

1 Evidence for novel transient clusters of cholinergic ganglion cells in the
2 neonatal mouse retina

3 Jean de Montigny¹, Vidhyasankar Krishnamoorthy^{1*}, Fernando Rozenblit^{2,3*},
4 Tim Gollisch^{2,3}, Evelyne Sernagor¹

5 1. Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
6 2. Department of Ophthalmology, University Medical Center Göttingen, 37073
7 Göttingen, Germany
8 3. Bernstein Center for Computational Neuroscience Göttingen, 37077 Göttingen,
9 Germany

10 * Equal contribution to the study

11

12 **Abstract**

13 Waves of spontaneous activity sweep across the neonatal mouse retinal ganglion cell (RGC)
14 layer, driven by directly interconnected cholinergic starburst amacrine cells (the only known
15 retinal cholinergic cells) from postnatal day (P) 0-10, followed by waves driven by
16 glutamatergic bipolar cells. We found transient clusters of cholinergic RGC-like cells around
17 the optic disc during the period of cholinergic waves. They migrate towards the periphery
18 between P2-9 and then they disappear. Pan-retinal multielectrode array recordings reveal that
19 cholinergic wave origins follow a similar developmental center-to-periphery pattern. Electrical
20 imaging unmasks hotspots of dipole electrical activity occurring in the vicinity of wave origins.
21 We propose that these activity hotspots are sites for wave initiation and are related to the
22 cholinergic cell clusters, reminiscent of activity in transient subplate neurons in the developing
23 cortex, suggesting a universal hyper-excitability mechanism in developing CNS networks
24 during the critical period for brain wiring.

25

26

Introduction

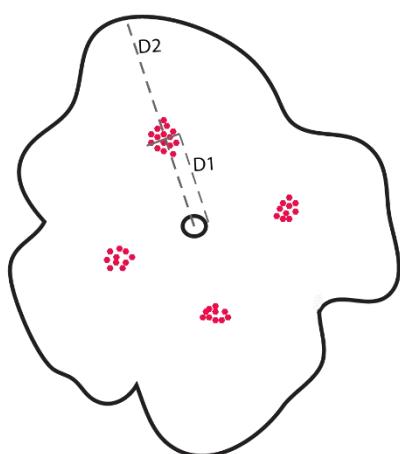
27 During development, neural wiring is refined through activity-dependent processes
28 (Blankenship and Feller, 2010; Luhmann et al, 2016). Spontaneous activity emerges long
29 before sensory experience is possible, displaying unique expression patterns in different CNS
30 areas. In the visual system, this activity is manifested by waves of spikes spreading across the
31 retinal ganglion cell (RGC) layer (Meister et al, 1991). Several studies have demonstrated that
32 retinal waves guide the development of visual connectivity (Huberman et al, 2008; Assali et
33 al, 2014).

34 The cellular mechanisms underlying wave generation change with development, indicated
35 by profound changes in the wave spatiotemporal features (Maccione et al, 2014). In mouse, the
36 drive for wave generation/propagation switches from gap junction communication (Stage-1,
37 prenatal) to cholinergic neurotransmission originating in starburst amacrine cells (SACs)
38 (Stage-2, late gestation to P9) (Feller et al, 1996). Control then switches to glutamatergic
39 bipolar cells before waves disappear around eye opening (Stage-3, P10-13). During Stage-2,
40 SACs make direct homotypic connections, leading to lateral activity propagation across their
41 network (Zheng et al, 2004). Experimental (Zheng et al, 2006; Ford et al, 2012) and theoretical
42 studies (Butts et al, 1999; Hennig et al, 2009; Matzakos-Karvouniari et al, 2019) suggest that
43 SACs play a fundamental role in defining wave dynamics by driving both wave initiation and
44 propagation. Active SACs impose a refractory period, creating boundaries for activity
45 propagation and controlling wave frequency. However, wave properties are not static during
46 the prolonged Stage-2 period, exhibiting a gradual increase in wave frequency and size,
47 followed by substantial shrinkage from P7 (Maccione et al, 2014). This suggests that Stage-2
48 wave initiation and propagation mechanisms may be more complex than originally assumed.
49 Here we report for the first time that cholinergic RGC-like cells are transiently present during
50 Stage-2 waves, and we propose that these cells may act as wave pacemakers.

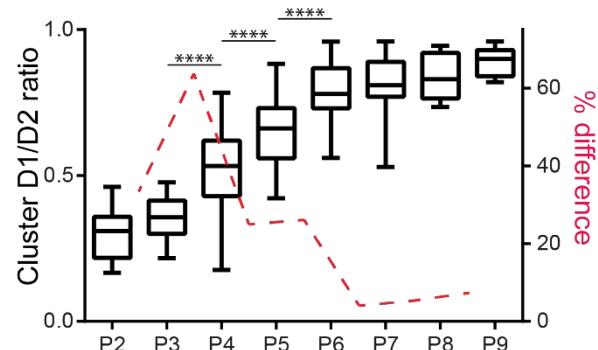
51


Results

52 We have followed the pan-retinal expression of cholinergic cells during Stage-2 waves (P2-
53 10) using immunostaining for the acetylcholine synthesizing enzyme Choline Acetyl
54 Transferase (ChAT). To our surprise, we found clusters of ChAT-expressing cells (Figure 1,
55 green dots) in the RGC layer (marked with RGC-specific RBPMS, red) forming an annulus of
56 tight clusters in the vicinity of the optic disc at P2. As development progresses, the annulus
57 expands, reaching the retinal periphery around P6-7. The clusters then begin to disintegrate and
58 completely disappear by P10, coinciding with the switch from Stage-2 to Stage-3 waves.


59 We quantified the clusters' eccentricity during development (Figure 1B,C). The most
60 substantial expansion occurs between P3-5, with no further eccentric movement beyond P6.

