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Abstract

Predicting compound-protein affinity is critical for accelerating drug discovery.
Recent progress made by machine learning focuses on accuracy but leaves much to
be desired for interpretability. Through molecular contacts underlying affinities, our
large-scale interpretability assessment finds commonly-used attention mechanisms in-
adequate. We thus formulate a hierarchical multi-objective learning problem whose
predicted contacts form the basis for predicted affinities. We further design a physics-
inspired deep relational network, DeepRelations, with intrinsically explainable archi-

tecture. Specifically, various atomic-level contacts or “relations” lead to molecular-level
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affinity prediction. And the embedded attentions are regularized with predicted struc-
tural contexts and supervised with partially available training contacts. DeepRelations
shows superior interpretability to the state-of-the-art: without compromising affinity
prediction, it boosts the AUPRC of contact prediction 9.5, 16.9, 19.3 and 5.7-fold for
the test, compound-unique, protein-unique, and both-unique sets, respectively. Our
study represents the first dedicated model development and systematic model assess-

ment for interpretable machine learning of compound-protein affinity.

Introduction

Current drug-target interactions are predominantly represented by the interactions between
small-molecule compounds as drugs and proteins as targets.' The enormous chemical space to
screen compounds is estimated to contain 10%° drug-like compounds.? And these compounds
act in biological systems of millions or more protein species or “proteoforms” (considering
genetic mutations, alternative splicing, and post-translation modifications of proteins).3*
Facing such a combinatorial explosion of compound-protein pairs, drug discovery calls for
efficient characterization of compound efficacy and toxicity, and computational prediction of
compound-protein interactions (CPI) addresses the need.

Recently computational CPI prediction has made major progress beyond predicting
whether compounds and proteins interact. Indeed, thanks to increasingly abundant molec-
ular data and advanced deep-learning techniques, compound-protein affinity prediction is

57 compound

reaching unprecedented accuracy, with inputs of compound-protein structures,
identities (such as SMILES and graphs) and protein structures (see a relevant problem of
binding classification®?), or even just compound-protein identities. 12 As previously sum-
marized,'? structure-based affinity-prediction methods are limited in applicability due to
the often-unavailable structures of compound-protein pairs or even proteins alone, whereas

structure-free methods, being broadly applicable, could be limited in interpretability.

Interpretability remains a major gap between the capability of current compound-affinity
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predictors and the demand of rational drug discovery. The central question about inter-
pretability is whether and how methods (including machine learning models) could explain
why they make certain predictions (affinity level for any compound-protein pair in our con-
text). This important topic is rarely addressed for affinity prediction. DeepAffinity!° has
embedded joint attentions over compound-protein component pairs and uses such joint at-
tentions to assess origins of affinities (binding sites) or specificities. Additionally, attention
mechanisms have been used for predictions of CPI,'® chemical stability'# and protein sec-
ondary structures.® Assessment of interpretability for all these studies was either lacking or
limited to few case studies. We note a recent work proposing post-hoc attribution-based test
to determine whether a model learns binding mechanisms. 6

We raise reasonable concerns on how much attention mechanisms can reproduce natural
contacts in compound-protein interactions. Attention mechanisms were originally developed
to boost the performance of seq2seq models for neural machine translations.!” And they
have gained popularity for interpreting deep learning models in visual question answering, ®
natural language processing!® and healthcare.?’ However, they were also found to work
differently from human attentions in visual question answering.?!

Representing the first effort dedicated to interpretability of compound-protein affinity
predictors, our study is focused on how to define, assess, and enhance such interpretability
as follows.

How to define interpretability for affinity prediction. Interpretable machine learning is
increasingly becoming a necessity?? for fields beyond drug discovery. Unlike interpretability
in a generic case,?? what interpretability actually means and how it should be evaluated is
much less ambiguous for compound-protein affinity prediction. So that explanations con-
form with scientific knowledge, human understanding, and drug-discovery needs, we define
interpretability of affinity prediction as the ability to explain predicted affinity through un-
derlying atomic interactions (or contacts). Specifically, atomic contacts of various types are

2

known to constitute the physical basis of intermolecular interactions,?® modeled in force fields
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to estimate interaction energies,?* needed to explain mechanisms of actions for drugs,?*26

and relied upon to guide structure-activity research in drug discovery.?”?® We emphasize
that simultaneous prediction of affinity and contacts does not necessarily make the affinity
predictors intrinsically interpretable unless predicted contacts form the basis for predicted
affinities.

How to assess interpretability for affinity prediction. Once interpretability of affinity pre-
dictors is defined through atomic contacts, it can be readily assessed against ground truth
known in compound-protein structures, which overcomes the barrier for interpretable ma-
chine learning without ground truth.?’ In our study, we have curated a dataset of compound-
protein pairs, all of which are labeled with K; values and some of which with contact de-
tails; and we have split them into training, test, compound-unique, protein-unique, and
both-unique (or double-unique) sets. We measure the accuracy of contact prediction over
various sets using area under the precision-recall curve (AUPRC) which is suitable for bi-
nary classification (contacts/non-contacts) with imbalanced classes (far less contacts than
non-contacts). We have performed large-scale assessments of attention mechanisms in var-
ious molecular data representations (protein amino-acid sequences and structure-property

10 as well as compound SMILES and graphs) and corresponding neural

annotated sequences
network architectures (convolutional and recurrent neural networks [CNN and RNN] as well
as graph convolutional and isomorphism networks [GCN and GIN]). And we have found
that current attention mechanisms inadequate for interpretable affinity prediction, as their
AUPRCs were merely 50% more than chance.

