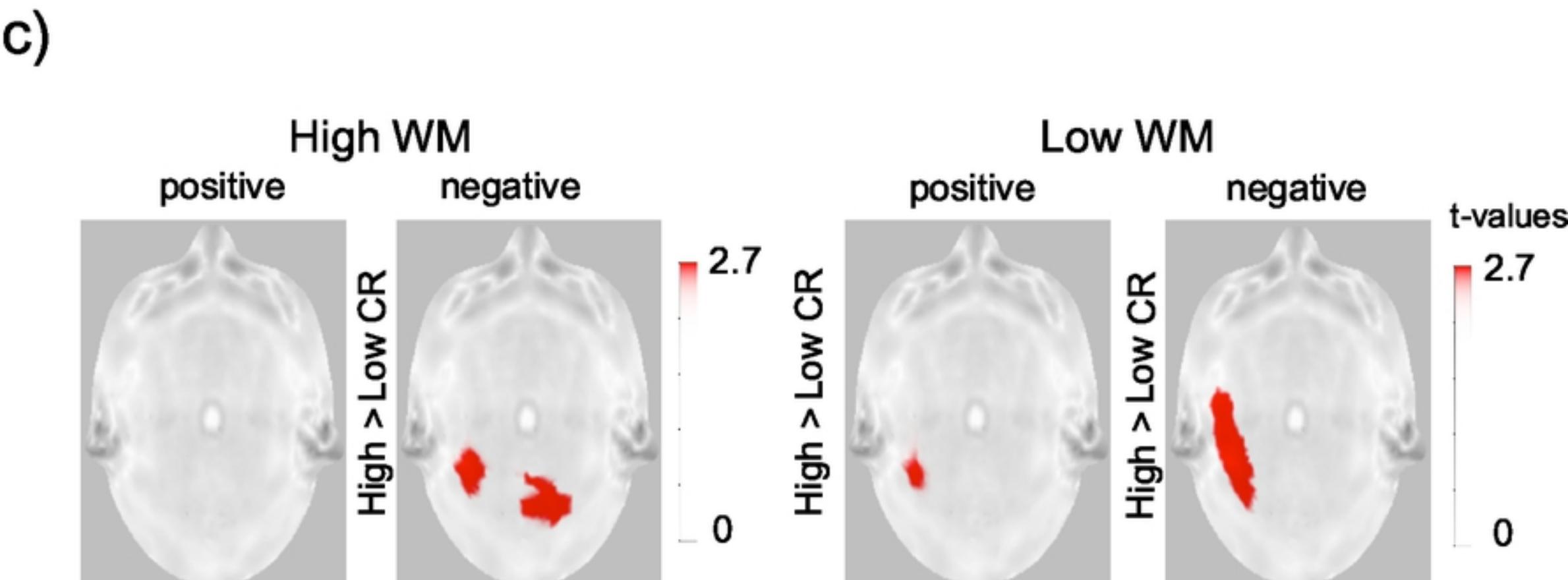