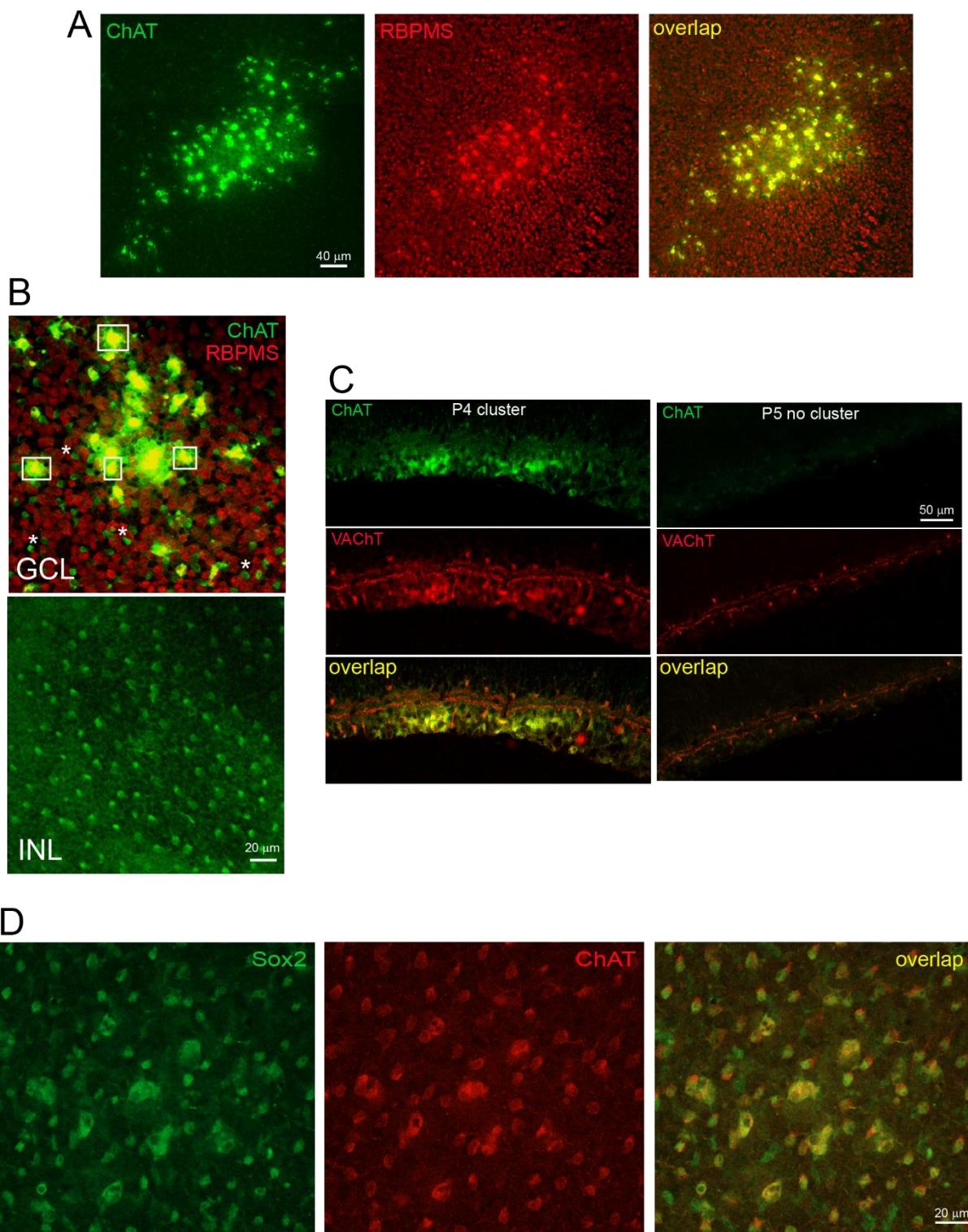
61 Closer inspection of the clusters revealed that these ChAT-expressing cells co-express
62 RBPMS (Figure 2A), suggesting that they may be large cholinergic RGCs co-existing with
63 much smaller SACs in the RGC layer (Figure 2B), but completely absent from the INL where
64 SACs are the only ChAT-expressing cells. These cluster cells also express vesicular
65 acetylcholine transporter (VACHT) on their soma and short processes, suggesting the presence
66 of cholinergic synaptic terminals (Figure 2C). SACs also express VACHT, but in the classical
67 double lamina pattern in the inner plexiform layer (IPL), flanked by cell bodies on both sides.
68 Finally, the cholinergic identity of the cluster cells is confirmed by Sox2 (Figure 2D), a
69 transcription factor expressed throughout life in retinal cholinergic cells (Whitney et al., 2014).