How to enhance interpretability for affinity prediction. We have made three main contri-
butions to enhance interpretability.

The first contribution, found to be the most impactful, is to design intrinsic explainability
into the architecture of a deep “relational” network. Inspired by physics, we explicitly model

and learn various types of atomic interactions (or “relations”) through deep neural networks

and embed attentions at the levels of residue-atom pairs and relation types. This was
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motivated by relational neural networks first introduced to learn to reason in computer

vision®*3! and subsequent interaction networks to learn the relations and interactions of
complex objects and their dynamics.3?33 Moreover, we combine such deep relational modules
in hierarchy to progressively focus attention from putative protein surfaces, binding-site k-
mers and residues, to putative residue-atom binding pairs.

The second contribution is to incorporate physical constraints into data representations,
model architectures, and model training. (1) To respect the sequence nature of protein in-
puts and to overcome the computational bottlenecks of RNNs; inspired by protein folding
principles, we represent protein sequences as hierarchical k-mers and model them with hi-
erarchical attention networks (HANs). (2) To respect the structural contexts of proteins,
we predict from protein sequences solvent exposure over residues and contact maps over
residue pairs; and we introduce novel structure-aware regularizations for structured sparsity
of model attentions.

The third contribution is to supervise attentions with partially available contact data and
train models accordingly. For interpretable and accurate affinity prediction, we have formu-
lated a hierarchical multi-objective optimization problem where contact predictions form the
basis for affinity prediction. We utilize contact data available to a minority (around 7.5%)
of training compound-protein pairs and design hierarchical training strategies accordingly.

The rest of the paper is organized as follows. The aforementioned contributions in defin-
ing, measuring, and enhancing intepretable affinity prediction will be detailed in Methods. In
Results, compared to state-of-the-art first, the resulting framework of DeepRelations is found
to drastically boost interpretability robustly over default test, protein-unique, compound-
unique, and double-unique sets, without sacrificing accuracy. Ablation studies then reveal
the most contributing methodological contribution — the intrinsically explainable model

architecture of our deep “relational” networks. Case studies provide further insights into the

pattern of interpreted contacts.
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Methods

Toward genome-wide prediction of compound-protein interactions (CPI), we assume that
proteins are only available in 1D amino-acid sequences, whereas compounds are available in
1D SMILES or 2D chemical graphs. We start the section with the curation of a dataset of
compound-protein pairs with known pK, values, a subset of which is of known intermolecular
contacts. We will introduce the state-of-the-art and our newly-adopted neural networks
to predict from such molecular data. These neural networks will be first adopted in our
previous framework of DeepAffinity!* (supervised learning with joint attention) so that the
interpretability of attention mechanisms can be systematically assessed in CPI prediction.
We will then describe our physics-inspired, intrinsically explainable architecture of deep
relational networks where aforementioned neural networks are used as basis models. With
carefully designed regularization terms, we will explain multi-stage deep relational networks
that increasingly focus attention on putative binding-site k-mers, binding-site residues, and
residue-atom interactions, for the prediction and interpretation of compound-protein affinity.
We will also explain how the resulting model can be trained using compound-protein pairs

with affinity values but not necessarily with atomic interaction details.

Curation of a CPI Relational Benchmark Set

We have previously curated affinity-labeled compound-protein pairs'® based on BindingDB.3*
The compound data were in the format of canonical SMILES as provided in PubChem3® and
the protein data are in the format of FASTA sequences. In this study, we used those data
with amino-acid sequences no more than 300 from the pK -labeled set,!® which corresponds
to 1,926 compound-protein pairs. We also converted SMILES to graphs with RDKit. 3
The pKg4-labeled data only shows the affinity strength between proteins and compounds,
but it lacks the details on where and how the pairs interact. We have thus curated a subset of

the pK4-labeled data with atomic-level intermolecular contacts (or “relations”) derived from
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compound-protein co-crystal structures in PDB,?” as ground truth for the interpretablity
of affinity prediction. Specifically, we cross-referenced aforementioned compound-protein
pairs in PDBsum?® and used its LigPlot service to collect high-resolution atomic contacts
or relations. These relations are given in the form of contact types (hydrogen bond or
hydrophobic contact), atomic pairs, and atomic distances.

The resulting dataset of 1,926 pK-labeled compound-protein pairs (including 144 pairs
with atomic-contact data) corresponds to 137 proteins and 1,376 compounds. We randomly
split them into four folds where fold 1 do not overlap with fold 2 in compounds, do not do
so with fold 3 in proteins, and do not do so with fold 4 in either compounds or proteins.
Folds 2, 3, and 4 are referred to as compound-unique, protein-unique, and double unique
sets for generalization tests; and they contain 201(19), 191(14), and 192(10) compound
pairs (including those with contact details in the parentheses). Fold 1 was randomly split
into training (70%) and test (30%) sets where 10% of the training set was set aside as the
validation or development set. The training (including validation) and test sets contain
974(74) and 368(27) compound-protein pairs (with contact details). The split of the whole
dataset is illustrated in Figure 1 below.

Although monomer structures of proteins are often unavailable, their structural features
can be predicted from protein sequences alone with reasonable accuracy. We have pre-
dicted the secondary structure and solvent accessibility of each residue using the latest
SCRATCH®*° and contact maps for residue pairs using RaptorX-contact.*! These data
provide additional structural information to regularize our machine learning models. If pro-

tein structures are available, actual rather than predicted such data can be used instead.

Data Representation and Corresponding Basis Neural Networks
Baseline: CNN and RNN for 1D protein and compound sequences.

