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Abstract

Several new technologies have recently emerged promising new MEG systems in which the
sensors can be placed close to the scalp. One such technology, Optically Pumped
Magnetometry MEG (OP-MEG) allows for a scalp mounted flexible system that provides field
measurements within mm of the scalp surface. A question that arises in developing on-scalp
systems, such as OP-MEG scanners, is: how many sensors are necessary to achieve adequate
performance/spatial discrimination? There are many factors to consider in answering this
qguestion such as the signal to noise ratio (SNR), the locations and depths of the sources of
interest, the density of spatial sampling, sensor gain errors (due to interference, subject
movement, cross-talk, etc.) and, of course, the desired spatial discrimination. In this paper,
we provide simulations which show the impact these factors have on designing sensor arrays
for wearable MEG. While OP-MEG has the potential to provide high information content at
dense spatial samplings, we find that adequate spatial discrimination of sources (<1cm) can
be achieved with relatively few sensors (<100) at coarse spatial samplings (~30mm) at high
SNR. Comparable discrimination for traditional cryogenic systems require far more channels
by these same metrics. Finally we show that sensor gain errors have the greatest impact on
discrimination between deep sources at high SNR.

1. Introduction

Magnetoencephalography (MEG) has become a vital tool for studying human brain function
in both basic and clinical settings (Bagic, Bowyer, Kirsch, Funke, & Burgess, 2017; Baillet, 2017;
Matti S Hdmaldinen, Hari, llmoniemi, Knuutila, & Lounasmaa, 1993; Rampp et al., 2019).
Simulation studies show that MEG system performance continues to improve with an
increase in channel count as long as channel noise is uncorrelated (Jiri Vrba & Robinson,
2002). There is however a balance between system cost and channel redundancy. In the last
20 years the design of whole-head Superconducting Quantum Interference Device (SQUID)
based systems stabilized to around 300 channels. This figure was arrived at after a great deal
of early work to quantify the problem at hand (Ahonen et al., 1993; Kemppainen & IImoniemi,
1989; J. Vrba, Robinson, & McCubbin, 2004; Jiri Vrba & Robinson, 2002). Many of these design
considerations assume perfect knowledge of the underlying current distribution, but there is
also a complex interplay between the inversion assumptions, forward model, sampling
density, and the geometry of the source space (Ahonen et al.,, 1993; Barnes, Hillebrand,
Fawcett, & Singh, 2004; Brookes et al., 2010; Hauk, Stenroos, & Treder, 2019; Hedrich,


https://doi.org/10.1101/2019.12.29.890426
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.29.890426; this version posted December 30, 2019. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Pellegrino, Kobayashi, Lina, & Grova, 2017; A. Hillebrand & Barnes, 2002; livanainen,
Stenroos, & Parkkonen, 2017; Sekihara, Sahani, & Nagarajan, 2008).

These issues have come back into focus with emergence of new MEG system technologies.
These include the advent of high critical temperature SQUIDs (high Tc- SQUIDS), nitrogen
vacancy magnetometers and optically pumped magnetometers (OPMs) (Allred, Lyman,
Kornack, & Romalis, 2002; Faley et al., 2013; Hingant et al., 2014; Osborne, Orton, Alem, &
Shah, 2018; Schneiderman, 2014; Tierney et al., 2019). These new sensors allow for the
construction of wearable arrays that offer the flexibility to image human brain function during
subject movement (Boto et al., 2018; Roberts et al., 2019; Tierney et al., 2018), with the
crucial addition of field nulling coils (Holmes et al., 2018, 2019; livanainen, Zetter, Gron,
Hakkarainen, & Parkkonen, 2019).

These sensors are also typically placed much closer to the scalp (a few mm) than traditional
MEG sensors, resulting in a 3-5 fold increase in signal (Boto, Meyer, et al., 2016; livanainen et
al., 2017). In principle, this should offer the capability of resolving neuronal activity with a
higher spatial discrimination as smaller spatial wavelengths can potentially be sampled
(Ahonen et al.,, 1993; Boto et al.,, 2019). This motivates sampling more densely to take
advantage of this extra information, as has recently been suggested in a study of visual
gamma using optically pumped magnetometers (livanainen, Zetter, & Parkkonen, 2019) and
in a theoretical paper on spatial sampling (livanainen, Makinen, Zetter, et al., 2019) which
suggests that on-scalp systems would benefit from 3 times as many sensors as off-scalp
systems to maximise spatial discrimination.