A

B

C

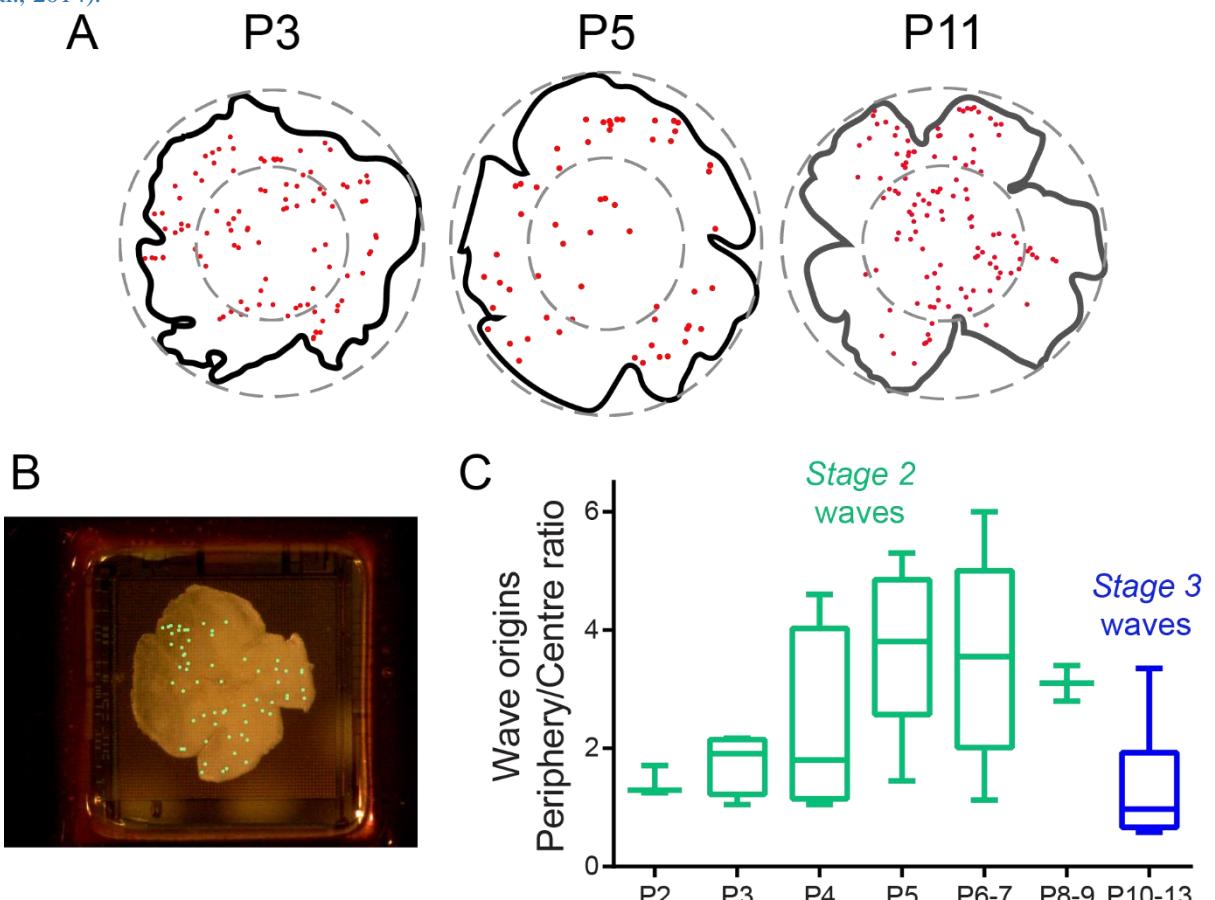
71
72

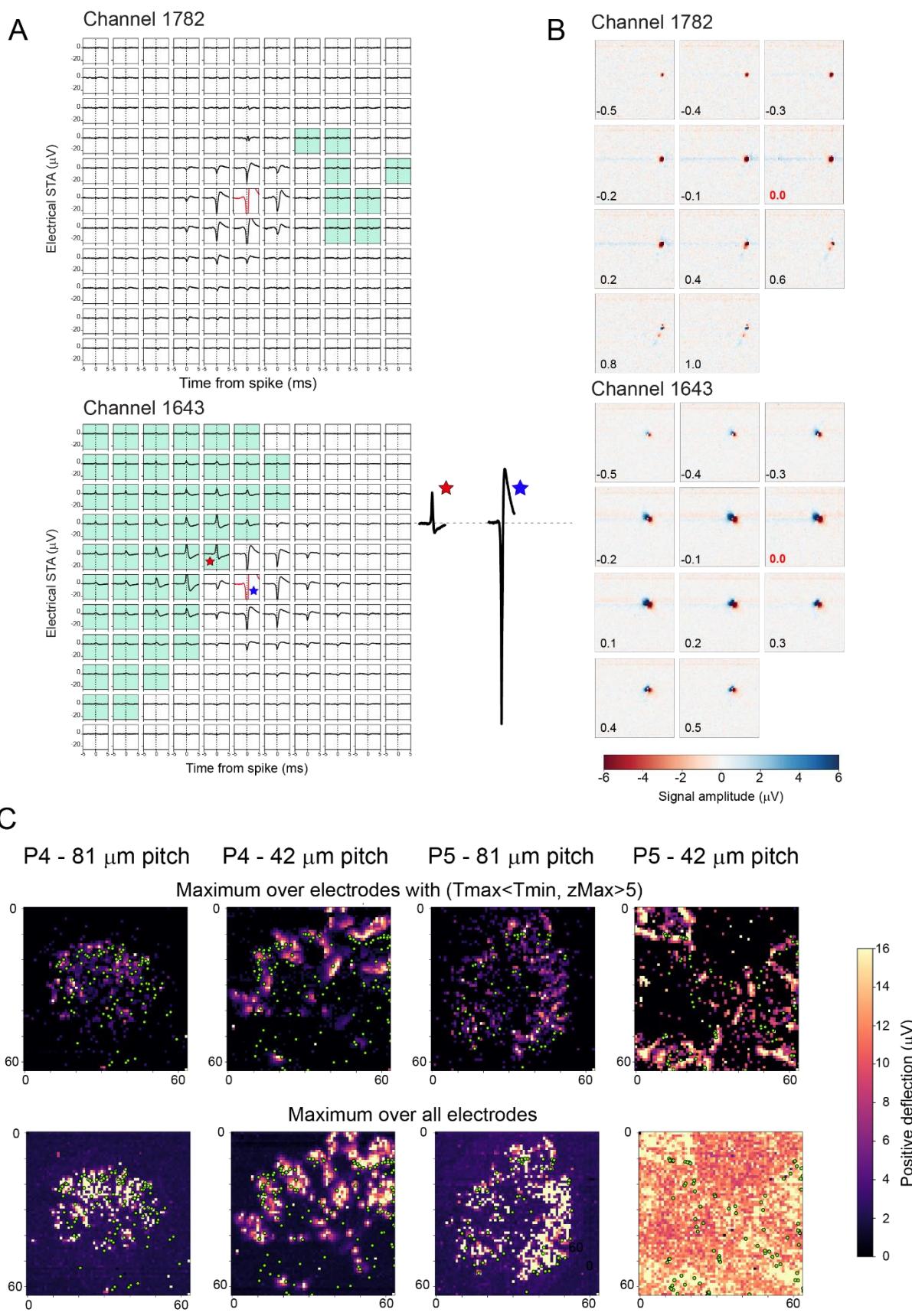

Figure 1: Retinal cholinergic cell clusters expansion from center to periphery during the first postnatal week. **A:** Mouse retinal wholemounts stained for ChAT (green) and RBPMS (red). Scale bar: 500 μ m. **B:** Method for calculating the relative position of clusters between the optic disc (small black circle in the middle) and periphery. Cluster cells are represented by red dots. D1: distance from center of optic disc to center of cluster. D2: distance between center of cluster to periphery. **C:** Box plot showing developmental changes in D1/D2 ratio. Each box illustrates the median (horizontal line) and interquartile range, with minimum and maximum values (whiskers). Asterisks indicate significant changes between consecutive days (One-way ANOVA with post-hoc Tukey test). The red dotted line illustrates the percentage difference in values between consecutive days, showing peak difference between P3 and P4 and no further changes from P6 onwards.