When molecular data are given in 1D sequences, these inputs are often processed by convo-

lutional neural networks (CNN)!42 and by recurrent neural networks (RNN) that are more

7
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Compound
1376
Ramdom sampling: Compound
= . Unique Set
e Training Set 974(74) 201(19)
sa
a Test Set 368(27)
Double
Protein Unique Set Unique Set
191(14) 192(10)

Total Number
1926(144)

Figure 1: The complete data set consists of training, test, compound-unique,
protein-unique, and double unique sets with compound-protein counts provided (including
those with contact details in parentheses).

suitable for sequence data with long-term interactions.!®

Challenges remain in RNN for compound strings or protein sequences. For compounds
in SMILES strings, the descriptive power of such strings can be limited. In this study, we
overcome the challenge by representing compounds in chemical formulae (2D graphs) and
using two types of graph neural networks (GNN). For proteins in amino-acid sequences,
the often-large lengths demand deep RNNs that are hard to be trained effectively (gradient
vanishing or exploding and non-parallel training).*®> We previously overcame the second
challenge by predicting structure properties from amino-acid sequences and representing
proteins as a much shorter structure property sequences where each 4-letter tuple corresponds
to a secondary structure.'? This treatment however limits the resolution of interpretability
to be at the level of protein secondary structures (multiple neighboring residues) rather
than individual residues. In this study, we overcome the second challenge while achieving

residue-level interpretability by using biologically-motivated hierarchical RNN (HRNN).
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Proposed: GCN and GIN for 2D compound graphs.

Compared to 1D SMILES strings, chemical formulae (2D graphs) of compounds have more
descriptive power and are increasingly used as inputs to predictive models.1%1271444 Tny this
study, compounds are represented as 2D graphs in which vertices are atoms and edges are
covalent bonds between atoms. Suppose that n is the maximum number of atoms in our
compound set (compounds with smaller number of atoms are padded to reach size n). Let’s
consider a graph G = (V, X, €, A), where V = {v;}7_; is the set of n vertices (each with
d, features), X € R"™% that of vertex features, £ that of edges, and A € {0,1}"*" is
unweighted symmetric adjacency matrix. Let A= A+7T and D be the degree matrix (the
diagonals of A).
We used Graph Convolutional Network (GCN)*5 and Graph Isomorphism Network (GIN)46

which are the state of art for graph embedding and inference. GCN consists of multiple layers

and at layer [ the model can be written as:

AD=2H-De ), (1)

N

HY = ReLU(D™

where H € R4 is the output, 00 ¢ RY% Vx4 the trainable parameters, and dgl) the
number of features, all at layer [. Initial conditions (when [ = 0) are H(® = X and d(go) =d,.
GIN is the most powerful graph neural network in theory: its discriminative or represen-
tational power is equal to that of the Weisfeiler-Lehman graph isomorphism test.*” Similar to
GCN, GIN consists of multiple layers and at layer [ the model can be written as a multi-layer

perceptron (MLP):
HY = MLPO(AD H(l—l))’ (2)

where AU = A+ eWT, € can be either a trainable parameter or a fixed hyper-parameter.
Each GIN layer has several nonlinear layers compared to GCN layer with just a ReLU per
layer, which might improve predictions but suffer in interpretability.

The final representation for a compound is Y = H® if GCN or GIN has L layers. In
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this study, vertex features are as in,'* with few additional features detailed later for physics-

inspired relational modules.

Proposed: HRNN for 1D protein sequences.

We aim to keep the use of RNN that respects the sequence nature of protein data and mitigate
the difficulty of training RNN for long sequences. To that end, inspired by the hierarchy of
protein structures, we model protein sequences using hierarchical attention networks (HANs).
Specifically, during protein folding, sequence segments may fold separately into secondary
structures and the secondary structures can then collectively pack into a tertiary structure
needed for protein functions. We exploit such hierarchical nature by representing a protein
sequence of length easily in thousands as tens or hundreds of k-mers (consecutive sequence
segments) of length k& (k = 15 in this study). Accordingly we process the hierarchical
data with hierarchical attention networks (HANs)*® which have been proposed for natural
language processing. We also refer to it as hierarchical RNN (HRNN).

Given a protein sequence x with maximum length m (shorter sequences are padded to
reach length m) partitioned into T" groups of k-mers, we use two types of RNNs (specifically,
LSTMs here) in hierarchy for modeling within and across k-mers. We first use an embedding
layer to represent the i" residue in ¢ k-mer as a vector x;. And we use a shared LSTM
for all k-mers for the latent representation of the residue: h; = LSTM(xy) (t =1,...,T).

We then summarize each k-mer as k; with an intra-k-mer attention mechanism:

Ui = Vltanh(@lhit + b1> Vl, t

;o exp(ug)
Uy = Zi/ eXp(ui/t) VI7t (3)

ke = > ujhy Vt

Then we use another LSTM for for k; and reach hy = LSTM(ky) (¢t =1,...,T).

The final representation for a protein sequence is the collection of h,.

10
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Joint attention over protein-compound atomic pairs for interpretability.

Once the representation of protein sequences (h, where t = 1,...,T is the index of protein
k-mer) and that of compound sequences or graphs (y; where j = 1,...,n is the index of com-
pound atom) are defined, they are processed with a joint k-mer—atom attention mechanism

to interpret any downstream prediction:

th = tanh(ht@gyj) vt,_]
) exp(INy;) . (4)
" epNuy)

With W;;, the joint attention between the t'™" k-mer and the j** atom, we can combine it
with the intra-k-mer attention over each residue ¢ in the ¢™ k-mer and reach W;;, the joint

attention between the i*! protein residue and the j* compound atom:
Wij = u;tl/\/{j VI,J (5)

This joint attention mechanism is an extension of our previous work!® where a protein

sequence was represented as a single, “flat” RNN rather than multiple, hierarchical RNNs.