Here we argue that for a wide variety of neuroscience applications maximising information
content or spatial discrimination, although desirable, is not necessary. For instance, in
paediatric epilepsy surgery, a crucial clinical application of MEG (De Tiége et al., 2012; Doss,
Zhang, Risse, & Dickens, 2009; Englot et al., 2015; Rosenow & Liiders, 2001; Schneider et al.,
2013; Sutherling, Mamelak, Thyerlei, & Maleeva, 2008) a large percentage of brain volume
(~5-10%, equivalent to a 2-3cm radius sphere) may be resected (Centeno et al., 2017). The
clinical question does not require the spatial discrimination between sources at a millimetre
scale. In the case of basic neuroscience applications that average results across subjects have
their spatial discrimination limited by the functional and anatomical variability that exists
between subjects (Aquino et al., 2019; Devlin & Poldrack, 2007; Geyer & Turner, 2013;
Sabuncu et al.,, 2010). Furthermore, in studies which investigate electrophysiological
functional connectomes, the spatial discrimination required may be on the scale of 1-2
centimetres, as a single time course representing an entire atlas-defined parcel is often
utilised (O’Neill et al., 2018). Rather than strive to maximize spatial discrimination or
information content, an alternative question is “given a desired discrimination what is the
sampling density/ sensor number | require?” We approach the question of discrimination in
a statistical framework by asking “at which sensor density one is able to confidently (p<0.05)
distinguish between two competing source models” (Meyer et al., 2017a; R.N. Henson, J.
Mattout, C. Phillips, & K.J. Friston, 2009; Troebinger, Lépez, Lutti, Bestmann, & Barnes, 2014).
By adopting this approach we can design MEG arrays around a given scientific question (or
spatial discrimination) and therefore minimize channel count.
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Unlike SQUID based systems, where the feedback electronics maintains a constant linear
relationship to applied flux optically pumped magnetometers are particularly vulnerable to
external factors which give rise to a change in their gain. Perhaps the most pernicious of these
errors is due to the inherent nonlinear response of the sensor (Tierney et al., 2019). When
operating in the spin exchange relaxation Free (SERF) regime these sensors are only linear
within a few nT of zero field (Boto et al., 2018). These gain errors can be caused by subject
movement through a non-zero background field or by the change in the ambient magnetic
field over time (Holmes et al., 2019; livanainen, Zetter, Gron, et al., 2019). These issues would
typically require active shielding in order to be minimized. Another issue is how the sensor
interact with each other in multichannel systems. On-board coils that produce magnetic fields
for field zeroing or amplitude modulation (Cohen-Tannoudji, Dupont-Roc, Haroche, & Lalog,
1970; Osborne et al., 2018) may change the gain of a nearby sensor. This problem is static (if
the sensors do not move relative to one another) and deterministic but assumes that a
suitable calibration procedure is in place to correct for these issues.

The paper proceeds as follows. First we outline the model comparison framework and the
competing models used to define spatial discrimination. We examine these discrimination
estimates for different sensor numbers under different SNR conditions for deep and shallow
dipolar sources using on-scalp sensors. We use the same methods to investigate optimal
cryogenic sensors layouts and show, in accord with previous studies (Boto, Bowtell, et al.,
2016), that comparable discrimination for on-scalp sensors is achievable with fewer sensors.
Finally we examine the impact of sensor gain error (Boto et al., 2018; livanainen, Zetter, Gron,
et al., 2019; Tierney et al., 2019) on discrimination. The conclusion is that for typical cognitive
neuroscience or clinical requirements of 1cm discrimination, between 50-100 on-scalp
sensors are required and that sensor gain errors have the greatest impact when the task is to
distinguish between proximal deep sources.