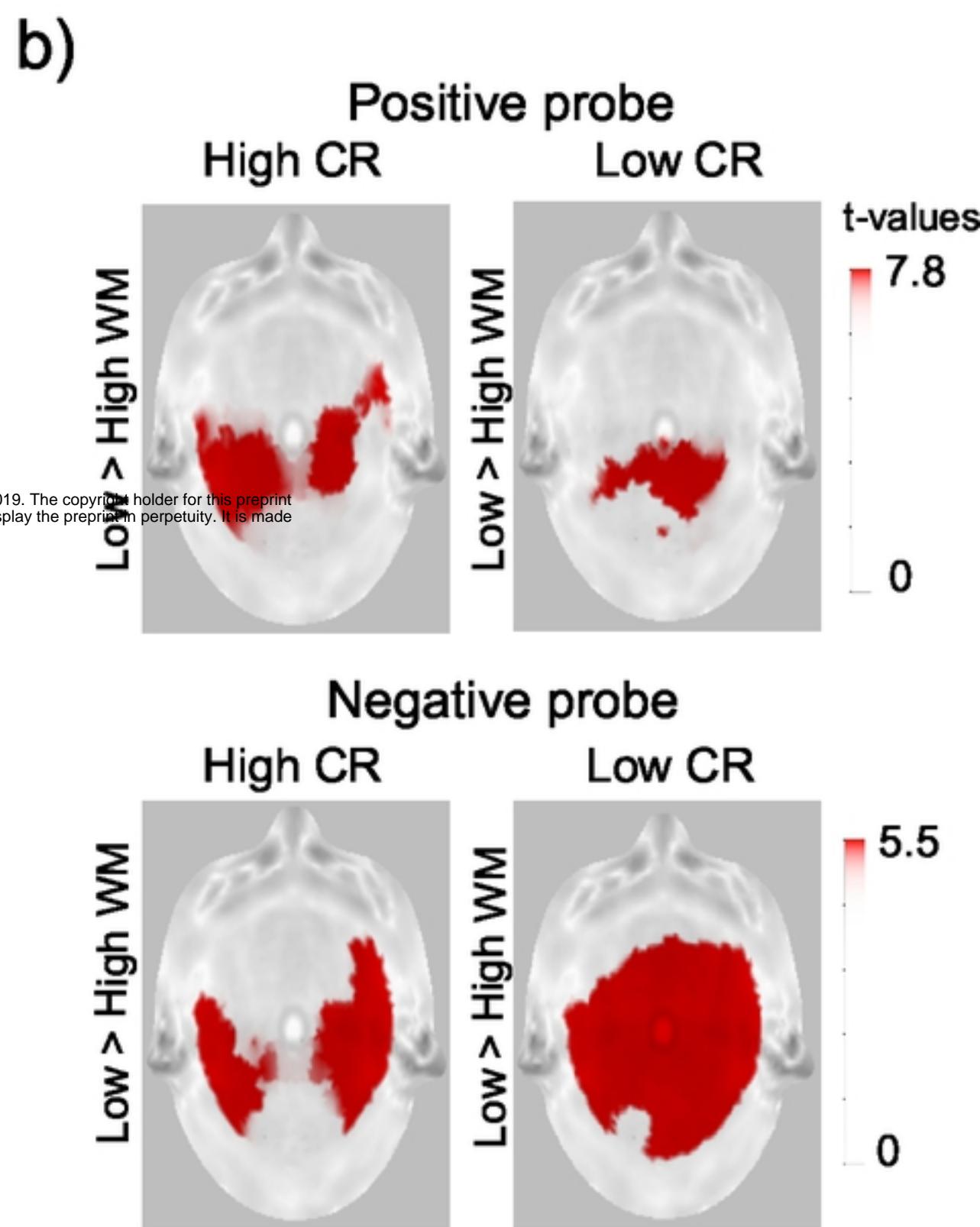
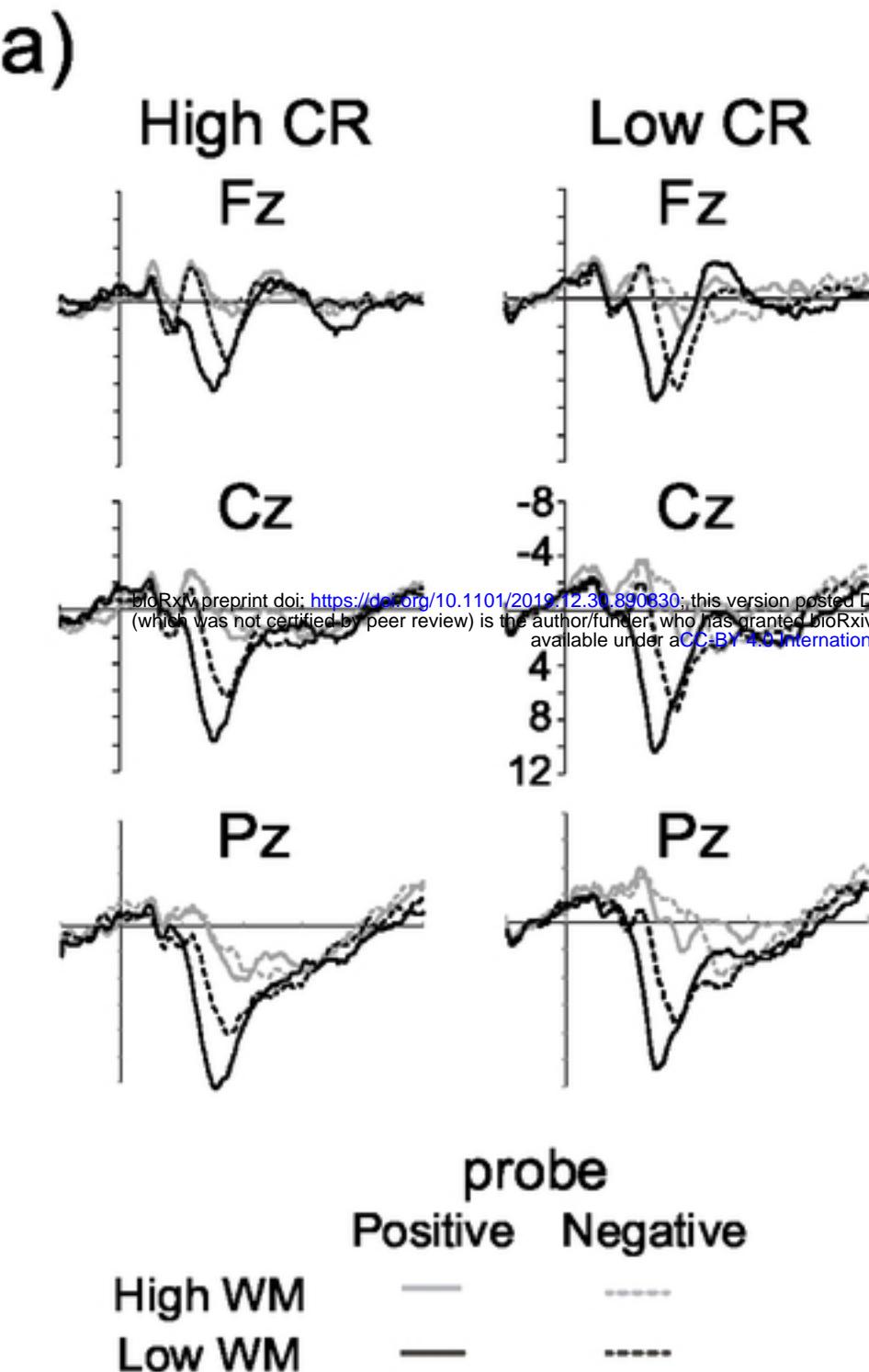