DeepRelations
Overall architecture.

We have developed an end-to-end “by-design” interpretable architecture named DeepRela-
tions for joint prediction and interpretation of compound-protein affinity. The overall archi-
tecture is shown in Figure 2.

There are three relational modules (Rel-CPI) corresponding to three stages. Their at-
tentions are trained to progressively focus on putative binding k-mers, residues, and pairs;
and earlier-stage attentions guide those in the next stage through regularization. In each

Rel-CPI module, there are six types of atomic “relations” or interactions (including elec-
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Figure 2: Schematic illustration of DeepRelations, an intrinsically explainable neural
network architecture for predicting compound-protein interactions.

trostaics as the non-negative linear combination of four sub-types). And each (sub)type
of relation is modelled by aforementioned neural network pairs with joint attentions. For
instance, the first Rel-CPI uses HRNN-GCN (HRNN for protein sequences and GCN for
compound graphs) and the next two use CNN-GCN (dilated causal CNN for proteins and
GCN for compounds). And the non-negative linear combination of six individual relations’
attention matrices W; (where i corresponds to the six relation types) gives the overall joint

attention matrix Wpa (or W in short) in each module.

Physics-inspired relational modules

The relational modules are inspired by physics. Specifically, atomic “relations” or interac-
tions constitute the physical bases and explanations of compound-protein interaction affini-
ties and are often explicitly modelled in force fields. We have considered the following six

types relations with attentions paid on and additional input data defined for.

e FElectrostatic interactions: A non-negative linear combination of four subtypes of compound-

protein interactions through attentions: 1) charge-charge, 2) charge-dipole, 3) dipole-
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charge, and 4) dipole-dipole interactions. The input feature for the charge of a protein
residue or a compound atom is the CHARMMZ27 parameter and the atomic formal
charge, respectively. That for the dipole of a protein residue or a compound atom is

the residue being polar/nonpolar or the Gasteiger atomic partial charge.

e Hydrogen bond: Non-covalent interaction between an electronegative atom as a hydro-
gen “acceptor” and a hydrogen atom that is covalently bonded to an electronegative
atom called a hydrogen “donor”. Therefore, if a protein residue or compound atom
could provide a hydrogen acceptor/donor, its hydrogen-bond feature is -1/+1; other-
wise the feature value is 0. A protein residue is allowed to be both hydrogen-bond

donor and acceptor.

e Halogen bond: A halogen bond is very similar to hydrogen bond except that a halogen
(rather than hydrogen) atom (often found in drug compounds) is involved in such
interactions. If a protein residue or a compound atom has/is a halogen atom such as
iodine, bromine, chlorine and fluorine, its halogen-bond feature is assigned +4, +3, +2
and +1, respectively, for decreasing halogen-bonding strength. If it can be a halogen

acceptor, the feature is -1. If it can be neither, the feature is simply set at 0.

e Hydrophobic interactions: The interactions between hydrophobic protein residues and
compound atoms contribute significantly to the binding energy between them. If a
protein residue is hydrophobic, it is represented as 1 and otherwise as 0. Moreover,

the non-polar atoms are represented as 1 and the polar one as -1.

e Aromatic interactions: Aromatic rings in tryptophans, phenylalanines, and tyrosines
participate in “stacking” interactions with aromatic moieties of a compound (7-7 stack-
ing). Therefore, if a protein residue has an aromatic ring, its aromatic feature is set
at 1 and otherwise at 0. Similarly, if a compound atom is part of a ring, the feature is

set at 1 and otherwise at 0.

13
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o VdW interactions: Van der Waals are weaker interactions compared to others. But
the large amount of these interactions contribute significantly to the overall binding
energy between a protein and a compound. We consider the amino-acid type and the
atom element as their features and use an embedding layer to derive their continuous

representations.

For each (sub)type of atomic relations, corresponding protein and compound features
are fed into basis neural network models such as HRNN for protein sequences and GNN
for compound graphs. All features are made available to baseline methods (DeepAffinity+

variants) as well for fair comparison.

Physical constraints as regularization.

The joint attention matrices W in each Rel-CPI module, for individual relations or overall,

are regularized with the following two types of physical constraints.

Focusing regularization In the first regularization, a constraint input is given as a matrix
T € ]0,1]™™ to penalize the attention matrices W; for all the 10 (sub)types of relations if
they focus on the undesired regions of proteins. In addition, an L1 sparsity regularization is
on the attention matrices W; for all relations to promote interpretability as a small portion
of protein residues interact with compounds. Therefore, this “focusing” penalty can be

formalized as:

10 10
Ri(W) = Arelation Z (1 —=T) O Wil + A1 Z [IWill1, (6)
i=1 =1

where the T term, a parameter, can be considered as soft thresholding and its penalty only
incurs when 7;; = 0.
The first regularization is used for all three Rel-CPI modules or stages with increasingly

focusing 7. Let T be the constraint matrix and W the learned attention matrix for a
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given relation in the k" stage. In the first stage, 7;;1] is one only for any residue ¢ predicted
to be solvent-exposed in order to focus on surfaces. In the second stage, 7;[.2] = max Wz[jl,]
to focus on putative binding residues hierarchically learned for k-mers and residues in stage
1. In the last stage, ’7;3[.3] = WZ[JQ] focuses on putative contacts between protein residues and

compound atoms. The focusing regularization is enforced on attentions for every relation

(sub)type in the current implementation and can be done only for given (sub)types in future.