2. Methods
2.1 Model comparison and spatial discrimination

Here we define a metric of spatial discrimination as the Euclidian distance at which we can
confidently (p<0.05) distinguish between the magnetic field patterns generated by two
sources on the cortical mesh. We use model comparison to compare data from these source
models in terms of their variational free energy (Friston, Mattout, Trujillo-Barreto, Ashburner,
& Penny, 2007). The method has 4 steps that are described graphically in Figure 1: 1) A source
location is used to generate a single dataset. 2) Different generative models of the same data
are proposed. The “base model” includes a source and all vertices within 20 mm of the source
(top-left panel figure 1). All other models do not include the source (or the lead-field elements
mapping sensors to the simulated location) and any potential sources (or lead-field mappings)
within a specified radius. This radius (excluding the lead-field mappings from sensors to the
true source and its neighbours) is gradually increased in 1mm steps (top panels figure 1). 3)
Each candidate model is inverted (using the limited source space) to explain the source-
generated dataset and a Free energy (or log model evidence) value is obtained. Importantly,
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only the base-model includes the generating source. 4) As the data remain the same we can
compare the models used to describe the data probabilistically. The free energy difference
between any two models being how likely (on log scale) one model is over the other. The ring
model that is 20 times (or log difference of 3) less likely than the base model defines the
spatial discrimination of the array. Similar approaches have been used elsewhere to define
the discriminability of different hippocampal (Meyer et al., 2017a) and cortical mesh models.
A more thorough introduction to the use of free energy in source inversion is given elsewhere
(Lopez, Litvak, Espinosa, Friston, & Barnes, 2014).
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Figure 1. Model comparison and spatial discrimination. Different forward models are created
that map to brain regions that are progressively more distant to the true source of the brain
activity (signified in orange). A 2D representation is provided with the source in black and the
candidate models in orange (the contents of the lead field matrix). We then reconstruct the
simulated data onto all cortical models. Each fit has an associated model evidence or free
energy value. We look for the model (ring radius from the true source) with a log free energy
of 3 greater than the base model, indicating that we can confidently (p < 0.05) distinguish
between the two.

2.2 Array Design

We use a point packing algorithm to position sensors on the scalp surface at increasing
densities (e.g. 20, 15, 10 mm separation). There are 5 steps to the algorithm and the approach
is depicted graphically in Figure 2. 1) Initially the bounding box of the surface is subdivided
into squares of equal area with an edge length equal to the desired sampling density. 2) The
corners of the squares are then projected onto the surface to initialise the algorithm at
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approximately the correct sampling density. 3) In the optimisation stage, at each loop
iteration, a sensor is chosen at random and moved to a neighbouring vertex if this brings the
sampling density closer to the target sampling density. 4) If there are any vertices on the
surface that are farther from the nearest sensor than the target spacing, a sensor is added to
that vertex. 5) This process is repeated for a large (~10,000) number of iterations.
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Figure 2. Algorithm for sensor placement. Initially the bounding box of the surface is
subdivided into squares of edge length equal to the desired sampling density (panel 2). These
points are then projected onto the surface to initialise the algorithm (panel 3). In the
optimisation stage, at each loop iteration, a sensor is chosen at random (panel 4) and moved
to a neighbouring vertex if the movement brings the observed sampling density closer to the
target sampling denisty (panels 5, 6). This process is then repeated.

2.3.1 The effect of SNR, depth and spatial sampling on spatial discrimination

We create 50 different arrays ranging in sampling density from 10mm to 60mm sampling
density. The code required to create these arrays is available via GitHub
(https://github.com/tierneytim/OPM).

We simulate MEG data as a sine wave with 10 Hz frequency. The SNR of the response was
manipulated by changing the source amplitude from 1nAm to 10nAm to 100nAm assuming a
100ft noise standard deviation (uncorrelated across sensors) in all cases (corresponding to a
10 fT/v/Hz noise floor in 100 Hz bandwidth). The cortical surface normal is used to constrain
the orientation of the source. The forward model was the Nolte single shell model (Nolte,
2003). There were 40 sources included in the simulation. The locations of the simulated
sources were chosen to vary in depth and location across the whole brain. To meet this aim
we selected the 20 deepest sources and the 20 most superficial sources in order to study the
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interaction, of depth, sampling density and SNR. To ensure the sources varied in position
around the brain we ensured that no more than 1 source from each AAL region (Tzourio-
Mazoyer et al., 2002) was chosen. The method of source inversion was an Empirical Bayesian
Beamformer (Belardinelli, Ortiz, Barnes, Noppeney, & Preissl, 2012) as implemented in
SPM12 (https://www.fil.ion.ucl.ac.uk/spm/). This method has been used in a similar context with
real data to distinguish between models of cortical anatomy (Lépez, Valencia, Flandin, Penny,
& Barnes, 2017) and models with missing or displaced hippocampal anatomy (Tzovara et al., 2019).
In order to relate our discrimination metrics to conventional cryogenic systems we used the
same metrics to look at sensor arrays displaced 20mm from the scalp surface.