82
83

The cholinergic clusters are present only during the period of Stage-2 waves, migrating from center to periphery between P2-7. We have previously shown that wave sizes also increase

84 from P2-6 (Maccione et al., 2014). These coincidental events made us wonder whether these
85 clusters might be involved in wave generation. If so, we predict that wave origins would also
86 migrate in an eccentric fashion during the first postnatal week. To address this possibility, we
87 recorded waves between P2-13 using large-scale multielectrode arrays (MEAs) with 4,096
88 active electrodes spanning an area of $5.12 \times 5.12 \text{ mm}^2$, large enough to cover the entire retinal
89 surface at all ages (Figure 3). Wave origins (determined as the xy coordinates of the initial
90 wave center of activity trajectory, see Maccione et al., 2014) were aligned with the image of
91 the retina itself (Figure 3A, red dots, and B, green dots) and then classified as either central or
92 peripheral (Figure 3A, see Methods). Figure 3C shows how the periphery/center ratios of wave
93 origins change with development, expanding towards periphery between P2-7, with maximum
94 change between P3-5, similar to the locations of the cholinergic clusters (Figure 1C). Once
95 waves switch to Stage-3, the periphery-to-center ratio drops to 1 (or even lower), corroborating
96 our previous findings that glutamatergic waves are small activity hotspots that tile the entire
97 retina (Maccione et al., 2014).


98 To understand the possible functional involvement of these cellular clusters in wave
99 generation, we used electrical imaging (Greschner et al, 2016; Zeck et al., 2011; Petrusca et
100 al., 2007; Litke et al, 2004) (see Methods) to visualize wave-related electrical activity at high
101 spatiotemporal resolution (Figure 4). Recordings were done on MEAs with either 81 μm or 42
102 μm electrode pitch, the latter providing higher spatial resolution. Although negative deflections
103 smaller than the spike used for spike-triggered averaging (STA) were detected around most
104 STA channels, presumably reflecting wave-related activity propagation (as in Channel 1782,
105 Figure 4A and B), on some channels we could see conspicuous positive signals emerging
106 simultaneously with the negative spike signal (Channel 1643, Figure 4A). These signals were
107 significantly smaller (red asterisk) than the STA spikes (blue asterisk), but nevertheless easily
108 distinct from baseline activity. Overall, when combining the activity footprint from all channels
109 exhibiting such positive-negative “dipole” behavior (Figure 4C), we found that these areas
110 form clusters in close proximity with wave origins (green dots in Figure 4C). However, when
111 plotting all maximal projections, regardless of whether they have a positive deflection or not
112 (Figure 4C, bottom row), the activity is more spread out over MEA channels, with less clear
113 co-localization with the wave origins. The clustered layout of the dipole areas suggests that
114 these signals may reflect activity originating from the cholinergic cell clusters.


115
116

117 **Figure 2:** Cluster cells identified as cholinergic RGCs with immunolabeling. **A:** the images focus on one cluster
118 (P5 retina), taken at the level of the RGC layer. Left panel: ChAT; middle panel: RBPMS; right panel: overlap of
119 ChAT and RBPMS. All cluster cells co-express ChAT and RBPMS, suggesting they are cholinergic RGCs. **B:** P5
120 cluster viewed at the ganglion cell layer (GCL) level and at the INL level. Green: ChAT; red: RBPMS. At the
121 GCL level, ChAT expressing clusters cells (examples marked within white boxes) co-exist with much smaller
122 SACs (examples marked with asterisks). At the INL level, there are only SACs. **C:** Retinal sections showing
123 ChAT (green) and VACHT (red) expression within a cluster (P4, left column) and in an area devoid of clusters
124 (P5, right column). Cluster cells show strong VACHT expression. SACs express VACHT as well, exhibiting the
125 typical double laminar expression in the IPL flanked by cell bodies in the INL and GCL (ChAT expression is
126 weak in SACs at that age, increasing with development). In areas devoid of clusters, only the SAC expression

127 pattern can be seen. **D**: The large clusters cells and SACs both co-express Sox2 (green) and ChAT (red). There
128 are some additional Sox2 expressing cells that do not express ChAT. These are presumably glial cells (Whitney
129 et al., 2014).

130
131 **Figure 3:** retinal waves and cluster cells. **A**: outlines of retinal wholemounts (black lines) photographed on the
132 MEA immediately post recording (see **B** as well) overlaid with wave origins (red dots) detected during 30 minutes
133 recording. Large grey dotted ellipses: encompass the whole retina. The smaller concentric ellipses (50% smaller
134 than the large ones) indicate the central area. **B**: Photograph of a P4 retina on the MEA, taken at the end of the
135 recording session. Wave origins (green dots) are overlaid on the photograph. **C**: boxplot illustrating the ratio
136 between the number of wave origins in the periphery versus those in the central area. Wave origins expand from
137 center to periphery between P2 and P5-6, similar to the clusters themselves (Figure 1C). Same boxplot conventions
138 as for Figure 1C. Statistical analysis was not possible in this case due to the small numbers of values in each group
139 (one ratio value per retina).