Structure-aware sparsity regularization over protein contact maps We further
develop a structure aware sparsity constraints based on known or RaptorX-predicted contact
maps of the unbound protein. As sequentially distant residues might be close in 3D and form
binding sites for compounds, we define overlapping groups of residues where each group
consists of a residue and its spatially close neighboring residues. Just in the second stage,
we introduce Group Lasso for spatial groups and the Fused Sparse Group Lasso (FSGL) for

sequential groups on the overall, joint attention matrix W:
R2 (W> = )\group| |W| |group + )\fused| |W| |fused + /\Ll—overall| |W| |1~ (7)

The group Lasso penalty will encourage a structured group-level sparsity so that few clus-
ters of spatially close residues share similar attentions within individual clusters. The fused
sparsity will encourage local smoothness of the attention matrix so that sequentially close
residues share similar attentions with compound atoms. The L1 term maintains the spar-
sity of the overall attention matrix W, since the L1 sparsity of attention matrices W, for

individual relations do not guarantee that their linear combination remains sparse.

Supervised attention.

It has been shown in visual question answering that attention mechanisms in deep learning
can differ from human attentions.?! As will be revealed in our results, they do not necessar-

ily focus on actual atomic interactions (relations) in compound-protein interactions either.
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We have thus curated a relational subset of our compound-protein pairs with affinities, for
which known ground-truth atomic contacts or relations are available. We summarize actual
contacts of a pair in a matrix W of length m x i (m and 7 are actual numbers of protein
residues and compound atoms, respectively, for a given pair), which is a binary pairwise
interaction matrix normalized by the total number of nonzero entries. We have accord-
ingly introduced a third regularization term to supervise W, the non-padded submatrix of

attention matrix W, in the second stage:

— =t

Rs(W) = Moina ¢ |[W = W2, (8)

where c is a normalization constant across batches. Suppose that, in any batch, a given pair’s
actual interaction matrix is of size m; X ny; and the smallest such size across all batches is

e s . .
Mmin X Mmin. Lhen ¢ = nn i for this pair.

Training strategy for hierarchical multi-objectives

Accuracy and interpretability are the two objectives we pursue at the same time. In our case,
the two objectives are hierarchical: compound-protein affinity originates from atomic-level
interactions (or “relations”) and better interpretation in the latter potentially contributes to
better prediction of the former.

Challenges remain in solving the hierarchical multi-objective optimization problem. First,
optimizing for both objectives simultaneously (for instance, through weighted sum of them)
does not respect that the two objectives do no perfectly align with each other and are of
different sensitivities to model parameters. Second, ground-truth data for interpretability
of affinity prediction, i.e., compound-protein contacts, is rare. In fact, merely 7.5% of our
compound-protein pairs labeled with K affinities are with contact data.

To overcome the aforementioned challenges, we consider the problem as multi-label ma-

chine learning facing missing labels. And we design hierarchical training strategies to solve
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the corresponding hierarchical multi-objective optimization problem. The whole DeepRela-
tions model, including the three Rel-CPI modules, are trained end-to-end.?’ In the first
stage, we “pre-trained” DeepRelations to minimize mean squared error (MSE) of p K, regres-
sion alone, with physical constraints turned on; in other words, attentions were regularized
(through R;(-) and Ry(-)) but not supervised in this stage. We tuned combinations of all
hyperparameters except Apinq in the discrete set of {107°,107%,...,,107'}, with 400 epochs
at the learning rate of 0.001. Over the validation set, we recorded the lowest RMSE for
affinity prediction and chose the hyperparameter combination with the highest AUPRC for
contact prediction subjective to that the corresponding affinity RMSE (root mean square
error) does not deteriorate from the lowest by more than 10%.

In the second stage, with the optimal values of all hyperparameters but Apnq fixed, we
loaded the corresponding optimized model in the first stage and “fine-tuned” the model to
minimize MSE additionally regularized by supervised attentions (through R;(-), Rs(-), and
R3(+)). As only 7.5% training examples are with known contacts, we used the their average
and ignored the other examples for R3(-) in each batch. We used a slower learning rate
(0.0001) and less training epochs (200) in the fine-tuning stage; and we tuned Api,q in the
set of {1071,1074,...,,1075} following the same strategy as in the pre-training stage.

In the end, we chose Aetation = 107, ALt = 1077, Agroup = 1072, Apusea = 107, A\L1—overall =
1075 and Aping = 10! for DeepRelations.

We did similarly for hyper-parameter tuning while constraining (and supervising) atten-
tions to make DeepAffinity+ variants. For HRNN-GCN _cstr (modeling protein sequences
with HRNN and compound graph with GCN, regularized by physical constraints in Ra(-)),
we chose Agroup = 107°, Apusea = 1074, and AL1—overan = 107°; and for its supervised version
HRNN-GCN _cstr_sup, the additional Apuq = 10*. For HRNN-GIN _cstr (modeling protein
sequences with HRNN and compound graph with GIN, regularized by physical constraints
in Ry(+)), we chose Agroup = 1073 Ausea = 1074, and A\p1—overan = 107%; and for its supervised

version HRNN-GIN _cstr_sup, the additional A\,q = 10%. Ri(:) was for attentions on indi-
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vidual relations in DeepRelations and not applicable for DeepAffinity+ variants, although a

surface-focusing regularization on overall attentions could be introduced.