2.3.2 The effect of gain changes on spatial discrimination

The gain errors were assumed to unrelated for each sensor and drawn from a normal
distribution of mean 0 and standard deviation 1%, 2.5% and 10% of the nominal gain. We
examine this effect across the three SNR levels which are set by fixing the source level currents
(InAm, 10nAm, and 100nAm) over the 40 brain regions varying in depth and location.

3. Results
3.1 Depth, SNR, spatial sampling and spatial discrimination: on scalp and off scalp

The results of simulations described in section 2.3.1 are graphically represented in Figure 3.
The black contour lines indicate the point at which nearby sources can be discriminated for
each candidate array. For example, for shallow sources (left column) at moderate SNR (middle
row) the ability to discriminate sources at less than 5mm, reading from the F=3 (or p<0.05)
contour line) would require> 200 channels (spatial sampling 20mm). However, if one wished
to discriminate sources at 10mm (for the same moderate SNR at approximately 30mm
spacing) only 87 sensors would be required. The same curves for typical cryogenic
configurations (sensors offset from the scalp by 20mm) are shown in Supplementary figure 1.
In this case the trends are the same except that more channels are required in order to reach
the same discrimination performance.
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Figure 3. Discrimination between models as a function of spatial sampling density (or channel
number). Left and right columns depict shallow and deep sources respectively. Rows show
three different source amplitudes (100nAm, 10nAm, 1nAm). The colour scale shows the
change in free energy relative to the base model. Thick black lines delineates the sensor spatial
sampling necessary to confidently (p<0.05 or F>3) discriminate sources at a given inter source
spacing.

3.2 Number of sensors
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We can graph the relationship between spatial discrimination and spatial sampling for on and
off scalp systems (shown here displaced by 20mm) at a given SNR (Figure 4). Regardless of
the SNR it is found that to achieve the same spatial discrimination on scalp systems require
fewer sensors than their off scalp counterparts. What is of interest is the disparity between
how many sensors are needed in an on and off scalp system to achieve the same spatial
discrimination. For example, to achieve 10 mm spatial discrimination between sources ~40
rather than ~70 channels are required for on-scalp vs. off - scalp sensors respectively at high
SNR. While ~150 on scalp sensors are required for moderate SNR in comparison to > 500
sensors for the off scalp system. It is also clear that there are diminishing returns for having
much more than 100 sensors in the on-scalp system as there is only a modest increase in
spatial discrimination for each additional sensor.
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Figure 4. Sensor number and spatial discrimination for on- and off-scalp systems. Sensor
number (x-axis) is graphed against spatial discrimination (y-axis) for both on-scalp (red, green)
and off-scalp (blue) systems at different signal levels (100 nAm, 10nAm). Neither system had
discrimination performance below 12mm at 1nAm and the off-scalp system did not reach this
level at 10nAm and so these curves are not shown. While both systems are capable of
achieving spatial discrimination of sources better than 1cm across the whole brain (black
dotted lines), the on-scalp system (red and green curves) can achieve this with considerably
fewer channels. Importantly, one can see for a given spatial discrimination an on-scalp system
requires fewer sensors than an off-scalp system.

3.3: The impact of gain errors on spatial discrimination
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From the previous section we can conclude that there are diminishing returns for having >100
on scalp sensors. As such for examining gain errors we use an on-scalp system with
approximately 100 sensors corresponding to an approximate 30mm spacing. The simulations
include 30 repetitions of 3 different gain levels (1%, 2.5% and 10%) for 3 different Signal levels
(1nA, 10nA, 100nA with 100fT standard deviation sensor level noise). The results for deep and
superficial sources are presented in Figure 5. It can be seen that the gain errors have the
biggest impact at high SNR. At moderate and low levels of SNR the effects of gain errors are
masked by the noise. Interestingly the gain errors appear more detrimental for deeper
sources. Ultimately, though SNR is the dominant determinant of spatial discrimination with
changes in spatial discrimination being only noticeable for very large gain errors (10%). These
gain errors would be analogous to random sensor orientation errors of ~8, 13, and 26 degrees
respectively. Similar relationships between gain errors, positional and orientation errors for
smaller OPM systems are documented elsewhere (Duque-Munoz et al., 2019).
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Figure 5. The effect of gain errors on spatial discrimination of OP-MEG systems. In the left
panel results for shallow sources are presented. High, moderate and low SNR are signified by
red green and blue, respectively. The thickness represents standard error. The x axis is spatial
discrimination and the y axis is change in free energy. Stars represent 1% gain error, circles
represent 2.5% gain error and dotted lines represent 10% gain error. The horizontal light grey
lines represent the free energy threshold of 3 while the vertical grey lines show what the
spatial discrimination is limited to in the presence of gain errors. The same symbols and colour
schemes are used for the right panel to describe deep sources.