Figure 4: electrical imaging of retinal waves. **A:** STAs for two trigger channels showing signals averaged over -5 to +5 ms relative to spikes on the trigger channel (in red) for 11x11 surrounding recording channels. Recording

144 channels with dipole activity (with maximal positive deflections with z score>5 occurring before the maximal
145 negative deflection, see Methods) are marked with the green mask. Channel 1643 has a marked area with dipole
146 signals near the trigger channel. The single traces on the right side of the electrode grid show the full size of the
147 spike on the trigger channel (blue asterisk) and maximal positive deflection (red asterisk), emphasizing the fact
148 that the amplitude of the dipole signals is significantly smaller than spikes, suggesting that they may represent
149 slow, graded potentials. (P4 retina, 60 min recording). **B:** Time-lapse images taken from movies of the averaged
150 activity for both channels illustrated in **A**. The precise time of each image is indicated in the bottom left corner of
151 each frame (in ms). Time 0.0 (time of the spikes used for STA) is indicated in red. For Channel 1643, clear dipole
152 signals are seen from the earliest time frame (-0.5ms). Such signals are absent in Channel 1782. **C:** Maximal
153 projections for signals with pre-STA spike signals with larger positive than negative deflections (top row) and for
154 all maximal projections (bottom row) over the entire MEA. Maps are shown for two P4 and two P5 retinas, each
155 with one example recorded on an array with 42 μ m electrode pitch, and for another array with 81 μ m pitch. Wave
156 origins (green dots) are overlaid on the electrical signals.

157 Discussion

158 Adult RGCs come in many anatomical and functional varieties, but they all share one
159 feature: they are glutamatergic neurons. Here we report for the first time that clusters of
160 cholinergic RGC-like cells are transiently present in the mouse retina during the period of
161 Stage-2 cholinergic waves. They appear near the optic disc at P2 and migrate to the periphery
162 by P7 before disappearing at P10, coinciding with the switch to Stage-3 waves.

163 One plausible explanation that these cells have not been reported in previous studies is that
164 they are sparse, and therefore may be easily missed if not visualized at pan-retinal level.

165 Several findings support the cholinergic RGC identity of these cells. Like SACs, their
166 cholinergic signature is confirmed by ChAT, VACHT and Sox2 expression. But otherwise, they
167 have features reminiscent of RGCs. Indeed, they express RBPMS, a selective RGC marker
168 (Kwong et al, 2010; Rodriguez et al., 2014). Second, they are found only in the RGC layer, and
169 not in the INL. Finally, they are much bigger than SACs, and they do not form a well-organized
170 horizontal network spanning the entire retinal surface. It is unlikely that the cells physically
171 migrate in the horizontal plane from the optic disc to the periphery over such a short period. It
172 is also unlikely that they undergo programmed cell death like other RGCs (Young, 1984)
173 because we could not detect apoptotic activity (with caspase3 immunostaining, data not shown)
174 in these cells. Perhaps they die through microglial phagocytic engulfment (Cunningham et al.,
175 2013). It is unlikely that they are undifferentiated cells because they do not express the
176 transcription factor *Olig2* (data not shown), widely expressed in retinal progenitor cells (Hafler
177 et al, 2012).

178 Our anatomical and physiological observations suggest that these cholinergic clusters may
179 be responsible for the generation of Stage-2 waves. Indeed, using an MEA that is large enough
180 to cover the entire retina, we found that wave initiation points move in a center-to-periphery
181 fashion over a very similar time frame and pattern as the clusters. Waves expand in size up to
182 P6 (Maccione et al, 2014), which could be due to their initiation points becoming gradually
183 more peripheral. Unfortunately, due to shrinkage and repetitive handling of fixed retinas, we
184 have not yet been able to reliably compare the locations of cholinergic clusters with wave origin
185 points in corresponding living retinas.

186 Electrical imaging analysis demonstrates the presence of activity clusters characterized by
187 simultaneous positive and negative small signals in proximity with wave origins, suggesting
188 that these clusters may represent activity related to the cholinergic RGCs. We propose that

189 these cells act as hyper-exitable and hyper-connected hubs that trigger waves. Once generated,
190 waves then travel across the retinal surface via the SAC network, as established in previous
191 studies. Future studies are needed to reach a better understanding of the nature of the signals
192 generated by these cells, and the extent of functional connectivity they make with SACs and
193 other RGCs.

194 Although these cells have never been reported in the retina, developing cortical areas exhibit
195 a transient population of subplate neurons that are highly active and synaptically connected to
196 other developing neurons (Luhmann et al, 2018). The presence of transient, electrically active
197 neurons during early development is thus not a new concept, suggesting a universal mechanism
198 mediating hyper-excitability in developing CNS networks during the critical period for brain
199 wiring.

200

201 Methods

202 Animals

203 All experimental procedures were approved by the UK Home Office, Animals (Scientific
204 procedures) Act 1986.

205 Experiments were performed on neonatal (P2-13) C57bl/6 mice. All animals were killed by
206 cervical dislocation followed by enucleation.

207 Immunostaining and imaging

208 For our anatomical studies, retinas were extracted from pups aged P2 (N=18 retinas), P3
209 (N=19), P4 (N=19), P5 (N=19), P6 (N=16), P7 (N=13), P8 (N=10), P9 (N=10), P10 (N=4) and
210 P11 (N=4).

211 We have used the following antibodies:

212 Primary antibodies

213 ChAT (AB144P, goat polyclonal, Merck Millipore).

214 VACHT (PA5-77386, rabbit polyclonal, ThermoFisher Scientific).

215 RBPMS (1830-RBPMS, rabbit polyclonal, Phosphosolutions).

216 SOX2 (MAB2018, mouse monoclonal, R&D Systems).

217 Secondary antibodies

218 Donkey anti rabbit Alexa 568 (A10042, Invitrogen).

219 Donkey anti goat Dylight 488 (SA5-10086, ThermoFisher Scientific).

220 Rabbit anti mouse FITC (315-095-003, Jackson ImmunoResearch).

221

222 Retinal sections

223 Eyecups were prepared from mouse pups aged P2-P9, fixed for 45 min in 4%
224 paraformaldehyde (PFA), , incubated in 30% sucrose in 0.1M phosphate buffer solution (PBS)
225 for at least 12 hours, and then embedded in Optimal Cutting Temperature (OCT) cryo
226 embedding compound and frozen at -20°C. Eyecups were sliced as 28 μ m thick sections using
227 a cryostat (Model: OTF5000, Bright Instruments), washed with PBS to remove OCT, and
228 incubated in blocking solution for 1 hour (5% secondary antibody host species serum with
229 0.5% Triton X-100 in PBS) prior to staining with antibodies.