Results

Attentions alone are inadequate for interpreting compound-protein

affinity prediction

Our first task is to systematically assess the adequacy of attention mechanisms for inter-
preting model-predicted compound-protein affinities. To that end, we adopt various data
representations and corresponding state-of-the-art neural network architectures in our frame-
work of DeepAffinity. To model proteins, we have adopted RNN using protein SPS!° as input
data as well as CNN and newly developed HRNN using protein amino-acid sequences. To
model compounds, we have adopted RNN using SMILES as input data as well as GCN and
GIN using compound graphs with node features and edge adjacency.'* In the end, we have
tested six DeepAffinity variants for protein-compound pairs, including RNN-RNN, RNN-
GCN, CNN-GCN, HRNN-RNN, HRNN-GCN, and HRNN-GIN. The first two (RNN-RNN
and RNN-GCN), where protein SPS sequences are modeled by RNN and compound SMILES
or graphs are modeled by RNN or GCN, are essentially our previous models!® except that
no unsupervised pretraining is used in this study. Whereas these two models’ attentions on
proteins are at the secondary structure levels (thus not assessed for interpretability here),
the rest have joint attentions at the level of pairs of protein residues and compound atoms.

The accuracy of affinity prediction, measured by RMSE (root mean squared error) in
pKy, is summarized for the DeepAffinity variants in the top panel of Figure 3. Overall, all
variants have shown pK error between 1.1 and 1.3, a level competitively comparable even to
the state-of-the-art affinity predictor using compound-protein co-crystal structures.” These
models have robust accuracy profiles across the default, compound-unique, protein-unique,

and double-unique test sets, suggesting their generalizability beyond training compounds or

18


https://doi.org/10.1101/2019.12.28.890103
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.28.890103; this version posted December 30, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

proteins. Modeling compound SMILES with RNN seems to have slightly worse performance
compared to modeling compound graphs with GCN or GIN, although less features are used

for SMILES strings compared to node features for compound graphs.

Different versions of DeepAffinity

1.0 1
%)
[T
&
0.5 4 . ANN_RNN
RNN_GCHN
0.0 - CHMN_GCN

N HRNN_RNHN

0.0100 4 HRNN_GCN
HRNN_GIN
w lIII.I:}II:}IT-‘E-____ LI T e 1 e =
£
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0.0025 - I I I
0.0000 .
Train Test Protein Compound Double
Unigque Unigue Unique

Figure 3: Comparing accuracy and interpretability among various versions of DeepAffinity
with (unsupervised) joint attention mechanisms. Separated by underscores in legends are
neural network models for proteins and compounds respectively.

The interpretability of affinity prediction is assessed against ground truth of contacts,
as in the bottom panel of Figure 3. Specifically, we use joint attention scores to classify
all possible residue-atom pairs into contacts or non-contacts. As contacts only represent
a tiny portion (0.00614+0.0023 in our dataset) of all possible pairs, we use the area un-
der the precision-recall curve (AUPRC), instead of the area under the receiver operating
characteristic curve (AUROC), to assess such binary classification. Here AUPRC is aver-
aged over all pairs involved in the corresponding set. Interestingly, compared to chance
(AUPRC=0.0061), modeling protein amino-acid sequences through CNN or modeling com-
pound SMILES through RNN had comparable or even worse contact prediction (or inter-
pretability here). Modeling protein amino-acid sequences through hierarchical RNN and
compound graphs as GNN (GCN or GIN here) would improve the AUPRC by around 50%

for all test sets except the protein-unique one. However, even with 50% relative improvement,

19


https://doi.org/10.1101/2019.12.28.890103
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.28.890103; this version posted December 30, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

the absolute accuracy level of contact prediction, or the absolute level of model interpretabil-
ity, remains low (AUPRC around 0.01). Moreover, unlike the case of affinity accuracy, the
interpretability results have shown some sensitivity to training data, especially when the test
proteins are not contained in the training set.

From the results above, we conclude that attention mechanisms alone are inadequate
for the interpretability of compound-protein affinity predictors, regardless of the choice of

commonly used, generic neural network architectures.

Regularizing attentions with physical constraints modestly improves
interpretability.

Our next task is to enhance the interpretability of compound-protein affinity prediction
beyond the level achieved by attention mechanisms alone. The first idea is to incorporate
domain-specific physical constraints into model training. The rationale is that, by bringing in
the (predicted) structural contexts of proteins and protein-compound interactions, attentions
can be guided in their sparsity patterns accordingly for better interpretability.

We start with the two best-performing DeepAffinity variants so far (HRNN-GCN and
HRNN-GIN) where protein amino-acid sequences are modeled by hierarchical RNN and
compound graphs by various GNNs (including GCN and GIN). And we introduce structure-
aware sparsity regularization Ra(-) to the two models to make “DeepAffinity+” variants.
The resulting HRNN-GCN _cstr and HRNN-GIN _cstr models with physical constraints are
assessed in Figure 4. Compared to the the non-regularized counterparts in Figure 3, both
models achieved similar accuracy levels across various test sets for affinity prediction, but
their interpretability improved. Specifically, HRNN-GCN after constraints, compared to that
before constraints, had AUPRC improvement of 5.7%, 2.9%, 19.2%, and 20.0% for default
test, protein-unique, compound-unique, and double-unique sets, respectively. However, the
interpretability improvements from physical constraints were modest especially when the

absolute level of AUPRC remained around 0.01. These results suggest that incorporating
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physical constraints to structurally regularize the sparsity of attentions is useful for improving

interpretability but may not be enough.