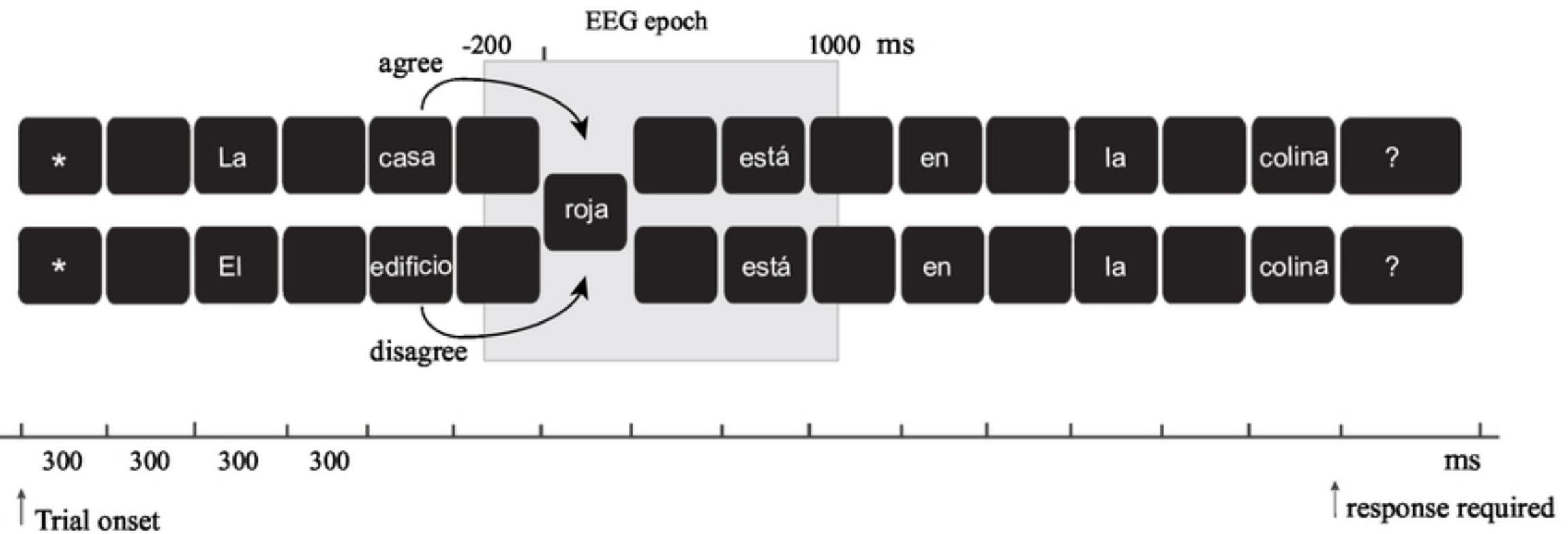