230 Retinal sections were incubated with the primary antibody solution (0.5% Triton X-100 with
231 VACHT (1:500 in PBS) and ChAT (1:500)) for 12 hours at 4°C. Sections were washed with
232 PBS, followed by incubation with fluorescent secondary antibody solution (0.5% Triton X-100
233 with donkey anti rabbit Alexa 568 (1:500) and donkey anti goat Dylight 488 (1:500) in PBS)
234 for 1 hour.

235 Finally, slices were washed with PBS and embedded with home-made OPTIClear refractive-
236 index homogenisation solution. OPTIClear solution consists of 20% w/v N-methylglucamine,
237 25% w/v 2,2'-Thiodiethanol, 32% w/v Iohexol, pH 7-8. The solution is clear and colourless,
238 with a refractive index of 1.47-1.48.

239 Sections were imaged using the Zeiss LSM 800 confocal microscope. Regions of interests
240 were selected by using the ChAT staining in order to localise clusters.

241

242 **Retinal wholemounts**

243 Wholemount retinas were prepared from mouse pups aged P2-P11, flattened on
244 nitrocellulose membrane filters and fixed for 45 min in 4% PFA. Retinas were then incubated
245 in blocking solution (5% secondary antibody host species serum with 0.5% Triton X-100 in
246 PBS) for 1 hour.

247 Two different immunostaining combinations were used:

248 - Primary antibodies: 0.5% Triton X-100 with RBPMS (1:500) and ChAT (1:500).

249 Secondary antibodies: 0.5% Triton X-100 with donkey anti rabbit Alexa 568 (1:500) and
250 donkey anti goat Dylight 488 (1:500).

251 - Primary antibodies: 0.5% Triton X-100 with Sox2 (1:200) and ChAT antibody (1:500) in PBS
252 as first antibody solution. 0.5% Triton X-100 with rabbit anti mouse FITC (1:500) and donkey
253 anti goat Alexa 568 (1:500) in PBS as fluorescent secondary antibody solution.

254 Retinas were incubated with the primary antibody solution for 3 days at 4°C, then washed
255 with PBS and incubated with the secondary antibody solution for 1 day at 4°C.

256 Finally, retinas were washed with PBS and embedded with OptiClear.

257 Zeiss AxioImager with Apotome processing and the Zeiss LSM 800 confocal microscope were
258 used to image the retinas.

259 High-resolution images of the RGC layer down to the INL were obtained by subdividing
260 retinal wholemounts into adjacent smaller images that were subsequently stitched back together
261 to view the entire retinal surface. Regions of interests were selected by using the ChAT staining
262 in order to localise clusters.

263 To compensate for variability in retinal thickness, several focus points were set across the
264 retinal surface in order to keep sharp focus on the desired cell layer. Each individual picture
265 was then acquired in all color channels at 20x magnification, and with 10% overlap between
266 neighboring areas. This overlap is used to correctly align and stitch together all pictures using
267 the Zen Pro software (Zeiss). Z-stacks of images at 40x magnification were acquired at regions
268 of interest to visualize cells in 3D. Z-stacks consisted of images taken every 1 μm from the
269 RGC layer to below the INL.

270 To calculate the relative position of the cell clusters between the optic disc and periphery,
271 lines were traced and measured from the middle of the optic disc to the middle of a cluster (D1)
272 and then from the same point in the cluster to the periphery of the retina (D2). D1/D2 represents
273 the relative position of the clusters. One-way ANOVA was used on all 233 ratio values for all
274 eight groups. Tukey post-hoc test was used to identify significant changes in cluster positions
275 between consecutive developmental days.

276

277 **Electrophysiology**

278 **MEA recordings**

279 Retinas were isolated from mouse pups P2 (N=4 retinas), P3 (N=4), P4 (N=7), P5 (N=8),
280 P6 (N=3), P7 (N=2), P8 (N=2), P9 (N=2), P10 (N=2), P11 (N=2), P12 (N=1), P13 (N=1). The
281 isolated retina was placed, RGC layer facing down, onto the MEA and maintained stable by
282 placing a small piece of polyester membrane filter (Sterlitech, Kent, WA, USA) on the retina
283 followed by a home-made anchor. The retina was kept in constant darkness at 32°C with an in-

284 line heater (Warner Instruments, Hamden, CT, USA) and continuously perfused using a
285 peristaltic pump (~1 ml/min) with artificial cerebrospinal fluid containing the following (in
286 mM): 118 NaCl, 25 NaHCO₃, 1 NaH₂PO₄, 3 KCl, 1 MgCl₂, 2 CaCl₂, and 10 glucose,
287 equilibrated with 95% O₂ and 5% CO₂. Retinas were allowed to settle for 2 hours before
288 recording, allowing sufficient time for spontaneous activity to reach steady-state levels.

289 High resolution extracellular recordings of spontaneous waves were performed as described
290 in details in Maccione et al. (2014), using the BioCam4096 platform with APS MEA chips
291 type HD-MEA Stimulo (3Brain GmbH, Switzerland), providing 4096 square microelectrodes
292 of 21 μ m x 21 μ m in size on an active area of 5.12 x 5.12 mm, with an electrode pitch of 81
293 μ m. Two P5 and one P4 datasets were acquired with the MEA chip HD-MEA Arena
294 (2.67x2.67mm active area, electrode pitch 42 μ m).

295 Raw signals were visualized and recorded at 7 kHz sampling rate with BrainWaveX (3Brain
296 GmbH, Switzerland). Each dataset consisted of 30 min of continuous recording of retinal
297 waves. The datasets used for electrical imaging were acquired at 17.855 kHz for 30 or 60 min.