4, Discussion

In this paper we have presented a model comparison framework to quantify spatial
discrimination of competing sensor arrays. We show that spatial discrimination of 1cm
requires relatively few on-scalp sensors (<100) for high SNR for both deep and superficial
sources. This corresponds to an inter-sensor distance of approximately 3cm. For this sensor
layout, gain errors have the greatest impact on deep source discrimination at high SNR.
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Our findings are in line with previous OPM simulation studies (Boto, Bowtell, et al., 2016). The
main contribution of this study is the change to a probabilistic formalism in which the sensor
array is dependent on the neuroscientific question/desired spatial discrimination. We should
note that we are far from the theoretical limits of spatial discrimination for these on-scalp
sensors. Indeed recent studies (M. S. Himaldinen & Lundqvist, 2019; livanainen, Mékinen,
Zetter, et al., 2019) has shown that, due to the higher spatial frequency fields now
measureable, to fully exploit the potential of OPM systems one would require of the order
300-500 sensors.

There are other ways to define spatial discrimination such as low correlation between
sources (Boto, Bowtell, et al., 2016; livanainen et al., 2017) or examination of point-spread
functions considered resolved. As such, defining spatial discrimination is arguably a statistical
problem. The proposed framework has also been used extensively to model laminar sources
(Bonaiuto et al., 2017, 2018; Troebinger et al., 2014) in MEG as well as make probabilistic
statements about deep structure activity (Khemka, Barnes, Dolan, & Bach, 2017; Meyer et al.,
2017b) where spatial precision is paramount.

SNR is an important factor in these simulations and it becomes clear that lower sensor
numbers can often answer the same question if the source strength is high enough. As we
can achieve higher SNR by simply recording for longer and averaging over more data (Brookes
et al., 2010), fewer sensors can be traded against longer recording times. Indeed most OPM
experiments to date (that attempt a source reconstruction) have been performed with far
fewer (typical 16-32) sensors than a traditional cryogenic system (Barry et al., 2019; Boto et
al., 2018; Boto, Meyer, et al., 2016; Holmes et al., 2018; livanainen, Zetter, & Parkkonen, 2019;
Lin et al., 2019; Roberts et al., 2019; Tierney et al., 2018; Zetter, livanainen, & Parkkonen,
2019).

We have made several idealistic assumptions. Practically, achievable discrimination
performance may be bounded by other factors. For example it has been shown that forward
modelling errors limit discrimination at high SNR (Boto, Bowtell, et al., 2016; Arjan Hillebrand
& Barnes, 2003). Here, we assume that the source model is known and we have created and
reconstructed the data under the same forward models. Other studies have looked at these
models in more detail (Stenroos, Hunold, & Haueisen, 2014; Stenroos & Sarvas, 2012) and we
do not examine this factor directly. That said, increasing the channel number will not solve
these issues. We had initially expected gain errors to have similar consequences to forward
modelling errors but it appears these are much less pernicious. This is because the gain
changes have been considered independent across sensors (rather than systematic for lead-
field errors) and indeed we found that for practical OPM gain errors (+-2%) there were
negligible effects on discrimination performance. However, there may be instances when gain
changes have some correlated spatial structure across the array (for example as the subject
moves through a magnetic field gradient) and this would most likely be more detrimental to
the source modelling.

We have also made the assumption that our model of the cortical current flow (and its
covariance) is known. The ideal inversion algorithm for a particular question or disease state
(like epilepsy) is far from decided, however the model evidence framework outlined here
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could also be used to optimize inversion assumptions (Friston et al., 2008) as well as
measurement arrays.

We have provided a simulation based framework for users of OPMs to establish how many
sensors are required for neuroscientific applications to achieve a desired spatial
discrimination. We find adequate discrimination (<1cm) can be easily obtained with few
sensors (<100) at coarse spatial samplings (>30mm) at high SNR for both deep and superficial
sources. We also demonstrate that the dominant determinant of spatial discrimination in an
OPM system is not gain changes/ calibration errors but the magnitude of the physiological
response and the depth of the source.
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