Figure 3

Low WM load

High WM load

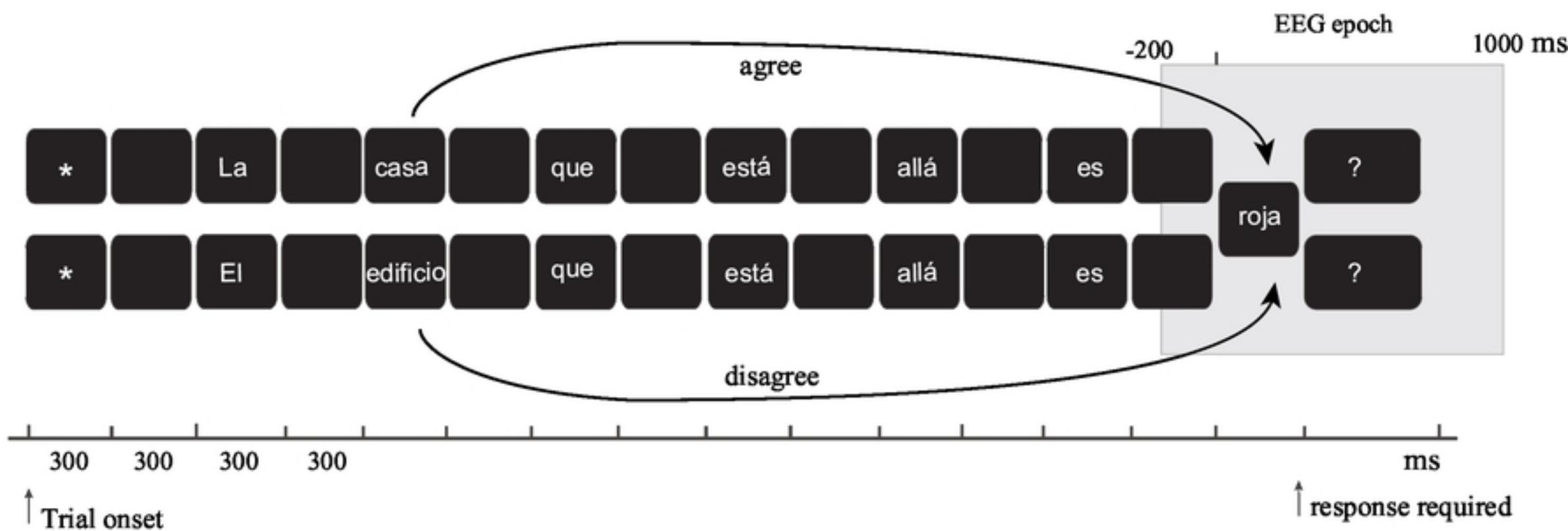


Figure 4