298 In the BioCam4096, samples of MEA signal are acquired row-wise by the amplifier.
299 Individual samples consist of 64 columns and 64 rows and often show a small but measurable
300 bias across rows of ca. 2-4 μ V (1-2 ADC units). While such bias is negligible for most
301 applications, it does degrade the quality of electrical images. Therefore, to reduce the bias
302 before electrical imaging, the median value of each row was independently calculated and
303 subtracted.

304 Retinas were photographed on the MEA at the end of the recording session to ensure we
305 document the precise orientation of the retina with respect to the array of electrodes (Figure
306 3B).

307 **Data processing and analysis**

308 Burst and wave detection was done in Matlab (Mathworks) as described in Maccione et al.
309 (2014). The xy coordinates of wave origins were then plotted on the MEA and overlaid with
310 the retina itself in the appropriate orientation with respect to the MEA (green dots on Figure
311 3B). The outline of the retina was drawn for each preparation and overlaid with the array of
312 wave origins (Figure 3A). The retinal outline was then delimited within an ellipse (outer
313 ellipses, grey dotted lines, Figure 3A). A second, concentric ellipse with half the dimension of
314 the outer ellipse was drawn to divide the retina into central and peripheral areas, and the number
315 of wave origins (red dots, Figure 1A) was counted for both areas to calculate the
316 periphery/center ratio of wave origins.

317 Electrical images were computed independently for each electrode by averaging the
318 electrical activity in the MEA surrounding the time of spikes in that electrode (spike-triggered
319 average). First, spikes were detected independently at each electrode with the default detection
320 parameters of BrainWaveX (3Brain GmbH, Switzerland) (Maccione et al., 2014). To ignore
321 electrodes without a good contact to the retina, only active electrodes – those with any
322 noteworthy activity – were analyzed. Active electrodes were defined as having a normalised
323 spike count

324

$$C(i) = \frac{N_i - \text{median}_j(N_j)}{1.4826 \times \text{median}_k \left(\left| N_k - \text{median}_j(N_j) \right| \right)} \geq 10,$$

325 where N stands for the spike count from an electrode. The denominator of C robustly estimates
326 the standard deviation of spike counts using the median absolute deviation from the median
327 (Quiroga et al., 2004; Donoho & Johnstone, 1994).

328 The electrical imaging itself proceeded as follows. For each active electrode, snippets of
329 raw MEA signals were taken from -5 to +5 ms of the detected spike times. Only spikes
330 appearing concomitantly with retinal waves were considered (wave onset and offset were
331 determined by (i) detecting bursts on each electrode separately, and (ii) grouping bursts into
332 waves based on temporal overlap and proximity, see Maccione et al., 2014 for further details).
333 For the sampling rate of 17.855 kHz, a snippet consisted of 64 rows, 64 columns, and 180
334 sample points. Averaging the snippets thus led to a 64x64x180 movie $A_i(x, y, t)$ representing
335 the typical electrical activity in the temporal vicinity of spikes from electrode i (Figure 4B). To
336 remove noisy electrodes, electrical images whose negative peak of the spike had a half-peak
337 width of less than 0.3 ms were discarded from the remaining analysis. To visualise the electrical
338 activity, movies $A_i(x, y, t)$ were reduced to a map of negative deflections $S_i^{\min}(x, y) = \min_t A_i$,
339 positive deflections $S_i^{\max}(x, y) = \max_t A_i$, and the times $T_i^{\min}(x, y)$, $T_i^{\max}(x, y)$
340 where such deflections occurred.

341 In some electrical images, a dipole activity was observed where positive deflections
342 emerged simultaneously with the expected negative deflections of a spike. These positive lobes
343 showed a strong positive deflection followed by a negative deflection (Figure 4A). To detect
344 candidate regions with positive lobes, pixels (x, y) were selected when they had a significant
345 positive deflection at a time $T_i^{\max}(x, y)$ preceding the time of negative deflection $T_i^{\min}(x, y)$
346 and not occurring later than 0.5 ms after the triggering spike. The latter condition helped to
347 remove pixels exhibiting purely axonal propagation. Positive deflections were considered
348 significant when their z-scored values

$$350 \quad Z_i^{\max}(x, y) = (S_i^{\max}(x, y) - \mu) / \sigma \geq 5, \\ 349 \quad \text{with } \sigma = 1.4826 \times \text{median}_{i, x, y, t} |A_i(x, y, t) - \mu| \text{ and } \mu = \text{median}_{i, x, y, t} A_i(x, y, t) \text{ (see C(i) above).}$$

351 Defining a mask $W_i(x, y)$ as unity for such selected pixels with positive deflections (green
352 background in Figure 4A) and zero everywhere else, the maximum projection (Figure 4C) over
353 selected regions was given by $M_+(x, y) = \max_i W_i(x, y) S_i^{\max}(x, y)$. The maximum over all
354 electrodes, regardless of positive lobes, was given by $M_0(x, y) = \max_i S_i^{\max}(x, y)$.

355 Acknowledgments

356 This work was supported by the Biotechnology and Biological Sciences Research Council
357 (BBSRC, BH163322), Newcastle University Faculty of Medical Sciences and by the European
358 Research Council (ERC) under the European Union's Horizon 2020 research and innovation
359 programme (grant agreement number 724822).

360 JdM, VK and ES designed the experiments; JdM and VK performed the experiments; JdM
361 and ES analyzed the experimental data; FR and TG designed and performed the electrical
362 imaging analysis; ES and FR wrote the manuscript with input from the other authors.

363

References

364 Assali A, Gaspar P, Rebsam A (2014) Activity dependent mechanisms of visual map formation--from
365 retinal waves to molecular regulators. *Semin Cell Dev Biol* 35:136-46. doi:
366 10.1016/j.semcd.2014.08.008

367 Feller MB, Wellis DP, Stellwagen D, Werblin FS, Shatz CJ (1996) Requirement for cholinergic
368 synaptic transmission in the propagation of spontaneous retinal waves. *Science* 272:1182-7. DOI:
369 10.1126/science.272.5265.1182

370 Blankenship AG, Feller MB (2010) Mechanisms underlying spontaneous patterned activity in
371 developing neural circuits. *Nat Rev Neurosci* 11:18-29. doi: 10.1038/nrn2759.