1.5
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Figure 4: Comparing accuracy and interpretability among various versions of
DeepAffinity+ (DeepAffinity with regularized and supervised attentions) and
DeepRelations. “cstr” in legends indicates physical constraints imposed on attentions
through regularization term Rs(-), whereas “sup” indicates supervised attentions through
regularization term Rj(-).

Supervising attentions significantly improves interpretability.

As regularizing attentions with physical constraints was not enough to enhance interpretabil-
ity, our next idea is to additionally supervise attentions with ground-truth contact data
available to some but not all training examples. Again we introduce “DeepAffinity+" models
starting with HRNN-GCN and HRNN-GIN, by both regularizing and supervising attentions
(using Ry(-) and Rs(-)).

The performances of resulting HRNN-GCN_cstr_sup and HRNN-GIN _cstr_sup models
are shown in Figure 4. Importantly, HRNN-GCN _cstr_sup (light blue) significantly im-
proves interpretability of affinity prediction without the sacrifice of accuracy. The average
AUPRC improved to 0.0455, 0.0106, 0.0883, and 0.0175 for the default test, protein-unique,

compound-unique, and double-unique test sets, representing a relative improvement of 309%
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(645%), 92% (73%), 600% (1347%), and 46% (186%), respectively, compared to the con-
strained counterparts (chance). Interestingly, supervising attentions in HRNN-GIN did not

see as significant improvement in interpretability.

Building explainability into DeepRelations architecture further dras-
tically improves interpretability.

Toward better interpretability, besides regularizing and supervising attentions, we have fur-
ther developed an explainable, deep relational neural network named DeepRelations. Here
atomic “relations” constituting physical bases and explanations of compound-protein affini-
ties are explicitly modeled in the architecture with multi-stage gradual “zoom-in” to focus
attentions. In other words, the model architecture itself is intrinsically explainable by design.

The superior performances of the resulting DeepRelations (with both regularized and
supervised attentions) are shown in Figure 4 (yellow-green “DeepRelations_cstr_sup”). With
equally competitive accuracy in affinity prediction as all previous models, DeepRelations
achieved drastic improvements in interpretability. Strikingly, the average AUPRC further im-
proved to 0.0996, 0.1350, 0.1754, and 0.0571 for the default test, protein-unique, compound-
unique, and double-unique test sets, representing a relative improvement of 121% (1532%),
1173% (2113%), 98% (2775%), and 226% (836%), respectively, compared to the previous
best DeepAffinity+ variant (chance).

We further assessed contact prediction (or interpretability) of DeepAffinity+ variants
and DeepRelations using the precision, sensitivity, and odds ratio (or enrichment factor) of
their top K predictions (where K ranged from 5 to 50). Figure 5 shows that DeepRelations
drastically outperforms other methods in all assessment measures considered. The precision
and sensitivity levels may not appear impressive, largely due to the very strict definition of
“true contacts” in our study, as will be revealed in a case study. Note that all atomic-level
contact predictions were made with the inputs of protein sequences and compound graphs

alone.
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Figure 5: Comparing precision, sensitivity, and odds ratio (enrichment) of
affinity-interpreting contacts predicted by various versions of DeepAffinity+ and
DeepRelations.

For fair comparison, all DeepAffinity+ variants and DeepRelations were using the same
set of features. A negative control experiment in the subsequent ablation study further val-
idated this. Therefore, the architecture of DeepRelations, being intrinsically explainable, is
the major contributor to its superior interpretability. From the machine learning perspective,
DeepAffinity+ variants have various molecular features lumped into general-purpose neural
networks, which makes it very hard to learn governing physics laws from the molecular affin-
ity data. Instead, DeepRelations directly builds the physics laws into its model architecture
and carefully structure various features into corresponding atomic relations and eventually

the overall binding affinity.

Ablation study for DeepRelations

To disentangle various components of DeepRelations and understand their relative contribu-
tions to DeepRelations’ superior interpretability, we removed components from DeepRela-
tions and made “DeepRelations-" variants. Besides regularized and supervised attentions, we

believe that the main contributions in the architecture itself are (1) the multi-stage “zoom-
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in” mechanisms that progressively focus attentions from surface, binding k-mers, binding
residues to binding residue-atom pairs; and (2) the explicit modeling of atomic relations
that can explain the structure feature-affinity mappings consistently with physics principles.
We thus made three DeepRelations- variants: DeepRelations without multi-stage focusing,
without explicit atomic relations, or without both.

We compared the three intermediate “DeepRelations-” versions with the best DeepAffin-
ity+ (regularized and supervised HRNN-GCN) and DeepRelations in Figure 6. Consistent
with our conjecture, we found that, the explicit modeling of atomic relations was the main
reason for DeepRelations’ superior interpretability, as the removal of this component alone
reduced the average AUPRC down to a similar level of the best DeepAffinity+ (except for
the protein-unique case). Removing both components essentially reproduced the best Deep-
Affinity+ (again, except that it still outperforms the latter in the protein-unique case), which

served well as a “negative control” case here.

Comparison of DeepRelation- and DeepRelation
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Figure 6: Comparing interpretability between DeepRelations and DeepRelations-
(DeepRelations without multi-stage focusing, explicitly-modeled relations, or both).
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Case Study

Now that we have established how drastically DeepRelations improves the interpretability
of compound-protein affinity prediction and explained why it achieves so by design, we went
on to examine the pattern in which DeepRelations contact prediction outperforms the best
DeepAffinity variant HRNN-GCN (and leaves room for further improvement). We thus
randomly chose a compound-protein test pair with known contacts for case study: carbonic
anhydrase IT inhibitor with its compound AL1 (PDB ID:1BNN).