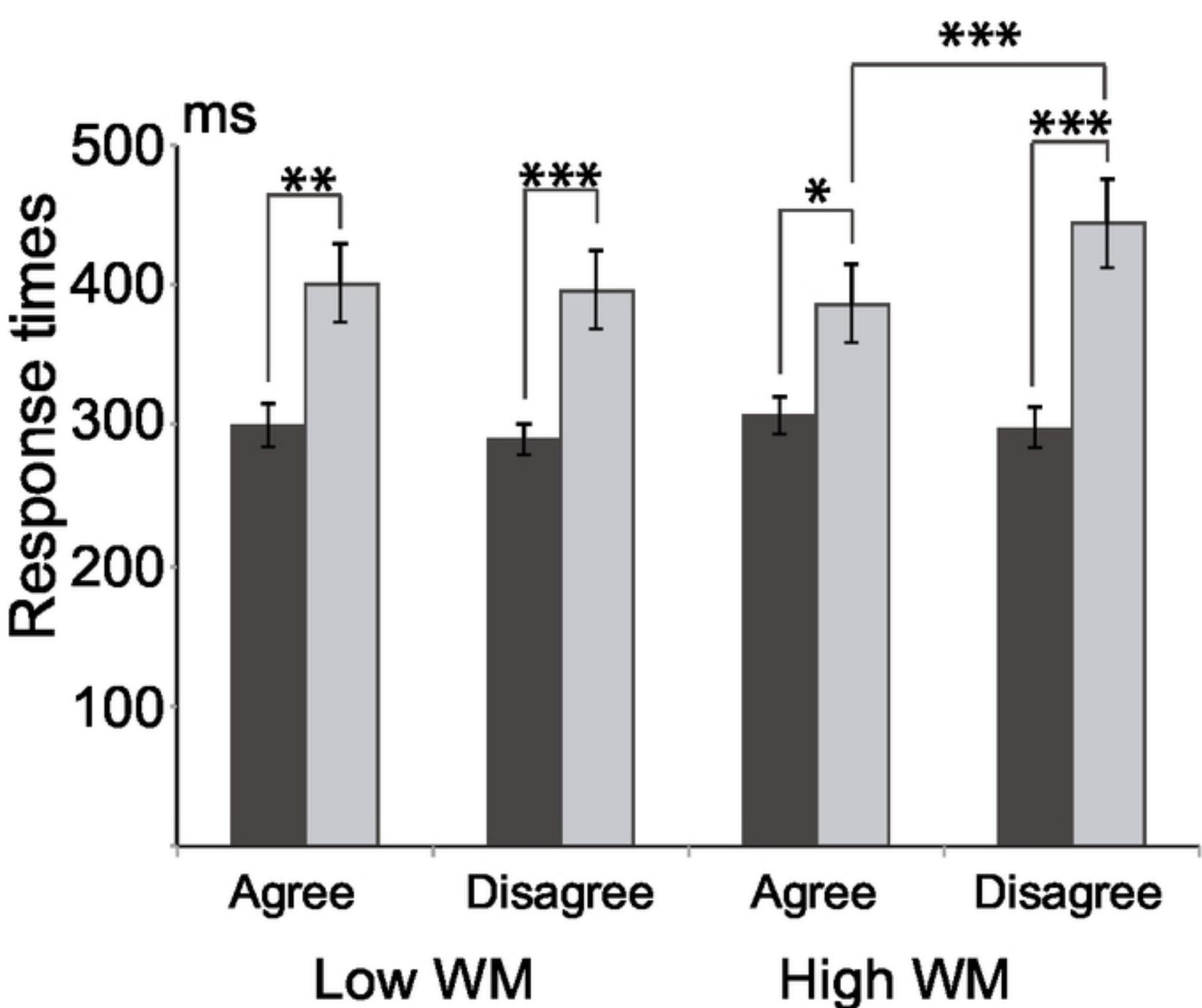
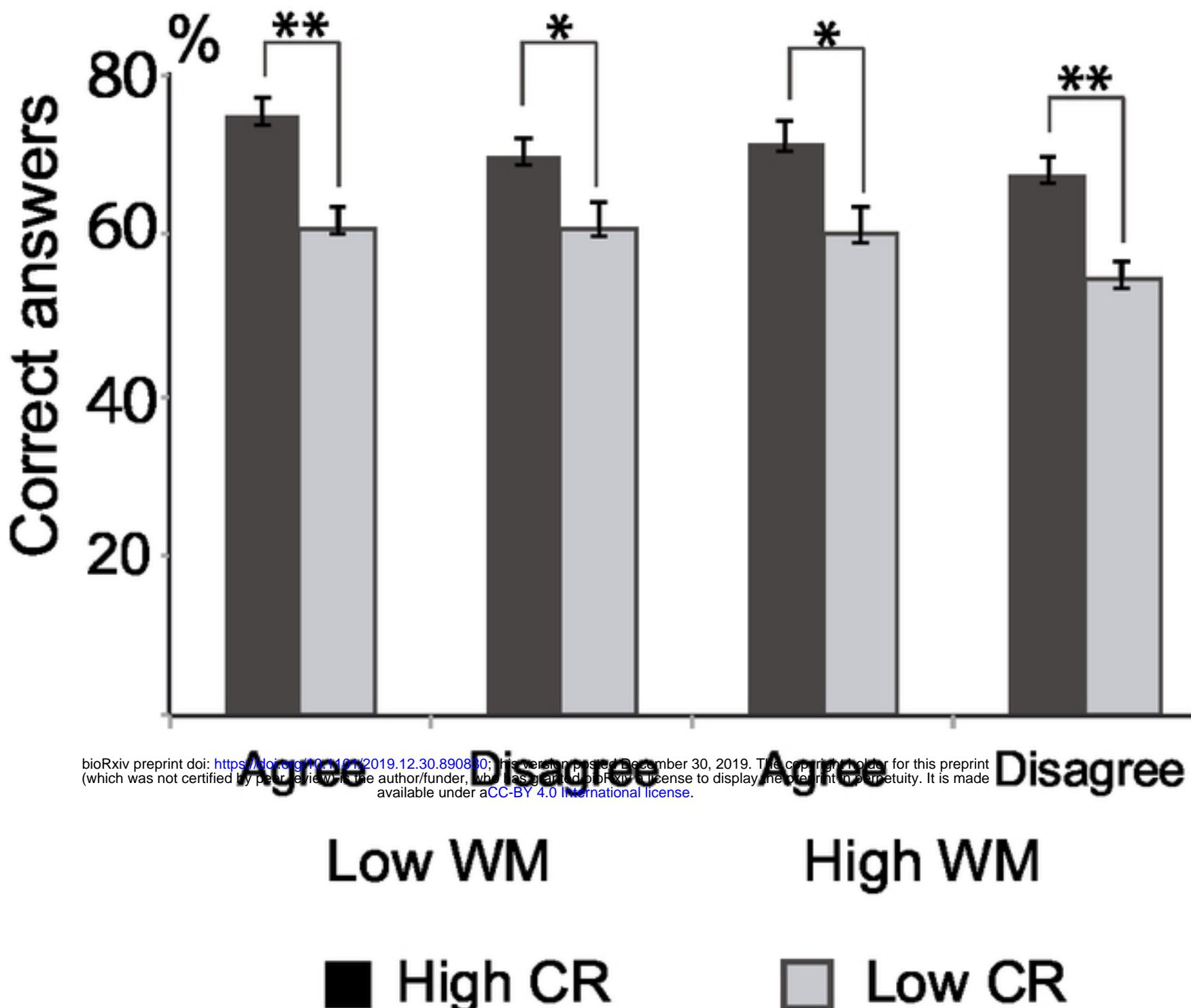