372 Butts DA, Feller MB, Shatz CJ, Rokhsar DS (1999) Retinal waves are governed by collective network
373 properties. *J Neurosci* 19:3580-93.

374 Cunningham CL, Martinez-Cerdeno V, Noctor SC (2013) Microglia regulate the number of neural
375 precursor cells in the developing cerebral cortex. *J Neurosci* 33:4216-4233. doi:
376 10.1523/JNEUROSCI.3441-12.2013.

377 Donoho DL, Johnstone JM (1994) Ideal spatial adaptation by wavelet shrinkage. *Biometrika* 81:425-
378 55.

379 Ford KJ, Félix AL, Feller MB (2012) Cellular mechanisms underlying spatiotemporal features of
380 cholinergic retinal waves. *J Neurosci* 32:850-63. doi: 10.1523/JNEUROSCI.5309-12.2012

381 Greschner M, Heitman AK, Field GD, Li PH, Ahn D, Sher A, Litke AM, Chichilnisky EJ (2016)
382 Identification of a Retinal Circuit for Recurrent Suppression Using Indirect Electrical Imaging. *Curr
383 Biol* 26:1935-1942. doi: 10.1016/j.cub.2016.05.051

384 Hafler BP, Surzenko N, Beier KT, Punzo C, Trimarchi JM, Kong JH, Cepko CL (2012) Transcription
385 factor Olig2 defines subpopulations of retinal progenitor cells biased toward specific cell fates. *Proc
386 Natl Acad Sci USA* 109:7882-7. doi: 10.1073/pnas.1203138109

387 Hennig MH, Adams C, Willshaw D, Sernagor E (2009) Early-stage waves in the retinal network emerge
388 close to a critical state transition between local and global functional connectivity. *J Neurosci* 29:1077-
389 86. doi: 10.1523/JNEUROSCI.4880-08.2009

390 Huberman A, Feller MB, Chapman B et al. (2008) Mechanisms Underlying Development of Visual
391 Maps and Receptive Fields. *Annu Rev Neurosci* 31:479-509. doi:
392 10.1146/annurev.neuro.31.060407.125533

393 Kwong JM, Caprioli J, Piri N (2010) RNA binding protein with multiple splicing: a new marker for
394 retinal ganglion cells. *Invest Ophthalmol Vis Sci* 51:1052-8. doi: 10.1167/iovs.09-4098

395 Litke AM, Bezayiff N, Chichilnisky EJ, Cunningham W, Dabrowski, W, Grillo AA, Grivich M, Grybos
396 P, Hottowy P, Kachigiane S, Kalmar RS (2004) What does the eye tell the brain?: Development of a
397 system for the large-scale recording of retinal output activity. *IEEE Trans on Nuclear Sci* 51: 1434-
398 1440.

399 Luhmann HJ, Kirischuk S, Kilb W (2018) The superior function of the subplate in early neocortical
400 development. *Front Neuroanat* 12:97. doi: 10.3389/fnana.2018.00097

401 Luhmann HJ, Sinning A, Yang JW, Reyes-Puerta V, Stüttgen MC, Kirischuk S, Kilb W (2016)
402 Spontaneous neuronal activity in developing neocortical networks: from single cells to large-scale
403 interactions. *Front Neural Circuits* 10:40. doi: 10.3389/fncir.2016.00040

404 Maccione A, Hennig MH, Gandolfo M, Muthmann O, van Coppenhagen J, Eglen SJ, Berdondini L,
405 Sernagor E (2014) Following the ontogeny of retinal waves: pan-retinal recordings of population
406 dynamics in the neonatal mouse. *J Physiol* 592:1545-63. doi: 10.1113/jphysiol.2013.262840

407 Matzakos-Karvouniari D, Gil L, Orendorff E, Marre O, Picaud S, Cessac B (2019). A biophysical model
408 explains the spontaneous bursting behavior in the developing retina. *Sci Rep* 9:1859. doi:
409 10.1038/s41598-018-38299-4

410 Meister M, Wong RO, Baylor DA, Shatz CJ (1991) Synchronous bursts of action potentials in ganglion
411 cells of the developing mammalian retina. *Science* 252:939-43.

412 Petrusca D, Grivich MI, Sher A, Field GD, Gauthier JL, Greschner M, Shlens J, Chichilnisky EJ, Litke
413 AM (2007) Identification and characterization of a Y-like primate retinal ganglion cell type. *J Neurosci*
414 27:11019-27.

415 Quiroga RQ, Nadasdy Z, Ben-Shaul Y (2004) Unsupervised spike detection and sorting with wavelets
416 and superparamagnetic clustering. *Neural Comp* 16:1661-87.

417 Rodriguez AR, de Sevilla Müller LP, Brecha NC (2014) The RNA binding protein RBPMS is a
418 selective marker of ganglion cells in the mammalian retina. *J Comp Neurol* 522:1411-43. doi:
419 10.1002/cne.23521

420 Whitney IE, Keeley PW, St John AJ, Kautzman AG, Kay JN, Reese BE (2014) Sox2 regulates
421 cholinergic amacrine cell positioning and dendritic stratification in the retina. *J Neurosci* 34:10109-21.
422 doi: 10.1523/JNEUROSCI.0415-14.2014

423 Young RW (1984) Cell death during differentiation of the retina in the mouse. *J Comp Neurol* 229:362-
424 73.

425 Zeck G, Lambacher A, Fromherz P (2011) Axonal transmission in the retina introduces a small
426 dispersion of relative timing in the ganglion cell population response. *PLoS One* 6: p.e20810. doi:
427 10.1371/journal.pone.0020810

428 Zheng JJ, Lee S, Zhou ZJ (2004) A developmental switch in the excitability and function of the starburst
429 network in the mammalian retina. *Neuron* 44:851-64.

430 Zheng J, Lee S, Zhou ZJ (2006) A transient network of intrinsically bursting starburst cells underlies
431 the generation of retinal waves. *Nat Neurosci* 9:363-71.