As shown in Figure 7, DeepRelations (middle) not only made more correct contact predic-
tions than HRNN-GCN (left) but also showed much improved contact pattern. In particular,
HRNN-GCN could focus attention on residue-atom pairs that are actually as far as above
20A away, and the attended residues could be dispersed at two sides of a protein. In contrast,
DeepRelations predictions were correctly focused in the binding site of the protein and many
of its “incorrect” predictions may correspond to residue-atom pairs within 10A or less, which
could be partially attributed to the physical constraints introduced as regularization.

To further examine the possible benefit of explicitly modeled atomic relations, we ex-
amined the overall attention matrix and found that the most contributions originate from
electrostatic relations. We therefore examined the top-10 predicted electrostatic contacts
according to the electrostatic attention matrix alone and found four true electrostatic inter-
actions associated with the same protein residue (Hisidine 94).

We extended the analysis of the patterns of predicted contacts over all test cases. Con-
sidering that the true contacts are defined rather strictly, we assess distance-distributions
of residue-atom pairs predicted by HRNN-GCN, HRNN-GCN with regularized attention,
HRNN-GCN with regularized and supervised attention, and DeepRelations (also with reg-
ularized and supervised attention). As seen in Figure 8, DeepRelations outperforms com-
petitors in all distance ranges over all test sets (except the 4A~10A range for the seemingly
most challenging protein-unique case). Impressively, among top-50 contacts predicted by

DeepRelations, around 33%, 39%, 27%, and 33% were actually within 10Ain the default
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Figure 7: Structural visualization of top-10 intermolecular contacts predicted by
HRNN-GCN (left) and DeepRelations (middle and right) for a test case. The protein
(carbonic anhydrase II inhibitor) is shown in wheat cartoons and compound (AL1) in cyan
sticks. Dashed lines represent the top-10 predicted relations (interactions between protein
residues and compound atoms) in either case. Their magenta and gray colors indicate
correct and incorrect relations/contacts, respectively, according to ground truth strictly
defined as in PDBsum. In the right panel, we examined the dominant electrostaic attention
matrix alone and found four true positives, all formed with Histidine 94 (wheat sticks), in
the top-10 predicted electrostatic contacts.

test, compound-unique, protein-unique, and double-unique test sets, respectively.

Conclusions

Toward accurate and interpretable machine learning of compound-protein affinity, we have
curated an affinity-labeled dataset with partially annotated contact details, assessed the ade-
quacy of current attention-based deep learning models for both accuracy and interpretability,
and developed novel machine-learning models and training strategies to drastically enhance
interpretability without sacrificing accuracy. This is the first study with dedicated model
development and systematic model assessment for interpretability in affinity prediction.
Our study has found that commonly-used attention mechanisms alone, although better
than chance in most cases, are not satisfying in interpretability: the most attended contacts
in affinity prediction do not reveal true contacts underlying affinities at a useful level. We

have tackled the challenge with three innovative, methodological advances. First, we in-
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Figure 8: Distributions of top-50 contacts, predicted by DeepAffinity, DeepAffinity+, and
DeepRelations, in various distance ranges (unit: A).

troduce domain-specific physical constraints to regularize attentions (or guide their sparsity
patterns), in which structural contexts such as sequence-predicted protein surfaces and pro-
tein contact maps are utilized. Second, we exploit partially available ground-truth contacts
to supervise attentions. Lastly, we build intrinsically explainable model architecture where
various atomic relations, reflecting physics laws, are explicitly modeled and aggregated for
affinity prediction. Joint attentions are embedded over residue-atom pairs for individual
and overall relations. And a multi-stage hierarchy, trained end-to-end, progressively focuses
attentions on protein surfaces, binding k-mers and residues, and residue-atom contact pairs.

Empirical results demonstrate the superiority of DeepRelations in interpretability with-
out sacrificing accuracy. Compared to the best DeepAffinity variant with joint attention

(HRNN-GCN), the AUPRC for contact prediction was boosted to 9.48, 16.86, 19.28, and
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5.71-fold for the default test, compound-unique, protein-unique, and double-unique cases.
Importantly, the interpretability of DeepRelations proves robust and generalizable, as the
margins of improvement were even higher when compounds or/and proteins are not present
in the training set. Ablation studies demonstrate that the explainable relational network
architecture was the major contributor to such performances. Case studies suggest that
DeepRelations predict not only more correct but also more well-patterned contacts. And
many “incorrect” predictions due to the strict definition of contacts were within reasonable
ranges — in fact, around one third of the top-50 predicted contacts correspond to residue-
atom pairs within 10A.

An additional benefit of DeepRelations is its broad applicability toward the vast chemical
and proteomic spaces. It does not rely on 3D structures of compound-protein complexes or
even protein monomers when such structures are often unavailable. The only inputs needed
are protein sequences and compound graphs. Meanwhile, it adopts the latest technology to
predict structural contexts for protein sequences (such as surfaces, secondary structures, and
residue-contact maps) and incorporatea such structural contexts into affinity and contact
predictions. When structure data are available, DeepRelations can readily integrate such
data by using actual rather than predicted structural contexts.

Our study demonstrates that, it is much more effective to directly build explainabil-
ity into machine learning model architectures (as DeepRelations models underlying atomic
relations explicitly) than to infer explainability from general-purpose architectures (as Deep-
Relations variants learn attentions from data alone). In other words, designing intrinsically
interpretable machine learning models, although more difficult, can be much more desired

than pursuing interpretability in a post hoc manner.
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