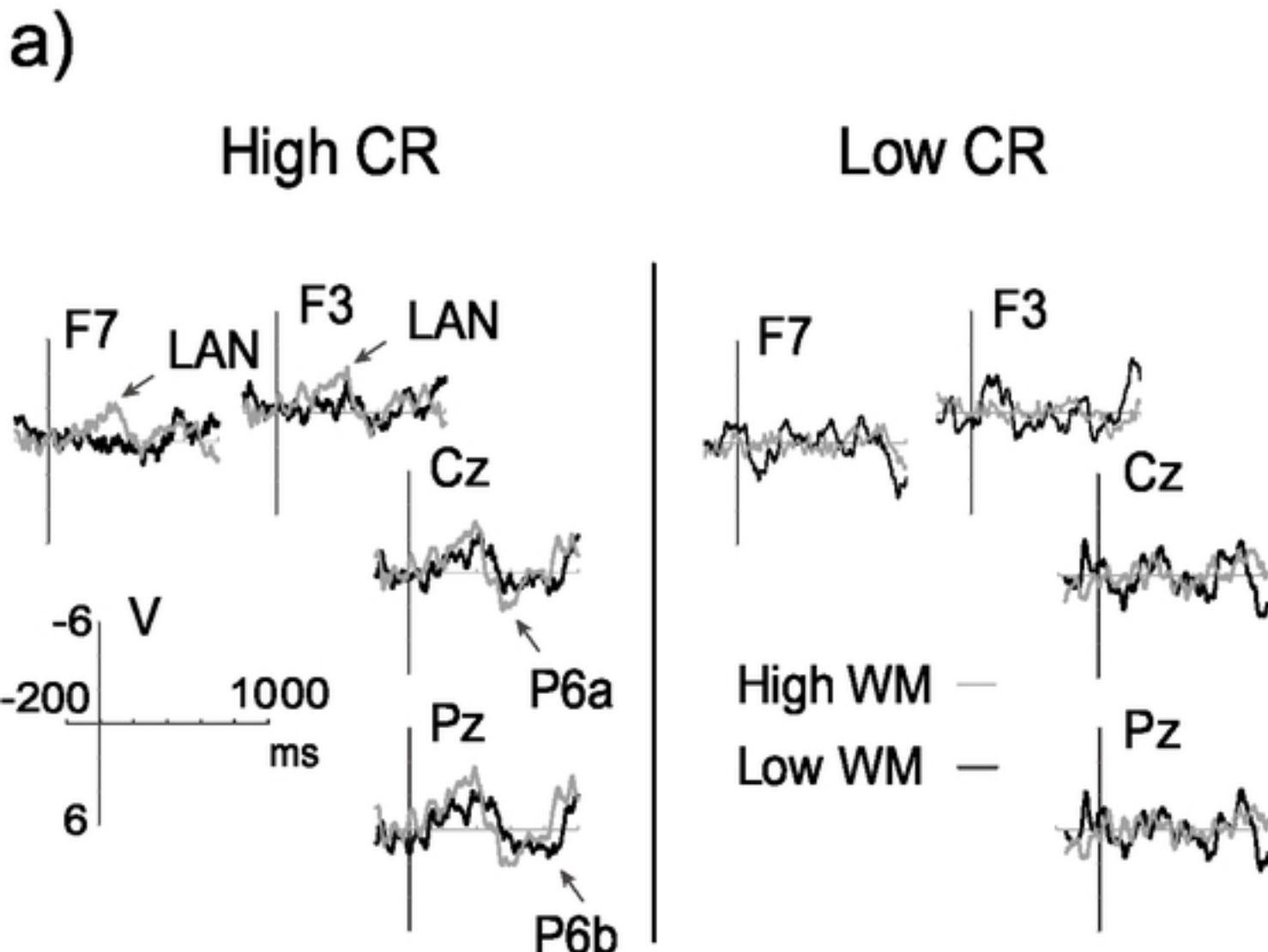
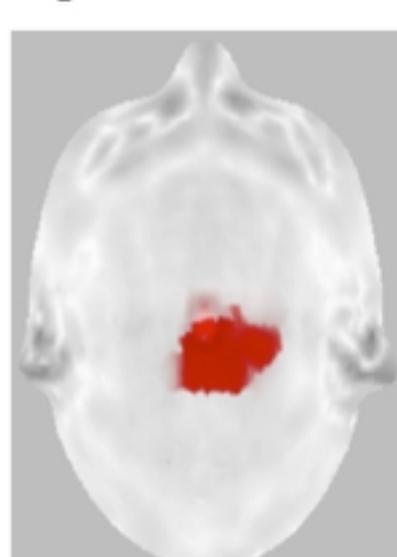





Figure 5

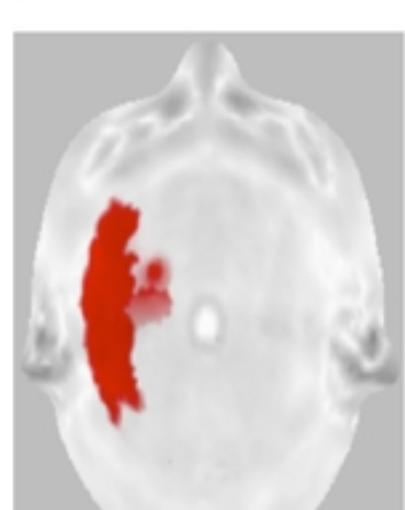
bioRxiv preprint doi: <https://doi.org/10.1101/2019.12.30.890830>; this version posted December 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.


High WM

LAN

P600a

High CR > Low CR



c)

High CR

LAN

High WM > Low WM

P600a

High WM < Low WM

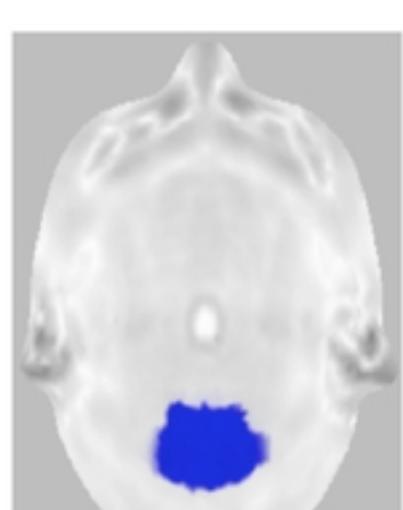


Figure 6